xref: /rk3399_ARM-atf/common/bl_common.c (revision 4112bfa0c223eda73af1cfe57ca7dc926f767dd8)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <bl_common.h>
35 #include <debug.h>
36 #include <io_storage.h>
37 #include <platform.h>
38 #include <errno.h>
39 #include <stdio.h>
40 
41 unsigned long page_align(unsigned long value, unsigned dir)
42 {
43 	unsigned long page_size = 1 << FOUR_KB_SHIFT;
44 
45 	/* Round up the limit to the next page boundary */
46 	if (value & (page_size - 1)) {
47 		value &= ~(page_size - 1);
48 		if (dir == UP)
49 			value += page_size;
50 	}
51 
52 	return value;
53 }
54 
55 static inline unsigned int is_page_aligned (unsigned long addr) {
56 	const unsigned long page_size = 1 << FOUR_KB_SHIFT;
57 
58 	return (addr & (page_size - 1)) == 0;
59 }
60 
61 void change_security_state(unsigned int target_security_state)
62 {
63 	unsigned long scr = read_scr();
64 
65 	if (target_security_state == SECURE)
66 		scr &= ~SCR_NS_BIT;
67 	else if (target_security_state == NON_SECURE)
68 		scr |= SCR_NS_BIT;
69 	else
70 		assert(0);
71 
72 	write_scr(scr);
73 }
74 
75 
76 /*******************************************************************************
77  * The next two functions are the weak definitions. Platform specific
78  * code can override them if it wishes to.
79  ******************************************************************************/
80 
81 /*******************************************************************************
82  * Function that takes a memory layout into which BL31 has been either top or
83  * bottom loaded. Using this information, it populates bl31_mem_layout to tell
84  * BL31 how much memory it has access to and how much is available for use. It
85  * does not need the address where BL31 has been loaded as BL31 will reclaim
86  * all the memory used by BL2.
87  * TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
88  * routine.
89  ******************************************************************************/
90 void init_bl31_mem_layout(const meminfo_t *bl2_mem_layout,
91 			  meminfo_t *bl31_mem_layout,
92 			  unsigned int load_type)
93 {
94 	if (load_type == BOT_LOAD) {
95 		/*
96 		 * ------------                             ^
97 		 * |   BL2    |                             |
98 		 * |----------|                 ^           |  BL2
99 		 * |          |                 | BL2 free  |  total
100 		 * |          |                 |   size    |  size
101 		 * |----------| BL2 free base   v           |
102 		 * |   BL31   |                             |
103 		 * ------------ BL2 total base              v
104 		 */
105 		unsigned long bl31_size;
106 
107 		bl31_mem_layout->free_base = bl2_mem_layout->free_base;
108 
109 		bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
110 		bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
111 	} else {
112 		/*
113 		 * ------------                             ^
114 		 * |   BL31   |                             |
115 		 * |----------|                 ^           |  BL2
116 		 * |          |                 | BL2 free  |  total
117 		 * |          |                 |   size    |  size
118 		 * |----------| BL2 free base   v           |
119 		 * |   BL2    |                             |
120 		 * ------------ BL2 total base              v
121 		 */
122 		unsigned long bl2_size;
123 
124 		bl31_mem_layout->free_base = bl2_mem_layout->total_base;
125 
126 		bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
127 		bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
128 	}
129 
130 	bl31_mem_layout->total_base = bl2_mem_layout->total_base;
131 	bl31_mem_layout->total_size = bl2_mem_layout->total_size;
132 	bl31_mem_layout->attr = load_type;
133 
134 	flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo_t));
135 	return;
136 }
137 
138 /*******************************************************************************
139  * Function that takes a memory layout into which BL2 has been either top or
140  * bottom loaded along with the address where BL2 has been loaded in it. Using
141  * this information, it populates bl2_mem_layout to tell BL2 how much memory
142  * it has access to and how much is available for use.
143  ******************************************************************************/
144 void init_bl2_mem_layout(meminfo_t *bl1_mem_layout,
145 			 meminfo_t *bl2_mem_layout,
146 			 unsigned int load_type,
147 			 unsigned long bl2_base)
148 {
149 	unsigned tmp;
150 
151 	if (load_type == BOT_LOAD) {
152 		bl2_mem_layout->total_base = bl2_base;
153 		tmp = bl1_mem_layout->free_base - bl2_base;
154 		bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
155 
156 	} else {
157 		bl2_mem_layout->total_base = bl1_mem_layout->free_base;
158 		tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
159 		bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
160 	}
161 
162 	bl2_mem_layout->free_base = bl1_mem_layout->free_base;
163 	bl2_mem_layout->free_size = bl1_mem_layout->free_size;
164 	bl2_mem_layout->attr = load_type;
165 
166 	flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo_t));
167 	return;
168 }
169 
170 static void dump_load_info(unsigned long image_load_addr,
171 			   unsigned long image_size,
172 			   const meminfo_t *mem_layout)
173 {
174 #if DEBUG
175 	printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
176 		image_load_addr, image_size);
177 	printf("Current memory layout:\r\n");
178 	printf("  total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
179 			mem_layout->total_base + mem_layout->total_size);
180 	printf("  free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
181 			mem_layout->free_base + mem_layout->free_size);
182 #endif
183 }
184 
185 /* Generic function to return the size of an image */
186 unsigned long image_size(const char *image_name)
187 {
188 	uintptr_t dev_handle;
189 	uintptr_t image_handle;
190 	uintptr_t image_spec;
191 	size_t image_size = 0;
192 	int io_result = IO_FAIL;
193 
194 	assert(image_name != NULL);
195 
196 	/* Obtain a reference to the image by querying the platform layer */
197 	io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
198 	if (io_result != IO_SUCCESS) {
199 		WARN("Failed to obtain reference to image '%s' (%i)\n",
200 			image_name, io_result);
201 		return 0;
202 	}
203 
204 	/* Attempt to access the image */
205 	io_result = io_open(dev_handle, image_spec, &image_handle);
206 	if (io_result != IO_SUCCESS) {
207 		WARN("Failed to access image '%s' (%i)\n",
208 			image_name, io_result);
209 		return 0;
210 	}
211 
212 	/* Find the size of the image */
213 	io_result = io_size(image_handle, &image_size);
214 	if ((io_result != IO_SUCCESS) || (image_size == 0)) {
215 		WARN("Failed to determine the size of the image '%s' file (%i)\n",
216 			image_name, io_result);
217 	}
218 	io_result = io_close(image_handle);
219 	/* Ignore improbable/unrecoverable error in 'close' */
220 
221 	/* TODO: Consider maintaining open device connection from this
222 	 * bootloader stage
223 	 */
224 	io_result = io_dev_close(dev_handle);
225 	/* Ignore improbable/unrecoverable error in 'dev_close' */
226 
227 	return image_size;
228 }
229 /*******************************************************************************
230  * Generic function to load an image into the trusted RAM,
231  * given a name, extents of free memory & whether the image should be loaded at
232  * the bottom or top of the free memory. It updates the memory layout if the
233  * load is successful. It also updates the image information and the entry point
234  * information in the params passed
235  ******************************************************************************/
236 int load_image(meminfo_t *mem_layout,
237 			 const char *image_name,
238 			 unsigned int load_type,
239 			 unsigned long fixed_addr,
240 			 image_info_t *image_data,
241 			 entry_point_info_t *entry_point_info)
242 {
243 	uintptr_t dev_handle;
244 	uintptr_t image_handle;
245 	uintptr_t image_spec;
246 	unsigned long temp_image_base = 0;
247 	unsigned long image_base = 0;
248 	long offset = 0;
249 	size_t image_size = 0;
250 	size_t bytes_read = 0;
251 	int io_result = IO_FAIL;
252 
253 	assert(mem_layout != NULL);
254 	assert(image_name != NULL);
255 	assert(image_data->h.version >= VERSION_1);
256 
257 	/* Obtain a reference to the image by querying the platform layer */
258 	io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
259 	if (io_result != IO_SUCCESS) {
260 		WARN("Failed to obtain reference to image '%s' (%i)\n",
261 			image_name, io_result);
262 		return io_result;
263 	}
264 
265 	/* Attempt to access the image */
266 	io_result = io_open(dev_handle, image_spec, &image_handle);
267 	if (io_result != IO_SUCCESS) {
268 		WARN("Failed to access image '%s' (%i)\n",
269 			image_name, io_result);
270 		return io_result;
271 	}
272 
273 	/* Find the size of the image */
274 	io_result = io_size(image_handle, &image_size);
275 	if ((io_result != IO_SUCCESS) || (image_size == 0)) {
276 		WARN("Failed to determine the size of the image '%s' file (%i)\n",
277 			image_name, io_result);
278 		goto exit;
279 	}
280 
281 	/* See if we have enough space */
282 	if (image_size > mem_layout->free_size) {
283 		WARN("Cannot load '%s' file: Not enough space.\n",
284 			image_name);
285 		dump_load_info(0, image_size, mem_layout);
286 		goto exit;
287 	}
288 
289 	switch (load_type) {
290 
291 	case TOP_LOAD:
292 
293 	  /* Load the image in the top of free memory */
294 	  temp_image_base = mem_layout->free_base + mem_layout->free_size;
295 	  temp_image_base -= image_size;
296 
297 	  /* Page align base address and check whether the image still fits */
298 	  image_base = page_align(temp_image_base, DOWN);
299 	  assert(image_base <= temp_image_base);
300 
301 	  if (image_base < mem_layout->free_base) {
302 		WARN("Cannot load '%s' file: Not enough space.\n",
303 			image_name);
304 		dump_load_info(image_base, image_size, mem_layout);
305 		io_result = -ENOMEM;
306 		goto exit;
307 	  }
308 
309 	  /* Calculate the amount of extra memory used due to alignment */
310 	  offset = temp_image_base - image_base;
311 
312 	  break;
313 
314 	case BOT_LOAD:
315 
316 	  /* Load the BL2 image in the bottom of free memory */
317 	  temp_image_base = mem_layout->free_base;
318 	  image_base = page_align(temp_image_base, UP);
319 	  assert(image_base >= temp_image_base);
320 
321 	  /* Page align base address and check whether the image still fits */
322 	  if (image_base + image_size >
323 	      mem_layout->free_base + mem_layout->free_size) {
324 		WARN("Cannot load '%s' file: Not enough space.\n",
325 		  image_name);
326 		dump_load_info(image_base, image_size, mem_layout);
327 		io_result = -ENOMEM;
328 		goto exit;
329 	  }
330 
331 	  /* Calculate the amount of extra memory used due to alignment */
332 	  offset = image_base - temp_image_base;
333 
334 	  break;
335 
336 	default:
337 	  assert(0);
338 
339 	}
340 
341 	/*
342 	 * Some images must be loaded at a fixed address, not a dynamic one.
343 	 *
344 	 * This has been implemented as a hack on top of the existing dynamic
345 	 * loading mechanism, for the time being.  If the 'fixed_addr' function
346 	 * argument is different from zero, then it will force the load address.
347 	 * So we still have this principle of top/bottom loading but the code
348 	 * determining the load address is bypassed and the load address is
349 	 * forced to the fixed one.
350 	 *
351 	 * This can result in quite a lot of wasted space because we still use
352 	 * 1 sole meminfo structure to represent the extents of free memory,
353 	 * where we should use some sort of linked list.
354 	 *
355 	 * E.g. we want to load BL2 at address 0x04020000, the resulting memory
356 	 *      layout should look as follows:
357 	 * ------------ 0x04040000
358 	 * |          |  <- Free space (1)
359 	 * |----------|
360 	 * |   BL2    |
361 	 * |----------| 0x04020000
362 	 * |          |  <- Free space (2)
363 	 * |----------|
364 	 * |   BL1    |
365 	 * ------------ 0x04000000
366 	 *
367 	 * But in the current hacky implementation, we'll need to specify
368 	 * whether BL2 is loaded at the top or bottom of the free memory.
369 	 * E.g. if BL2 is considered as top-loaded, the meminfo structure
370 	 * will give the following view of the memory, hiding the chunk of
371 	 * free memory above BL2:
372 	 * ------------ 0x04040000
373 	 * |          |
374 	 * |          |
375 	 * |   BL2    |
376 	 * |----------| 0x04020000
377 	 * |          |  <- Free space (2)
378 	 * |----------|
379 	 * |   BL1    |
380 	 * ------------ 0x04000000
381 	 */
382 	if (fixed_addr != 0) {
383 		/* Load the image at the given address. */
384 		image_base = fixed_addr;
385 
386 		/* Check whether the image fits. */
387 		if ((image_base < mem_layout->free_base) ||
388 		    (image_base + image_size >
389 		       mem_layout->free_base + mem_layout->free_size)) {
390 			WARN("Cannot load '%s' file: Not enough space.\n",
391 				image_name);
392 			dump_load_info(image_base, image_size, mem_layout);
393 			io_result = -ENOMEM;
394 			goto exit;
395 		}
396 
397 		/* Check whether the fixed load address is page-aligned. */
398 		if (!is_page_aligned(image_base)) {
399 			WARN("Cannot load '%s' file at unaligned address 0x%lx\n",
400 				image_name, fixed_addr);
401 			io_result = -ENOMEM;
402 			goto exit;
403 		}
404 
405 		/*
406 		 * Calculate the amount of extra memory used due to fixed
407 		 * loading.
408 		 */
409 		if (load_type == TOP_LOAD) {
410 			unsigned long max_addr, space_used;
411 			/*
412 			 * ------------ max_addr
413 			 * | /wasted/ |                 | offset
414 			 * |..........|..............................
415 			 * |  image   |                 | image_flen
416 			 * |----------| fixed_addr
417 			 * |          |
418 			 * |          |
419 			 * ------------ total_base
420 			 */
421 			max_addr = mem_layout->total_base + mem_layout->total_size;
422 			/*
423 			 * Compute the amount of memory used by the image.
424 			 * Corresponds to all space above the image load
425 			 * address.
426 			 */
427 			space_used = max_addr - fixed_addr;
428 			/*
429 			 * Calculate the amount of wasted memory within the
430 			 * amount of memory used by the image.
431 			 */
432 			offset = space_used - image_size;
433 		} else /* BOT_LOAD */
434 			/*
435 			 * ------------
436 			 * |          |
437 			 * |          |
438 			 * |----------|
439 			 * |  image   |
440 			 * |..........| fixed_addr
441 			 * | /wasted/ |                 | offset
442 			 * ------------ total_base
443 			 */
444 			offset = fixed_addr - mem_layout->total_base;
445 	}
446 
447 	/* We have enough space so load the image now */
448 	/* TODO: Consider whether to try to recover/retry a partially successful read */
449 	io_result = io_read(image_handle, image_base, image_size, &bytes_read);
450 	if ((io_result != IO_SUCCESS) || (bytes_read < image_size)) {
451 		WARN("Failed to load '%s' file (%i)\n", image_name, io_result);
452 		goto exit;
453 	}
454 
455 	image_data->image_base = image_base;
456 	image_data->image_size = image_size;
457 
458 	entry_point_info->pc = image_base;
459 
460 	/*
461 	 * File has been successfully loaded. Update the free memory
462 	 * data structure & flush the contents of the TZRAM so that
463 	 * the next EL can see it.
464 	 */
465 	/* Update the memory contents */
466 	flush_dcache_range(image_base, image_size);
467 
468 	mem_layout->free_size -= image_size + offset;
469 
470 	/* Update the base of free memory since its moved up */
471 	if (load_type == BOT_LOAD)
472 		mem_layout->free_base += offset + image_size;
473 
474 exit:
475 	io_close(image_handle);
476 	/* Ignore improbable/unrecoverable error in 'close' */
477 
478 	/* TODO: Consider maintaining open device connection from this bootloader stage */
479 	io_dev_close(dev_handle);
480 	/* Ignore improbable/unrecoverable error in 'dev_close' */
481 
482 	return io_result;
483 }
484