xref: /rk3399_ARM-atf/bl32/sp_min/aarch32/entrypoint.S (revision a97e1f9747e295af74e032c20c32eb94cfdf2a04)
1/*
2 * Copyright (c) 2016-2024, Arm Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <asm_macros.S>
9#include <common/bl_common.h>
10#include <common/runtime_svc.h>
11#include <context.h>
12#include <el3_common_macros.S>
13#include <lib/el3_runtime/cpu_data.h>
14#include <lib/pmf/aarch32/pmf_asm_macros.S>
15#include <lib/runtime_instr.h>
16#include <lib/xlat_tables/xlat_tables_defs.h>
17#include <smccc_helpers.h>
18#include <smccc_macros.S>
19
20	.globl	sp_min_vector_table
21	.globl	sp_min_entrypoint
22	.globl	sp_min_warm_entrypoint
23	.globl	sp_min_handle_smc
24	.globl	sp_min_handle_fiq
25
26#define FIXUP_SIZE	((BL32_LIMIT) - (BL32_BASE))
27
28	.macro route_fiq_to_sp_min reg
29		/* -----------------------------------------------------
30		 * FIQs are secure interrupts trapped by Monitor and non
31		 * secure is not allowed to mask the FIQs.
32		 * -----------------------------------------------------
33		 */
34		ldcopr	\reg, SCR
35		orr	\reg, \reg, #SCR_FIQ_BIT
36		bic	\reg, \reg, #SCR_FW_BIT
37		stcopr	\reg, SCR
38	.endm
39
40	.macro clrex_on_monitor_entry
41#if (ARM_ARCH_MAJOR == 7)
42	/*
43	 * ARMv7 architectures need to clear the exclusive access when
44	 * entering Monitor mode.
45	 */
46	clrex
47#endif
48	.endm
49
50vector_base sp_min_vector_table
51	b	sp_min_entrypoint
52	b	plat_panic_handler	/* Undef */
53	b	sp_min_handle_smc	/* Syscall */
54	b	report_prefetch_abort	/* Prefetch abort */
55	b	report_data_abort	/* Data abort */
56	b	plat_panic_handler	/* Reserved */
57	b	plat_panic_handler	/* IRQ */
58	b	sp_min_handle_fiq	/* FIQ */
59
60
61/*
62 * The Cold boot/Reset entrypoint for SP_MIN
63 */
64func sp_min_entrypoint
65	/* ---------------------------------------------------------------
66	 * Stash the previous bootloader arguments r0 - r3 for later use.
67	 * ---------------------------------------------------------------
68	 */
69	mov	r9, r0
70	mov	r10, r1
71	mov	r11, r2
72	mov	r12, r3
73
74#if !RESET_TO_SP_MIN
75	/* ---------------------------------------------------------------------
76	 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
77	 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
78	 * and primary/secondary CPU logic should not be executed in this case.
79	 *
80	 * Also, assume that the previous bootloader has already initialised the
81	 * SCTLR, including the CPU endianness, and has initialised the memory.
82	 * ---------------------------------------------------------------------
83	 */
84	el3_entrypoint_common					\
85		_init_sctlr=0					\
86		_warm_boot_mailbox=0				\
87		_secondary_cold_boot=0				\
88		_init_memory=0					\
89		_init_c_runtime=1				\
90		_exception_vectors=sp_min_vector_table		\
91		_pie_fixup_size=FIXUP_SIZE
92#else
93	/* ---------------------------------------------------------------------
94	 * For RESET_TO_SP_MIN systems which have a programmable reset address,
95	 * sp_min_entrypoint() is executed only on the cold boot path so we can
96	 * skip the warm boot mailbox mechanism.
97	 * ---------------------------------------------------------------------
98	 */
99	el3_entrypoint_common					\
100		_init_sctlr=1					\
101		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
102		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
103		_init_memory=1					\
104		_init_c_runtime=1				\
105		_exception_vectors=sp_min_vector_table		\
106		_pie_fixup_size=FIXUP_SIZE
107#endif /* RESET_TO_SP_MIN */
108
109#if SP_MIN_WITH_SECURE_FIQ
110	route_fiq_to_sp_min r4
111#endif
112
113	/* ---------------------------------------------------------------------
114	 * Relay the previous bootloader's arguments to the platform layer
115	 * ---------------------------------------------------------------------
116	 */
117	mov	r0, r9
118	mov	r1, r10
119	mov	r2, r11
120	mov	r3, r12
121	bl	sp_min_setup
122
123	/* Jump to the main function */
124	bl	sp_min_main
125
126	/* -------------------------------------------------------------
127	 * Clean the .data & .bss sections to main memory. This ensures
128	 * that any global data which was initialised by the primary CPU
129	 * is visible to secondary CPUs before they enable their data
130	 * caches and participate in coherency.
131	 * -------------------------------------------------------------
132	 */
133	ldr	r0, =__DATA_START__
134	ldr	r1, =__DATA_END__
135	sub	r1, r1, r0
136	bl	clean_dcache_range
137
138	ldr	r0, =__BSS_START__
139	ldr	r1, =__BSS_END__
140	sub	r1, r1, r0
141	bl	clean_dcache_range
142
143	bl	smc_get_next_ctx
144
145	/* r0 points to `smc_ctx_t` */
146	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
147	b	sp_min_exit
148endfunc sp_min_entrypoint
149
150
151/*
152 * SMC handling function for SP_MIN.
153 */
154func sp_min_handle_smc
155	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
156	str	lr, [sp, #SMC_CTX_LR_MON]
157
158#if ENABLE_RUNTIME_INSTRUMENTATION
159	/*
160	 * Read the timestamp value and store it on top of the C runtime stack.
161	 * The value will be saved to the per-cpu data once the C stack is
162	 * available, as a valid stack is needed to call _cpu_data()
163	 */
164	strd	r0, r1, [sp, #SMC_CTX_GPREG_R0]
165	ldcopr16 r0, r1, CNTPCT_64
166	ldr	lr, [sp, #SMC_CTX_SP_MON]
167	strd	r0, r1, [lr, #-8]!
168	str	lr, [sp, #SMC_CTX_SP_MON]
169	ldrd	r0, r1, [sp, #SMC_CTX_GPREG_R0]
170#endif
171
172	smccc_save_gp_mode_regs
173
174	clrex_on_monitor_entry
175
176	/*
177	 * `sp` still points to `smc_ctx_t`. Save it to a register
178	 * and restore the C runtime stack pointer to `sp`.
179	 */
180	mov	r2, sp				/* handle */
181	ldr	sp, [r2, #SMC_CTX_SP_MON]
182
183#if ENABLE_RUNTIME_INSTRUMENTATION
184	/* Save handle to a callee saved register */
185	mov	r6, r2
186
187	/*
188	 * Restore the timestamp value and store it in per-cpu data. The value
189	 * will be extracted from per-cpu data by the C level SMC handler and
190	 * saved to the PMF timestamp region.
191	 */
192	ldrd	r4, r5, [sp], #8
193	bl	_cpu_data
194	strd	r4, r5, [r0, #CPU_DATA_PMF_TS0_OFFSET]
195
196	/* Restore handle */
197	mov	r2, r6
198#endif
199
200	ldr	r0, [r2, #SMC_CTX_SCR]
201	and	r3, r0, #SCR_NS_BIT		/* flags */
202
203	/* Switch to Secure Mode*/
204	bic	r0, #SCR_NS_BIT
205	stcopr	r0, SCR
206	isb
207
208	ldr	r0, [r2, #SMC_CTX_GPREG_R0]	/* smc_fid */
209	/* Check whether an SMC64 is issued */
210	tst	r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
211	beq	1f
212	/* SMC32 is not detected. Return error back to caller */
213	mov	r0, #SMC_UNK
214	str	r0, [r2, #SMC_CTX_GPREG_R0]
215	mov	r0, r2
216	b	sp_min_exit
2171:
218	/* SMC32 is detected */
219	mov	r1, #0				/* cookie */
220	bl	handle_runtime_svc
221
222	/* `r0` points to `smc_ctx_t` */
223	b	sp_min_exit
224endfunc sp_min_handle_smc
225
226/*
227 * Secure Interrupts handling function for SP_MIN.
228 */
229func sp_min_handle_fiq
230#if !SP_MIN_WITH_SECURE_FIQ
231	b plat_panic_handler
232#else
233	/* FIQ has a +4 offset for lr compared to preferred return address */
234	sub	lr, lr, #4
235	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
236	str	lr, [sp, #SMC_CTX_LR_MON]
237
238	smccc_save_gp_mode_regs
239
240	clrex_on_monitor_entry
241
242	/* load run-time stack */
243	mov	r2, sp
244	ldr	sp, [r2, #SMC_CTX_SP_MON]
245
246	/* Switch to Secure Mode */
247	ldr	r0, [r2, #SMC_CTX_SCR]
248	bic	r0, #SCR_NS_BIT
249	stcopr	r0, SCR
250	isb
251
252	push	{r2, r3}
253	bl	sp_min_fiq
254	pop	{r0, r3}
255
256	b	sp_min_exit
257#endif
258endfunc sp_min_handle_fiq
259
260/*
261 * The Warm boot entrypoint for SP_MIN.
262 */
263func sp_min_warm_entrypoint
264#if ENABLE_RUNTIME_INSTRUMENTATION
265	/*
266	 * This timestamp update happens with cache off.  The next
267	 * timestamp collection will need to do cache maintenance prior
268	 * to timestamp update.
269	 */
270	pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR
271	ldcopr16 r2, r3, CNTPCT_64
272	strd	r2, r3, [r0]
273#endif
274	/*
275	 * On the warm boot path, most of the EL3 initialisations performed by
276	 * 'el3_entrypoint_common' must be skipped:
277	 *
278	 *  - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
279	 *    programming the reset address do we need to initialied the SCTLR.
280	 *    In other cases, we assume this has been taken care by the
281	 *    entrypoint code.
282	 *
283	 *  - No need to determine the type of boot, we know it is a warm boot.
284	 *
285	 *  - Do not try to distinguish between primary and secondary CPUs, this
286	 *    notion only exists for a cold boot.
287	 *
288	 *  - No need to initialise the memory or the C runtime environment,
289	 *    it has been done once and for all on the cold boot path.
290	 */
291	el3_entrypoint_common					\
292		_init_sctlr=PROGRAMMABLE_RESET_ADDRESS		\
293		_warm_boot_mailbox=0				\
294		_secondary_cold_boot=0				\
295		_init_memory=0					\
296		_init_c_runtime=0				\
297		_exception_vectors=sp_min_vector_table		\
298		_pie_fixup_size=0
299
300	/*
301	 * We're about to enable MMU and participate in PSCI state coordination.
302	 *
303	 * The PSCI implementation invokes platform routines that enable CPUs to
304	 * participate in coherency. On a system where CPUs are not
305	 * cache-coherent without appropriate platform specific programming,
306	 * having caches enabled until such time might lead to coherency issues
307	 * (resulting from stale data getting speculatively fetched, among
308	 * others). Therefore we keep data caches disabled even after enabling
309	 * the MMU for such platforms.
310	 *
311	 * On systems with hardware-assisted coherency, or on single cluster
312	 * platforms, such platform specific programming is not required to
313	 * enter coherency (as CPUs already are); and there's no reason to have
314	 * caches disabled either.
315	 */
316#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
317	mov	r0, #0
318#else
319	mov	r0, #DISABLE_DCACHE
320#endif
321	bl	bl32_plat_enable_mmu
322
323#if SP_MIN_WITH_SECURE_FIQ
324	route_fiq_to_sp_min r0
325#endif
326
327	bl	sp_min_warm_boot
328	bl	smc_get_next_ctx
329	/* r0 points to `smc_ctx_t` */
330	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
331
332#if ENABLE_RUNTIME_INSTRUMENTATION
333	/* Save smc_ctx_t */
334	mov	r5, r0
335
336	pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI
337	mov	r4, r0
338
339	/*
340	 * Invalidate before updating timestamp to ensure previous timestamp
341	 * updates on the same cache line with caches disabled are properly
342	 * seen by the same core. Without the cache invalidate, the core might
343	 * write into a stale cache line.
344	 */
345	mov	r1, #PMF_TS_SIZE
346	bl	inv_dcache_range
347
348	ldcopr16 r0, r1, CNTPCT_64
349	strd	r0, r1, [r4]
350
351	/* Restore smc_ctx_t */
352	mov	r0, r5
353#endif
354
355	b	sp_min_exit
356endfunc sp_min_warm_entrypoint
357
358/*
359 * The function to restore the registers from SMC context and return
360 * to the mode restored to SPSR.
361 *
362 * Arguments : r0 must point to the SMC context to restore from.
363 */
364func sp_min_exit
365	monitor_exit
366endfunc sp_min_exit
367