xref: /rk3399_ARM-atf/bl32/sp_min/aarch32/entrypoint.S (revision 7bba6884a0112ec38ad5992b1eb3f0398abf5cf7)
1/*
2 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <asm_macros.S>
9#include <bl_common.h>
10#include <context.h>
11#include <el3_common_macros.S>
12#include <runtime_svc.h>
13#include <smcc_helpers.h>
14#include <smcc_macros.S>
15#include <xlat_tables_defs.h>
16
17	.globl	sp_min_vector_table
18	.globl	sp_min_entrypoint
19	.globl	sp_min_warm_entrypoint
20
21
22vector_base sp_min_vector_table
23	b	sp_min_entrypoint
24	b	plat_panic_handler	/* Undef */
25	b	handle_smc		/* Syscall */
26	b	plat_panic_handler	/* Prefetch abort */
27	b	plat_panic_handler	/* Data abort */
28	b	plat_panic_handler	/* Reserved */
29	b	plat_panic_handler	/* IRQ */
30	b	plat_panic_handler	/* FIQ */
31
32
33/*
34 * The Cold boot/Reset entrypoint for SP_MIN
35 */
36func sp_min_entrypoint
37#if !RESET_TO_SP_MIN
38	/* ---------------------------------------------------------------
39	 * Preceding bootloader has populated r0 with a pointer to a
40	 * 'bl_params_t' structure & r1 with a pointer to platform
41	 * specific structure
42	 * ---------------------------------------------------------------
43	 */
44	mov	r11, r0
45	mov	r12, r1
46
47	/* ---------------------------------------------------------------------
48	 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
49	 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
50	 * and primary/secondary CPU logic should not be executed in this case.
51	 *
52	 * Also, assume that the previous bootloader has already initialised the
53	 * SCTLR, including the CPU endianness, and has initialised the memory.
54	 * ---------------------------------------------------------------------
55	 */
56	el3_entrypoint_common					\
57		_init_sctlr=0					\
58		_warm_boot_mailbox=0				\
59		_secondary_cold_boot=0				\
60		_init_memory=0					\
61		_init_c_runtime=1				\
62		_exception_vectors=sp_min_vector_table
63
64	/* ---------------------------------------------------------------------
65	 * Relay the previous bootloader's arguments to the platform layer
66	 * ---------------------------------------------------------------------
67	 */
68	mov	r0, r11
69	mov	r1, r12
70#else
71	/* ---------------------------------------------------------------------
72	 * For RESET_TO_SP_MIN systems which have a programmable reset address,
73	 * sp_min_entrypoint() is executed only on the cold boot path so we can
74	 * skip the warm boot mailbox mechanism.
75	 * ---------------------------------------------------------------------
76	 */
77	el3_entrypoint_common					\
78		_init_sctlr=1					\
79		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
80		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
81		_init_memory=1					\
82		_init_c_runtime=1				\
83		_exception_vectors=sp_min_vector_table
84
85	/* ---------------------------------------------------------------------
86	 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
87	 * to run so there's no argument to relay from a previous bootloader.
88	 * Zero the arguments passed to the platform layer to reflect that.
89	 * ---------------------------------------------------------------------
90	 */
91	mov	r0, #0
92	mov	r1, #0
93#endif /* RESET_TO_SP_MIN */
94
95	bl	sp_min_early_platform_setup
96	bl	sp_min_plat_arch_setup
97
98	/* Jump to the main function */
99	bl	sp_min_main
100
101	/* -------------------------------------------------------------
102	 * Clean the .data & .bss sections to main memory. This ensures
103	 * that any global data which was initialised by the primary CPU
104	 * is visible to secondary CPUs before they enable their data
105	 * caches and participate in coherency.
106	 * -------------------------------------------------------------
107	 */
108	ldr	r0, =__DATA_START__
109	ldr	r1, =__DATA_END__
110	sub	r1, r1, r0
111	bl	clean_dcache_range
112
113	ldr	r0, =__BSS_START__
114	ldr	r1, =__BSS_END__
115	sub	r1, r1, r0
116	bl	clean_dcache_range
117
118	bl	smc_get_next_ctx
119
120	/* r0 points to `smc_ctx_t` */
121	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
122	b	sp_min_exit
123endfunc sp_min_entrypoint
124
125
126/*
127 * SMC handling function for SP_MIN.
128 */
129func handle_smc
130	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
131	str	lr, [sp, #SMC_CTX_LR_MON]
132
133	smcc_save_gp_mode_regs
134
135	/*
136	 * `sp` still points to `smc_ctx_t`. Save it to a register
137	 * and restore the C runtime stack pointer to `sp`.
138	 */
139	mov	r2, sp				/* handle */
140	ldr	sp, [r2, #SMC_CTX_SP_MON]
141
142	ldr	r0, [r2, #SMC_CTX_SCR]
143	and	r3, r0, #SCR_NS_BIT		/* flags */
144
145	/* Switch to Secure Mode*/
146	bic	r0, #SCR_NS_BIT
147	stcopr	r0, SCR
148	isb
149
150	ldr	r0, [r2, #SMC_CTX_GPREG_R0]	/* smc_fid */
151	/* Check whether an SMC64 is issued */
152	tst	r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
153	beq	1f
154	/* SMC32 is not detected. Return error back to caller */
155	mov	r0, #SMC_UNK
156	str	r0, [r2, #SMC_CTX_GPREG_R0]
157	mov	r0, r2
158	b	sp_min_exit
1591:
160	/* SMC32 is detected */
161	mov	r1, #0				/* cookie */
162	bl	handle_runtime_svc
163
164	/* `r0` points to `smc_ctx_t` */
165	b	sp_min_exit
166endfunc handle_smc
167
168/*
169 * The Warm boot entrypoint for SP_MIN.
170 */
171func sp_min_warm_entrypoint
172	/*
173	 * On the warm boot path, most of the EL3 initialisations performed by
174	 * 'el3_entrypoint_common' must be skipped:
175	 *
176	 *  - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
177	 *    programming the reset address do we need to initialied the SCTLR.
178	 *    In other cases, we assume this has been taken care by the
179	 *    entrypoint code.
180	 *
181	 *  - No need to determine the type of boot, we know it is a warm boot.
182	 *
183	 *  - Do not try to distinguish between primary and secondary CPUs, this
184	 *    notion only exists for a cold boot.
185	 *
186	 *  - No need to initialise the memory or the C runtime environment,
187	 *    it has been done once and for all on the cold boot path.
188	 */
189	el3_entrypoint_common					\
190		_init_sctlr=PROGRAMMABLE_RESET_ADDRESS		\
191		_warm_boot_mailbox=0				\
192		_secondary_cold_boot=0				\
193		_init_memory=0					\
194		_init_c_runtime=0				\
195		_exception_vectors=sp_min_vector_table
196
197	/*
198	 * We're about to enable MMU and participate in PSCI state coordination.
199	 *
200	 * The PSCI implementation invokes platform routines that enable CPUs to
201	 * participate in coherency. On a system where CPUs are not
202	 * cache-coherent without appropriate platform specific programming,
203	 * having caches enabled until such time might lead to coherency issues
204	 * (resulting from stale data getting speculatively fetched, among
205	 * others). Therefore we keep data caches disabled even after enabling
206	 * the MMU for such platforms.
207	 *
208	 * On systems with hardware-assisted coherency, or on single cluster
209	 * platforms, such platform specific programming is not required to
210	 * enter coherency (as CPUs already are); and there's no reason to have
211	 * caches disabled either.
212	 */
213	mov	r0, #DISABLE_DCACHE
214	bl	bl32_plat_enable_mmu
215
216#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
217	ldcopr	r0, SCTLR
218	orr	r0, r0, #SCTLR_C_BIT
219	stcopr	r0, SCTLR
220	isb
221#endif
222
223	bl	sp_min_warm_boot
224	bl	smc_get_next_ctx
225	/* r0 points to `smc_ctx_t` */
226	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
227	b	sp_min_exit
228endfunc sp_min_warm_entrypoint
229
230/*
231 * The function to restore the registers from SMC context and return
232 * to the mode restored to SPSR.
233 *
234 * Arguments : r0 must point to the SMC context to restore from.
235 */
236func sp_min_exit
237	monitor_exit
238endfunc sp_min_exit
239