xref: /rk3399_ARM-atf/bl32/sp_min/aarch32/entrypoint.S (revision 5722b78cdb4a69d08c3c585aae2fb8dd9cbb9bfc)
1/*
2 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <asm_macros.S>
9#include <bl_common.h>
10#include <context.h>
11#include <el3_common_macros.S>
12#include <runtime_svc.h>
13#include <smcc_helpers.h>
14#include <smcc_macros.S>
15#include <xlat_tables_defs.h>
16
17	.globl	sp_min_vector_table
18	.globl	sp_min_entrypoint
19	.globl	sp_min_warm_entrypoint
20
21	.macro route_fiq_to_sp_min reg
22		/* -----------------------------------------------------
23		 * FIQs are secure interrupts trapped by Monitor and non
24		 * secure is not allowed to mask the FIQs.
25		 * -----------------------------------------------------
26		 */
27		ldcopr	\reg, SCR
28		orr	\reg, \reg, #SCR_FIQ_BIT
29		bic	\reg, \reg, #SCR_FW_BIT
30		stcopr	\reg, SCR
31	.endm
32
33vector_base sp_min_vector_table
34	b	sp_min_entrypoint
35	b	plat_panic_handler	/* Undef */
36	b	handle_smc		/* Syscall */
37	b	plat_panic_handler	/* Prefetch abort */
38	b	plat_panic_handler	/* Data abort */
39	b	plat_panic_handler	/* Reserved */
40	b	plat_panic_handler	/* IRQ */
41	b	handle_fiq		/* FIQ */
42
43
44/*
45 * The Cold boot/Reset entrypoint for SP_MIN
46 */
47func sp_min_entrypoint
48#if !RESET_TO_SP_MIN
49	/* ---------------------------------------------------------------
50	 * Preceding bootloader has populated r0 with a pointer to a
51	 * 'bl_params_t' structure & r1 with a pointer to platform
52	 * specific structure
53	 * ---------------------------------------------------------------
54	 */
55	mov	r11, r0
56	mov	r12, r1
57
58	/* ---------------------------------------------------------------------
59	 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
60	 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
61	 * and primary/secondary CPU logic should not be executed in this case.
62	 *
63	 * Also, assume that the previous bootloader has already initialised the
64	 * SCTLR, including the CPU endianness, and has initialised the memory.
65	 * ---------------------------------------------------------------------
66	 */
67	el3_entrypoint_common					\
68		_init_sctlr=0					\
69		_warm_boot_mailbox=0				\
70		_secondary_cold_boot=0				\
71		_init_memory=0					\
72		_init_c_runtime=1				\
73		_exception_vectors=sp_min_vector_table
74
75	/* ---------------------------------------------------------------------
76	 * Relay the previous bootloader's arguments to the platform layer
77	 * ---------------------------------------------------------------------
78	 */
79	mov	r0, r11
80	mov	r1, r12
81#else
82	/* ---------------------------------------------------------------------
83	 * For RESET_TO_SP_MIN systems which have a programmable reset address,
84	 * sp_min_entrypoint() is executed only on the cold boot path so we can
85	 * skip the warm boot mailbox mechanism.
86	 * ---------------------------------------------------------------------
87	 */
88	el3_entrypoint_common					\
89		_init_sctlr=1					\
90		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
91		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
92		_init_memory=1					\
93		_init_c_runtime=1				\
94		_exception_vectors=sp_min_vector_table
95
96	/* ---------------------------------------------------------------------
97	 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
98	 * to run so there's no argument to relay from a previous bootloader.
99	 * Zero the arguments passed to the platform layer to reflect that.
100	 * ---------------------------------------------------------------------
101	 */
102	mov	r0, #0
103	mov	r1, #0
104#endif /* RESET_TO_SP_MIN */
105
106#if SP_MIN_WITH_SECURE_FIQ
107	route_fiq_to_sp_min r4
108#endif
109
110	bl	sp_min_early_platform_setup
111	bl	sp_min_plat_arch_setup
112
113	/* Jump to the main function */
114	bl	sp_min_main
115
116	/* -------------------------------------------------------------
117	 * Clean the .data & .bss sections to main memory. This ensures
118	 * that any global data which was initialised by the primary CPU
119	 * is visible to secondary CPUs before they enable their data
120	 * caches and participate in coherency.
121	 * -------------------------------------------------------------
122	 */
123	ldr	r0, =__DATA_START__
124	ldr	r1, =__DATA_END__
125	sub	r1, r1, r0
126	bl	clean_dcache_range
127
128	ldr	r0, =__BSS_START__
129	ldr	r1, =__BSS_END__
130	sub	r1, r1, r0
131	bl	clean_dcache_range
132
133	bl	smc_get_next_ctx
134
135	/* r0 points to `smc_ctx_t` */
136	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
137	b	sp_min_exit
138endfunc sp_min_entrypoint
139
140
141/*
142 * SMC handling function for SP_MIN.
143 */
144func handle_smc
145	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
146	str	lr, [sp, #SMC_CTX_LR_MON]
147
148	smcc_save_gp_mode_regs
149
150	/*
151	 * `sp` still points to `smc_ctx_t`. Save it to a register
152	 * and restore the C runtime stack pointer to `sp`.
153	 */
154	mov	r2, sp				/* handle */
155	ldr	sp, [r2, #SMC_CTX_SP_MON]
156
157	ldr	r0, [r2, #SMC_CTX_SCR]
158	and	r3, r0, #SCR_NS_BIT		/* flags */
159
160	/* Switch to Secure Mode*/
161	bic	r0, #SCR_NS_BIT
162	stcopr	r0, SCR
163	isb
164
165	ldr	r0, [r2, #SMC_CTX_GPREG_R0]	/* smc_fid */
166	/* Check whether an SMC64 is issued */
167	tst	r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
168	beq	1f
169	/* SMC32 is not detected. Return error back to caller */
170	mov	r0, #SMC_UNK
171	str	r0, [r2, #SMC_CTX_GPREG_R0]
172	mov	r0, r2
173	b	sp_min_exit
1741:
175	/* SMC32 is detected */
176	mov	r1, #0				/* cookie */
177	bl	handle_runtime_svc
178
179	/* `r0` points to `smc_ctx_t` */
180	b	sp_min_exit
181endfunc handle_smc
182
183/*
184 * Secure Interrupts handling function for SP_MIN.
185 */
186func handle_fiq
187#if !SP_MIN_WITH_SECURE_FIQ
188	b plat_panic_handler
189#else
190	/* FIQ has a +4 offset for lr compared to preferred return address */
191	sub	lr, lr, #4
192	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
193	str	lr, [sp, #SMC_CTX_LR_MON]
194
195	smcc_save_gp_mode_regs
196
197	/*
198	 * AArch32 architectures need to clear the exclusive access when
199	 * entering Monitor mode.
200	 */
201	clrex
202
203	/* load run-time stack */
204	mov	r2, sp
205	ldr	sp, [r2, #SMC_CTX_SP_MON]
206
207	/* Switch to Secure Mode */
208	ldr	r0, [r2, #SMC_CTX_SCR]
209	bic	r0, #SCR_NS_BIT
210	stcopr	r0, SCR
211	isb
212
213	push	{r2, r3}
214	bl	sp_min_fiq
215	pop	{r0, r3}
216
217	b	sp_min_exit
218#endif
219endfunc handle_fiq
220
221/*
222 * The Warm boot entrypoint for SP_MIN.
223 */
224func sp_min_warm_entrypoint
225	/*
226	 * On the warm boot path, most of the EL3 initialisations performed by
227	 * 'el3_entrypoint_common' must be skipped:
228	 *
229	 *  - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
230	 *    programming the reset address do we need to initialied the SCTLR.
231	 *    In other cases, we assume this has been taken care by the
232	 *    entrypoint code.
233	 *
234	 *  - No need to determine the type of boot, we know it is a warm boot.
235	 *
236	 *  - Do not try to distinguish between primary and secondary CPUs, this
237	 *    notion only exists for a cold boot.
238	 *
239	 *  - No need to initialise the memory or the C runtime environment,
240	 *    it has been done once and for all on the cold boot path.
241	 */
242	el3_entrypoint_common					\
243		_init_sctlr=PROGRAMMABLE_RESET_ADDRESS		\
244		_warm_boot_mailbox=0				\
245		_secondary_cold_boot=0				\
246		_init_memory=0					\
247		_init_c_runtime=0				\
248		_exception_vectors=sp_min_vector_table
249
250	/*
251	 * We're about to enable MMU and participate in PSCI state coordination.
252	 *
253	 * The PSCI implementation invokes platform routines that enable CPUs to
254	 * participate in coherency. On a system where CPUs are not
255	 * cache-coherent without appropriate platform specific programming,
256	 * having caches enabled until such time might lead to coherency issues
257	 * (resulting from stale data getting speculatively fetched, among
258	 * others). Therefore we keep data caches disabled even after enabling
259	 * the MMU for such platforms.
260	 *
261	 * On systems with hardware-assisted coherency, or on single cluster
262	 * platforms, such platform specific programming is not required to
263	 * enter coherency (as CPUs already are); and there's no reason to have
264	 * caches disabled either.
265	 */
266	mov	r0, #DISABLE_DCACHE
267	bl	bl32_plat_enable_mmu
268
269#if SP_MIN_WITH_SECURE_FIQ
270	route_fiq_to_sp_min r0
271#endif
272
273#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
274	ldcopr	r0, SCTLR
275	orr	r0, r0, #SCTLR_C_BIT
276	stcopr	r0, SCTLR
277	isb
278#endif
279
280	bl	sp_min_warm_boot
281	bl	smc_get_next_ctx
282	/* r0 points to `smc_ctx_t` */
283	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
284	b	sp_min_exit
285endfunc sp_min_warm_entrypoint
286
287/*
288 * The function to restore the registers from SMC context and return
289 * to the mode restored to SPSR.
290 *
291 * Arguments : r0 must point to the SMC context to restore from.
292 */
293func sp_min_exit
294	monitor_exit
295endfunc sp_min_exit
296