1 /* 2 * Copyright (c) 2017-2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 /* 8 * Exception handlers at EL3, their priority levels, and management. 9 */ 10 11 #include <assert.h> 12 #include <stdbool.h> 13 14 #include <bl31/ehf.h> 15 #include <bl31/interrupt_mgmt.h> 16 #include <context.h> 17 #include <common/debug.h> 18 #include <drivers/arm/gic_common.h> 19 #include <lib/el3_runtime/context_mgmt.h> 20 #include <lib/el3_runtime/cpu_data.h> 21 #include <lib/el3_runtime/pubsub_events.h> 22 #include <plat/common/platform.h> 23 24 /* Output EHF logs as verbose */ 25 #define EHF_LOG(...) VERBOSE("EHF: " __VA_ARGS__) 26 27 #define EHF_INVALID_IDX (-1) 28 29 /* For a valid handler, return the actual function pointer; otherwise, 0. */ 30 #define RAW_HANDLER(h) \ 31 ((ehf_handler_t) ((((h) & EHF_PRI_VALID_) != 0U) ? \ 32 ((h) & ~EHF_PRI_VALID_) : 0U)) 33 34 #define PRI_BIT(idx) (((ehf_pri_bits_t) 1u) << (idx)) 35 36 /* 37 * Convert index into secure priority using the platform-defined priority bits 38 * field. 39 */ 40 #define IDX_TO_PRI(idx) \ 41 ((((unsigned) idx) << (7u - exception_data.pri_bits)) & 0x7fU) 42 43 /* Check whether a given index is valid */ 44 #define IS_IDX_VALID(idx) \ 45 ((exception_data.ehf_priorities[idx].ehf_handler & EHF_PRI_VALID_) != 0U) 46 47 /* Returns whether given priority is in secure priority range */ 48 #define IS_PRI_SECURE(pri) (((pri) & 0x80U) == 0U) 49 50 /* To be defined by the platform */ 51 extern const ehf_priorities_t exception_data; 52 53 /* Translate priority to the index in the priority array */ 54 static unsigned int pri_to_idx(unsigned int priority) 55 { 56 unsigned int idx; 57 58 idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits); 59 assert(idx < exception_data.num_priorities); 60 assert(IS_IDX_VALID(idx)); 61 62 return idx; 63 } 64 65 /* Return whether there are outstanding priority activation */ 66 static bool has_valid_pri_activations(pe_exc_data_t *pe_data) 67 { 68 return pe_data->active_pri_bits != 0U; 69 } 70 71 static pe_exc_data_t *this_cpu_data(void) 72 { 73 return &get_cpu_data(ehf_data); 74 } 75 76 /* 77 * Return the current priority index of this CPU. If no priority is active, 78 * return EHF_INVALID_IDX. 79 */ 80 static int get_pe_highest_active_idx(pe_exc_data_t *pe_data) 81 { 82 if (!has_valid_pri_activations(pe_data)) 83 return EHF_INVALID_IDX; 84 85 /* Current priority is the right-most bit */ 86 return (int) __builtin_ctz(pe_data->active_pri_bits); 87 } 88 89 /* 90 * Mark priority active by setting the corresponding bit in active_pri_bits and 91 * programming the priority mask. 92 * 93 * This API is to be used as part of delegating to lower ELs other than for 94 * interrupts; e.g. while handling synchronous exceptions. 95 * 96 * This API is expected to be invoked before restoring context (Secure or 97 * Non-secure) in preparation for the respective dispatch. 98 */ 99 void ehf_activate_priority(unsigned int priority) 100 { 101 int cur_pri_idx; 102 unsigned int old_mask, run_pri, idx; 103 pe_exc_data_t *pe_data = this_cpu_data(); 104 105 /* 106 * Query interrupt controller for the running priority, or idle priority 107 * if no interrupts are being handled. The requested priority must be 108 * less (higher priority) than the active running priority. 109 */ 110 run_pri = plat_ic_get_running_priority(); 111 if (priority >= run_pri) { 112 ERROR("Running priority higher (0x%x) than requested (0x%x)\n", 113 run_pri, priority); 114 panic(); 115 } 116 117 /* 118 * If there were priority activations already, the requested priority 119 * must be less (higher priority) than the current highest priority 120 * activation so far. 121 */ 122 cur_pri_idx = get_pe_highest_active_idx(pe_data); 123 idx = pri_to_idx(priority); 124 if ((cur_pri_idx != EHF_INVALID_IDX) && 125 (idx >= ((unsigned int) cur_pri_idx))) { 126 ERROR("Activation priority mismatch: req=0x%x current=0x%x\n", 127 priority, IDX_TO_PRI(cur_pri_idx)); 128 panic(); 129 } 130 131 /* Set the bit corresponding to the requested priority */ 132 pe_data->active_pri_bits |= PRI_BIT(idx); 133 134 /* 135 * Program priority mask for the activated level. Check that the new 136 * priority mask is setting a higher priority level than the existing 137 * mask. 138 */ 139 old_mask = plat_ic_set_priority_mask(priority); 140 if (priority >= old_mask) { 141 ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n", 142 priority, old_mask); 143 panic(); 144 } 145 146 /* 147 * If this is the first activation, save the priority mask. This will be 148 * restored after the last deactivation. 149 */ 150 if (cur_pri_idx == EHF_INVALID_IDX) 151 pe_data->init_pri_mask = (uint8_t) old_mask; 152 153 EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data)); 154 } 155 156 /* 157 * Mark priority inactive by clearing the corresponding bit in active_pri_bits, 158 * and programming the priority mask. 159 * 160 * This API is expected to be used as part of delegating to to lower ELs other 161 * than for interrupts; e.g. while handling synchronous exceptions. 162 * 163 * This API is expected to be invoked after saving context (Secure or 164 * Non-secure), having concluded the respective dispatch. 165 */ 166 void ehf_deactivate_priority(unsigned int priority) 167 { 168 int cur_pri_idx; 169 pe_exc_data_t *pe_data = this_cpu_data(); 170 unsigned int old_mask, run_pri, idx; 171 172 /* 173 * Query interrupt controller for the running priority, or idle priority 174 * if no interrupts are being handled. The requested priority must be 175 * less (higher priority) than the active running priority. 176 */ 177 run_pri = plat_ic_get_running_priority(); 178 if (priority >= run_pri) { 179 ERROR("Running priority higher (0x%x) than requested (0x%x)\n", 180 run_pri, priority); 181 panic(); 182 } 183 184 /* 185 * Deactivation is allowed only when there are priority activations, and 186 * the deactivation priority level must match the current activated 187 * priority. 188 */ 189 cur_pri_idx = get_pe_highest_active_idx(pe_data); 190 idx = pri_to_idx(priority); 191 if ((cur_pri_idx == EHF_INVALID_IDX) || 192 (idx != ((unsigned int) cur_pri_idx))) { 193 ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n", 194 priority, IDX_TO_PRI(cur_pri_idx)); 195 panic(); 196 } 197 198 /* Clear bit corresponding to highest priority */ 199 pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1u); 200 201 /* 202 * Restore priority mask corresponding to the next priority, or the 203 * one stashed earlier if there are no more to deactivate. 204 */ 205 cur_pri_idx = get_pe_highest_active_idx(pe_data); 206 if (cur_pri_idx == EHF_INVALID_IDX) 207 old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask); 208 else 209 old_mask = plat_ic_set_priority_mask(priority); 210 211 if (old_mask > priority) { 212 ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n", 213 priority, old_mask); 214 panic(); 215 } 216 217 EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data)); 218 } 219 220 /* 221 * After leaving Non-secure world, stash current Non-secure Priority Mask, and 222 * set Priority Mask to the highest Non-secure priority so that Non-secure 223 * interrupts cannot preempt Secure execution. 224 * 225 * If the current running priority is in the secure range, or if there are 226 * outstanding priority activations, this function does nothing. 227 * 228 * This function subscribes to the 'cm_exited_normal_world' event published by 229 * the Context Management Library. 230 */ 231 static void *ehf_exited_normal_world(const void *arg) 232 { 233 unsigned int run_pri; 234 pe_exc_data_t *pe_data = this_cpu_data(); 235 236 /* If the running priority is in the secure range, do nothing */ 237 run_pri = plat_ic_get_running_priority(); 238 if (IS_PRI_SECURE(run_pri)) 239 return NULL; 240 241 /* Do nothing if there are explicit activations */ 242 if (has_valid_pri_activations(pe_data)) 243 return NULL; 244 245 assert(pe_data->ns_pri_mask == 0u); 246 247 pe_data->ns_pri_mask = 248 (uint8_t) plat_ic_set_priority_mask(GIC_HIGHEST_NS_PRIORITY); 249 250 /* The previous Priority Mask is not expected to be in secure range */ 251 if (IS_PRI_SECURE(pe_data->ns_pri_mask)) { 252 ERROR("Priority Mask (0x%x) already in secure range\n", 253 pe_data->ns_pri_mask); 254 panic(); 255 } 256 257 EHF_LOG("Priority Mask: 0x%x => 0x%x\n", pe_data->ns_pri_mask, 258 GIC_HIGHEST_NS_PRIORITY); 259 260 return NULL; 261 } 262 263 /* 264 * Conclude Secure execution and prepare for return to Non-secure world. Restore 265 * the Non-secure Priority Mask previously stashed upon leaving Non-secure 266 * world. 267 * 268 * If there the current running priority is in the secure range, or if there are 269 * outstanding priority activations, this function does nothing. 270 * 271 * This function subscribes to the 'cm_entering_normal_world' event published by 272 * the Context Management Library. 273 */ 274 static void *ehf_entering_normal_world(const void *arg) 275 { 276 unsigned int old_pmr, run_pri; 277 pe_exc_data_t *pe_data = this_cpu_data(); 278 279 /* If the running priority is in the secure range, do nothing */ 280 run_pri = plat_ic_get_running_priority(); 281 if (IS_PRI_SECURE(run_pri)) 282 return NULL; 283 284 /* 285 * If there are explicit activations, do nothing. The Priority Mask will 286 * be restored upon the last deactivation. 287 */ 288 if (has_valid_pri_activations(pe_data)) 289 return NULL; 290 291 /* Do nothing if we don't have a valid Priority Mask to restore */ 292 if (pe_data->ns_pri_mask == 0U) 293 return NULL; 294 295 old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask); 296 297 /* 298 * When exiting secure world, the current Priority Mask must be 299 * GIC_HIGHEST_NS_PRIORITY (as set during entry), or the Non-secure 300 * priority mask set upon calling ehf_allow_ns_preemption() 301 */ 302 if ((old_pmr != GIC_HIGHEST_NS_PRIORITY) && 303 (old_pmr != pe_data->ns_pri_mask)) { 304 ERROR("Invalid Priority Mask (0x%x) restored\n", old_pmr); 305 panic(); 306 } 307 308 EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask); 309 310 pe_data->ns_pri_mask = 0; 311 312 return NULL; 313 } 314 315 /* 316 * Program Priority Mask to the original Non-secure priority such that 317 * Non-secure interrupts may preempt Secure execution (for example, during 318 * Yielding SMC calls). The 'preempt_ret_code' parameter indicates the Yielding 319 * SMC's return value in case the call was preempted. 320 * 321 * This API is expected to be invoked before delegating a yielding SMC to Secure 322 * EL1. I.e. within the window of secure execution after Non-secure context is 323 * saved (after entry into EL3) and Secure context is restored (before entering 324 * Secure EL1). 325 */ 326 void ehf_allow_ns_preemption(uint64_t preempt_ret_code) 327 { 328 cpu_context_t *ns_ctx; 329 unsigned int old_pmr __unused; 330 pe_exc_data_t *pe_data = this_cpu_data(); 331 332 /* 333 * We should have been notified earlier of entering secure world, and 334 * therefore have stashed the Non-secure priority mask. 335 */ 336 assert(pe_data->ns_pri_mask != 0U); 337 338 /* Make sure no priority levels are active when requesting this */ 339 if (has_valid_pri_activations(pe_data)) { 340 ERROR("PE %lx has priority activations: 0x%x\n", 341 read_mpidr_el1(), pe_data->active_pri_bits); 342 panic(); 343 } 344 345 /* 346 * Program preempted return code to x0 right away so that, if the 347 * Yielding SMC was indeed preempted before a dispatcher gets a chance 348 * to populate it, the caller would find the correct return value. 349 */ 350 ns_ctx = cm_get_context(NON_SECURE); 351 assert(ns_ctx != NULL); 352 write_ctx_reg(get_gpregs_ctx(ns_ctx), CTX_GPREG_X0, preempt_ret_code); 353 354 old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask); 355 356 EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask); 357 358 pe_data->ns_pri_mask = 0; 359 } 360 361 /* 362 * Return whether Secure execution has explicitly allowed Non-secure interrupts 363 * to preempt itself (for example, during Yielding SMC calls). 364 */ 365 unsigned int ehf_is_ns_preemption_allowed(void) 366 { 367 unsigned int run_pri; 368 pe_exc_data_t *pe_data = this_cpu_data(); 369 370 /* If running priority is in secure range, return false */ 371 run_pri = plat_ic_get_running_priority(); 372 if (IS_PRI_SECURE(run_pri)) 373 return 0; 374 375 /* 376 * If Non-secure preemption was permitted by calling 377 * ehf_allow_ns_preemption() earlier: 378 * 379 * - There wouldn't have been priority activations; 380 * - We would have cleared the stashed the Non-secure Priority Mask. 381 */ 382 if (has_valid_pri_activations(pe_data)) 383 return 0; 384 if (pe_data->ns_pri_mask != 0U) 385 return 0; 386 387 return 1; 388 } 389 390 /* 391 * Top-level EL3 interrupt handler. 392 */ 393 static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags, 394 void *handle, void *cookie) 395 { 396 int ret = 0; 397 uint32_t intr_raw; 398 unsigned int intr, pri, idx; 399 ehf_handler_t handler; 400 401 /* 402 * Top-level interrupt type handler from Interrupt Management Framework 403 * doesn't acknowledge the interrupt; so the interrupt ID must be 404 * invalid. 405 */ 406 assert(id == INTR_ID_UNAVAILABLE); 407 408 /* 409 * Acknowledge interrupt. Proceed with handling only for valid interrupt 410 * IDs. This situation may arise because of Interrupt Management 411 * Framework identifying an EL3 interrupt, but before it's been 412 * acknowledged here, the interrupt was either deasserted, or there was 413 * a higher-priority interrupt of another type. 414 */ 415 intr_raw = plat_ic_acknowledge_interrupt(); 416 intr = plat_ic_get_interrupt_id(intr_raw); 417 if (intr == INTR_ID_UNAVAILABLE) 418 return 0; 419 420 /* Having acknowledged the interrupt, get the running priority */ 421 pri = plat_ic_get_running_priority(); 422 423 /* Check EL3 interrupt priority is in secure range */ 424 assert(IS_PRI_SECURE(pri)); 425 426 /* 427 * Translate the priority to a descriptor index. We do this by masking 428 * and shifting the running priority value (platform-supplied). 429 */ 430 idx = pri_to_idx(pri); 431 432 /* Validate priority */ 433 assert(pri == IDX_TO_PRI(idx)); 434 435 handler = (ehf_handler_t) RAW_HANDLER( 436 exception_data.ehf_priorities[idx].ehf_handler); 437 if (handler == NULL) { 438 ERROR("No EL3 exception handler for priority 0x%x\n", 439 IDX_TO_PRI(idx)); 440 panic(); 441 } 442 443 /* 444 * Call registered handler. Pass the raw interrupt value to registered 445 * handlers. 446 */ 447 ret = handler(intr_raw, flags, handle, cookie); 448 449 return (uint64_t) ret; 450 } 451 452 /* 453 * Initialize the EL3 exception handling. 454 */ 455 void __init ehf_init(void) 456 { 457 unsigned int flags = 0; 458 int ret __unused; 459 460 /* Ensure EL3 interrupts are supported */ 461 assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3) != 0); 462 463 /* 464 * Make sure that priority water mark has enough bits to represent the 465 * whole priority array. 466 */ 467 assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8U)); 468 469 assert(exception_data.ehf_priorities != NULL); 470 471 /* 472 * Bit 7 of GIC priority must be 0 for secure interrupts. This means 473 * platforms must use at least 1 of the remaining 7 bits. 474 */ 475 assert((exception_data.pri_bits >= 1U) || 476 (exception_data.pri_bits < 8U)); 477 478 /* Route EL3 interrupts when in Non-secure. */ 479 set_interrupt_rm_flag(flags, NON_SECURE); 480 481 /* 482 * Route EL3 interrupts when in secure, only when SPMC is not present 483 * in S-EL2. 484 */ 485 #if !(defined(SPD_spmd) && (SPMD_SPM_AT_SEL2 == 1)) 486 set_interrupt_rm_flag(flags, SECURE); 487 #endif /* !(defined(SPD_spmd) && (SPMD_SPM_AT_SEL2 == 1)) */ 488 489 /* Register handler for EL3 interrupts */ 490 ret = register_interrupt_type_handler(INTR_TYPE_EL3, 491 ehf_el3_interrupt_handler, flags); 492 assert(ret == 0); 493 } 494 495 /* 496 * Register a handler at the supplied priority. Registration is allowed only if 497 * a handler hasn't been registered before, or one wasn't provided at build 498 * time. The priority for which the handler is being registered must also accord 499 * with the platform-supplied data. 500 */ 501 void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler) 502 { 503 unsigned int idx; 504 505 /* Sanity check for handler */ 506 assert(handler != NULL); 507 508 /* Handler ought to be 4-byte aligned */ 509 assert((((uintptr_t) handler) & 3U) == 0U); 510 511 /* Ensure we register for valid priority */ 512 idx = pri_to_idx(pri); 513 assert(idx < exception_data.num_priorities); 514 assert(IDX_TO_PRI(idx) == pri); 515 516 /* Return failure if a handler was already registered */ 517 if (exception_data.ehf_priorities[idx].ehf_handler != EHF_NO_HANDLER_) { 518 ERROR("Handler already registered for priority 0x%x\n", pri); 519 panic(); 520 } 521 522 /* 523 * Install handler, and retain the valid bit. We assume that the handler 524 * is 4-byte aligned, which is usually the case. 525 */ 526 exception_data.ehf_priorities[idx].ehf_handler = 527 (((uintptr_t) handler) | EHF_PRI_VALID_); 528 529 EHF_LOG("register pri=0x%x handler=%p\n", pri, handler); 530 } 531 532 SUBSCRIBE_TO_EVENT(cm_entering_normal_world, ehf_entering_normal_world); 533 SUBSCRIBE_TO_EVENT(cm_exited_normal_world, ehf_exited_normal_world); 534