1 /* 2 * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 /* 8 * Exception handlers at EL3, their priority levels, and management. 9 */ 10 11 #include <assert.h> 12 #include <cpu_data.h> 13 #include <debug.h> 14 #include <ehf.h> 15 #include <gic_common.h> 16 #include <interrupt_mgmt.h> 17 #include <platform.h> 18 #include <pubsub_events.h> 19 20 /* Output EHF logs as verbose */ 21 #define EHF_LOG(...) VERBOSE("EHF: " __VA_ARGS__) 22 23 #define EHF_INVALID_IDX (-1) 24 25 /* For a valid handler, return the actual function pointer; otherwise, 0. */ 26 #define RAW_HANDLER(h) \ 27 ((ehf_handler_t) ((h & _EHF_PRI_VALID) ? (h & ~_EHF_PRI_VALID) : 0)) 28 29 #define PRI_BIT(idx) (((ehf_pri_bits_t) 1) << idx) 30 31 /* 32 * Convert index into secure priority using the platform-defined priority bits 33 * field. 34 */ 35 #define IDX_TO_PRI(idx) \ 36 ((idx << (7 - exception_data.pri_bits)) & 0x7f) 37 38 /* Check whether a given index is valid */ 39 #define IS_IDX_VALID(idx) \ 40 ((exception_data.ehf_priorities[idx].ehf_handler & _EHF_PRI_VALID) != 0) 41 42 /* Returns whether given priority is in secure priority range */ 43 #define IS_PRI_SECURE(pri) ((pri & 0x80) == 0) 44 45 /* To be defined by the platform */ 46 extern const ehf_priorities_t exception_data; 47 48 /* Translate priority to the index in the priority array */ 49 static int pri_to_idx(unsigned int priority) 50 { 51 int idx; 52 53 idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits); 54 assert((idx >= 0) && (idx < exception_data.num_priorities)); 55 assert(IS_IDX_VALID(idx)); 56 57 return idx; 58 } 59 60 /* Return whether there are outstanding priority activation */ 61 static int has_valid_pri_activations(pe_exc_data_t *pe_data) 62 { 63 return pe_data->active_pri_bits != 0; 64 } 65 66 static pe_exc_data_t *this_cpu_data(void) 67 { 68 return &get_cpu_data(ehf_data); 69 } 70 71 /* 72 * Return the current priority index of this CPU. If no priority is active, 73 * return EHF_INVALID_IDX. 74 */ 75 static int get_pe_highest_active_idx(pe_exc_data_t *pe_data) 76 { 77 if (!has_valid_pri_activations(pe_data)) 78 return EHF_INVALID_IDX; 79 80 /* Current priority is the right-most bit */ 81 return __builtin_ctz(pe_data->active_pri_bits); 82 } 83 84 /* 85 * Mark priority active by setting the corresponding bit in active_pri_bits and 86 * programming the priority mask. 87 * 88 * This API is to be used as part of delegating to lower ELs other than for 89 * interrupts; e.g. while handling synchronous exceptions. 90 * 91 * This API is expected to be invoked before restoring context (Secure or 92 * Non-secure) in preparation for the respective dispatch. 93 */ 94 void ehf_activate_priority(unsigned int priority) 95 { 96 int idx, cur_pri_idx; 97 unsigned int old_mask, run_pri; 98 pe_exc_data_t *pe_data = this_cpu_data(); 99 100 /* 101 * Query interrupt controller for the running priority, or idle priority 102 * if no interrupts are being handled. The requested priority must be 103 * less (higher priority) than the active running priority. 104 */ 105 run_pri = plat_ic_get_running_priority(); 106 if (priority >= run_pri) { 107 ERROR("Running priority higher (0x%x) than requested (0x%x)\n", 108 run_pri, priority); 109 panic(); 110 } 111 112 /* 113 * If there were priority activations already, the requested priority 114 * must be less (higher priority) than the current highest priority 115 * activation so far. 116 */ 117 cur_pri_idx = get_pe_highest_active_idx(pe_data); 118 idx = pri_to_idx(priority); 119 if ((cur_pri_idx != EHF_INVALID_IDX) && (idx >= cur_pri_idx)) { 120 ERROR("Activation priority mismatch: req=0x%x current=0x%x\n", 121 priority, IDX_TO_PRI(cur_pri_idx)); 122 panic(); 123 } 124 125 /* Set the bit corresponding to the requested priority */ 126 pe_data->active_pri_bits |= PRI_BIT(idx); 127 128 /* 129 * Program priority mask for the activated level. Check that the new 130 * priority mask is setting a higher priority level than the existing 131 * mask. 132 */ 133 old_mask = plat_ic_set_priority_mask(priority); 134 if (priority >= old_mask) { 135 ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n", 136 priority, old_mask); 137 panic(); 138 } 139 140 /* 141 * If this is the first activation, save the priority mask. This will be 142 * restored after the last deactivation. 143 */ 144 if (cur_pri_idx == EHF_INVALID_IDX) 145 pe_data->init_pri_mask = old_mask; 146 147 EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data)); 148 } 149 150 /* 151 * Mark priority inactive by clearing the corresponding bit in active_pri_bits, 152 * and programming the priority mask. 153 * 154 * This API is expected to be used as part of delegating to to lower ELs other 155 * than for interrupts; e.g. while handling synchronous exceptions. 156 * 157 * This API is expected to be invoked after saving context (Secure or 158 * Non-secure), having concluded the respective dispatch. 159 */ 160 void ehf_deactivate_priority(unsigned int priority) 161 { 162 int idx, cur_pri_idx; 163 pe_exc_data_t *pe_data = this_cpu_data(); 164 unsigned int old_mask, run_pri; 165 166 /* 167 * Query interrupt controller for the running priority, or idle priority 168 * if no interrupts are being handled. The requested priority must be 169 * less (higher priority) than the active running priority. 170 */ 171 run_pri = plat_ic_get_running_priority(); 172 if (priority >= run_pri) { 173 ERROR("Running priority higher (0x%x) than requested (0x%x)\n", 174 run_pri, priority); 175 panic(); 176 } 177 178 /* 179 * Deactivation is allowed only when there are priority activations, and 180 * the deactivation priority level must match the current activated 181 * priority. 182 */ 183 cur_pri_idx = get_pe_highest_active_idx(pe_data); 184 idx = pri_to_idx(priority); 185 if ((cur_pri_idx == EHF_INVALID_IDX) || (idx != cur_pri_idx)) { 186 ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n", 187 priority, IDX_TO_PRI(cur_pri_idx)); 188 panic(); 189 } 190 191 /* Clear bit corresponding to highest priority */ 192 pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1); 193 194 /* 195 * Restore priority mask corresponding to the next priority, or the 196 * one stashed earlier if there are no more to deactivate. 197 */ 198 idx = get_pe_highest_active_idx(pe_data); 199 if (idx == EHF_INVALID_IDX) 200 old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask); 201 else 202 old_mask = plat_ic_set_priority_mask(priority); 203 204 if (old_mask >= priority) { 205 ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n", 206 priority, old_mask); 207 panic(); 208 } 209 210 EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data)); 211 } 212 213 /* 214 * After leaving Non-secure world, stash current Non-secure Priority Mask, and 215 * set Priority Mask to the highest Non-secure priority so that Non-secure 216 * interrupts cannot preempt Secure execution. 217 * 218 * If the current running priority is in the secure range, or if there are 219 * outstanding priority activations, this function does nothing. 220 * 221 * This function subscribes to the 'cm_exited_normal_world' event published by 222 * the Context Management Library. 223 */ 224 static void *ehf_exited_normal_world(const void *arg) 225 { 226 unsigned int run_pri; 227 pe_exc_data_t *pe_data = this_cpu_data(); 228 229 /* If the running priority is in the secure range, do nothing */ 230 run_pri = plat_ic_get_running_priority(); 231 if (IS_PRI_SECURE(run_pri)) 232 return 0; 233 234 /* Do nothing if there are explicit activations */ 235 if (has_valid_pri_activations(pe_data)) 236 return 0; 237 238 assert(pe_data->ns_pri_mask == 0); 239 240 pe_data->ns_pri_mask = 241 plat_ic_set_priority_mask(GIC_HIGHEST_NS_PRIORITY); 242 243 /* The previous Priority Mask is not expected to be in secure range */ 244 if (IS_PRI_SECURE(pe_data->ns_pri_mask)) { 245 ERROR("Priority Mask (0x%x) already in secure range\n", 246 pe_data->ns_pri_mask); 247 panic(); 248 } 249 250 EHF_LOG("Priority Mask: 0x%x => 0x%x\n", pe_data->ns_pri_mask, 251 GIC_HIGHEST_NS_PRIORITY); 252 253 return 0; 254 } 255 256 /* 257 * Conclude Secure execution and prepare for return to Non-secure world. Restore 258 * the Non-secure Priority Mask previously stashed upon leaving Non-secure 259 * world. 260 * 261 * If there the current running priority is in the secure range, or if there are 262 * outstanding priority activations, this function does nothing. 263 * 264 * This function subscribes to the 'cm_entering_normal_world' event published by 265 * the Context Management Library. 266 */ 267 static void *ehf_entering_normal_world(const void *arg) 268 { 269 unsigned int old_pmr, run_pri; 270 pe_exc_data_t *pe_data = this_cpu_data(); 271 272 /* If the running priority is in the secure range, do nothing */ 273 run_pri = plat_ic_get_running_priority(); 274 if (IS_PRI_SECURE(run_pri)) 275 return 0; 276 277 /* 278 * If there are explicit activations, do nothing. The Priority Mask will 279 * be restored upon the last deactivation. 280 */ 281 if (has_valid_pri_activations(pe_data)) 282 return 0; 283 284 /* Do nothing if we don't have a valid Priority Mask to restore */ 285 if (pe_data->ns_pri_mask == 0) 286 return 0; 287 288 old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask); 289 290 /* 291 * When exiting secure world, the current Priority Mask must be 292 * GIC_HIGHEST_NS_PRIORITY (as set during entry), or the Non-secure 293 * priority mask set upon calling ehf_allow_ns_preemption() 294 */ 295 if ((old_pmr != GIC_HIGHEST_NS_PRIORITY) && 296 (old_pmr != pe_data->ns_pri_mask)) { 297 ERROR("Invalid Priority Mask (0x%x) restored\n", old_pmr); 298 panic(); 299 } 300 301 EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask); 302 303 pe_data->ns_pri_mask = 0; 304 305 return 0; 306 } 307 308 /* 309 * Program Priority Mask to the original Non-secure priority such that 310 * Non-secure interrupts may preempt Secure execution, viz. during Yielding SMC 311 * calls. 312 * 313 * This API is expected to be invoked before delegating a yielding SMC to Secure 314 * EL1. I.e. within the window of secure execution after Non-secure context is 315 * saved (after entry into EL3) and Secure context is restored (before entering 316 * Secure EL1). 317 */ 318 void ehf_allow_ns_preemption(void) 319 { 320 unsigned int old_pmr __unused; 321 pe_exc_data_t *pe_data = this_cpu_data(); 322 323 /* 324 * We should have been notified earlier of entering secure world, and 325 * therefore have stashed the Non-secure priority mask. 326 */ 327 assert(pe_data->ns_pri_mask != 0); 328 329 /* Make sure no priority levels are active when requesting this */ 330 if (has_valid_pri_activations(pe_data)) { 331 ERROR("PE %lx has priority activations: 0x%x\n", 332 read_mpidr_el1(), pe_data->active_pri_bits); 333 panic(); 334 } 335 336 old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask); 337 338 EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask); 339 340 pe_data->ns_pri_mask = 0; 341 } 342 343 /* 344 * Return whether Secure execution has explicitly allowed Non-secure interrupts 345 * to preempt itself, viz. during Yielding SMC calls. 346 */ 347 unsigned int ehf_is_ns_preemption_allowed(void) 348 { 349 unsigned int run_pri; 350 pe_exc_data_t *pe_data = this_cpu_data(); 351 352 /* If running priority is in secure range, return false */ 353 run_pri = plat_ic_get_running_priority(); 354 if (IS_PRI_SECURE(run_pri)) 355 return 0; 356 357 /* 358 * If Non-secure preemption was permitted by calling 359 * ehf_allow_ns_preemption() earlier: 360 * 361 * - There wouldn't have been priority activations; 362 * - We would have cleared the stashed the Non-secure Priority Mask. 363 */ 364 if (has_valid_pri_activations(pe_data)) 365 return 0; 366 if (pe_data->ns_pri_mask != 0) 367 return 0; 368 369 return 1; 370 } 371 372 /* 373 * Top-level EL3 interrupt handler. 374 */ 375 static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags, 376 void *handle, void *cookie) 377 { 378 int pri, idx, intr, intr_raw, ret = 0; 379 ehf_handler_t handler; 380 381 /* 382 * Top-level interrupt type handler from Interrupt Management Framework 383 * doesn't acknowledge the interrupt; so the interrupt ID must be 384 * invalid. 385 */ 386 assert(id == INTR_ID_UNAVAILABLE); 387 388 /* 389 * Acknowledge interrupt. Proceed with handling only for valid interrupt 390 * IDs. This situation may arise because of Interrupt Management 391 * Framework identifying an EL3 interrupt, but before it's been 392 * acknowledged here, the interrupt was either deasserted, or there was 393 * a higher-priority interrupt of another type. 394 */ 395 intr_raw = plat_ic_acknowledge_interrupt(); 396 intr = plat_ic_get_interrupt_id(intr_raw); 397 if (intr == INTR_ID_UNAVAILABLE) 398 return 0; 399 400 /* Having acknowledged the interrupt, get the running priority */ 401 pri = plat_ic_get_running_priority(); 402 403 /* Check EL3 interrupt priority is in secure range */ 404 assert(IS_PRI_SECURE(pri)); 405 406 /* 407 * Translate the priority to a descriptor index. We do this by masking 408 * and shifting the running priority value (platform-supplied). 409 */ 410 idx = pri_to_idx(pri); 411 412 /* Validate priority */ 413 assert(pri == IDX_TO_PRI(idx)); 414 415 handler = RAW_HANDLER(exception_data.ehf_priorities[idx].ehf_handler); 416 if (!handler) { 417 ERROR("No EL3 exception handler for priority 0x%x\n", 418 IDX_TO_PRI(idx)); 419 panic(); 420 } 421 422 /* 423 * Call registered handler. Pass the raw interrupt value to registered 424 * handlers. 425 */ 426 ret = handler(intr_raw, flags, handle, cookie); 427 428 return ret; 429 } 430 431 /* 432 * Initialize the EL3 exception handling. 433 */ 434 void ehf_init(void) 435 { 436 unsigned int flags = 0; 437 int ret __unused; 438 439 /* Ensure EL3 interrupts are supported */ 440 assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3)); 441 442 /* 443 * Make sure that priority water mark has enough bits to represent the 444 * whole priority array. 445 */ 446 assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8)); 447 448 assert(exception_data.ehf_priorities); 449 450 /* 451 * Bit 7 of GIC priority must be 0 for secure interrupts. This means 452 * platforms must use at least 1 of the remaining 7 bits. 453 */ 454 assert((exception_data.pri_bits >= 1) || (exception_data.pri_bits < 8)); 455 456 /* Route EL3 interrupts when in Secure and Non-secure. */ 457 set_interrupt_rm_flag(flags, NON_SECURE); 458 set_interrupt_rm_flag(flags, SECURE); 459 460 /* Register handler for EL3 interrupts */ 461 ret = register_interrupt_type_handler(INTR_TYPE_EL3, 462 ehf_el3_interrupt_handler, flags); 463 assert(ret == 0); 464 } 465 466 /* 467 * Register a handler at the supplied priority. Registration is allowed only if 468 * a handler hasn't been registered before, or one wasn't provided at build 469 * time. The priority for which the handler is being registered must also accord 470 * with the platform-supplied data. 471 */ 472 void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler) 473 { 474 int idx; 475 476 /* Sanity check for handler */ 477 assert(handler != NULL); 478 479 /* Handler ought to be 4-byte aligned */ 480 assert((((uintptr_t) handler) & 3) == 0); 481 482 /* Ensure we register for valid priority */ 483 idx = pri_to_idx(pri); 484 assert(idx < exception_data.num_priorities); 485 assert(IDX_TO_PRI(idx) == pri); 486 487 /* Return failure if a handler was already registered */ 488 if (exception_data.ehf_priorities[idx].ehf_handler != _EHF_NO_HANDLER) { 489 ERROR("Handler already registered for priority 0x%x\n", pri); 490 panic(); 491 } 492 493 /* 494 * Install handler, and retain the valid bit. We assume that the handler 495 * is 4-byte aligned, which is usually the case. 496 */ 497 exception_data.ehf_priorities[idx].ehf_handler = 498 (((uintptr_t) handler) | _EHF_PRI_VALID); 499 500 EHF_LOG("register pri=0x%x handler=%p\n", pri, handler); 501 } 502 503 SUBSCRIBE_TO_EVENT(cm_entering_normal_world, ehf_entering_normal_world); 504 SUBSCRIBE_TO_EVENT(cm_exited_normal_world, ehf_exited_normal_world); 505