xref: /rk3399_ARM-atf/bl31/bl31_traps.c (revision 1c26b186e40bdf6c912ebbfb1bd3ed5b8798207c)
1 /*
2  * Copyright (c) 2022-2025, Arm Limited. All rights reserved.
3  * Copyright (c) 2023, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  *
7  * Dispatch synchronous system register traps from lower ELs.
8  */
9 
10 #include <arch_features.h>
11 #include <arch_helpers.h>
12 #include <bl31/sync_handle.h>
13 #include <context.h>
14 #include <lib/el3_runtime/context_mgmt.h>
15 #include <lib/extensions/idte3.h>
16 
17 int handle_sysreg_trap(uint64_t esr_el3, cpu_context_t *ctx,
18 			u_register_t flags __unused)
19 {
20 	uint64_t __unused opcode = esr_el3 & ISS_SYSREG_OPCODE_MASK;
21 
22 #if ENABLE_FEAT_IDTE3
23 	/*
24 	 * Handle trap for system registers with the following encoding
25 	 * op0 == 3, op1 == 0/1, Crn == 0 (Group 3 & Group 5 ID registers)
26 	 */
27 	if ((esr_el3 & ISS_IDREG_OPCODE_MASK) == ISS_SYSREG_OPCODE_IDREG) {
28 		return handle_idreg_trap(esr_el3, ctx, flags);
29 	}
30 #endif
31 
32 #if ENABLE_FEAT_RNG_TRAP
33 	if ((opcode == ISS_SYSREG_OPCODE_RNDR) || (opcode == ISS_SYSREG_OPCODE_RNDRRS)) {
34 		return plat_handle_rng_trap(esr_el3, ctx);
35 	}
36 #endif
37 
38 #if IMPDEF_SYSREG_TRAP
39 	if ((opcode & ISS_SYSREG_OPCODE_IMPDEF) == ISS_SYSREG_OPCODE_IMPDEF) {
40 		return plat_handle_impdef_trap(esr_el3, ctx);
41 	}
42 #endif
43 
44 	return TRAP_RET_UNHANDLED;
45 }
46 
47 static bool is_tge_enabled(void)
48 {
49 	u_register_t hcr_el2 = read_hcr_el2();
50 
51 	return ((is_feat_vhe_present()) && ((hcr_el2 & HCR_TGE_BIT) != 0U));
52 }
53 
54 /*
55  * This function is to ensure that undef injection does not happen into
56  * non-existent S-EL2. This could happen when trap happens from S-EL{1,0}
57  * and non-secure world is running with TGE bit set, considering EL3 does
58  * not save/restore EL2 registers if only one world has EL2 enabled.
59  * So reading hcr_el2.TGE would give NS world value.
60  */
61 static bool is_secure_trap_without_sel2(u_register_t scr)
62 {
63 	return ((scr & (SCR_NS_BIT | SCR_EEL2_BIT)) == 0);
64 }
65 
66 static unsigned int target_el(unsigned int from_el, u_register_t scr)
67 {
68 	if (from_el > MODE_EL1) {
69 		return from_el;
70 	} else if (is_tge_enabled() && !is_secure_trap_without_sel2(scr)) {
71 		return MODE_EL2;
72 	} else {
73 		return MODE_EL1;
74 	}
75 }
76 
77 static u_register_t get_elr_el3(u_register_t spsr_el3, u_register_t vbar, unsigned int target_el)
78 {
79 	unsigned int outgoing_el = GET_EL(spsr_el3);
80 	u_register_t elr_el3 = 0;
81 
82 	if (outgoing_el == target_el) {
83 		/*
84 		 * Target EL is either EL1 or EL2, lsb can tell us the SPsel
85 		 *  Thread mode  : 0
86 		 *  Handler mode : 1
87 		 */
88 		if ((spsr_el3 & (MODE_SP_MASK << MODE_SP_SHIFT)) == MODE_SP_ELX) {
89 			elr_el3 = vbar + CURRENT_EL_SPX;
90 		} else {
91 			elr_el3 = vbar + CURRENT_EL_SP0;
92 		}
93 	} else {
94 		/* Vector address for Lower EL using Aarch64 */
95 		elr_el3 = vbar + LOWER_EL_AARCH64;
96 	}
97 
98 	return elr_el3;
99 }
100 
101 /*
102  * Explicitly create all bits of SPSR to get PSTATE at exception return.
103  *
104  * The code is based on "Aarch64.exceptions.takeexception" described in
105  * DDI0602 revision 2025-03.
106  * "https://developer.arm.com/documentation/ddi0597/2025-03/Shared-Pseudocode/
107  * aarch64-exceptions-takeexception"
108  *
109  * NOTE: This piece of code must be reviewed every release against the latest
110  * takeexception sequence to ensure that we keep up with new arch features that
111  * affect the PSTATE.
112  *
113  * TF-A 2.13 release review
114  *
115  * Review of version 2025-03 indicates we are missing support for one feature.
116  *  - FEAT_UINJ (2024 extension)
117  */
118 u_register_t create_spsr(u_register_t old_spsr, unsigned int target_el)
119 {
120 	u_register_t new_spsr = 0;
121 	u_register_t sctlr;
122 
123 	/* Set M bits for target EL in AArch64 mode, also get sctlr */
124 	if (target_el == MODE_EL2) {
125 		sctlr = read_sctlr_el2();
126 		new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL2H;
127 	} else {
128 		sctlr = read_sctlr_el1();
129 		new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL1H;
130 	}
131 
132 	/* Mask all exceptions, update DAIF bits */
133 	new_spsr |= SPSR_DAIF_MASK << SPSR_DAIF_SHIFT;
134 
135 	/* If FEAT_BTI is present, clear BTYPE bits */
136 	new_spsr |= old_spsr & (SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64);
137 	if (is_feat_bti_present()) {
138 		new_spsr &= ~(SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64);
139 	}
140 
141 	/* If SSBS is implemented, take the value from SCTLR.DSSBS */
142 	new_spsr |= old_spsr & SPSR_SSBS_BIT_AARCH64;
143 	if (is_feat_ssbs_present()) {
144 		if ((sctlr & SCTLR_DSSBS_BIT) != 0U) {
145 			new_spsr |= SPSR_SSBS_BIT_AARCH64;
146 		} else {
147 			new_spsr &= ~SPSR_SSBS_BIT_AARCH64;
148 		}
149 	}
150 
151 	/* If FEAT_NMI is implemented, ALLINT = !(SCTLR.SPINTMASK) */
152 	new_spsr |= old_spsr & SPSR_ALLINT_BIT_AARCH64;
153 	if (is_feat_nmi_present()) {
154 		if ((sctlr & SCTLR_SPINTMASK_BIT) != 0U) {
155 			new_spsr &= ~SPSR_ALLINT_BIT_AARCH64;
156 		} else {
157 			new_spsr |= SPSR_ALLINT_BIT_AARCH64;
158 		}
159 	}
160 
161 	/* Clear PSTATE.IL bit explicitly */
162 	new_spsr &= ~SPSR_IL_BIT;
163 
164 	/* Clear PSTATE.SS bit explicitly */
165 	new_spsr &= ~SPSR_SS_BIT;
166 
167 	/* Update PSTATE.PAN bit */
168 	new_spsr |= old_spsr & SPSR_PAN_BIT;
169 	if (is_feat_pan_present() &&
170 	    ((target_el == MODE_EL1) || ((target_el == MODE_EL2) && is_tge_enabled())) &&
171 	    ((sctlr & SCTLR_SPAN_BIT) == 0U)) {
172 	    new_spsr |= SPSR_PAN_BIT;
173 	}
174 
175 	/* Clear UAO bit if FEAT_UAO is present */
176 	new_spsr |= old_spsr & SPSR_UAO_BIT_AARCH64;
177 	if (is_feat_uao_present()) {
178 		new_spsr &= ~SPSR_UAO_BIT_AARCH64;
179 	}
180 
181 	/* DIT bits are unchanged */
182 	new_spsr |= old_spsr & SPSR_DIT_BIT;
183 
184 	/* If FEAT_MTE2 is implemented mask tag faults by setting TCO bit */
185 	new_spsr |= old_spsr & SPSR_TCO_BIT_AARCH64;
186 	if (is_feat_mte2_present()) {
187 		new_spsr |= SPSR_TCO_BIT_AARCH64;
188 	}
189 
190 	/* NZCV bits are unchanged */
191 	new_spsr |= old_spsr & SPSR_NZCV;
192 
193 	/* If FEAT_EBEP is present set PM bit */
194 	new_spsr |= old_spsr & SPSR_PM_BIT_AARCH64;
195 	if (is_feat_ebep_present()) {
196 		new_spsr |= SPSR_PM_BIT_AARCH64;
197 	}
198 
199 	/* If FEAT_SEBEP is present clear PPEND bit */
200 	new_spsr |= old_spsr & SPSR_PPEND_BIT;
201 	if (is_feat_sebep_present()) {
202 		new_spsr &= ~SPSR_PPEND_BIT;
203 	}
204 
205 	/* If FEAT_GCS is present, update EXLOCK bit */
206 	new_spsr |= old_spsr & SPSR_EXLOCK_BIT_AARCH64;
207 	if (is_feat_gcs_present()) {
208 		u_register_t gcscr;
209 		if (target_el == MODE_EL2) {
210 			gcscr = read_gcscr_el2();
211 		} else {
212 			gcscr = read_gcscr_el1();
213 		}
214 		new_spsr |= (gcscr & GCSCR_EXLOCK_EN_BIT) ? SPSR_EXLOCK_BIT_AARCH64 : 0;
215 	}
216 
217 	/* If FEAT_PAUTH_LR present then zero the PACM bit. */
218 	new_spsr |= old_spsr & SPSR_PACM_BIT_AARCH64;
219 	if (is_feat_pauth_lr_present()) {
220 		new_spsr &= ~SPSR_PACM_BIT_AARCH64;
221 	}
222 
223 	return new_spsr;
224 }
225 
226 /*
227  * Handler for injecting Undefined exception to lower EL which is caused by
228  * lower EL accessing system registers of which (old)EL3 firmware is unaware.
229  *
230  * This is a safety net to avoid EL3 panics caused by system register access
231  * that triggers an exception syndrome EC=0x18.
232  */
233 void inject_undef64(cpu_context_t *ctx)
234 {
235 	u_register_t esr = (EC_UNKNOWN << ESR_EC_SHIFT) | ESR_IL_BIT;
236 	el3_state_t *state = get_el3state_ctx(ctx);
237 	u_register_t elr_el3 = read_ctx_reg(state, CTX_ELR_EL3);
238 	u_register_t old_spsr = read_ctx_reg(state, CTX_SPSR_EL3);
239 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
240 	u_register_t new_spsr = 0;
241 	unsigned int to_el = target_el(GET_EL(old_spsr), scr_el3);
242 
243 	if (to_el == MODE_EL2) {
244 		write_elr_el2(elr_el3);
245 		elr_el3 = get_elr_el3(old_spsr, read_vbar_el2(), to_el);
246 		write_esr_el2(esr);
247 		write_spsr_el2(old_spsr);
248 	} else {
249 		write_elr_el1(elr_el3);
250 		elr_el3 = get_elr_el3(old_spsr, read_vbar_el1(), to_el);
251 		write_esr_el1(esr);
252 		write_spsr_el1(old_spsr);
253 	}
254 
255 	new_spsr = create_spsr(old_spsr, to_el);
256 
257 	write_ctx_reg(state, CTX_SPSR_EL3, new_spsr);
258 	write_ctx_reg(state, CTX_ELR_EL3, elr_el3);
259 }
260