xref: /rk3399_ARM-atf/bl31/aarch64/bl31_entrypoint.S (revision b4cf974a3256275fe2c03d8eaaf07a5e5b337cfc)
1/*
2 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <bl_common.h>
9#include <el3_common_macros.S>
10#include <platform_def.h>
11#include <pmf_asm_macros.S>
12#include <runtime_instr.h>
13#include <xlat_mmu_helpers.h>
14
15	.globl	bl31_entrypoint
16	.globl	bl31_warm_entrypoint
17
18	/* -----------------------------------------------------
19	 * bl31_entrypoint() is the cold boot entrypoint,
20	 * executed only by the primary cpu.
21	 * -----------------------------------------------------
22	 */
23
24func bl31_entrypoint
25#if !RESET_TO_BL31
26	/* ---------------------------------------------------------------
27	 * Stash the previous bootloader arguments x0 - x3 for later use.
28	 * ---------------------------------------------------------------
29	 */
30	mov	x20, x0
31	mov	x21, x1
32	mov	x22, x2
33	mov	x23, x3
34
35	/* ---------------------------------------------------------------------
36	 * For !RESET_TO_BL31 systems, only the primary CPU ever reaches
37	 * bl31_entrypoint() during the cold boot flow, so the cold/warm boot
38	 * and primary/secondary CPU logic should not be executed in this case.
39	 *
40	 * Also, assume that the previous bootloader has already initialised the
41	 * SCTLR_EL3, including the endianness, and has initialised the memory.
42	 * ---------------------------------------------------------------------
43	 */
44	el3_entrypoint_common					\
45		_init_sctlr=0					\
46		_warm_boot_mailbox=0				\
47		_secondary_cold_boot=0				\
48		_init_memory=0					\
49		_init_c_runtime=1				\
50		_exception_vectors=runtime_exceptions
51#else
52	/* ---------------------------------------------------------------------
53	 * For RESET_TO_BL31 systems which have a programmable reset address,
54	 * bl31_entrypoint() is executed only on the cold boot path so we can
55	 * skip the warm boot mailbox mechanism.
56	 * ---------------------------------------------------------------------
57	 */
58	el3_entrypoint_common					\
59		_init_sctlr=1					\
60		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
61		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
62		_init_memory=1					\
63		_init_c_runtime=1				\
64		_exception_vectors=runtime_exceptions
65
66	/* ---------------------------------------------------------------------
67	 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
68	 * there's no argument to relay from a previous bootloader. Zero the
69	 * arguments passed to the platform layer to reflect that.
70	 * ---------------------------------------------------------------------
71	 */
72	mov	x20, 0
73	mov	x21, 0
74	mov	x22, 0
75	mov	x23, 0
76#endif /* RESET_TO_BL31 */
77
78	/* --------------------------------------------------------------------
79	 * If PIE is enabled, fixup the Global descriptor Table and dynamic
80	 * relocations
81	 * --------------------------------------------------------------------
82	 */
83#if ENABLE_PIE
84	mov_imm	x0, BL31_BASE
85	mov_imm	x1, BL31_LIMIT
86	bl	fixup_gdt_reloc
87#endif /* ENABLE_PIE */
88
89	/* ---------------------------------------------
90	 * Perform platform specific early arch. setup
91	 * ---------------------------------------------
92	 */
93	mov	x0, x20
94	mov	x1, x21
95	mov	x2, x22
96	mov	x3, x23
97	bl	bl31_early_platform_setup2
98	bl	bl31_plat_arch_setup
99
100	/* ---------------------------------------------
101	 * Jump to main function.
102	 * ---------------------------------------------
103	 */
104	bl	bl31_main
105
106	/* -------------------------------------------------------------
107	 * Clean the .data & .bss sections to main memory. This ensures
108	 * that any global data which was initialised by the primary CPU
109	 * is visible to secondary CPUs before they enable their data
110	 * caches and participate in coherency.
111	 * -------------------------------------------------------------
112	 */
113	adr	x0, __DATA_START__
114	adr	x1, __DATA_END__
115	sub	x1, x1, x0
116	bl	clean_dcache_range
117
118	adr	x0, __BSS_START__
119	adr	x1, __BSS_END__
120	sub	x1, x1, x0
121	bl	clean_dcache_range
122
123	b	el3_exit
124endfunc bl31_entrypoint
125
126	/* --------------------------------------------------------------------
127	 * This CPU has been physically powered up. It is either resuming from
128	 * suspend or has simply been turned on. In both cases, call the BL31
129	 * warmboot entrypoint
130	 * --------------------------------------------------------------------
131	 */
132func bl31_warm_entrypoint
133#if ENABLE_RUNTIME_INSTRUMENTATION
134
135	/*
136	 * This timestamp update happens with cache off.  The next
137	 * timestamp collection will need to do cache maintenance prior
138	 * to timestamp update.
139	 */
140	pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR
141	mrs	x1, cntpct_el0
142	str	x1, [x0]
143#endif
144
145	/*
146	 * On the warm boot path, most of the EL3 initialisations performed by
147	 * 'el3_entrypoint_common' must be skipped:
148	 *
149	 *  - Only when the platform bypasses the BL1/BL31 entrypoint by
150	 *    programming the reset address do we need to initialise SCTLR_EL3.
151	 *    In other cases, we assume this has been taken care by the
152	 *    entrypoint code.
153	 *
154	 *  - No need to determine the type of boot, we know it is a warm boot.
155	 *
156	 *  - Do not try to distinguish between primary and secondary CPUs, this
157	 *    notion only exists for a cold boot.
158	 *
159	 *  - No need to initialise the memory or the C runtime environment,
160	 *    it has been done once and for all on the cold boot path.
161	 */
162	el3_entrypoint_common					\
163		_init_sctlr=PROGRAMMABLE_RESET_ADDRESS		\
164		_warm_boot_mailbox=0				\
165		_secondary_cold_boot=0				\
166		_init_memory=0					\
167		_init_c_runtime=0				\
168		_exception_vectors=runtime_exceptions
169
170	/*
171	 * We're about to enable MMU and participate in PSCI state coordination.
172	 *
173	 * The PSCI implementation invokes platform routines that enable CPUs to
174	 * participate in coherency. On a system where CPUs are not
175	 * cache-coherent without appropriate platform specific programming,
176	 * having caches enabled until such time might lead to coherency issues
177	 * (resulting from stale data getting speculatively fetched, among
178	 * others). Therefore we keep data caches disabled even after enabling
179	 * the MMU for such platforms.
180	 *
181	 * On systems with hardware-assisted coherency, or on single cluster
182	 * platforms, such platform specific programming is not required to
183	 * enter coherency (as CPUs already are); and there's no reason to have
184	 * caches disabled either.
185	 */
186#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
187	mov	x0, xzr
188#else
189	mov	x0, #DISABLE_DCACHE
190#endif
191	bl	bl31_plat_enable_mmu
192
193	bl	psci_warmboot_entrypoint
194
195#if ENABLE_RUNTIME_INSTRUMENTATION
196	pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI
197	mov	x19, x0
198
199	/*
200	 * Invalidate before updating timestamp to ensure previous timestamp
201	 * updates on the same cache line with caches disabled are properly
202	 * seen by the same core. Without the cache invalidate, the core might
203	 * write into a stale cache line.
204	 */
205	mov	x1, #PMF_TS_SIZE
206	mov	x20, x30
207	bl	inv_dcache_range
208	mov	x30, x20
209
210	mrs	x0, cntpct_el0
211	str	x0, [x19]
212#endif
213	b	el3_exit
214endfunc bl31_warm_entrypoint
215