1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Path to the Python interpreter used by the build system. 36# This variable is set to the default python3 interpreter in the user's 37# path. But build environments that require more explicit control can 38# set the path to a specific interpreter through this variable. 39PYTHON3 ?= python3 40 41# Define DEBUG=1 to compile without optimization (forces -O0) 42# DEBUG=1 43ifeq ($(DEBUG),1) 44# For backwards compatibility 45$(call force,CFG_CC_OPT_LEVEL,0) 46$(call force,CFG_DEBUG_INFO,y) 47endif 48 49# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive. 50# Optimize for size by default, usually gives good performance too. 51CFG_CC_OPT_LEVEL ?= s 52 53# Enabling CFG_DEBUG_INFO makes debug information embedded in core. 54CFG_DEBUG_INFO ?= y 55 56# If y, enable debug features of the TEE core (assertions and lock checks 57# are enabled, panic and assert messages are more verbose, data and prefetch 58# aborts show a stack dump). When disabled, the NDEBUG directive is defined 59# so assertions are disabled. 60CFG_TEE_CORE_DEBUG ?= y 61 62# Log levels for the TEE core. Defines which core messages are displayed 63# on the secure console. Disabling core log (level set to 0) also disables 64# logs from the TAs. 65# 0: none 66# 1: error 67# 2: error + warning 68# 3: error + warning + debug 69# 4: error + warning + debug + flow 70CFG_TEE_CORE_LOG_LEVEL ?= 1 71 72# TA log level 73# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 74# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 75# when the TA is built. 76CFG_TEE_TA_LOG_LEVEL ?= 1 77 78# TA enablement 79# When defined to "y", TA traces are output according to 80# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 81CFG_TEE_CORE_TA_TRACE ?= y 82 83# If y, enable the memory leak detection feature in the bget memory allocator. 84# When this feature is enabled, calling mdbg_check(1) will print a list of all 85# the currently allocated buffers and the location of the allocation (file and 86# line number). 87# Note: make sure the log level is high enough for the messages to show up on 88# the secure console! For instance: 89# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 90# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 91# - To debug TEE core allocations: build OP-TEE with: 92# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 93CFG_TEE_CORE_MALLOC_DEBUG ?= n 94CFG_TEE_TA_MALLOC_DEBUG ?= n 95# Prints an error message and dumps the stack on failed memory allocations 96# using malloc() and friends. 97CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG) 98 99# Mask to select which messages are prefixed with long debugging information 100# (severity, core ID, thread ID, component name, function name, line number) 101# based on the message level. If BIT(level) is set, the long prefix is shown. 102# Otherwise a short prefix is used (severity and component name only). 103# Levels: 0=none 1=error 2=info 3=debug 4=flow 104CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 105 106# PRNG configuration 107# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 108# software PRNG implementation is used. 109# Otherwise, you need to implement hw_get_random_byte() for your platform 110CFG_WITH_SOFTWARE_PRNG ?= y 111 112# Number of threads 113CFG_NUM_THREADS ?= 2 114 115# API implementation version 116CFG_TEE_API_VERSION ?= GPD-1.1-dev 117 118# Implementation description (implementation-dependent) 119CFG_TEE_IMPL_DESCR ?= OPTEE 120 121# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 122# World? 123CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 124 125# The following values are not extracted from the "git describe" output because 126# we might be outside of a Git environment, or the tree may have been cloned 127# with limited depth not including any tag, so there is really no guarantee 128# that TEE_IMPL_VERSION contains the major and minor revision numbers. 129CFG_OPTEE_REVISION_MAJOR ?= 3 130CFG_OPTEE_REVISION_MINOR ?= 14 131 132# Trusted OS implementation version 133TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \ 134 echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR)) 135ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 136TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 137else 138TEE_IMPL_GIT_SHA1 := 0x0 139endif 140 141# Trusted OS implementation manufacturer name 142CFG_TEE_MANUFACTURER ?= LINARO 143 144# Trusted firmware version 145CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 146 147# Trusted OS implementation manufacturer name 148CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 149 150# Rich Execution Environment (REE) file system support: normal world OS 151# provides the actual storage. 152# This is the default FS when enabled (i.e., the one used when 153# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 154CFG_REE_FS ?= y 155 156# RPMB file system support 157CFG_RPMB_FS ?= n 158 159# Device identifier used when CFG_RPMB_FS = y. 160# The exact meaning of this value is platform-dependent. On Linux, the 161# tee-supplicant process will open /dev/mmcblk<id>rpmb 162CFG_RPMB_FS_DEV_ID ?= 0 163 164# This config variable determines the number of entries read in from RPMB at 165# once whenever a function traverses the RPMB FS. Increasing the default value 166# has the following consequences: 167# - More memory required on heap. A single FAT entry currently has a size of 168# 256 bytes. 169# - Potentially significant speed-ups for RPMB I/O. Depending on how many 170# entries a function needs to traverse, the number of time-consuming RPMB 171# read-in operations can be reduced. 172# Chosing a proper value is both platform- (available memory) and use-case- 173# dependent (potential number of FAT fs entries), so overwrite in platform 174# config files 175CFG_RPMB_FS_RD_ENTRIES ?= 8 176 177# Enables caching of FAT FS entries when set to a value greater than zero. 178# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS 179# entries. The cache is populated when FAT FS entries are initially read in. 180# When traversing the FAT FS entries, we read from the cache instead of reading 181# in the entries from RPMB storage. Consequently, when a FAT FS entry is 182# written, the cache is updated. In scenarios where an estimate of the number 183# of FAT FS entries can be made, the cache may be specifically tailored to 184# store all entries. The caching can improve RPMB I/O at the cost 185# of additional memory. 186# Without caching, we temporarily require 187# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 188# while traversing the FAT FS (e.g. in read_fat). 189# For example 8*256 bytes = 2kB while in read_fat. 190# With caching, we constantly require up to 191# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 192# depending on how many elements are in the cache, and additional temporary 193# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 194# in case the cache is too small to hold all elements when traversing. 195CFG_RPMB_FS_CACHE_ENTRIES ?= 0 196 197# Print RPMB data frames sent to and received from the RPMB device 198CFG_RPMB_FS_DEBUG_DATA ?= n 199 200# Clear RPMB content at cold boot 201CFG_RPMB_RESET_FAT ?= n 202 203# Use a hard coded RPMB key instead of deriving it from the platform HUK 204CFG_RPMB_TESTKEY ?= n 205 206# Enables RPMB key programming by the TEE, in case the RPMB partition has not 207# been configured yet. 208# !!! Security warning !!! 209# Do *NOT* enable this in product builds, as doing so would allow the TEE to 210# leak the RPMB key. 211# This option is useful in the following situations: 212# - Testing 213# - RPMB key provisioning in a controlled environment (factory setup) 214CFG_RPMB_WRITE_KEY ?= n 215 216# Signing key for OP-TEE TA's 217# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy 218# key and then set TA_PUBLIC_KEY to match public key from the HSM. 219# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS. 220TA_SIGN_KEY ?= keys/default_ta.pem 221TA_PUBLIC_KEY ?= $(TA_SIGN_KEY) 222 223# Include lib/libutils/isoc in the build? Most platforms need this, but some 224# may not because they obtain the isoc functions from elsewhere 225CFG_LIBUTILS_WITH_ISOC ?= y 226 227# Enables floating point support for user TAs 228# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 229# hard-float is basically a super set of soft-float. Hard-float 230# requires all the support routines provided for soft-float, but the 231# compiler may choose to optimize to not use some of them and use 232# the floating-point registers instead. 233# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 234# nothing with ` -mgeneral-regs-only`) 235# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 236CFG_TA_FLOAT_SUPPORT ?= y 237 238# Stack unwinding: print a stack dump to the console on core or TA abort, or 239# when a TA panics. 240# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 241# unwound (not paged TAs, however). 242# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 243# this option will increase the size of the 32-bit TEE binary by a few KB. 244# Similarly, TAs have to be compiled with -funwind-tables (default when the 245# option is set) otherwise they can't be unwound. 246# Warning: since the unwind sequence for user-mode (TA) code is implemented in 247# the privileged layer of OP-TEE, enabling this feature will weaken the 248# user/kernel isolation. Therefore it should be disabled in release builds. 249ifeq ($(CFG_TEE_CORE_DEBUG),y) 250CFG_UNWIND ?= y 251endif 252 253# Enable support for dynamically loaded user TAs 254CFG_WITH_USER_TA ?= y 255 256# Choosing the architecture(s) of user-mode libraries (used by TAs) 257# 258# Platforms may define a list of supported architectures for user-mode code 259# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64", 260# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32". 261# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits, 262# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y). 263# The first entry in $(supported-ta-targets) has a special role, see 264# CFG_USER_TA_TARGET_<ta-name> below. 265# 266# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or 267# change the order of the values. 268# 269# The list of TA architectures is ultimately stored in $(ta-targets). 270 271# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if 272# defined, selects the unique TA architecture mode for building the in-tree TA 273# <ta-name>. Can be either ta_arm32 or ta_arm64. 274# By default, in-tree TAs are built using the first architecture specified in 275# $(ta-targets). 276 277# Address Space Layout Randomization for user-mode Trusted Applications 278# 279# When this flag is enabled, the ELF loader will introduce a random offset 280# when mapping the application in user space. ASLR makes the exploitation of 281# memory corruption vulnerabilities more difficult. 282CFG_TA_ASLR ?= y 283 284# How much ASLR may shift the base address (in pages). The base address is 285# randomly shifted by an integer number of pages comprised between these two 286# values. Bigger ranges are more secure because they make the addresses harder 287# to guess at the expense of using more memory for the page tables. 288CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0 289CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128 290 291# Address Space Layout Randomization for TEE Core 292# 293# When this flag is enabled, the early init code will introduce a random 294# offset when mapping TEE Core. ASLR makes the exploitation of memory 295# corruption vulnerabilities more difficult. 296CFG_CORE_ASLR ?= y 297 298# Load user TAs from the REE filesystem via tee-supplicant 299CFG_REE_FS_TA ?= y 300 301# Pre-authentication of TA binaries loaded from the REE filesystem 302# 303# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the 304# "Secure DDR" pool, check the signature, then process the file only if it is 305# valid. 306# - If disabled: hash the binaries as they are being processed and verify the 307# signature as a last step. 308CFG_REE_FS_TA_BUFFERED ?= n 309$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA)) 310 311# When CFG_REE_FS=y and CFG_RPMB_FS=y: 312# Allow secure storage in the REE FS to be entirely deleted without causing 313# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or 314# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH) 315# can be used to reset the secure storage to a clean, empty state. 316# Typically used for testing only since it weakens storage security. 317CFG_REE_FS_ALLOW_RESET ?= n 318 319# Support for loading user TAs from a special section in the TEE binary. 320# Such TAs are available even before tee-supplicant is available (hence their 321# name), but note that many services exported to TAs may need tee-supplicant, 322# so early use is limited to a subset of the TEE Internal Core API (crypto...) 323# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 324# file(s). For example: 325# $ make ... \ 326# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 327# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 328# Typical build steps: 329# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 330# # headers, makefiles), ready to build TAs. 331# # CFG_EARLY_TA=y is optional, it prevents 332# # later library recompilations. 333# <build some TAs> 334# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 335# 336# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 337# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 338# <name-of-ta>/<uuid> 339# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 340ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 341$(call force,CFG_EARLY_TA,y) 342else 343CFG_EARLY_TA ?= n 344endif 345 346ifeq ($(CFG_EARLY_TA),y) 347$(call force,CFG_EMBEDDED_TS,y) 348endif 349 350ifneq ($(SP_PATHS),) 351$(call force,CFG_EMBEDDED_TS,y) 352else 353CFG_SECURE_PARTITION ?= n 354endif 355 356ifeq ($(CFG_SECURE_PARTITION),y) 357$(call force,CFG_EMBEDDED_TS,y) 358endif 359 360ifeq ($(CFG_EMBEDDED_TS),y) 361$(call force,CFG_ZLIB,y) 362endif 363 364# By default the early TAs are compressed in the TEE binary, it is possible to 365# not compress them with CFG_EARLY_TA_COMPRESS=n 366CFG_EARLY_TA_COMPRESS ?= y 367 368# Enable paging, requires SRAM, can't be enabled by default 369CFG_WITH_PAGER ?= n 370 371# Use the pager for user TAs 372CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 373 374# If paging of user TAs, that is, R/W paging default to enable paging of 375# TAG and IV in order to reduce heap usage. 376CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA) 377 378# Runtime lock dependency checker: ensures that a proper locking hierarchy is 379# used in the TEE core when acquiring and releasing mutexes. Any violation will 380# cause a panic as soon as the invalid locking condition is detected. If 381# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm 382# records the call stacks when locks are taken, and prints them when a 383# potential deadlock is found. 384# Expect a significant performance impact when enabling this. 385CFG_LOCKDEP ?= n 386CFG_LOCKDEP_RECORD_STACK ?= y 387 388# BestFit algorithm in bget reduces the fragmentation of the heap when running 389# with the pager enabled or lockdep 390CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 391 392# Enable support for detected undefined behavior in C 393# Uses a lot of memory, can't be enabled by default 394CFG_CORE_SANITIZE_UNDEFINED ?= n 395 396# Enable Kernel Address sanitizer, has a huge performance impact, uses a 397# lot of memory and need platform specific adaptations, can't be enabled by 398# default 399CFG_CORE_SANITIZE_KADDRESS ?= n 400 401# Add stack guards before/after stacks and periodically check them 402CFG_WITH_STACK_CANARIES ?= y 403 404# Use compiler instrumentation to troubleshoot stack overflows. 405# When enabled, most C functions check the stack pointer against the current 406# stack limits on entry and panic immediately if it is out of range. 407CFG_CORE_DEBUG_CHECK_STACKS ?= n 408 409# Use when the default stack allocations are not sufficient. 410CFG_STACK_THREAD_EXTRA ?= 0 411CFG_STACK_TMP_EXTRA ?= 0 412 413# Device Tree support 414# 415# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 416# device tree blob (DTB) parsing from the core. 417# 418# When CFG_DT is enabled, the TEE _start function expects to find 419# the address of a DTB in register X2/R2 provided by the early boot stage 420# or value 0 if boot stage provides no DTB. 421# 422# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 423# relative path of a DTS file located in core/arch/$(ARCH)/dts. 424# The DTS file is compiled into a DTB file which content is embedded in a 425# read-only section of the core. 426ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 427CFG_EMBED_DTB ?= y 428endif 429ifeq ($(CFG_EMBED_DTB),y) 430$(call force,CFG_DT,y) 431endif 432CFG_EMBED_DTB ?= n 433CFG_DT ?= n 434 435# Maximum size of the Device Tree Blob, has to be large enough to allow 436# editing of the supplied DTB. 437CFG_DTB_MAX_SIZE ?= 0x10000 438 439# Device Tree Overlay support. 440# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing 441# external DTB. The overlay is created when no valid DTB overlay is found. 442# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external 443# DTB location. 444# External DTB location (physical address) is provided either by boot 445# argument arg2 or from CFG_DT_ADDR if defined. 446# A subsequent boot stage can then merge the generated overlay DTB into a main 447# DTB using the standard fdt_overlay_apply() method. 448CFG_EXTERNAL_DTB_OVERLAY ?= n 449CFG_GENERATE_DTB_OVERLAY ?= n 450 451ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY)) 452$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive) 453endif 454_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \ 455 CFG_GENERATE_DTB_OVERLAY) 456 457# All embedded tests are supposed to be disabled by default, this flag 458# is used to control the default value of all other embedded tests 459CFG_ENABLE_EMBEDDED_TESTS ?= n 460 461# Enable core self tests and related pseudo TAs 462CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS) 463 464# Compiles bget_main_test() to be called from a test TA 465CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS) 466 467# This option enables OP-TEE to respond to SMP boot request: the Rich OS 468# issues this to request OP-TEE to release secondaries cores out of reset, 469# with specific core number and non-secure entry address. 470CFG_BOOT_SECONDARY_REQUEST ?= n 471 472# Default heap size for Core, 64 kB 473CFG_CORE_HEAP_SIZE ?= 65536 474 475# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION 476# is enabled 477CFG_CORE_NEX_HEAP_SIZE ?= 16384 478 479# TA profiling. 480# When this option is enabled, OP-TEE can execute Trusted Applications 481# instrumented with GCC's -pg flag and will output profiling information 482# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 483# tee-supplicant) 484# Note: this does not work well with shared libraries at the moment for a 485# couple of reasons: 486# 1. The profiling code assumes a unique executable section in the TA VA space. 487# 2. The code used to detect at run time if the TA is intrumented assumes that 488# the TA is linked statically. 489CFG_TA_GPROF_SUPPORT ?= n 490 491# TA function tracing. 492# When this option is enabled, OP-TEE can execute Trusted Applications 493# instrumented with GCC's -pg flag and will output function tracing 494# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is 495# defined in tee-supplicant) 496CFG_FTRACE_SUPPORT ?= n 497 498# How to make room when the function tracing buffer is full? 499# 'shift': shift the previously stored data by the amount needed in order 500# to always keep the latest logs (slower, especially with big buffer sizes) 501# 'wrap': discard the previous data and start at the beginning of the buffer 502# again (fast, but can result in a mostly empty buffer) 503# 'stop': stop logging new data 504CFG_FTRACE_BUF_WHEN_FULL ?= shift 505$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap) 506$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y) 507 508# Function tracing: unit to be used when displaying durations 509# 0: always display durations in microseconds 510# >0: if duration is greater or equal to the specified value (in microseconds), 511# display it in milliseconds 512CFG_FTRACE_US_MS ?= 10000 513 514# Core syscall function tracing. 515# When this option is enabled, OP-TEE core is instrumented with GCC's 516# -pg flag and will output syscall function graph in user TA ftrace 517# buffer 518CFG_SYSCALL_FTRACE ?= n 519$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT) 520 521# Enable to compile user TA libraries with profiling (-pg). 522# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT. 523CFG_ULIBS_MCOUNT ?= n 524# Profiling/tracing of syscall wrapper (utee_*) 525CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT) 526 527ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT))) 528ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT))) 529$(error Cannot instrument user libraries if user mode profiling is disabled) 530endif 531endif 532 533# Build libutee, libutils, libmbedtls as shared libraries. 534# - Static libraries are still generated when this is enabled, but TAs will use 535# the shared libraries unless explicitly linked with the -static flag. 536# - Shared libraries are made of two files: for example, libutee is 537# libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file 538# is a totally standard shared object, and should be used to link against. 539# The '.ta' file is a signed version of the '.so' and should be installed 540# in the same way as TAs so that they can be found at runtime. 541CFG_ULIBS_SHARED ?= n 542 543ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED)) 544$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible) 545endif 546 547# CFG_GP_SOCKETS 548# Enable Global Platform Sockets support 549CFG_GP_SOCKETS ?= y 550 551# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 552# invocation parameters referring to specific secure memories). 553CFG_SECURE_DATA_PATH ?= n 554 555# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 556# TA binaries are stored encrypted in the REE FS and are protected by 557# metadata in secure storage. 558CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 559$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 560 561# Enable the pseudo TA that managages TA storage in secure storage 562CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 563$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 564 565# Enable the pseudo TA for misc. auxilary services, extending existing 566# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy 567# pool etc...) 568CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA) 569$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA)) 570 571# Enable the pseudo TA for enumeration of TEE based devices for the normal 572# world OS. 573CFG_DEVICE_ENUM_PTA ?= y 574 575# Define the number of cores per cluster used in calculating core position. 576# The cluster number is shifted by this value and added to the core ID, 577# so its value represents log2(cores/cluster). 578# Default is 2**(2) = 4 cores per cluster. 579CFG_CORE_CLUSTER_SHIFT ?= 2 580 581# Define the number of threads per core used in calculating processing 582# element's position. The core number is shifted by this value and added to 583# the thread ID, so its value represents log2(threads/core). 584# Default is 2**(0) = 1 threads per core. 585CFG_CORE_THREAD_SHIFT ?= 0 586 587# Enable support for dynamic shared memory (shared memory anywhere in 588# non-secure memory). 589CFG_CORE_DYN_SHM ?= y 590 591# Enable support for reserved shared memory (shared memory in a carved out 592# memory area). 593CFG_CORE_RESERVED_SHM ?= y 594 595# Enables support for larger physical addresses, that is, it will define 596# paddr_t as a 64-bit type. 597CFG_CORE_LARGE_PHYS_ADDR ?= n 598 599# Define the maximum size, in bits, for big numbers in the Internal Core API 600# Arithmetical functions. This does *not* influence the key size that may be 601# manipulated through the Cryptographic API. 602# Set this to a lower value to reduce the TA memory footprint. 603CFG_TA_BIGNUM_MAX_BITS ?= 2048 604 605# Define the maximum size, in bits, for big numbers in the TEE core (privileged 606# layer). 607# This value is an upper limit for the key size in any cryptographic algorithm 608# implemented by the TEE core. 609# Set this to a lower value to reduce the memory footprint. 610CFG_CORE_BIGNUM_MAX_BITS ?= 4096 611 612# Not used since libmpa was removed. Force the values to catch build scripts 613# that would set = n. 614$(call force,CFG_TA_MBEDTLS_MPI,y) 615$(call force,CFG_TA_MBEDTLS,y) 616 617# Compile the TA library mbedTLS with self test functions, the functions 618# need to be called to test anything 619CFG_TA_MBEDTLS_SELF_TEST ?= y 620 621# By default use tomcrypt as the main crypto lib providing an implementation 622# for the API in <crypto/crypto.h> 623# CFG_CRYPTOLIB_NAME is used as libname and 624# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library 625# 626# It's also possible to configure to use mbedtls instead of tomcrypt. 627# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and 628# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively. 629CFG_CRYPTOLIB_NAME ?= tomcrypt 630CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt 631 632# Not used since libmpa was removed. Force the value to catch build scripts 633# that would set = n. 634$(call force,CFG_CORE_MBEDTLS_MPI,y) 635 636# Enable virtualization support. OP-TEE will not work without compatible 637# hypervisor if this option is enabled. 638CFG_VIRTUALIZATION ?= n 639 640ifeq ($(CFG_VIRTUALIZATION),y) 641$(call force,CFG_CORE_RODATA_NOEXEC,y) 642$(call force,CFG_CORE_RWDATA_NOEXEC,y) 643 644# Default number of virtual guests 645CFG_VIRT_GUEST_COUNT ?= 2 646endif 647 648# Enables backwards compatible derivation of RPMB and SSK keys 649CFG_CORE_HUK_SUBKEY_COMPAT ?= y 650 651# Compress and encode conf.mk into the TEE core, and show the encoded string on 652# boot (with severity TRACE_INFO). 653CFG_SHOW_CONF_ON_BOOT ?= n 654 655# Enables support for passing a TPM Event Log stored in secure memory 656# to a TA, so a TPM Service could use it to extend any measurement 657# taken before the service was up and running. 658CFG_CORE_TPM_EVENT_LOG ?= n 659 660# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core. 661# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_* 662# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support. 663# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support. 664# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel 665# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support. 666CFG_SCMI_MSG_DRIVERS ?= n 667CFG_SCMI_MSG_CLOCK ?= n 668CFG_SCMI_MSG_RESET_DOMAIN ?= n 669CFG_SCMI_MSG_SMT ?= n 670CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n 671 672# Enable SCMI PTA interface for REE SCMI agents 673CFG_SCMI_PTA ?= n 674 675ifneq ($(CFG_STMM_PATH),) 676$(call force,CFG_WITH_STMM_SP,y) 677else 678CFG_WITH_STMM_SP ?= n 679endif 680ifeq ($(CFG_WITH_STMM_SP),y) 681$(call force,CFG_ZLIB,y) 682endif 683 684# When enabled checks that buffers passed to the GP Internal Core API 685# comply with the rules added as annotations as part of the definition of 686# the API. For example preventing buffers in non-secure shared memory when 687# not allowed. 688CFG_TA_STRICT_ANNOTATION_CHECKS ?= y 689 690# When enabled accepts the DES key sizes excluding parity bits as in 691# the GP Internal API Specification v1.0 692CFG_COMPAT_GP10_DES ?= y 693 694# Defines a limit for many levels TAs may call each others. 695CFG_CORE_MAX_SYSCALL_RECURSION ?= 4 696 697# Pseudo-TA to export hardware RNG output to Normal World 698# RNG characteristics are platform specific 699CFG_HWRNG_PTA ?= n 700ifeq ($(CFG_HWRNG_PTA),y) 701# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited 702CFG_HWRNG_RATE ?= 0 703# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits 704ifeq (,$(CFG_HWRNG_QUALITY)) 705$(error CFG_HWRNG_QUALITY not defined) 706endif 707endif 708 709# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate 710# shared memory for each secure thread. When disabled, RPC shared 711# memory is released once the secure thread has completed is execution. 712ifeq ($(CFG_WITH_PAGER),y) 713CFG_PREALLOC_RPC_CACHE ?= n 714endif 715CFG_PREALLOC_RPC_CACHE ?= y 716