xref: /optee_os/mk/config.mk (revision e08643a467fef889b6572fcf408a80e524f7c021)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Path to the Python interpreter used by the build system.
36# This variable is set to the default python3 interpreter in the user's
37# path. But build environments that require more explicit control can
38# set the path to a specific interpreter through this variable.
39PYTHON3 ?= python3
40
41# Define DEBUG=1 to compile without optimization (forces -O0)
42# DEBUG=1
43ifeq ($(DEBUG),1)
44# For backwards compatibility
45$(call force,CFG_CC_OPT_LEVEL,0)
46$(call force,CFG_DEBUG_INFO,y)
47endif
48
49# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive.
50# Optimize for size by default, usually gives good performance too.
51CFG_CC_OPT_LEVEL ?= s
52
53# Enabling CFG_DEBUG_INFO makes debug information embedded in core.
54CFG_DEBUG_INFO ?= y
55
56# If y, enable debug features of the TEE core (assertions and lock checks
57# are enabled, panic and assert messages are more verbose, data and prefetch
58# aborts show a stack dump). When disabled, the NDEBUG directive is defined
59# so assertions are disabled.
60CFG_TEE_CORE_DEBUG ?= y
61
62# Log levels for the TEE core. Defines which core messages are displayed
63# on the secure console. Disabling core log (level set to 0) also disables
64# logs from the TAs.
65# 0: none
66# 1: error
67# 2: error + warning
68# 3: error + warning + debug
69# 4: error + warning + debug + flow
70CFG_TEE_CORE_LOG_LEVEL ?= 1
71
72# TA log level
73# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
74# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
75# when the TA is built.
76CFG_TEE_TA_LOG_LEVEL ?= 1
77
78# TA enablement
79# When defined to "y", TA traces are output according to
80# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
81CFG_TEE_CORE_TA_TRACE ?= y
82
83# If y, enable the memory leak detection feature in the bget memory allocator.
84# When this feature is enabled, calling mdbg_check(1) will print a list of all
85# the currently allocated buffers and the location of the allocation (file and
86# line number).
87# Note: make sure the log level is high enough for the messages to show up on
88# the secure console! For instance:
89# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
90#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
91# - To debug TEE core allocations: build OP-TEE with:
92#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
93CFG_TEE_CORE_MALLOC_DEBUG ?= n
94CFG_TEE_TA_MALLOC_DEBUG ?= n
95# Prints an error message and dumps the stack on failed memory allocations
96# using malloc() and friends.
97CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
98
99# Mask to select which messages are prefixed with long debugging information
100# (severity, core ID, thread ID, component name, function name, line number)
101# based on the message level. If BIT(level) is set, the long prefix is shown.
102# Otherwise a short prefix is used (severity and component name only).
103# Levels: 0=none 1=error 2=info 3=debug 4=flow
104CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
105
106# PRNG configuration
107# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
108# software PRNG implementation is used.
109# Otherwise, you need to implement hw_get_random_byte() for your platform
110CFG_WITH_SOFTWARE_PRNG ?= y
111
112# Number of threads
113CFG_NUM_THREADS ?= 2
114
115# API implementation version
116CFG_TEE_API_VERSION ?= GPD-1.1-dev
117
118# Implementation description (implementation-dependent)
119CFG_TEE_IMPL_DESCR ?= OPTEE
120
121# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
122# World?
123CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
124
125# The following values are not extracted from the "git describe" output because
126# we might be outside of a Git environment, or the tree may have been cloned
127# with limited depth not including any tag, so there is really no guarantee
128# that TEE_IMPL_VERSION contains the major and minor revision numbers.
129CFG_OPTEE_REVISION_MAJOR ?= 3
130CFG_OPTEE_REVISION_MINOR ?= 14
131
132# Trusted OS implementation version
133TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \
134		      echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))
135ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
136TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
137else
138TEE_IMPL_GIT_SHA1 := 0x0
139endif
140
141# Trusted OS implementation manufacturer name
142CFG_TEE_MANUFACTURER ?= LINARO
143
144# Trusted firmware version
145CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
146
147# Trusted OS implementation manufacturer name
148CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
149
150# Rich Execution Environment (REE) file system support: normal world OS
151# provides the actual storage.
152# This is the default FS when enabled (i.e., the one used when
153# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
154CFG_REE_FS ?= y
155
156# RPMB file system support
157CFG_RPMB_FS ?= n
158
159# Device identifier used when CFG_RPMB_FS = y.
160# The exact meaning of this value is platform-dependent. On Linux, the
161# tee-supplicant process will open /dev/mmcblk<id>rpmb
162CFG_RPMB_FS_DEV_ID ?= 0
163
164# This config variable determines the number of entries read in from RPMB at
165# once whenever a function traverses the RPMB FS. Increasing the default value
166# has the following consequences:
167# - More memory required on heap. A single FAT entry currently has a size of
168#   256 bytes.
169# - Potentially significant speed-ups for RPMB I/O. Depending on how many
170#   entries a function needs to traverse, the number of time-consuming RPMB
171#   read-in operations can be reduced.
172# Chosing a proper value is both platform- (available memory) and use-case-
173# dependent (potential number of FAT fs entries), so overwrite in platform
174# config files
175CFG_RPMB_FS_RD_ENTRIES ?= 8
176
177# Enables caching of FAT FS entries when set to a value greater than zero.
178# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
179# entries. The cache is populated when FAT FS entries are initially read in.
180# When traversing the FAT FS entries, we read from the cache instead of reading
181# in the entries from RPMB storage. Consequently, when a FAT FS entry is
182# written, the cache is updated. In scenarios where an estimate of the number
183# of FAT FS entries can be made, the cache may be specifically tailored to
184# store all entries. The caching can improve RPMB I/O at the cost
185# of additional memory.
186# Without caching, we temporarily require
187# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
188# while traversing the FAT FS (e.g. in read_fat).
189# For example 8*256 bytes = 2kB while in read_fat.
190# With caching, we constantly require up to
191# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
192# depending on how many elements are in the cache, and additional temporary
193# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
194# in case the cache is too small to hold all elements when traversing.
195CFG_RPMB_FS_CACHE_ENTRIES ?= 0
196
197# Print RPMB data frames sent to and received from the RPMB device
198CFG_RPMB_FS_DEBUG_DATA ?= n
199
200# Clear RPMB content at cold boot
201CFG_RPMB_RESET_FAT ?= n
202
203# Use a hard coded RPMB key instead of deriving it from the platform HUK
204CFG_RPMB_TESTKEY ?= n
205
206# Enables RPMB key programming by the TEE, in case the RPMB partition has not
207# been configured yet.
208# !!! Security warning !!!
209# Do *NOT* enable this in product builds, as doing so would allow the TEE to
210# leak the RPMB key.
211# This option is useful in the following situations:
212# - Testing
213# - RPMB key provisioning in a controlled environment (factory setup)
214CFG_RPMB_WRITE_KEY ?= n
215
216# Signing key for OP-TEE TA's
217# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy
218# key and then set TA_PUBLIC_KEY to match public key from the HSM.
219# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS.
220TA_SIGN_KEY ?= keys/default_ta.pem
221TA_PUBLIC_KEY ?= $(TA_SIGN_KEY)
222
223# Include lib/libutils/isoc in the build? Most platforms need this, but some
224# may not because they obtain the isoc functions from elsewhere
225CFG_LIBUTILS_WITH_ISOC ?= y
226
227# Enables floating point support for user TAs
228# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
229#	 hard-float is basically a super set of soft-float. Hard-float
230#	 requires all the support routines provided for soft-float, but the
231#	 compiler may choose to optimize to not use some of them and use
232#	 the floating-point registers instead.
233# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
234#	 nothing with ` -mgeneral-regs-only`)
235# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
236CFG_TA_FLOAT_SUPPORT ?= y
237
238# Stack unwinding: print a stack dump to the console on core or TA abort, or
239# when a TA panics.
240# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
241# unwound (not paged TAs, however).
242# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
243# this option will increase the size of the 32-bit TEE binary by a few KB.
244# Similarly, TAs have to be compiled with -funwind-tables (default when the
245# option is set) otherwise they can't be unwound.
246# Warning: since the unwind sequence for user-mode (TA) code is implemented in
247# the privileged layer of OP-TEE, enabling this feature will weaken the
248# user/kernel isolation. Therefore it should be disabled in release builds.
249ifeq ($(CFG_TEE_CORE_DEBUG),y)
250CFG_UNWIND ?= y
251endif
252
253# Enable support for dynamically loaded user TAs
254CFG_WITH_USER_TA ?= y
255
256# Choosing the architecture(s) of user-mode libraries (used by TAs)
257#
258# Platforms may define a list of supported architectures for user-mode code
259# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
260# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
261# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
262# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
263# The first entry in $(supported-ta-targets) has a special role, see
264# CFG_USER_TA_TARGET_<ta-name> below.
265#
266# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
267# change the order of the values.
268#
269# The list of TA architectures is ultimately stored in $(ta-targets).
270
271# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
272# defined, selects the unique TA architecture mode for building the in-tree TA
273# <ta-name>. Can be either ta_arm32 or ta_arm64.
274# By default, in-tree TAs are built using the first architecture specified in
275# $(ta-targets).
276
277# Address Space Layout Randomization for user-mode Trusted Applications
278#
279# When this flag is enabled, the ELF loader will introduce a random offset
280# when mapping the application in user space. ASLR makes the exploitation of
281# memory corruption vulnerabilities more difficult.
282CFG_TA_ASLR ?= y
283
284# How much ASLR may shift the base address (in pages). The base address is
285# randomly shifted by an integer number of pages comprised between these two
286# values. Bigger ranges are more secure because they make the addresses harder
287# to guess at the expense of using more memory for the page tables.
288CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
289CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
290
291# Address Space Layout Randomization for TEE Core
292#
293# When this flag is enabled, the early init code will introduce a random
294# offset when mapping TEE Core. ASLR makes the exploitation of memory
295# corruption vulnerabilities more difficult.
296CFG_CORE_ASLR ?= y
297
298# Load user TAs from the REE filesystem via tee-supplicant
299CFG_REE_FS_TA ?= y
300
301# Pre-authentication of TA binaries loaded from the REE filesystem
302#
303# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
304#   "Secure DDR" pool, check the signature, then process the file only if it is
305#   valid.
306# - If disabled: hash the binaries as they are being processed and verify the
307#   signature as a last step.
308CFG_REE_FS_TA_BUFFERED ?= n
309$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
310
311# When CFG_REE_FS=y and CFG_RPMB_FS=y:
312# Allow secure storage in the REE FS to be entirely deleted without causing
313# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or
314# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH)
315# can be used to reset the secure storage to a clean, empty state.
316# Typically used for testing only since it weakens storage security.
317CFG_REE_FS_ALLOW_RESET ?= n
318
319# Support for loading user TAs from a special section in the TEE binary.
320# Such TAs are available even before tee-supplicant is available (hence their
321# name), but note that many services exported to TAs may need tee-supplicant,
322# so early use is limited to a subset of the TEE Internal Core API (crypto...)
323# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
324# file(s). For example:
325#   $ make ... \
326#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
327#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
328# Typical build steps:
329#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
330#                                    # headers, makefiles), ready to build TAs.
331#                                    # CFG_EARLY_TA=y is optional, it prevents
332#                                    # later library recompilations.
333#   <build some TAs>
334#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
335#
336# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
337# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
338# <name-of-ta>/<uuid>
339# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
340ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
341$(call force,CFG_EARLY_TA,y)
342else
343CFG_EARLY_TA ?= n
344endif
345
346ifeq ($(CFG_EARLY_TA),y)
347$(call force,CFG_EMBEDDED_TS,y)
348endif
349
350ifneq ($(SP_PATHS),)
351$(call force,CFG_EMBEDDED_TS,y)
352else
353CFG_SECURE_PARTITION ?= n
354endif
355
356ifeq ($(CFG_SECURE_PARTITION),y)
357$(call force,CFG_EMBEDDED_TS,y)
358endif
359
360ifeq ($(CFG_EMBEDDED_TS),y)
361$(call force,CFG_ZLIB,y)
362endif
363
364# By default the early TAs are compressed in the TEE binary, it is possible to
365# not compress them with CFG_EARLY_TA_COMPRESS=n
366CFG_EARLY_TA_COMPRESS ?= y
367
368# Enable paging, requires SRAM, can't be enabled by default
369CFG_WITH_PAGER ?= n
370
371# Use the pager for user TAs
372CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
373
374# If paging of user TAs, that is, R/W paging default to enable paging of
375# TAG and IV in order to reduce heap usage.
376CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA)
377
378# Runtime lock dependency checker: ensures that a proper locking hierarchy is
379# used in the TEE core when acquiring and releasing mutexes. Any violation will
380# cause a panic as soon as the invalid locking condition is detected. If
381# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
382# records the call stacks when locks are taken, and prints them when a
383# potential deadlock is found.
384# Expect a significant performance impact when enabling this.
385CFG_LOCKDEP ?= n
386CFG_LOCKDEP_RECORD_STACK ?= y
387
388# BestFit algorithm in bget reduces the fragmentation of the heap when running
389# with the pager enabled or lockdep
390CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
391
392# Enable support for detected undefined behavior in C
393# Uses a lot of memory, can't be enabled by default
394CFG_CORE_SANITIZE_UNDEFINED ?= n
395
396# Enable Kernel Address sanitizer, has a huge performance impact, uses a
397# lot of memory and need platform specific adaptations, can't be enabled by
398# default
399CFG_CORE_SANITIZE_KADDRESS ?= n
400
401# Add stack guards before/after stacks and periodically check them
402CFG_WITH_STACK_CANARIES ?= y
403
404# Use compiler instrumentation to troubleshoot stack overflows.
405# When enabled, most C functions check the stack pointer against the current
406# stack limits on entry and panic immediately if it is out of range.
407CFG_CORE_DEBUG_CHECK_STACKS ?= n
408
409# Use when the default stack allocations are not sufficient.
410CFG_STACK_THREAD_EXTRA ?= 0
411CFG_STACK_TMP_EXTRA ?= 0
412
413# Device Tree support
414#
415# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
416# device tree blob (DTB) parsing from the core.
417#
418# When CFG_DT is enabled, the TEE _start function expects to find
419# the address of a DTB in register X2/R2 provided by the early boot stage
420# or value 0 if boot stage provides no DTB.
421#
422# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
423# relative path of a DTS file located in core/arch/$(ARCH)/dts.
424# The DTS file is compiled into a DTB file which content is embedded in a
425# read-only section of the core.
426ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
427CFG_EMBED_DTB ?= y
428endif
429ifeq ($(CFG_EMBED_DTB),y)
430$(call force,CFG_DT,y)
431endif
432CFG_EMBED_DTB ?= n
433CFG_DT ?= n
434
435# Maximum size of the Device Tree Blob, has to be large enough to allow
436# editing of the supplied DTB.
437CFG_DTB_MAX_SIZE ?= 0x10000
438
439# Device Tree Overlay support.
440# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing
441# external DTB. The overlay is created when no valid DTB overlay is found.
442# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external
443# DTB location.
444# External DTB location (physical address) is provided either by boot
445# argument arg2 or from CFG_DT_ADDR if defined.
446# A subsequent boot stage can then merge the generated overlay DTB into a main
447# DTB using the standard fdt_overlay_apply() method.
448CFG_EXTERNAL_DTB_OVERLAY ?= n
449CFG_GENERATE_DTB_OVERLAY ?= n
450
451ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY))
452$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive)
453endif
454_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \
455			  CFG_GENERATE_DTB_OVERLAY)
456
457# All embedded tests are supposed to be disabled by default, this flag
458# is used to control the default value of all other embedded tests
459CFG_ENABLE_EMBEDDED_TESTS ?= n
460
461# Enable core self tests and related pseudo TAs
462CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS)
463
464# Compiles bget_main_test() to be called from a test TA
465CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS)
466
467# This option enables OP-TEE to respond to SMP boot request: the Rich OS
468# issues this to request OP-TEE to release secondaries cores out of reset,
469# with specific core number and non-secure entry address.
470CFG_BOOT_SECONDARY_REQUEST ?= n
471
472# Default heap size for Core, 64 kB
473CFG_CORE_HEAP_SIZE ?= 65536
474
475# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
476# is enabled
477CFG_CORE_NEX_HEAP_SIZE ?= 16384
478
479# TA profiling.
480# When this option is enabled, OP-TEE can execute Trusted Applications
481# instrumented with GCC's -pg flag and will output profiling information
482# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
483# tee-supplicant)
484# Note: this does not work well with shared libraries at the moment for a
485# couple of reasons:
486# 1. The profiling code assumes a unique executable section in the TA VA space.
487# 2. The code used to detect at run time if the TA is intrumented assumes that
488# the TA is linked statically.
489CFG_TA_GPROF_SUPPORT ?= n
490
491# TA function tracing.
492# When this option is enabled, OP-TEE can execute Trusted Applications
493# instrumented with GCC's -pg flag and will output function tracing
494# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
495# defined in tee-supplicant)
496CFG_FTRACE_SUPPORT ?= n
497
498# How to make room when the function tracing buffer is full?
499# 'shift': shift the previously stored data by the amount needed in order
500#    to always keep the latest logs (slower, especially with big buffer sizes)
501# 'wrap': discard the previous data and start at the beginning of the buffer
502#    again (fast, but can result in a mostly empty buffer)
503# 'stop': stop logging new data
504CFG_FTRACE_BUF_WHEN_FULL ?= shift
505$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
506$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
507
508# Function tracing: unit to be used when displaying durations
509#  0: always display durations in microseconds
510# >0: if duration is greater or equal to the specified value (in microseconds),
511#     display it in milliseconds
512CFG_FTRACE_US_MS ?= 10000
513
514# Core syscall function tracing.
515# When this option is enabled, OP-TEE core is instrumented with GCC's
516# -pg flag and will output syscall function graph in user TA ftrace
517# buffer
518CFG_SYSCALL_FTRACE ?= n
519$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
520
521# Enable to compile user TA libraries with profiling (-pg).
522# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
523CFG_ULIBS_MCOUNT ?= n
524# Profiling/tracing of syscall wrapper (utee_*)
525CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
526
527ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
528ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
529$(error Cannot instrument user libraries if user mode profiling is disabled)
530endif
531endif
532
533# Build libutee, libutils, libmbedtls as shared libraries.
534# - Static libraries are still generated when this is enabled, but TAs will use
535# the shared libraries unless explicitly linked with the -static flag.
536# - Shared libraries are made of two files: for example, libutee is
537#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
538#   is a totally standard shared object, and should be used to link against.
539#   The '.ta' file is a signed version of the '.so' and should be installed
540#   in the same way as TAs so that they can be found at runtime.
541CFG_ULIBS_SHARED ?= n
542
543ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED))
544$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
545endif
546
547# CFG_GP_SOCKETS
548# Enable Global Platform Sockets support
549CFG_GP_SOCKETS ?= y
550
551# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
552# invocation parameters referring to specific secure memories).
553CFG_SECURE_DATA_PATH ?= n
554
555# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
556# TA binaries are stored encrypted in the REE FS and are protected by
557# metadata in secure storage.
558CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
559$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
560
561# Enable the pseudo TA that managages TA storage in secure storage
562CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
563$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
564
565# Enable the pseudo TA for misc. auxilary services, extending existing
566# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy
567# pool etc...)
568CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA)
569$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA))
570
571# Enable the pseudo TA for enumeration of TEE based devices for the normal
572# world OS.
573CFG_DEVICE_ENUM_PTA ?= y
574
575# Define the number of cores per cluster used in calculating core position.
576# The cluster number is shifted by this value and added to the core ID,
577# so its value represents log2(cores/cluster).
578# Default is 2**(2) = 4 cores per cluster.
579CFG_CORE_CLUSTER_SHIFT ?= 2
580
581# Define the number of threads per core used in calculating processing
582# element's position. The core number is shifted by this value and added to
583# the thread ID, so its value represents log2(threads/core).
584# Default is 2**(0) = 1 threads per core.
585CFG_CORE_THREAD_SHIFT ?= 0
586
587# Enable support for dynamic shared memory (shared memory anywhere in
588# non-secure memory).
589CFG_CORE_DYN_SHM ?= y
590
591# Enable support for reserved shared memory (shared memory in a carved out
592# memory area).
593CFG_CORE_RESERVED_SHM ?= y
594
595# Enables support for larger physical addresses, that is, it will define
596# paddr_t as a 64-bit type.
597CFG_CORE_LARGE_PHYS_ADDR ?= n
598
599# Define the maximum size, in bits, for big numbers in the Internal Core API
600# Arithmetical functions. This does *not* influence the key size that may be
601# manipulated through the Cryptographic API.
602# Set this to a lower value to reduce the TA memory footprint.
603CFG_TA_BIGNUM_MAX_BITS ?= 2048
604
605# Define the maximum size, in bits, for big numbers in the TEE core (privileged
606# layer).
607# This value is an upper limit for the key size in any cryptographic algorithm
608# implemented by the TEE core.
609# Set this to a lower value to reduce the memory footprint.
610CFG_CORE_BIGNUM_MAX_BITS ?= 4096
611
612# Not used since libmpa was removed. Force the values to catch build scripts
613# that would set = n.
614$(call force,CFG_TA_MBEDTLS_MPI,y)
615$(call force,CFG_TA_MBEDTLS,y)
616
617# Compile the TA library mbedTLS with self test functions, the functions
618# need to be called to test anything
619CFG_TA_MBEDTLS_SELF_TEST ?= y
620
621# By default use tomcrypt as the main crypto lib providing an implementation
622# for the API in <crypto/crypto.h>
623# CFG_CRYPTOLIB_NAME is used as libname and
624# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
625#
626# It's also possible to configure to use mbedtls instead of tomcrypt.
627# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
628# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
629CFG_CRYPTOLIB_NAME ?= tomcrypt
630CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
631
632# Not used since libmpa was removed. Force the value to catch build scripts
633# that would set = n.
634$(call force,CFG_CORE_MBEDTLS_MPI,y)
635
636# Enable virtualization support. OP-TEE will not work without compatible
637# hypervisor if this option is enabled.
638CFG_VIRTUALIZATION ?= n
639
640ifeq ($(CFG_VIRTUALIZATION),y)
641$(call force,CFG_CORE_RODATA_NOEXEC,y)
642$(call force,CFG_CORE_RWDATA_NOEXEC,y)
643
644# Default number of virtual guests
645CFG_VIRT_GUEST_COUNT ?= 2
646endif
647
648# Enables backwards compatible derivation of RPMB and SSK keys
649CFG_CORE_HUK_SUBKEY_COMPAT ?= y
650
651# Compress and encode conf.mk into the TEE core, and show the encoded string on
652# boot (with severity TRACE_INFO).
653CFG_SHOW_CONF_ON_BOOT ?= n
654
655# Enables support for passing a TPM Event Log stored in secure memory
656# to a TA, so a TPM Service could use it to extend any measurement
657# taken before the service was up and running.
658CFG_CORE_TPM_EVENT_LOG ?= n
659
660# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
661# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
662# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
663# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
664# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel
665# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support.
666CFG_SCMI_MSG_DRIVERS ?= n
667CFG_SCMI_MSG_CLOCK ?= n
668CFG_SCMI_MSG_RESET_DOMAIN ?= n
669CFG_SCMI_MSG_SMT ?= n
670CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n
671
672# Enable SCMI PTA interface for REE SCMI agents
673CFG_SCMI_PTA ?= n
674
675ifneq ($(CFG_STMM_PATH),)
676$(call force,CFG_WITH_STMM_SP,y)
677else
678CFG_WITH_STMM_SP ?= n
679endif
680ifeq ($(CFG_WITH_STMM_SP),y)
681$(call force,CFG_ZLIB,y)
682endif
683
684# When enabled checks that buffers passed to the GP Internal Core API
685# comply with the rules added as annotations as part of the definition of
686# the API. For example preventing buffers in non-secure shared memory when
687# not allowed.
688CFG_TA_STRICT_ANNOTATION_CHECKS ?= y
689
690# When enabled accepts the DES key sizes excluding parity bits as in
691# the GP Internal API Specification v1.0
692CFG_COMPAT_GP10_DES ?= y
693
694# Defines a limit for many levels TAs may call each others.
695CFG_CORE_MAX_SYSCALL_RECURSION ?= 4
696
697# Pseudo-TA to export hardware RNG output to Normal World
698# RNG characteristics are platform specific
699CFG_HWRNG_PTA ?= n
700ifeq ($(CFG_HWRNG_PTA),y)
701# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited
702CFG_HWRNG_RATE ?= 0
703# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits
704ifeq (,$(CFG_HWRNG_QUALITY))
705$(error CFG_HWRNG_QUALITY not defined)
706endif
707endif
708
709# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate
710# shared memory for each secure thread. When disabled, RPC shared
711# memory is released once the secure thread has completed is execution.
712ifeq ($(CFG_WITH_PAGER),y)
713CFG_PREALLOC_RPC_CACHE ?= n
714endif
715CFG_PREALLOC_RPC_CACHE ?= y
716