1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Define DEBUG=1 to compile without optimization (forces -O0) 36# DEBUG=1 37 38# If y, enable debug features of the TEE core (assertions and lock checks 39# are enabled, panic and assert messages are more verbose, data and prefetch 40# aborts show a stack dump). When disabled, the NDEBUG directive is defined 41# so assertions are disabled. 42CFG_TEE_CORE_DEBUG ?= y 43 44# Log levels for the TEE core. Defines which core messages are displayed 45# on the secure console. Disabling core log (level set to 0) also disables 46# logs from the TAs. 47# 0: none 48# 1: error 49# 2: error + warning 50# 3: error + warning + debug 51# 4: error + warning + debug + flow 52CFG_TEE_CORE_LOG_LEVEL ?= 1 53 54# TA log level 55# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 56# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 57# when the TA is built. 58CFG_TEE_TA_LOG_LEVEL ?= 1 59 60# TA enablement 61# When defined to "y", TA traces are output according to 62# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 63CFG_TEE_CORE_TA_TRACE ?= y 64 65# If y, enable the memory leak detection feature in the bget memory allocator. 66# When this feature is enabled, calling mdbg_check(1) will print a list of all 67# the currently allocated buffers and the location of the allocation (file and 68# line number). 69# Note: make sure the log level is high enough for the messages to show up on 70# the secure console! For instance: 71# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 72# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 73# - To debug TEE core allocations: build OP-TEE with: 74# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 75CFG_TEE_CORE_MALLOC_DEBUG ?= n 76CFG_TEE_TA_MALLOC_DEBUG ?= n 77# Prints an error message and dumps the stack on failed memory allocations 78# using malloc() and friends. 79CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG) 80 81# Mask to select which messages are prefixed with long debugging information 82# (severity, core ID, thread ID, component name, function name, line number) 83# based on the message level. If BIT(level) is set, the long prefix is shown. 84# Otherwise a short prefix is used (severity and component name only). 85# Levels: 0=none 1=error 2=info 3=debug 4=flow 86CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 87 88# PRNG configuration 89# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 90# software PRNG implementation is used. 91# Otherwise, you need to implement hw_get_random_byte() for your platform 92CFG_WITH_SOFTWARE_PRNG ?= y 93 94# Number of threads 95CFG_NUM_THREADS ?= 2 96 97# API implementation version 98CFG_TEE_API_VERSION ?= GPD-1.1-dev 99 100# Implementation description (implementation-dependent) 101CFG_TEE_IMPL_DESCR ?= OPTEE 102 103# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 104# World? 105CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 106 107# Trusted OS implementation version 108TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown) 109ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 110TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 111else 112TEE_IMPL_GIT_SHA1 := 0x0 113endif 114# The following values are not extracted from the "git describe" output because 115# we might be outside of a Git environment, or the tree may have been cloned 116# with limited depth not including any tag, so there is really no guarantee 117# that TEE_IMPL_VERSION contains the major and minor revision numbers. 118CFG_OPTEE_REVISION_MAJOR ?= 3 119CFG_OPTEE_REVISION_MINOR ?= 8 120 121# Trusted OS implementation manufacturer name 122CFG_TEE_MANUFACTURER ?= LINARO 123 124# Trusted firmware version 125CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 126 127# Trusted OS implementation manufacturer name 128CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 129 130# Rich Execution Environment (REE) file system support: normal world OS 131# provides the actual storage. 132# This is the default FS when enabled (i.e., the one used when 133# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 134CFG_REE_FS ?= y 135 136# RPMB file system support 137CFG_RPMB_FS ?= n 138 139# Device identifier used when CFG_RPMB_FS = y. 140# The exact meaning of this value is platform-dependent. On Linux, the 141# tee-supplicant process will open /dev/mmcblk<id>rpmb 142CFG_RPMB_FS_DEV_ID ?= 0 143 144# Enables RPMB key programming by the TEE, in case the RPMB partition has not 145# been configured yet. 146# !!! Security warning !!! 147# Do *NOT* enable this in product builds, as doing so would allow the TEE to 148# leak the RPMB key. 149# This option is useful in the following situations: 150# - Testing 151# - RPMB key provisioning in a controlled environment (factory setup) 152CFG_RPMB_WRITE_KEY ?= n 153 154# Embed public part of this key in OP-TEE OS 155TA_SIGN_KEY ?= keys/default_ta.pem 156 157# Include lib/libutils/isoc in the build? Most platforms need this, but some 158# may not because they obtain the isoc functions from elsewhere 159CFG_LIBUTILS_WITH_ISOC ?= y 160 161# Enables floating point support for user TAs 162# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 163# hard-float is basically a super set of soft-float. Hard-float 164# requires all the support routines provided for soft-float, but the 165# compiler may choose to optimize to not use some of them and use 166# the floating-point registers instead. 167# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 168# nothing with ` -mgeneral-regs-only`) 169# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 170CFG_TA_FLOAT_SUPPORT ?= y 171 172# Stack unwinding: print a stack dump to the console on core or TA abort, or 173# when a TA panics. 174# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 175# unwound (not paged TAs, however). 176# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 177# this option will increase the size of the 32-bit TEE binary by a few KB. 178# Similarly, TAs have to be compiled with -funwind-tables (default when the 179# option is set) otherwise they can't be unwound. 180# Warning: since the unwind sequence for user-mode (TA) code is implemented in 181# the privileged layer of OP-TEE, enabling this feature will weaken the 182# user/kernel isolation. Therefore it should be disabled in release builds. 183ifeq ($(CFG_TEE_CORE_DEBUG),y) 184CFG_UNWIND ?= y 185endif 186 187# Enable support for dynamically loaded user TAs 188CFG_WITH_USER_TA ?= y 189 190# Choosing the architecture(s) of user-mode libraries (used by TAs) 191# 192# Platforms may define a list of supported architectures for user-mode code 193# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64", 194# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32". 195# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits, 196# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y). 197# The first entry in $(supported-ta-targets) has a special role, see 198# CFG_USER_TA_TARGET_<ta-name> below. 199# 200# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or 201# change the order of the values. 202# 203# The list of TA architectures is ultimately stored in $(ta-targets). 204 205# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if 206# defined, selects the unique TA architecture mode for building the in-tree TA 207# <ta-name>. Can be either ta_arm32 or ta_arm64. 208# By default, in-tree TAs are built using the first architecture specified in 209# $(ta-targets). 210 211# Address Space Layout Randomization for user-mode Trusted Applications 212# 213# When this flag is enabled, the ELF loader will introduce a random offset 214# when mapping the application in user space. ASLR makes the exploitation of 215# memory corruption vulnerabilities more difficult. 216CFG_TA_ASLR ?= y 217 218# How much ASLR may shift the base address (in pages). The base address is 219# randomly shifted by an integer number of pages comprised between these two 220# values. Bigger ranges are more secure because they make the addresses harder 221# to guess at the expense of using more memory for the page tables. 222CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0 223CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128 224 225# Address Space Layout Randomization for TEE Core 226# 227# When this flag is enabled, the early init code will introduce a random 228# offset when mapping TEE Core. ASLR makes the exploitation of memory 229# corruption vulnerabilities more difficult. 230CFG_CORE_ASLR ?= y 231 232# Load user TAs from the REE filesystem via tee-supplicant 233CFG_REE_FS_TA ?= y 234 235# Pre-authentication of TA binaries loaded from the REE filesystem 236# 237# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the 238# "Secure DDR" pool, check the signature, then process the file only if it is 239# valid. 240# - If disabled: hash the binaries as they are being processed and verify the 241# signature as a last step. 242CFG_REE_FS_TA_BUFFERED ?= n 243$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA)) 244 245# Support for loading user TAs from a special section in the TEE binary. 246# Such TAs are available even before tee-supplicant is available (hence their 247# name), but note that many services exported to TAs may need tee-supplicant, 248# so early use is limited to a subset of the TEE Internal Core API (crypto...) 249# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 250# file(s). For example: 251# $ make ... \ 252# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 253# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 254# Typical build steps: 255# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 256# # headers, makefiles), ready to build TAs. 257# # CFG_EARLY_TA=y is optional, it prevents 258# # later library recompilations. 259# <build some TAs> 260# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 261# 262# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 263# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 264# <name-of-ta>/<uuid> 265# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 266ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 267$(call force,CFG_EARLY_TA,y) 268else 269CFG_EARLY_TA ?= n 270endif 271ifeq ($(CFG_EARLY_TA),y) 272$(call force,CFG_ZLIB,y) 273endif 274 275# Enable paging, requires SRAM, can't be enabled by default 276CFG_WITH_PAGER ?= n 277 278# Runtime lock dependency checker: ensures that a proper locking hierarchy is 279# used in the TEE core when acquiring and releasing mutexes. Any violation will 280# cause a panic as soon as the invalid locking condition is detected. If 281# CFG_UNWIND is enabled, the algorithm records the call stacks when locks are 282# taken, and prints them when a potential deadlock is found. 283# Expect a significant performance impact when enabling this. 284CFG_LOCKDEP ?= n 285 286# BestFit algorithm in bget reduces the fragmentation of the heap when running 287# with the pager enabled or lockdep 288CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 289 290# Use the pager for user TAs 291CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 292 293# Enable support for detected undefined behavior in C 294# Uses a lot of memory, can't be enabled by default 295CFG_CORE_SANITIZE_UNDEFINED ?= n 296 297# Enable Kernel Address sanitizer, has a huge performance impact, uses a 298# lot of memory and need platform specific adaptations, can't be enabled by 299# default 300CFG_CORE_SANITIZE_KADDRESS ?= n 301 302# Device Tree support 303# 304# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 305# device tree blob (DTB) parsing from the core. 306# 307# When CFG_DT is enabled, the TEE _start function expects to find 308# the address of a DTB in register X2/R2 provided by the early boot stage 309# or value 0 if boot stage provides no DTB. 310# 311# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 312# relative path of a DTS file located in core/arch/$(ARCH)/dts. 313# The DTS file is compiled into a DTB file which content is embedded in a 314# read-only section of the core. 315ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 316CFG_EMBED_DTB ?= y 317endif 318ifeq ($(CFG_EMBED_DTB),y) 319$(call force,CFG_DT,y) 320endif 321CFG_EMBED_DTB ?= n 322CFG_DT ?= n 323 324# Maximum size of the Device Tree Blob, has to be large enough to allow 325# editing of the supplied DTB. 326CFG_DTB_MAX_SIZE ?= 0x10000 327 328# Device Tree Overlay support. 329# This define enables support for an OP-TEE provided DTB overlay. 330# One of two modes is supported in this case: 331# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or 332# passed in arg2 333# 2. Generate a new DTB overlay at CFG_DT_ADDR 334# A subsequent boot stage must then merge the generated overlay DTB into a main 335# DTB using the standard fdt_overlay_apply() method. 336CFG_EXTERNAL_DTB_OVERLAY ?= n 337 338# Enable core self tests and related pseudo TAs 339CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y 340 341# This option enables OP-TEE to respond to SMP boot request: the Rich OS 342# issues this to request OP-TEE to release secondaries cores out of reset, 343# with specific core number and non-secure entry address. 344CFG_BOOT_SECONDARY_REQUEST ?= n 345 346# Default heap size for Core, 64 kB 347CFG_CORE_HEAP_SIZE ?= 65536 348 349# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION 350# is enabled 351CFG_CORE_NEX_HEAP_SIZE ?= 16384 352 353# TA profiling. 354# When this option is enabled, OP-TEE can execute Trusted Applications 355# instrumented with GCC's -pg flag and will output profiling information 356# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 357# tee-supplicant) 358# Note: this does not work well with shared libraries at the moment for a 359# couple of reasons: 360# 1. The profiling code assumes a unique executable section in the TA VA space. 361# 2. The code used to detect at run time if the TA is intrumented assumes that 362# the TA is linked statically. 363CFG_TA_GPROF_SUPPORT ?= n 364 365# TA function tracing. 366# When this option is enabled, OP-TEE can execute Trusted Applications 367# instrumented with GCC's -pg flag and will output function tracing 368# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is 369# defined in tee-supplicant) 370CFG_FTRACE_SUPPORT ?= n 371 372# Function tracing: unit to be used when displaying durations 373# 0: always display durations in microseconds 374# >0: if duration is greater or equal to the specified value (in microseconds), 375# display it in milliseconds 376CFG_FTRACE_US_MS ?= 10000 377 378# Core syscall function tracing. 379# When this option is enabled, OP-TEE core is instrumented with GCC's 380# -pg flag and will output syscall function graph in user TA ftrace 381# buffer 382CFG_SYSCALL_FTRACE ?= n 383$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT) 384 385# Enable to compile user TA libraries with profiling (-pg). 386# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT. 387CFG_ULIBS_MCOUNT ?= n 388# Profiling/tracing of syscall wrapper (utee_*) 389CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT) 390 391ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT))) 392ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT))) 393$(error Cannot instrument user libraries if user mode profiling is disabled) 394endif 395endif 396 397# Build libutee, libutils, libmpa/libmbedtls as shared libraries. 398# - Static libraries are still generated when this is enabled, but TAs will use 399# the shared libraries unless explicitly linked with the -static flag. 400# - Shared libraries are made of two files: for example, libutee is 401# libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file 402# is a totally standard shared object, and should be used to link against. 403# The '.ta' file is a signed version of the '.so' and should be installed 404# in the same way as TAs so that they can be found at runtime. 405CFG_ULIBS_SHARED ?= n 406 407ifeq (yy,$(CFG_TA_GPROF_SUPPORT)$(CFG_ULIBS_SHARED)) 408$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible) 409endif 410 411# CFG_GP_SOCKETS 412# Enable Global Platform Sockets support 413CFG_GP_SOCKETS ?= y 414 415# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 416# invocation parameters referring to specific secure memories). 417CFG_SECURE_DATA_PATH ?= n 418 419# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 420# TA binaries are stored encrypted in the REE FS and are protected by 421# metadata in secure storage. 422CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 423$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 424 425# Enable the pseudo TA that managages TA storage in secure storage 426CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 427$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 428 429# Enable the pseudo TA for misc. auxilary services, extending existing 430# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.) 431CFG_SYSTEM_PTA ?= y 432 433# Enable the pseudo TA for enumeration of TEE based devices for the normal 434# world OS. 435CFG_DEVICE_ENUM_PTA ?= y 436 437# Define the number of cores per cluster used in calculating core position. 438# The cluster number is shifted by this value and added to the core ID, 439# so its value represents log2(cores/cluster). 440# Default is 2**(2) = 4 cores per cluster. 441CFG_CORE_CLUSTER_SHIFT ?= 2 442 443# Define the number of threads per core used in calculating processing 444# element's position. The core number is shifted by this value and added to 445# the thread ID, so its value represents log2(threads/core). 446# Default is 2**(0) = 1 threads per core. 447CFG_CORE_THREAD_SHIFT ?= 0 448 449# Enable support for dynamic shared memory (shared memory anywhere in 450# non-secure memory). 451CFG_CORE_DYN_SHM ?= y 452 453# Enable support for reserved shared memory (shared memory in a carved out 454# memory area). 455CFG_CORE_RESERVED_SHM ?= y 456 457# Enables support for larger physical addresses, that is, it will define 458# paddr_t as a 64-bit type. 459CFG_CORE_LARGE_PHYS_ADDR ?= n 460 461# Define the maximum size, in bits, for big numbers in the Internal Core API 462# Arithmetical functions. This does *not* influence the key size that may be 463# manipulated through the Cryptographic API. 464# Set this to a lower value to reduce the TA memory footprint. 465CFG_TA_BIGNUM_MAX_BITS ?= 2048 466 467# Define the maximum size, in bits, for big numbers in the TEE core (privileged 468# layer). 469# This value is an upper limit for the key size in any cryptographic algorithm 470# implemented by the TEE core. 471# Set this to a lower value to reduce the memory footprint. 472CFG_CORE_BIGNUM_MAX_BITS ?= 4096 473 474# Compiles mbedTLS for TA usage 475CFG_TA_MBEDTLS ?= y 476 477# Compile the TA library mbedTLS with self test functions, the functions 478# need to be called to test anything 479CFG_TA_MBEDTLS_SELF_TEST ?= y 480 481# By default use tomcrypt as the main crypto lib providing an implementation 482# for the API in <crypto/crypto.h> 483# CFG_CRYPTOLIB_NAME is used as libname and 484# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library 485# 486# It's also possible to configure to use mbedtls instead of tomcrypt. 487# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and 488# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively. 489CFG_CRYPTOLIB_NAME ?= tomcrypt 490CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt 491 492# Enable TEE_ALG_RSASSA_PKCS1_V1_5 algorithm for signing with PKCS#1 v1.5 EMSA 493# without ASN.1 around the hash. 494ifeq ($(CFG_CRYPTOLIB_NAME),tomcrypt) 495CFG_CRYPTO_RSASSA_NA1 ?= y 496CFG_CORE_MBEDTLS_MPI ?= y 497endif 498 499# Enable virtualization support. OP-TEE will not work without compatible 500# hypervisor if this option is enabled. 501CFG_VIRTUALIZATION ?= n 502 503ifeq ($(CFG_VIRTUALIZATION),y) 504$(call force,CFG_CORE_RODATA_NOEXEC,y) 505$(call force,CFG_CORE_RWDATA_NOEXEC,y) 506 507# Default number of virtual guests 508CFG_VIRT_GUEST_COUNT ?= 2 509endif 510 511# Enables backwards compatible derivation of RPMB and SSK keys 512CFG_CORE_HUK_SUBKEY_COMPAT ?= y 513 514# Compress and encode conf.mk into the TEE core, and show the encoded string on 515# boot (with severity TRACE_INFO). 516CFG_SHOW_CONF_ON_BOOT ?= n 517