1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20ifeq ($(ARCH),arm) 21CROSS_COMPILE ?= arm-linux-gnueabihf- 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23endif 24ifeq ($(ARCH),riscv) 25CROSS_COMPILE ?= riscv-linux-gnu- 26CROSS_COMPILE64 ?= riscv64-linux-gnu- 27endif 28CROSS_COMPILE32 ?= $(CROSS_COMPILE) 29COMPILER ?= gcc 30 31# For convenience 32ifdef CFLAGS 33CFLAGS32 ?= $(CFLAGS) 34CFLAGS64 ?= $(CFLAGS) 35endif 36 37# Compiler warning level. 38# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 39WARNS ?= 3 40 41# Path to the Python interpreter used by the build system. 42# This variable is set to the default python3 interpreter in the user's 43# path. But build environments that require more explicit control can 44# set the path to a specific interpreter through this variable. 45PYTHON3 ?= python3 46 47# Define DEBUG=1 to compile without optimization (forces -O0) 48# DEBUG=1 49ifeq ($(DEBUG),1) 50# For backwards compatibility 51$(call force,CFG_CC_OPT_LEVEL,0) 52$(call force,CFG_DEBUG_INFO,y) 53endif 54 55# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive. 56# Optimize for size by default, usually gives good performance too. 57CFG_CC_OPT_LEVEL ?= s 58 59# Enabling CFG_DEBUG_INFO makes debug information embedded in core. 60CFG_DEBUG_INFO ?= y 61 62# If y, enable debug features of the TEE core (assertions and lock checks 63# are enabled, panic and assert messages are more verbose, data and prefetch 64# aborts show a stack dump). When disabled, the NDEBUG directive is defined 65# so assertions are disabled. 66CFG_TEE_CORE_DEBUG ?= y 67 68# Log levels for the TEE core. Defines which core messages are displayed 69# on the secure console. Disabling core log (level set to 0) also disables 70# logs from the TAs. 71# 0: none 72# 1: error 73# 2: error + info 74# 3: error + info + debug 75# 4: error + info + debug + flow 76CFG_TEE_CORE_LOG_LEVEL ?= 2 77 78# TA log level 79# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 80# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 81# when the TA is built. 82CFG_TEE_TA_LOG_LEVEL ?= 1 83 84# TA enablement 85# When defined to "y", TA traces are output according to 86# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 87CFG_TEE_CORE_TA_TRACE ?= y 88 89# If y, enable the memory leak detection feature in the bget memory allocator. 90# When this feature is enabled, calling mdbg_check(1) will print a list of all 91# the currently allocated buffers and the location of the allocation (file and 92# line number). 93# Note: make sure the log level is high enough for the messages to show up on 94# the secure console! For instance: 95# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 96# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 97# - To debug TEE core allocations: build OP-TEE with: 98# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 99CFG_TEE_CORE_MALLOC_DEBUG ?= n 100CFG_TEE_TA_MALLOC_DEBUG ?= n 101# Prints an error message and dumps the stack on failed memory allocations 102# using malloc() and friends. 103CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG) 104 105# Mask to select which messages are prefixed with long debugging information 106# (severity, core ID, thread ID, component name, function name, line number) 107# based on the message level. If BIT(level) is set, the long prefix is shown. 108# Otherwise a short prefix is used (severity and component name only). 109# Levels: 0=none 1=error 2=info 3=debug 4=flow 110CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 111 112# Number of threads 113CFG_NUM_THREADS ?= 2 114 115# API implementation version 116CFG_TEE_API_VERSION ?= GPD-1.1-dev 117 118# Implementation description (implementation-dependent) 119CFG_TEE_IMPL_DESCR ?= OPTEE 120 121# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 122# World? 123CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 124 125# The following values are not extracted from the "git describe" output because 126# we might be outside of a Git environment, or the tree may have been cloned 127# with limited depth not including any tag, so there is really no guarantee 128# that TEE_IMPL_VERSION contains the major and minor revision numbers. 129CFG_OPTEE_REVISION_MAJOR ?= 4 130CFG_OPTEE_REVISION_MINOR ?= 5 131CFG_OPTEE_REVISION_EXTRA ?= 132 133# Trusted OS implementation version 134TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \ 135 echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))$(CFG_OPTEE_REVISION_EXTRA) 136 137# Trusted OS implementation manufacturer name 138CFG_TEE_MANUFACTURER ?= LINARO 139 140# Trusted firmware version 141CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 142 143# Trusted OS implementation manufacturer name 144CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 145 146# Rich Execution Environment (REE) file system support: normal world OS 147# provides the actual storage. 148# This is the default FS when enabled (i.e., the one used when 149# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 150CFG_REE_FS ?= y 151 152# RPMB file system support 153CFG_RPMB_FS ?= n 154 155# Enable roll-back protection of REE file system using RPMB. 156# Roll-back protection only works if CFG_RPMB_FS = y. 157CFG_REE_FS_INTEGRITY_RPMB ?= $(CFG_RPMB_FS) 158$(eval $(call cfg-depends-all,CFG_REE_FS_INTEGRITY_RPMB,CFG_RPMB_FS)) 159 160# Device identifier used when CFG_RPMB_FS = y. 161# The exact meaning of this value is platform-dependent. On Linux, the 162# tee-supplicant process will open /dev/mmcblk<id>rpmb 163CFG_RPMB_FS_DEV_ID ?= 0 164 165# This config variable determines the number of entries read in from RPMB at 166# once whenever a function traverses the RPMB FS. Increasing the default value 167# has the following consequences: 168# - More memory required on heap. A single FAT entry currently has a size of 169# 256 bytes. 170# - Potentially significant speed-ups for RPMB I/O. Depending on how many 171# entries a function needs to traverse, the number of time-consuming RPMB 172# read-in operations can be reduced. 173# Chosing a proper value is both platform- (available memory) and use-case- 174# dependent (potential number of FAT fs entries), so overwrite in platform 175# config files 176CFG_RPMB_FS_RD_ENTRIES ?= 8 177 178# Enables caching of FAT FS entries when set to a value greater than zero. 179# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS 180# entries. The cache is populated when FAT FS entries are initially read in. 181# When traversing the FAT FS entries, we read from the cache instead of reading 182# in the entries from RPMB storage. Consequently, when a FAT FS entry is 183# written, the cache is updated. In scenarios where an estimate of the number 184# of FAT FS entries can be made, the cache may be specifically tailored to 185# store all entries. The caching can improve RPMB I/O at the cost 186# of additional memory. 187# Without caching, we temporarily require 188# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 189# while traversing the FAT FS (e.g. in read_fat). 190# For example 8*256 bytes = 2kB while in read_fat. 191# With caching, we constantly require up to 192# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 193# depending on how many elements are in the cache, and additional temporary 194# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 195# in case the cache is too small to hold all elements when traversing. 196CFG_RPMB_FS_CACHE_ENTRIES ?= 0 197 198# Print RPMB data frames sent to and received from the RPMB device 199CFG_RPMB_FS_DEBUG_DATA ?= n 200 201# Clear RPMB content at cold boot 202CFG_RPMB_RESET_FAT ?= n 203 204# Use a hard coded RPMB key instead of deriving it from the platform HUK 205CFG_RPMB_TESTKEY ?= n 206 207# Enables RPMB key programming by the TEE, in case the RPMB partition has not 208# been configured yet. 209# !!! Security warning !!! 210# Do *NOT* enable this in product builds, as doing so would allow the TEE to 211# leak the RPMB key. 212# This option is useful in the following situations: 213# - Testing 214# - RPMB key provisioning in a controlled environment (factory setup) 215CFG_RPMB_WRITE_KEY ?= n 216 217# For the kernel driver to enable in-kernel RPMB routing it must know in 218# advance that OP-TEE supports it. Setting CFG_RPMB_ANNOUNCE_PROBE_CAP=y 219# will announce OP-TEE's capability for RPMB probing to the kernel and it 220# will use in-kernel RPMB routing, without it all RPMB commands will be 221# routed to tee-supplicant. This option is intended give some control over 222# how the RPMB commands are routed to simplify testing. 223CFG_RPMB_ANNOUNCE_PROBE_CAP ?= y 224 225_CFG_WITH_SECURE_STORAGE := $(call cfg-one-enabled,CFG_REE_FS CFG_RPMB_FS) 226 227# Signing key for OP-TEE TA's 228# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy 229# key and then set TA_PUBLIC_KEY to match public key from the HSM. 230# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS. 231TA_SIGN_KEY ?= keys/default_ta.pem 232TA_PUBLIC_KEY ?= $(TA_SIGN_KEY) 233 234# Subkeys is a complement to the normal TA_SIGN_KEY where a subkey is used 235# to verify a TA instead. To sign a TA using a previously prepared subkey 236# two new options are added, TA_SUBKEY_ARGS and TA_SUBKEY_DEPS. It is 237# typically used by assigning the following in the TA Makefile: 238# BINARY = <TA-uuid-string> 239# TA_SIGN_KEY = subkey.pem 240# TA_SUBKEY_ARGS = --subkey subkey.bin --name subkey_ta 241# TA_SUBKEY_DEPS = subkey.bin 242# See the documentation for more details on subkeys. 243 244# Include lib/libutils/isoc in the build? Most platforms need this, but some 245# may not because they obtain the isoc functions from elsewhere 246CFG_LIBUTILS_WITH_ISOC ?= y 247 248# Enables floating point support for user TAs 249# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 250# hard-float is basically a super set of soft-float. Hard-float 251# requires all the support routines provided for soft-float, but the 252# compiler may choose to optimize to not use some of them and use 253# the floating-point registers instead. 254# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 255# nothing with ` -mgeneral-regs-only`) 256# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 257CFG_TA_FLOAT_SUPPORT ?= y 258 259# Stack unwinding: print a stack dump to the console on core or TA abort, or 260# when a TA panics. 261# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 262# unwound (not paged TAs, however). 263# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 264# this option will increase the size of the 32-bit TEE binary by a few KB. 265# Similarly, TAs have to be compiled with -funwind-tables (default when the 266# option is set) otherwise they can't be unwound. 267# Warning: since the unwind sequence for user-mode (TA) code is implemented in 268# the privileged layer of OP-TEE, enabling this feature will weaken the 269# user/kernel isolation. Therefore it should be disabled in release builds. 270ifeq ($(CFG_TEE_CORE_DEBUG),y) 271CFG_UNWIND ?= y 272endif 273 274# Enable support for dynamically loaded user TAs 275CFG_WITH_USER_TA ?= y 276 277# Build user TAs included in this source tree 278CFG_BUILD_IN_TREE_TA ?= y 279 280# Choosing the architecture(s) of user-mode libraries (used by TAs) 281# 282# Platforms may define a list of supported architectures for user-mode code 283# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64", 284# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32". 285# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits, 286# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y). 287# The first entry in $(supported-ta-targets) has a special role, see 288# CFG_USER_TA_TARGET_<ta-name> below. 289# 290# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or 291# change the order of the values. 292# 293# The list of TA architectures is ultimately stored in $(ta-targets). 294 295# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if 296# defined, selects the unique TA architecture mode for building the in-tree TA 297# <ta-name>. Can be either ta_arm32 or ta_arm64. 298# By default, in-tree TAs are built using the first architecture specified in 299# $(ta-targets). 300 301# Address Space Layout Randomization for user-mode Trusted Applications 302# 303# When this flag is enabled, the ELF loader will introduce a random offset 304# when mapping the application in user space. ASLR makes the exploitation of 305# memory corruption vulnerabilities more difficult. 306CFG_TA_ASLR ?= y 307 308# How much ASLR may shift the base address (in pages). The base address is 309# randomly shifted by an integer number of pages comprised between these two 310# values. Bigger ranges are more secure because they make the addresses harder 311# to guess at the expense of using more memory for the page tables. 312CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0 313CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128 314 315# Address Space Layout Randomization for TEE Core 316# 317# When this flag is enabled, the early init code will introduce a random 318# offset when mapping TEE Core. ASLR makes the exploitation of memory 319# corruption vulnerabilities more difficult. 320CFG_CORE_ASLR ?= y 321 322# Stack Protection for TEE Core 323# This flag enables the compiler stack protection mechanisms -fstack-protector. 324# It will check the stack canary value before returning from a function to 325# prevent buffer overflow attacks. Stack protector canary logic will be added 326# for vulnerable functions that contain: 327# - A character array larger than 8 bytes. 328# - An 8-bit integer array larger than 8 bytes. 329# - A call to alloca() with either a variable size or a constant size bigger 330# than 8 bytes. 331CFG_CORE_STACK_PROTECTOR ?= n 332# This enable stack protector flag -fstack-protector-strong. Stack protector 333# canary logic will be added for vulnerable functions that contain: 334# - An array of any size and type. 335# - A call to alloca(). 336# - A local variable that has its address taken. 337CFG_CORE_STACK_PROTECTOR_STRONG ?= y 338# This enable stack protector flag -fstack-protector-all. Stack protector canary 339# logic will be added to all functions regardless of their vulnerability. 340CFG_CORE_STACK_PROTECTOR_ALL ?= n 341# Stack Protection for TA 342CFG_TA_STACK_PROTECTOR ?= n 343CFG_TA_STACK_PROTECTOR_STRONG ?= y 344CFG_TA_STACK_PROTECTOR_ALL ?= n 345 346_CFG_CORE_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_CORE_STACK_PROTECTOR \ 347 CFG_CORE_STACK_PROTECTOR_STRONG \ 348 CFG_CORE_STACK_PROTECTOR_ALL) 349_CFG_TA_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_TA_STACK_PROTECTOR \ 350 CFG_TA_STACK_PROTECTOR_STRONG \ 351 CFG_TA_STACK_PROTECTOR_ALL) 352 353# Load user TAs from the REE filesystem via tee-supplicant 354CFG_REE_FS_TA ?= y 355 356# Pre-authentication of TA binaries loaded from the REE filesystem 357# 358# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the 359# "Secure DDR" pool, check the signature, then process the file only if it is 360# valid. 361# - If disabled: hash the binaries as they are being processed and verify the 362# signature as a last step. 363CFG_REE_FS_TA_BUFFERED ?= n 364$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA)) 365 366# When CFG_REE_FS=y: 367# Allow secure storage in the REE FS to be entirely deleted without causing 368# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or 369# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH) 370# can be used to reset the secure storage to a clean, empty state. 371# Intended to be used for testing only since it weakens storage security. 372# Warning: If enabled for release build then it will break rollback protection 373# of TAs and the entire REE FS secure storage. 374CFG_REE_FS_ALLOW_RESET ?= n 375 376# Support for loading user TAs from a special section in the TEE binary. 377# Such TAs are available even before tee-supplicant is available (hence their 378# name), but note that many services exported to TAs may need tee-supplicant, 379# so early use is limited to a subset of the TEE Internal Core API (crypto...) 380# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 381# file(s). For example: 382# $ make ... \ 383# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 384# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 385# Typical build steps: 386# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 387# # headers, makefiles), ready to build TAs. 388# # CFG_EARLY_TA=y is optional, it prevents 389# # later library recompilations. 390# <build some TAs> 391# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 392# 393# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 394# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 395# <name-of-ta>/<uuid> 396# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 397ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 398$(call force,CFG_EARLY_TA,y) 399else 400CFG_EARLY_TA ?= n 401endif 402 403ifeq ($(CFG_EARLY_TA),y) 404$(call force,CFG_EMBEDDED_TS,y) 405endif 406 407ifneq ($(SP_PATHS),) 408$(call force,CFG_EMBEDDED_TS,y) 409else 410CFG_SECURE_PARTITION ?= n 411endif 412 413ifeq ($(CFG_SECURE_PARTITION),y) 414$(call force,CFG_EMBEDDED_TS,y) 415endif 416 417ifeq ($(CFG_EMBEDDED_TS),y) 418$(call force,CFG_ZLIB,y) 419endif 420 421# By default the early TAs are compressed in the TEE binary, it is possible to 422# not compress them with CFG_EARLY_TA_COMPRESS=n 423CFG_EARLY_TA_COMPRESS ?= y 424 425# Enable paging, requires SRAM, can't be enabled by default 426CFG_WITH_PAGER ?= n 427 428# Use the pager for user TAs 429CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 430 431# If paging of user TAs, that is, R/W paging default to enable paging of 432# TAG and IV in order to reduce heap usage. 433CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA) 434 435# Runtime lock dependency checker: ensures that a proper locking hierarchy is 436# used in the TEE core when acquiring and releasing mutexes. Any violation will 437# cause a panic as soon as the invalid locking condition is detected. If 438# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm 439# records the call stacks when locks are taken, and prints them when a 440# potential deadlock is found. 441# Expect a significant performance impact when enabling this. 442CFG_LOCKDEP ?= n 443CFG_LOCKDEP_RECORD_STACK ?= y 444 445# BestFit algorithm in bget reduces the fragmentation of the heap when running 446# with the pager enabled or lockdep 447CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 448 449# Enable support for detected undefined behavior in C 450# Uses a lot of memory, can't be enabled by default 451CFG_CORE_SANITIZE_UNDEFINED ?= n 452 453# Enable Kernel Address sanitizer, has a huge performance impact, uses a 454# lot of memory and need platform specific adaptations, can't be enabled by 455# default 456CFG_CORE_SANITIZE_KADDRESS ?= n 457 458ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_CORE_ASLR)) 459$(error CFG_CORE_SANITIZE_KADDRESS and CFG_CORE_ASLR are not compatible) 460endif 461 462# Add stack guards before/after stacks and periodically check them 463CFG_WITH_STACK_CANARIES ?= y 464 465# Use compiler instrumentation to troubleshoot stack overflows. 466# When enabled, most C functions check the stack pointer against the current 467# stack limits on entry and panic immediately if it is out of range. 468CFG_CORE_DEBUG_CHECK_STACKS ?= n 469 470# Use when the default stack allocations are not sufficient. 471CFG_STACK_THREAD_EXTRA ?= 0 472CFG_STACK_TMP_EXTRA ?= 0 473 474# Device Tree support 475# 476# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 477# device tree blob (DTB) parsing from the core. 478# 479# When CFG_DT is enabled, the TEE _start function expects to find 480# the address of a DTB in register X2/R2 provided by the early boot stage 481# or value 0 if boot stage provides no DTB. 482# 483# When CFG_EXTERNAL_DT is enabled, the external device tree ABI is implemented 484# and the external device tree is expected to be used/modified. Its value 485# defaults to CFG_DT. 486# 487# When CFG_MAP_EXT_DT_SECURE is enabled the external device tree is expected to 488# be in the secure memory. 489# 490# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 491# relative path of a DTS file located in core/arch/$(ARCH)/dts. 492# The DTS file is compiled into a DTB file which content is embedded in a 493# read-only section of the core. 494ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 495CFG_EMBED_DTB ?= y 496endif 497ifeq ($(filter y,$(CFG_EMBED_DTB) $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \ 498 $(CFG_CORE_EL3_SPMC)),y) 499$(call force,CFG_DT,y) 500endif 501CFG_EMBED_DTB ?= n 502CFG_DT ?= n 503CFG_EXTERNAL_DT ?= $(CFG_DT) 504CFG_MAP_EXT_DT_SECURE ?= n 505ifeq ($(CFG_MAP_EXT_DT_SECURE),y) 506$(call force,CFG_DT,y) 507endif 508 509# This option enables OP-TEE to support boot arguments handover via Transfer 510# List defined in Firmware Handoff specification. 511# Note: This is an experimental feature and incompatible ABI changes can be 512# expected. It should be off by default until Firmware Handoff specification 513# has a stable release. 514# This feature requires the support of Device Tree. 515CFG_TRANSFER_LIST ?= n 516ifeq ($(CFG_TRANSFER_LIST),y) 517$(call force,CFG_DT,y) 518$(call force,CFG_EXTERNAL_DT,y) 519$(call force,CFG_MAP_EXT_DT_SECURE,y) 520endif 521 522# Maximum size of the Device Tree Blob, has to be large enough to allow 523# editing of the supplied DTB. 524CFG_DTB_MAX_SIZE ?= 0x10000 525 526# CFG_DT_CACHED_NODE_INFO, when enabled, parses the embedded DT at boot 527# time and caches some information to speed up retrieve of DT node data, 528# more specifically those for which libfdt parses the full DTB to find 529# the target node information. 530CFG_DT_CACHED_NODE_INFO ?= $(CFG_EMBED_DTB) 531$(eval $(call cfg-depends-all,CFG_DT_CACHED_NODE_INFO,CFG_EMBED_DTB)) 532 533# Maximum size of the init info data passed to Secure Partitions. 534CFG_SP_INIT_INFO_MAX_SIZE ?= 0x1000 535 536# Device Tree Overlay support. 537# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing 538# external DTB. The overlay is created when no valid DTB overlay is found. 539# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external 540# DTB location. 541# External DTB location (physical address) is provided either by boot 542# argument arg2 or from CFG_DT_ADDR if defined. 543# A subsequent boot stage can then merge the generated overlay DTB into a main 544# DTB using the standard fdt_overlay_apply() method. 545CFG_EXTERNAL_DTB_OVERLAY ?= n 546CFG_GENERATE_DTB_OVERLAY ?= n 547 548ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY)) 549$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive) 550endif 551_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \ 552 CFG_GENERATE_DTB_OVERLAY) 553 554# All embedded tests are supposed to be disabled by default, this flag 555# is used to control the default value of all other embedded tests 556CFG_ENABLE_EMBEDDED_TESTS ?= n 557 558# Enable core self tests and related pseudo TAs 559CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS) 560 561# Compiles bget_main_test() to be called from a test TA 562CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS) 563 564# CFG_DT_DRIVER_EMBEDDED_TEST when enabled embedded DT driver probing tests. 565# This also requires embedding a DTB with expected content. 566# Default disable CFG_DRIVERS_CLK_EARLY_PROBE to probe clocks as other drivers. 567# A probe deferral test mandates CFG_DRIVERS_DT_RECURSIVE_PROBE=n. 568CFG_DT_DRIVER_EMBEDDED_TEST ?= n 569ifeq ($(CFG_DT_DRIVER_EMBEDDED_TEST),y) 570CFG_DRIVERS_CLK ?= y 571CFG_DRIVERS_GPIO ?= y 572CFG_DRIVERS_RSTCTRL ?= y 573CFG_DRIVERS_CLK_EARLY_PROBE ?= n 574$(call force,CFG_DRIVERS_DT_RECURSIVE_PROBE,n,Mandated by CFG_DT_DRIVER_EMBEDDED_TEST) 575endif 576 577# CFG_WITH_STATS when enabled embeds PTA statistics service to allow non-secure 578# clients to retrieve debug and statistics information on core and loaded TAs. 579CFG_WITH_STATS ?= n 580 581# CFG_DRIVERS_DT_RECURSIVE_PROBE when enabled forces a recursive subnode 582# parsing in the embedded DTB for driver probing. The alternative is 583# an exploration based on compatible drivers found. It is default disabled. 584CFG_DRIVERS_DT_RECURSIVE_PROBE ?= n 585 586# This option enables OP-TEE to respond to SMP boot request: the Rich OS 587# issues this to request OP-TEE to release secondaries cores out of reset, 588# with specific core number and non-secure entry address. 589CFG_BOOT_SECONDARY_REQUEST ?= n 590 591# Default heap size for Core, 64 kB 592CFG_CORE_HEAP_SIZE ?= 65536 593 594# Default size of nexus heap. 16 kB. Used only if CFG_NS_VIRTUALIZATION 595# is enabled 596CFG_CORE_NEX_HEAP_SIZE ?= 16384 597 598# TA profiling. 599# When this option is enabled, OP-TEE can execute Trusted Applications 600# instrumented with GCC's -pg flag and will output profiling information 601# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 602# tee-supplicant) 603# Note: this does not work well with shared libraries at the moment for a 604# couple of reasons: 605# 1. The profiling code assumes a unique executable section in the TA VA space. 606# 2. The code used to detect at run time if the TA is intrumented assumes that 607# the TA is linked statically. 608CFG_TA_GPROF_SUPPORT ?= n 609 610# TA function tracing. 611# When this option is enabled, OP-TEE can execute Trusted Applications 612# instrumented with GCC's -pg flag and will output function tracing 613# information for all functions compiled with -pg to 614# /tmp/ftrace-<ta_uuid>.out (path is defined in tee-supplicant). 615CFG_FTRACE_SUPPORT ?= n 616 617# Core syscall function tracing. 618# When this option is enabled, OP-TEE core is instrumented with GCC's 619# -pg flag and will output syscall function graph in user TA ftrace 620# buffer 621CFG_SYSCALL_FTRACE ?= n 622$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT) 623 624# Enable to compile user TA libraries with profiling (-pg). 625# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT. 626CFG_ULIBS_MCOUNT ?= n 627# Profiling/tracing of syscall wrapper (utee_*) 628CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT) 629 630ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT))) 631ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT))) 632$(error Cannot instrument user libraries if user mode profiling is disabled) 633endif 634endif 635 636# Build libutee, libutils, libmbedtls as shared libraries. 637# - Static libraries are still generated when this is enabled, but TAs will use 638# the shared libraries unless explicitly linked with the -static flag. 639# - Shared libraries are made of two files: for example, libutee is 640# libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file 641# is a totally standard shared object, and should be used to link against. 642# The '.ta' file is a signed version of the '.so' and should be installed 643# in the same way as TAs so that they can be found at runtime. 644CFG_ULIBS_SHARED ?= n 645 646ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED)) 647$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible) 648endif 649 650# CFG_GP_SOCKETS 651# Enable Global Platform Sockets support 652CFG_GP_SOCKETS ?= y 653 654# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 655# invocation parameters referring to specific secure memories). 656CFG_SECURE_DATA_PATH ?= n 657 658# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 659# TA binaries are stored encrypted in the REE FS and are protected by 660# metadata in secure storage. 661CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 662$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 663 664# Enable the pseudo TA that managages TA storage in secure storage 665CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 666$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 667 668# Enable the pseudo TA for misc. auxilary services, extending existing 669# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy 670# pool etc...) 671CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA) 672$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA)) 673 674# Enable the pseudo TA for enumeration of TEE based devices for the normal 675# world OS. 676CFG_DEVICE_ENUM_PTA ?= y 677 678# The attestation pseudo TA provides an interface to request measurements of 679# a TA or the TEE binary. 680CFG_ATTESTATION_PTA ?= n 681$(eval $(call cfg-depends-all,CFG_ATTESTATION_PTA,_CFG_WITH_SECURE_STORAGE)) 682 683# RSA key size (in bits) for the attestation PTA. Must be at least 528 given 684# other algorithm parameters (RSA PSS with SHA-256 and 32-byte salt), but 685# note that such a low value is not secure. 686# See https://tools.ietf.org/html/rfc8017#section-8.1.1 and 687# https://tools.ietf.org/html/rfc8017#section-9.1.1 688# emLen >= hlen + sLen + 2 = 32 + 32 + 2 = 66 689# emLen = ceil((modBits - 1) / 8) => emLen is the key size in bytes 690CFG_ATTESTATION_PTA_KEY_SIZE ?= 3072 691 692# Define the number of cores per cluster used in calculating core position. 693# The cluster number is shifted by this value and added to the core ID, 694# so its value represents log2(cores/cluster). 695# Default is 2**(2) = 4 cores per cluster. 696CFG_CORE_CLUSTER_SHIFT ?= 2 697 698# Define the number of threads per core used in calculating processing 699# element's position. The core number is shifted by this value and added to 700# the thread ID, so its value represents log2(threads/core). 701# Default is 2**(0) = 1 threads per core. 702CFG_CORE_THREAD_SHIFT ?= 0 703 704# Enable support for dynamic shared memory (shared memory anywhere in 705# non-secure memory). 706CFG_CORE_DYN_SHM ?= y 707 708# Enable support for reserved shared memory (shared memory in a carved out 709# memory area). 710CFG_CORE_RESERVED_SHM ?= y 711 712# Enables support for larger physical addresses, that is, it will define 713# paddr_t as a 64-bit type. 714CFG_CORE_LARGE_PHYS_ADDR ?= n 715 716# Define the maximum size, in bits, for big numbers in the Internal Core API 717# Arithmetical functions. This does *not* influence the key size that may be 718# manipulated through the Cryptographic API. 719# Set this to a lower value to reduce the TA memory footprint. 720CFG_TA_BIGNUM_MAX_BITS ?= 2048 721 722# Not used since libmpa was removed. Force the values to catch build scripts 723# that would set = n. 724$(call force,CFG_TA_MBEDTLS_MPI,y) 725$(call force,CFG_TA_MBEDTLS,y) 726 727# Compile the TA library mbedTLS with self test functions, the functions 728# need to be called to test anything 729CFG_TA_MBEDTLS_SELF_TEST ?= y 730 731# By default use tomcrypt as the main crypto lib providing an implementation 732# for the API in <crypto/crypto.h> 733# CFG_CRYPTOLIB_NAME is used as libname and 734# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library 735# 736# It's also possible to configure to use mbedtls instead of tomcrypt. 737# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and 738# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively. 739CFG_CRYPTOLIB_NAME ?= tomcrypt 740CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt 741 742# Not used since libmpa was removed. Force the value to catch build scripts 743# that would set = n. 744$(call force,CFG_CORE_MBEDTLS_MPI,y) 745 746# When enabled, CFG_NS_VIRTUALIZATION embeds support for virtualization in 747# the non-secure world. OP-TEE will not work without a compatible hypervisor 748# in the non-secure world if this option is enabled. 749# 750# CFG_VIRTUALIZATION served the same purpose as CFG_NS_VIRTUALIZATION but is 751# deprecated as the configuration switch name was ambiguous regarding which 752# world has virtualization enabled. 753ifneq (undefined,$(flavor CFG_VIRTUALIZATION)) 754$(info WARNING: CFG_VIRTUALIZATION is deprecated, use CFG_NS_VIRTUALIZATION instead) 755CFG_NS_VIRTUALIZATION ?= $(CFG_VIRTUALIZATION) 756ifneq ($(CFG_NS_VIRTUALIZATION),$(CFG_VIRTUALIZATION)) 757$(error Inconsistent CFG_NS_VIRTUALIZATION=$(CFG_NS_VIRTUALIZATION) and CFG_VIRTUALIZATION=$(CFG_VIRTUALIZATION)) 758endif 759endif # CFG_VIRTUALIZATION defined 760CFG_NS_VIRTUALIZATION ?= n 761 762ifeq ($(CFG_NS_VIRTUALIZATION),y) 763$(call force,CFG_CORE_RODATA_NOEXEC,y) 764$(call force,CFG_CORE_RWDATA_NOEXEC,y) 765 766# Default number of virtual guests 767CFG_VIRT_GUEST_COUNT ?= 2 768endif 769 770# Enables backwards compatible derivation of RPMB and SSK keys 771CFG_CORE_HUK_SUBKEY_COMPAT ?= y 772 773# Use SoC specific tee_otp_get_die_id() implementation for SSK key generation. 774# This option depends on CFG_CORE_HUK_SUBKEY_COMPAT=y. 775CFG_CORE_HUK_SUBKEY_COMPAT_USE_OTP_DIE_ID ?= n 776 777# Compress and encode conf.mk into the TEE core, and show the encoded string on 778# boot (with severity TRACE_INFO). 779CFG_SHOW_CONF_ON_BOOT ?= n 780 781# Enables support for passing a TPM Event Log stored in secure memory 782# to a TA or FF-A SP, so a TPM Service could use it to extend any measurement 783# taken before the service was up and running. 784CFG_CORE_TPM_EVENT_LOG ?= n 785 786# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core. 787# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_* 788# 789# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support. 790# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support. 791# CFG_SCMI_MSG_SMT embeds a SMT header in shared device memory buffers 792# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support. 793# CFG_SCMI_MSG_SMT_FASTCALL_ENTRY embeds fastcall SMC entry with SMT memory 794# CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY embeds interrupt entry with SMT memory 795# CFG_SCMI_MSG_SMT_THREAD_ENTRY embeds threaded entry with SMT memory 796# CFG_SCMI_MSG_SHM_MSG embeds a MSG header in cached shared memory buffer 797CFG_SCMI_MSG_DRIVERS ?= n 798ifeq ($(CFG_SCMI_MSG_DRIVERS),y) 799CFG_SCMI_MSG_CLOCK ?= n 800CFG_SCMI_MSG_RESET_DOMAIN ?= n 801CFG_SCMI_MSG_SHM_MSG ?= n 802CFG_SCMI_MSG_SMT ?= n 803CFG_SCMI_MSG_SMT_FASTCALL_ENTRY ?= n 804CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY ?= n 805CFG_SCMI_MSG_SMT_THREAD_ENTRY ?= n 806CFG_SCMI_MSG_THREAD_ENTRY ?= n 807CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n 808$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_FASTCALL_ENTRY,CFG_SCMI_MSG_SMT)) 809$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY,CFG_SCMI_MSG_SMT)) 810$(eval $(call cfg-depends-one,CFG_SCMI_MSG_SMT_THREAD_ENTRY,CFG_SCMI_MSG_SMT CFG_SCMI_MSG_SHM_MSG)) 811ifeq ($(CFG_SCMI_MSG_SMT),y) 812_CFG_SCMI_PTA_SMT_HEADER := y 813endif 814ifeq ($(CFG_SCMI_MSG_SHM_MSG),y) 815_CFG_SCMI_PTA_MSG_HEADER := y 816endif 817endif 818 819# CFG_SCMI_SCPFW, when enabled, embeds the reference SCMI server implementation 820# from SCP-firmware package as an built-in SCMI stack in core. This 821# configuration mandates target product identifier is configured with 822# CFG_SCMI_SCPFW_PRODUCT and the SCP-firmware source tree path with 823# CFG_SCP_FIRMWARE. 824CFG_SCMI_SCPFW ?= n 825 826ifeq ($(CFG_SCMI_SCPFW),y) 827$(call force,CFG_SCMI_PTA,y,Required by CFG_SCMI_SCPFW) 828ifeq (,$(CFG_SCMI_SCPFW_PRODUCT)) 829$(error CFG_SCMI_SCPFW=y requires CFG_SCMI_SCPFW_PRODUCT configuration) 830endif 831ifeq (,$(wildcard $(CFG_SCP_FIRMWARE)/CMakeLists.txt)) 832$(error CFG_SCMI_SCPFW=y requires CFG_SCP_FIRMWARE configuration) 833endif 834endif #CFG_SCMI_SCPFW 835 836ifeq ($(CFG_SCMI_MSG_DRIVERS)-$(CFG_SCMI_SCPFW),y-y) 837$(error CFG_SCMI_MSG_DRIVERS=y and CFG_SCMI_SCPFW=y are mutually exclusive) 838endif 839 840# When enabled, CFG_SCMI_MSG_USE_CLK embeds SCMI clocks registering services for 841# the platform SCMI server and implements the platform plat_scmi_clock_*() 842# functions. 843CFG_SCMI_MSG_USE_CLK ?= n 844$(eval $(call cfg-depends-all,CFG_SCMI_MSG_USE_CLK,CFG_DRIVERS_CLK CFG_SCMI_MSG_DRIVERS)) 845 846# Enable SCMI PTA interface for REE SCMI agents 847CFG_SCMI_PTA ?= n 848ifeq ($(CFG_SCMI_PTA),y) 849_CFG_SCMI_PTA_SMT_HEADER ?= n 850_CFG_SCMI_PTA_MSG_HEADER ?= n 851endif 852 853ifneq ($(CFG_STMM_PATH),) 854$(call force,CFG_WITH_STMM_SP,y) 855else 856CFG_WITH_STMM_SP ?= n 857endif 858ifeq ($(CFG_WITH_STMM_SP),y) 859$(call force,CFG_ZLIB,y) 860endif 861 862# When enabled checks that buffers passed to the GP Internal Core API 863# comply with the rules added as annotations as part of the definition of 864# the API. For example preventing buffers in non-secure shared memory when 865# not allowed. 866CFG_TA_STRICT_ANNOTATION_CHECKS ?= y 867 868# When enabled accepts the DES key sizes excluding parity bits as in 869# the GP Internal API Specification v1.0 870CFG_COMPAT_GP10_DES ?= y 871 872# Defines a limit for many levels TAs may call each others. 873CFG_CORE_MAX_SYSCALL_RECURSION ?= 4 874 875# Pseudo-TA to export hardware RNG output to Normal World 876# RNG characteristics are platform specific 877CFG_HWRNG_PTA ?= n 878ifeq ($(CFG_HWRNG_PTA),y) 879# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited 880CFG_HWRNG_RATE ?= 0 881# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits 882ifeq (,$(CFG_HWRNG_QUALITY)) 883$(error CFG_HWRNG_QUALITY not defined) 884endif 885endif 886 887# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate 888# shared memory for each secure thread. When disabled, RPC shared 889# memory is released once the secure thread has completed is execution. 890ifeq ($(CFG_WITH_PAGER),y) 891CFG_PREALLOC_RPC_CACHE ?= n 892endif 893CFG_PREALLOC_RPC_CACHE ?= y 894 895# When enabled, CFG_DRIVERS_CLK embeds a clock framework in OP-TEE core. 896# This clock framework allows to describe clock tree and provides functions to 897# get and configure the clocks. 898# CFG_DRIVERS_CLK_DT embeds devicetree clock parsing support 899# CFG_DRIVERS_CLK_FIXED add support for "fixed-clock" compatible clocks 900# CFG_DRIVERS_CLK_EARLY_PROBE makes clocks probed at early_init initcall level. 901# CFG_DRIVERS_CLK_PRINT_TREE embeds a helper function to print the clock tree 902# state on OP-TEE core console with the info trace level. 903CFG_DRIVERS_CLK ?= n 904CFG_DRIVERS_CLK_DT ?= $(call cfg-all-enabled,CFG_DRIVERS_CLK CFG_DT) 905CFG_DRIVERS_CLK_FIXED ?= $(CFG_DRIVERS_CLK_DT) 906CFG_DRIVERS_CLK_EARLY_PROBE ?= $(CFG_DRIVERS_CLK_DT) 907CFG_DRIVERS_CLK_PRINT_TREE ?= n 908 909$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_DT,CFG_DRIVERS_CLK CFG_DT)) 910$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_FIXED,CFG_DRIVERS_CLK_DT)) 911 912# When enabled, CFG_DRIVERS_RSTCTRL embeds a reset controller framework in 913# OP-TEE core to provide reset controls on subsystems of the devices. 914CFG_DRIVERS_RSTCTRL ?= n 915 916# When enabled, CFG_DRIVERS_GPIO embeds a GPIO controller framework in 917# OP-TEE core to provide GPIO support for drivers. 918CFG_DRIVERS_GPIO ?= n 919 920# When enabled, CFG_DRIVERS_I2C provides I2C controller and devices support. 921CFG_DRIVERS_I2C ?= n 922 923# When enabled, CFG_DRIVERS_NVMEM provides a framework to register nvmem 924# providers and allow consumer drivers to get NVMEM cells using the Device Tree. 925CFG_DRIVERS_NVMEM ?= n 926 927# When enabled, CFG_DRIVERS_PINCTRL embeds a pin muxing controller framework in 928# OP-TEE core to provide drivers a way to apply pin muxing configurations based 929# on device-tree. 930CFG_DRIVERS_PINCTRL ?= n 931 932# When enabled, CFG_DRIVERS_REGULATOR embeds a voltage regulator framework in 933# OP-TEE core to provide drivers a common regulator interface and describe 934# the regulators dependencies using an embedded device tree. 935# 936# When enabled, CFG_REGULATOR_FIXED embeds a voltage regulator driver for 937# DT compatible "regulator-fixed" devices. 938# 939# When enabled, CFG_REGULATOR_GPIO embeds a voltage regulator driver for 940# DT compatible "regulator-gpio" devices. 941# 942# CFG_DRIVERS_REGULATOR_PRINT_TREE embeds a helper function to print the 943# regulator tree state on OP-TEE core console with the info trace level. 944CFG_DRIVERS_REGULATOR ?= n 945CFG_DRIVERS_REGULATOR_PRINT_TREE ?= n 946CFG_REGULATOR_FIXED ?= n 947CFG_REGULATOR_GPIO ?= n 948 949$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_FIXED, \ 950 CFG_DRIVERS_REGULATOR CFG_DT)) 951$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_GPIO, \ 952 CFG_DRIVERS_REGULATOR CFG_DT CFG_DRIVERS_GPIO)) 953 954# When enabled, CFG_INSECURE permits insecure configuration of OP-TEE core 955# and shows a print (info level) when booting up the device that 956# indicates that the board runs a standard developer configuration. 957# 958# A developer configuration doesn't necessarily have to be secure. The intention 959# is that the one making products based on OP-TEE should override this flag in 960# plat-xxx/conf.mk for the platform they're basing their products on after 961# they've finalized implementing stubbed functionality (see OP-TEE 962# documentation/Porting guidelines) as well as vendor specific security 963# configuration. 964# 965# CFG_WARN_INSECURE served the same purpose as CFG_INSECURE but is deprecated. 966ifneq (undefined,$(flavor CFG_WARN_INSECURE)) 967$(info WARNING: CFG_WARN_INSECURE is deprecated, use CFG_INSECURE instead) 968CFG_INSECURE ?= $(CFG_WARN_INSECURE) 969ifneq ($(CFG_INSECURE),$(CFG_WARN_INSECURE)) 970$(error Inconsistent CFG_INSECURE=$(CFG_INSECURE) and CFG_WARN_INSECURE=$(CFG_WARN_INSECURE)) 971endif 972endif # CFG_WARN_INSECURE defined 973CFG_INSECURE ?= y 974 975ifneq ($(CFG_INSECURE),y) 976ifneq ($(CFG_CORE_ASLR_SEED),) 977$(error CFG_CORE_ASLR_SEED requires CFG_INSECURE=y) 978endif 979endif 980 981# Enables warnings for declarations mixed with statements 982CFG_WARN_DECL_AFTER_STATEMENT ?= y 983 984# Branch Target Identification (part of the ARMv8.5 Extensions) provides a 985# mechanism to limit the set of locations to which computed branch instructions 986# such as BR or BLR can jump. To make use of BTI in TEE core and ldelf on CPU's 987# that support it, enable this option. A GCC toolchain built with 988# --enable-standard-branch-protection is needed to use this option. 989CFG_CORE_BTI ?= n 990 991$(eval $(call cfg-depends-all,CFG_CORE_BTI,CFG_ARM64_core)) 992 993# To make use of BTI in user space libraries and TA's on CPU's that support it, 994# enable this option. 995CFG_TA_BTI ?= $(CFG_CORE_BTI) 996 997$(eval $(call cfg-depends-all,CFG_TA_BTI,CFG_ARM64_core)) 998 999ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(call cfg-one-enabled, CFG_TA_BTI CFG_CORE_BTI)) 1000$(error CFG_NS_VIRTUALIZATION and BTI are currently incompatible) 1001endif 1002 1003ifeq (y-y,$(CFG_PAGED_USER_TA)-$(CFG_TA_BTI)) 1004$(error CFG_PAGED_USER_TA and CFG_TA_BTI are currently incompatible) 1005endif 1006 1007# Memory Tagging Extension (part of the ARMv8.5 Extensions) implements lock 1008# and key access to memory. This is a hardware supported alternative to 1009# CFG_CORE_SANITIZE_KADDRESS which covers both S-EL1 and S-EL0. 1010CFG_MEMTAG ?= n 1011 1012$(eval $(call cfg-depends-all,CFG_MEMTAG,CFG_ARM64_core)) 1013ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_MEMTAG)) 1014$(error CFG_CORE_SANITIZE_KADDRESS and CFG_MEMTAG are not compatible) 1015endif 1016ifeq (y-y,$(CFG_WITH_PAGER)-$(CFG_MEMTAG)) 1017$(error CFG_WITH_PAGER and CFG_MEMTAG are not compatible) 1018endif 1019 1020# Privileged Access Never (PAN, part of the ARMv8.1 Extensions) can be 1021# used to restrict accesses to unprivileged memory from privileged mode. 1022# For RISC-V architecture, CSR {m|s}status.SUM bit is used to implement PAN. 1023CFG_PAN ?= n 1024 1025$(eval $(call cfg-depends-one,CFG_PAN,CFG_ARM64_core CFG_RV64_core CFG_RV32_core)) 1026 1027ifeq ($(filter y, $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \ 1028 $(CFG_CORE_EL3_SPMC)),y) 1029# FF-A case, handled via the FF-A ABI 1030CFG_CORE_ASYNC_NOTIF ?= y 1031$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,n) 1032else 1033# CFG_CORE_ASYNC_NOTIF is defined by the platform to enable support 1034# for sending asynchronous notifications to normal world. 1035# Interrupt ID must be configurged by the platform too. Currently is only 1036# CFG_CORE_ASYNC_NOTIF_GIC_INTID defined. 1037CFG_CORE_ASYNC_NOTIF ?= n 1038$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,$(CFG_CORE_ASYNC_NOTIF)) 1039endif 1040 1041# Enable callout service 1042CFG_CALLOUT ?= $(CFG_CORE_ASYNC_NOTIF) 1043 1044# Enable notification based test watchdog 1045CFG_NOTIF_TEST_WD ?= $(call cfg-all-enabled,CFG_ENABLE_EMBEDDED_TESTS \ 1046 CFG_CALLOUT CFG_CORE_ASYNC_NOTIF) 1047$(eval $(call cfg-depends-all,CFG_NOTIF_TEST_WD,CFG_CALLOUT \ 1048 CFG_CORE_ASYNC_NOTIF)) 1049 1050$(eval $(call cfg-enable-all-depends,CFG_MEMPOOL_REPORT_LAST_OFFSET, \ 1051 CFG_WITH_STATS)) 1052 1053# Pointer Authentication (part of ARMv8.3 Extensions) provides instructions 1054# for signing and authenticating pointers against secret keys. These can 1055# be used to mitigate ROP (Return oriented programming) attacks. This is 1056# currently done by instructing the compiler to add paciasp/autiasp at the 1057# begging and end of functions to sign and verify ELR. 1058# 1059# The CFG_CORE_PAUTH enables these instructions for the core parts 1060# executing at EL1, with one secret key per thread and one secret key per 1061# physical CPU. 1062# 1063# The CFG_TA_PAUTH option enables these instructions for TA's at EL0. When 1064# this option is enabled, TEE core will initialize secret keys per TA. 1065CFG_CORE_PAUTH ?= n 1066CFG_TA_PAUTH ?= $(CFG_CORE_PAUTH) 1067 1068$(eval $(call cfg-depends-all,CFG_CORE_PAUTH,CFG_ARM64_core)) 1069$(eval $(call cfg-depends-all,CFG_TA_PAUTH,CFG_ARM64_core)) 1070 1071ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_CORE_PAUTH)) 1072$(error CFG_NS_VIRTUALIZATION and CFG_CORE_PAUTH are currently incompatible) 1073endif 1074ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_TA_PAUTH)) 1075$(error CFG_NS_VIRTUALIZATION and CFG_TA_PAUTH are currently incompatible) 1076endif 1077 1078ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_TA_PAUTH)) 1079$(error CFG_TA_GPROF_SUPPORT and CFG_TA_PAUTH are currently incompatible) 1080endif 1081 1082ifeq (y-y,$(CFG_FTRACE_SUPPORT)-$(CFG_TA_PAUTH)) 1083$(error CFG_FTRACE_SUPPORT and CFG_TA_PAUTH are currently incompatible) 1084endif 1085 1086# Enable support for generic watchdog registration 1087# This watchdog will then be usable by non-secure world through SMC calls. 1088CFG_WDT ?= n 1089 1090# Enable watchdog SMC handling compatible with arm-smc-wdt Linux driver 1091CFG_WDT_SM_HANDLER ?= n 1092 1093$(eval $(call cfg-enable-all-depends,CFG_WDT_SM_HANDLER,CFG_WDT)) 1094 1095# When CFG_WDT_SM_HANDLER=y, SMC function ID 0x82003D06 default implements 1096# arm-smc-wdt service. Platform can also override this ID with a platform 1097# specific SMC function ID to access arm-smc-wdt service thanks to 1098# optional config switch CFG_WDT_SM_HANDLER_ID. 1099CFG_WDT_SM_HANDLER_ID ?= 0x82003D06 1100 1101# Allow using the udelay/mdelay function for platforms without ARM generic timer 1102# extension. When set to 'n', the plat_get_freq() function must be defined by 1103# the platform code 1104CFG_CORE_HAS_GENERIC_TIMER ?= y 1105 1106# Enable RTC API 1107CFG_DRIVERS_RTC ?= n 1108 1109# Enable PTA for RTC access from non-secure world 1110CFG_RTC_PTA ?= n 1111 1112# Enable the FF-A SPMC tests in xtests 1113CFG_SPMC_TESTS ?= n 1114 1115# Allocate the translation tables needed to map the S-EL0 application 1116# loaded 1117CFG_CORE_PREALLOC_EL0_TBLS ?= n 1118ifeq (y-y,$(CFG_CORE_PREALLOC_EL0_TBLS)-$(CFG_WITH_PAGER)) 1119$(error "CFG_WITH_PAGER can't support CFG_CORE_PREALLOC_EL0_TBLS") 1120endif 1121 1122# CFG_PGT_CACHE_ENTRIES defines the number of entries on the memory 1123# mapping page table cache used for Trusted Application mapping. 1124# CFG_PGT_CACHE_ENTRIES is ignored when CFG_CORE_PREALLOC_EL0_TBLS 1125# is enabled. 1126# 1127# A proper value for CFG_PGT_CACHE_ENTRIES depends on many factors: 1128# CFG_WITH_LPAE, CFG_TA_ASLR, size of TAs, size of memrefs passed 1129# to TA, CFG_ULIBS_SHARED and possibly others. The default value 1130# is based on the number of threads as an indicator on how large 1131# the system might be. 1132ifeq ($(CFG_NUM_THREADS),1) 1133CFG_PGT_CACHE_ENTRIES ?= 4 1134endif 1135ifeq ($(CFG_NUM_THREADS),2) 1136ifneq ($(CFG_WITH_LPAE),y) 1137CFG_PGT_CACHE_ENTRIES ?= 8 1138endif 1139endif 1140CFG_PGT_CACHE_ENTRIES ?= ($(CFG_NUM_THREADS) * 2) 1141 1142# User TA runtime context dump. 1143# When this option is enabled, OP-TEE provides a debug method for 1144# developer to dump user TA's runtime context, including TA's heap stats. 1145# Developer can open a stats PTA session and then invoke command 1146# STATS_CMD_TA_STATS to get the context of loaded TAs. 1147CFG_TA_STATS ?= n 1148 1149# Enables best effort mitigations against fault injected when the hardware 1150# is tampered with. Details in lib/libutils/ext/include/fault_mitigation.h 1151CFG_FAULT_MITIGATION ?= y 1152 1153# Enables TEE Internal Core API v1.1 compatibility for in-tree TAs. Note 1154# that this doesn't affect libutee itself, it's only the TAs compiled with 1155# this set that are affected. Each out-of-tree must set this if to enable 1156# compatibility with version v1.1 as the value of this variable is not 1157# preserved in the TA dev-kit. 1158CFG_TA_OPTEE_CORE_API_COMPAT_1_1 ?= n 1159 1160# Change supported HMAC key size range, from 64 to 1024. 1161# This is needed to pass AOSP Keymaster VTS tests: 1162# Link to tests : https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp 1163# Module: VtsHalKeymasterV3_0TargetTest 1164# Testcases: - PerInstance/SigningOperationsTest# 1165# - PerInstance/NewKeyGenerationTest# 1166# - PerInstance/ImportKeyTest# 1167# - PerInstance/EncryptionOperationsTest# 1168# - PerInstance/AttestationTest# 1169# Note that this violates GP requirements of HMAC size range. 1170CFG_HMAC_64_1024_RANGE ?= n 1171 1172# CFG_RSA_PUB_EXPONENT_3, when enabled, allows RSA public exponents in the 1173# range 3 <= e < 2^256. This is needed to pass AOSP KeyMint VTS tests: 1174# Link to tests: https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/security/keymint/aidl/vts/functional/KeyMintTest.cpp 1175# Module: VtsAidlKeyMintTargetTest 1176# Testcases: - PerInstance/EncryptionOperationsTest.RsaNoPaddingSuccess 1177# When CFG_RSA_PUB_EXPONENT_3 is disabled, RSA public exponents must conform 1178# to NIST SP800-56B recommendation and be in the range 65537 <= e < 2^256. 1179CFG_RSA_PUB_EXPONENT_3 ?= n 1180 1181# Enable a hardware pbkdf2 function 1182# By default use standard pbkdf2 implementation 1183CFG_CRYPTO_HW_PBKDF2 ?= n 1184$(eval $(call cfg-depends-all,CFG_CRYPTO_HW_PBKDF2,CFG_CRYPTO_PBKDF2)) 1185 1186# CFG_HALT_CORES_ON_PANIC, when enabled, makes any call to panic() halt the 1187# other cores. The feature currently relies on GIC device to trap the other 1188# cores using an SGI interrupt specified by CFG_HALT_CORES_ON_PANIC_SGI. 1189CFG_HALT_CORES_ON_PANIC ?= n 1190CFG_HALT_CORES_ON_PANIC_SGI ?= 15 1191$(eval $(call cfg-depends-all,CFG_HALT_CORES_ON_PANIC,CFG_GIC)) 1192 1193# Enable automatic discovery of maximal PA supported by the hardware and 1194# use that. Provides easier configuration of virtual platforms where the 1195# maximal PA can vary. 1196CFG_AUTO_MAX_PA_BITS ?= n 1197 1198# CFG_DRIVERS_REMOTEPROC, when enabled, embeds support for remote processor 1199# management including generic DT bindings for the configuration. 1200CFG_DRIVERS_REMOTEPROC ?= n 1201 1202# CFG_REMOTEPROC_PTA, when enabled, embeds remote processor management PTA 1203# service. 1204CFG_REMOTEPROC_PTA ?= n 1205 1206# When enabled, CFG_WIDEVINE_HUK uses the widevine HUK provided by secure 1207# DTB as OP-TEE HUK. 1208CFG_WIDEVINE_HUK ?= n 1209$(eval $(call cfg-depends-all,CFG_WIDEVINE_HUK,CFG_DT)) 1210 1211# When enabled, CFG_WIDEVINE_PTA embeds a PTA that exposes the keys under 1212# DT node "/options/op-tee/widevine" to some specific TAs. 1213CFG_WIDEVINE_PTA ?= n 1214$(eval $(call cfg-depends-all,CFG_WIDEVINE_PTA,CFG_DT CFG_WIDEVINE_HUK)) 1215 1216# When enabled, CFG_VERAISON_ATTESTATION_PTA embeds remote attestation PTA 1217# service. Note: This is an experimental feature and should be used 1218# with caution in production environments. 1219CFG_VERAISON_ATTESTATION_PTA ?= n 1220ifeq ($(CFG_VERAISON_ATTESTATION_PTA),y) 1221$(call force,CFG_QCBOR,y) 1222endif 1223 1224# When enabled, CFG_VERAISON_ATTESTATION_PTA_TEST_KEY embeds a test key. 1225# Note: CFG_VERAISON_ATTESTATION_PTA_TEST_KEY must be enabled for 1226# CFG_VERAISON_ATTESTATION_PTA to work. 1227CFG_VERAISON_ATTESTATION_PTA_TEST_KEY ?= y 1228ifneq ($(CFG_VERAISON_ATTESTATION_PTA_TEST_KEY),y) 1229$(error "CFG_VERAISON_ATTESTATION_PTA_TEST_KEY must be enabled") 1230endif 1231 1232# CFG_SEMIHOSTING_CONSOLE, when enabled, embeds a semihosting console driver. 1233# When CFG_SEMIHOSTING_CONSOLE_FILE=NULL, OP-TEE console reads/writes 1234# trace messages from/to the debug terminal of the semihosting host computer. 1235# When CFG_SEMIHOSTING_CONSOLE_FILE="{your_log_file}", OP-TEE console 1236# outputs trace messages to that file. Output to "optee.log" by default. 1237CFG_SEMIHOSTING_CONSOLE ?= n 1238ifeq ($(CFG_SEMIHOSTING_CONSOLE),y) 1239$(call force,CFG_SEMIHOSTING,y) 1240endif 1241CFG_SEMIHOSTING_CONSOLE_FILE ?= "optee.log" 1242ifeq ($(CFG_SEMIHOSTING_CONSOLE_FILE),) 1243$(error CFG_SEMIHOSTING_CONSOLE_FILE cannot be empty) 1244endif 1245 1246# Semihosting is a debugging mechanism that enables code running on an embedded 1247# system (also called the target) to communicate with and use the I/O of the 1248# host computer. 1249CFG_SEMIHOSTING ?= n 1250 1251# CFG_FFA_CONSOLE, when enabled, embeds a FFA console driver. OP-TEE console 1252# writes trace messages via FFA interface to the SPM (Secure Partition Manager) 1253# like hafnium. 1254CFG_FFA_CONSOLE ?= n 1255 1256# CFG_CORE_UNSAFE_MODEXP, when enabled, makes modular exponentiation on TEE 1257# core use 'unsafe' algorithm having better performance. To resist against 1258# timing attacks, 'safe' one is designed to take constant-time that is 1259# generally much slower. 1260CFG_CORE_UNSAFE_MODEXP ?= n 1261 1262# CFG_TA_MBEDTLS_UNSAFE_MODEXP, similar to CFG_CORE_UNSAFE_MODEXP, 1263# when enabled, makes MBedTLS library for TAs use 'unsafe' modular 1264# exponentiation algorithm. 1265CFG_TA_MEBDTLS_UNSAFE_MODEXP ?= n 1266 1267# CFG_BOOT_INIT_THREAD_CORE_LOCAL0, when enabled, initializes 1268# thread_core_local[0] before calling C code. 1269ifeq ($(ARCH),arm) 1270$(call force,CFG_BOOT_INIT_THREAD_CORE_LOCAL0,y) 1271else 1272CFG_BOOT_INIT_THREAD_CORE_LOCAL0 ?= n 1273endif 1274 1275# CFG_DYN_CONFIG, when enabled, use dynamic memory allocation for translation 1276# tables. Not supported with pager. 1277ifeq ($(CFG_WITH_PAGER),y) 1278$(call force,CFG_DYN_CONFIG,n,conflicts with CFG_WITH_PAGER) 1279else 1280CFG_DYN_CONFIG ?= y 1281endif 1282 1283# CFG_EXTERNAL_ABORT_PLAT_HANDLER is used to implement platform-specific 1284# handling of external abort implementing the plat_external_abort_handler() 1285# function. 1286CFG_EXTERNAL_ABORT_PLAT_HANDLER ?= n 1287