xref: /optee_os/lib/libutils/isoc/bget.c (revision e39aae81e1a40ba495893f1c4e04b23401eca3a3)
1 /*
2 
3 			       B G E T
4 
5 			   Buffer allocator
6 
7     Designed and implemented in April of 1972 by John Walker, based on the
8     Case Algol OPRO$ algorithm implemented in 1966.
9 
10     Reimplemented in 1975 by John Walker for the Interdata 70.
11     Reimplemented in 1977 by John Walker for the Marinchip 9900.
12     Reimplemented in 1982 by Duff Kurland for the Intel 8080.
13 
14     Portable C version implemented in September of 1990 by an older, wiser
15     instance of the original implementor.
16 
17     Souped up and/or weighed down  slightly  shortly  thereafter  by  Greg
18     Lutz.
19 
20     AMIX  edition, including the new compaction call-back option, prepared
21     by John Walker in July of 1992.
22 
23     Bug in built-in test program fixed, ANSI compiler warnings eradicated,
24     buffer pool validator  implemented,  and  guaranteed  repeatable  test
25     added by John Walker in October of 1995.
26 
27     This program is in the public domain.
28 
29      1. This is the book of the generations of Adam.   In the day that God
30 	created man, in the likeness of God made he him;
31      2. Male and female created he them;  and  blessed	them,  and  called
32 	their name Adam, in the day when they were created.
33      3. And  Adam  lived  an hundred and thirty years,	and begat a son in
34 	his own likeness, and after his image; and called his name Seth:
35      4. And the days of  Adam  after  he  had  begotten  Seth  were  eight
36 	hundred years: and he begat sons and daughters:
37      5. And  all  the  days  that Adam lived were nine	hundred and thirty
38 	years: and he died.
39      6. And Seth lived an hundred and five years, and begat Enos:
40      7. And Seth lived after he begat Enos eight hundred and seven  years,
41 	and begat sons and daughters:
42      8.  And  all the days of Seth were nine hundred and twelve years: and
43 	 he died.
44      9. And Enos lived ninety years, and begat Cainan:
45     10. And Enos lived after he begat  Cainan eight  hundred  and  fifteen
46 	years, and begat sons and daughters:
47     11. And  all  the days of Enos were nine hundred  and five years:  and
48 	he died.
49     12. And Cainan lived seventy years and begat Mahalaleel:
50     13. And Cainan lived  after he  begat  Mahalaleel  eight  hundred  and
51 	forty years, and begat sons and daughters:
52     14. And  all the days of Cainan were nine  hundred and ten years:  and
53 	he died.
54     15. And Mahalaleel lived sixty and five years, and begat Jared:
55     16. And Mahalaleel lived  after  he  begat	Jared  eight  hundred  and
56 	thirty years, and begat sons and daughters:
57     17. And  all  the  days  of Mahalaleel  were eight hundred	ninety and
58 	five years: and he died.
59     18. And Jared lived an hundred sixty and  two  years,   and  he  begat
60 	Enoch:
61     19. And  Jared  lived  after he begat Enoch  eight hundred years,  and
62 	begat sons and daughters:
63     20. And all the days of Jared  were nine hundred sixty and two  years:
64 	and he died.
65     21. And Enoch lived sixty and five years, and begat Methuselah:
66     22. And  Enoch  walked   with  God	after  he  begat Methuselah  three
67 	hundred years, and begat sons and daughters:
68     23. And all the days of  Enoch  were  three  hundred  sixty  and  five
69 	years:
70     24. And Enoch walked with God: and he was not; for God took him.
71     25. And  Methuselah  lived	an  hundred  eighty and  seven years,  and
72 	begat Lamech.
73     26. And Methuselah lived after he  begat Lamech seven  hundred  eighty
74 	and two years, and begat sons and daughters:
75     27. And  all the days of Methuselah  were nine hundred  sixty and nine
76 	years: and he died.
77     28. And Lamech lived an hundred eighty  and two  years,  and  begat  a
78 	son:
79     29. And  he called his name Noah, saying,  This same shall	comfort us
80 	concerning  our  work and toil of our hands, because of the ground
81 	which the LORD hath cursed.
82     30. And  Lamech  lived  after  he begat Noah  five hundred	ninety and
83 	five years, and begat sons and daughters:
84     31. And all the days of Lamech were  seven hundred seventy	and  seven
85 	years: and he died.
86     32. And  Noah  was five hundred years old:	and Noah begat Shem,  Ham,
87 	and Japheth.
88 
89     And buffers begat buffers, and links begat	links,	and  buffer  pools
90     begat  links  to chains of buffer pools containing buffers, and lo the
91     buffers and links and pools of buffers and pools of links to chains of
92     pools  of  buffers were fruitful and they multiplied and the Operating
93     System looked down upon them and said that it was Good.
94 
95 
96     INTRODUCTION
97     ============
98 
99     BGET  is a comprehensive memory allocation package which is easily
100     configured to the needs of an application.	BGET is  efficient  in
101     both  the  time  needed to allocate and release buffers and in the
102     memory  overhead  required	for  buffer   pool   management.    It
103     automatically    consolidates   contiguous	 space	 to   minimise
104     fragmentation.  BGET is configured	by  compile-time  definitions,
105     Major options include:
106 
107 	*   A  built-in  test  program	to  exercise  BGET   and
108 	    demonstrate how the various functions are used.
109 
110         *   Allocation  by  either the "first fit" or "best fit"
111 	    method.
112 
113 	*   Wiping buffers at release time to catch  code  which
114 	    references previously released storage.
115 
116 	*   Built-in  routines to dump individual buffers or the
117 	    entire buffer pool.
118 
119 	*   Retrieval of allocation and pool size statistics.
120 
121 	*   Quantisation of buffer sizes to a power  of  two  to
122 	    satisfy hardware alignment constraints.
123 
124 	*   Automatic  pool compaction, growth, and shrinkage by
125 	    means of call-backs to user defined functions.
126 
127     Applications  of  BGET  can  range	from  storage  management   in
128     ROM-based  embedded programs to providing the framework upon which
129     a  multitasking  system  incorporating   garbage   collection   is
130     constructed.   BGET  incorporates  extensive  internal consistency
131     checking using the <assert.h> mechanism; all these checks  can  be
132     turned off by compiling with NDEBUG defined, yielding a version of
133     BGET with minimal size and maximum speed.
134 
135     The  basic	algorithm  underlying  BGET  has withstood the test of
136     time;  more  than  25  years   have   passed   since   the	 first
137     implementation  of	this  code.  And yet, it is substantially more
138     efficient than the native allocation  schemes  of  many  operating
139     systems: the Macintosh and Microsoft Windows to name two, on which
140     programs have obtained substantial speed-ups by layering  BGET  as
141     an application level memory manager atop the underlying system's.
142 
143     BGET has been implemented on the largest mainframes and the lowest
144     of	microprocessors.   It  has served as the core for multitasking
145     operating systems, multi-thread applications, embedded software in
146     data  network switching processors, and a host of C programs.  And
147     while it has accreted flexibility and additional options over  the
148     years,  it	remains  fast, memory efficient, portable, and easy to
149     integrate into your program.
150 
151 
152     BGET IMPLEMENTATION ASSUMPTIONS
153     ===============================
154 
155     BGET is written in as portable a dialect of C  as  possible.   The
156     only   fundamental	 assumption   about  the  underlying  hardware
157     architecture is that memory is allocated is a linear  array  which
158     can  be  addressed  as a vector of C "char" objects.  On segmented
159     address space architectures, this generally means that BGET should
160     be used to allocate storage within a single segment (although some
161     compilers	simulate   linear   address   spaces   on    segmented
162     architectures).   On  segmented  architectures,  then, BGET buffer
163     pools  may not be larger than a segment, but since BGET allows any
164     number of separate buffer pools, there is no limit	on  the  total
165     storage  which  can  be  managed,  only  on the largest individual
166     object which can be allocated.  Machines  with  a  linear  address
167     architecture,  such  as  the VAX, 680x0, Sparc, MIPS, or the Intel
168     80386 and above in native mode, may use BGET without restriction.
169 
170 
171     GETTING STARTED WITH BGET
172     =========================
173 
174     Although BGET can be configured in a multitude of fashions,  there
175     are  three	basic  ways  of  working  with	BGET.	The  functions
176     mentioned below are documented in the following  section.	Please
177     excuse  the  forward  references which are made in the interest of
178     providing a roadmap to guide you  to  the  BGET  functions  you're
179     likely to need.
180 
181     Embedded Applications
182     ---------------------
183 
184     Embedded applications  typically  have  a  fixed  area  of	memory
185     dedicated  to  buffer  allocation (often in a separate RAM address
186     space distinct from the ROM that contains  the  executable	code).
187     To	use  BGET in such an environment, simply call bpool() with the
188     start address and length of the buffer  pool  area	in  RAM,  then
189     allocate  buffers  with  bget()  and  release  them  with  brel().
190     Embedded applications with very limited RAM but abundant CPU speed
191     may  benefit  by configuring BGET for BestFit allocation (which is
192     usually not worth it in other environments).
193 
194     Malloc() Emulation
195     ------------------
196 
197     If the C library malloc() function is too  slow,  not  present  in
198     your  development environment (for example, an a native Windows or
199     Macintosh program), or otherwise unsuitable, you  can  replace  it
200     with  BGET.  Initially define a buffer pool of an appropriate size
201     with bpool()--usually obtained by making a call to	the  operating
202     system's  low-level  memory allocator.  Then allocate buffers with
203     bget(), bgetz(), and bgetr() (the last two permit  the  allocation
204     of	buffers initialised to zero and [inefficient] re-allocation of
205     existing buffers for  compatibility  with  C  library  functions).
206     Release buffers by calling brel().	If a buffer allocation request
207     fails, obtain more storage from the underlying  operating  system,
208     add it to the buffer pool by another call to bpool(), and continue
209     execution.
210 
211     Automatic Storage Management
212     ----------------------------
213 
214     You can use BGET as your application's native memory  manager  and
215     implement  automatic  storage  pool  expansion,  contraction,  and
216     optionally application-specific  memory  compaction  by  compiling
217     BGET  with	the  BECtl  variable defined, then calling bectl() and
218     supplying  functions  for  storage	compaction,  acquisition,  and
219     release,  as  well as a standard pool expansion increment.	All of
220     these functions are optional (although it doesn't make much  sense
221     to	provide  a  release  function without an acquisition function,
222     does it?).	Once the call-back functions have  been  defined  with
223     bectl(),  you simply use bget() and brel() to allocate and release
224     storage as before.	You can supply an  initial  buffer  pool  with
225     bpool()  or  rely  on  automatic  allocation to acquire the entire
226     pool.  When a call on  bget()  cannot  be  satisfied,  BGET  first
227     checks  if	a compaction function has been supplied.  If so, it is
228     called (with the space required to satisfy the allocation  request
229     and a sequence number to allow the compaction routine to be called
230     successively without looping).  If the compaction function is able
231     to  free any storage (it needn't know whether the storage it freed
232     was adequate) it should return a  nonzero  value,  whereupon  BGET
233     will retry the allocation request and, if it fails again, call the
234     compaction function again with the next-higher sequence number.
235 
236     If	the  compaction  function  returns zero, indicating failure to
237     free space, or no compaction function is defined, BGET next  tests
238     whether  a	non-NULL  allocation function was supplied to bectl().
239     If so, that function is called with  an  argument  indicating  how
240     many  bytes  of  additional  space are required.  This will be the
241     standard pool expansion increment supplied in the call to  bectl()
242     unless  the  original  bget()  call requested a buffer larger than
243     this; buffers larger than the standard pool block can  be  managed
244     "off  the books" by BGET in this mode.  If the allocation function
245     succeeds in obtaining the storage, it returns a pointer to the new
246     block  and	BGET  expands  the  buffer  pool;  if  it  fails,  the
247     allocation request fails and returns NULL to  the  caller.	 If  a
248     non-NULL  release  function  is  supplied,	expansion blocks which
249     become totally empty are released  to  the	global	free  pool  by
250     passing their addresses to the release function.
251 
252     Equipped  with  appropriate  allocation,  release,	and compaction
253     functions, BGET can be used as part of very  sophisticated	memory
254     management	 strategies,  including  garbage  collection.	(Note,
255     however, that BGET is *not* a garbage  collector  by  itself,  and
256     that  developing  such a system requires much additional logic and
257     careful design of the application's memory allocation strategy.)
258 
259 
260     BGET FUNCTION DESCRIPTIONS
261     ==========================
262 
263     Functions implemented in this file (some are enabled by certain of
264     the optional settings below):
265 
266 	    void bpool(void *buffer, bufsize len);
267 
268     Create a buffer pool of <len> bytes, using the storage starting at
269     <buffer>.	You  can  call	bpool()  subsequently  to   contribute
270     additional storage to the overall buffer pool.
271 
272 	    void *bget(bufsize size);
273 
274     Allocate  a  buffer of <size> bytes.  The address of the buffer is
275     returned, or NULL if insufficient memory was available to allocate
276     the buffer.
277 
278 	    void *bgetz(bufsize size);
279 
280     Allocate a buffer of <size> bytes and clear it to all zeroes.  The
281     address of the buffer is returned, or NULL if insufficient	memory
282     was available to allocate the buffer.
283 
284 	    void *bgetr(void *buffer, bufsize newsize);
285 
286     Reallocate a buffer previously allocated by bget(),  changing  its
287     size  to  <newsize>  and  preserving  all  existing data.  NULL is
288     returned if insufficient memory is	available  to  reallocate  the
289     buffer, in which case the original buffer remains intact.
290 
291 	    void brel(void *buf);
292 
293     Return  the  buffer  <buf>, previously allocated by bget(), to the
294     free space pool.
295 
296 	    void bectl(int (*compact)(bufsize sizereq, int sequence),
297 		       void *(*acquire)(bufsize size),
298 		       void (*release)(void *buf),
299 		       bufsize pool_incr);
300 
301     Expansion control: specify functions through which the package may
302     compact  storage  (or  take  other	appropriate  action)  when  an
303     allocation	request  fails,  and  optionally automatically acquire
304     storage for expansion blocks  when	necessary,  and  release  such
305     blocks when they become empty.  If <compact> is non-NULL, whenever
306     a buffer allocation request fails, the <compact> function will  be
307     called with arguments specifying the number of bytes (total buffer
308     size,  including  header  overhead)  required   to	 satisfy   the
309     allocation request, and a sequence number indicating the number of
310     consecutive  calls	on  <compact>  attempting  to	satisfy   this
311     allocation	request.   The sequence number is 1 for the first call
312     on <compact> for a given allocation  request,  and	increments  on
313     subsequent	calls,	permitting  the  <compact>  function  to  take
314     increasingly dire measures in an attempt to free up  storage.   If
315     the  <compact>  function  returns  a nonzero value, the allocation
316     attempt is re-tried.  If <compact> returns 0 (as  it  must	if  it
317     isn't  able  to  release  any  space  or add storage to the buffer
318     pool), the allocation request fails, which can  trigger  automatic
319     pool expansion if the <acquire> argument is non-NULL.  At the time
320     the  <compact>  function  is  called,  the	state  of  the	buffer
321     allocator  is  identical  to  that	at  the  moment the allocation
322     request was made; consequently, the <compact>  function  may  call
323     brel(), bpool(), bstats(), and/or directly manipulate  the	buffer
324     pool  in  any  manner which would be valid were the application in
325     control.  This does not, however, relieve the  <compact>  function
326     of the need to ensure that whatever actions it takes do not change
327     things   underneath  the  application  that  made  the  allocation
328     request.  For example, a <compact> function that released a buffer
329     in	the  process  of  being reallocated with bgetr() would lead to
330     disaster.  Implementing a safe and effective  <compact>  mechanism
331     requires  careful  design of an application's memory architecture,
332     and cannot generally be easily retrofitted into existing code.
333 
334     If <acquire> is non-NULL, that function will be called whenever an
335     allocation	request  fails.  If the <acquire> function succeeds in
336     allocating the requested space and returns a pointer  to  the  new
337     area,  allocation will proceed using the expanded buffer pool.  If
338     <acquire> cannot obtain the requested space, it should return NULL
339     and   the	entire	allocation  process  will  fail.   <pool_incr>
340     specifies the normal expansion block size.	Providing an <acquire>
341     function will cause subsequent bget()  requests  for  buffers  too
342     large  to  be  managed in the linked-block scheme (in other words,
343     larger than <pool_incr> minus the buffer overhead) to be satisfied
344     directly by calls to the <acquire> function.  Automatic release of
345     empty pool blocks will occur only if all pool blocks in the system
346     are the size given by <pool_incr>.
347 
348 	    void bstats(bufsize *curalloc, bufsize *totfree,
349 			bufsize *maxfree, long *nget, long *nrel);
350 
351     The amount	of  space  currently  allocated  is  stored  into  the
352     variable  pointed  to by <curalloc>.  The total free space (sum of
353     all free blocks in the pool) is stored into the  variable  pointed
354     to	by  <totfree>, and the size of the largest single block in the
355     free space	pool  is  stored  into	the  variable  pointed	to  by
356     <maxfree>.	 The  variables  pointed  to  by <nget> and <nrel> are
357     filled, respectively, with	the  number  of  successful  (non-NULL
358     return) bget() calls and the number of brel() calls.
359 
360 	    void bstatse(bufsize *pool_incr, long *npool,
361 			 long *npget, long *nprel,
362 			 long *ndget, long *ndrel);
363 
364     Extended  statistics: The expansion block size will be stored into
365     the variable pointed to by <pool_incr>, or the negative thereof if
366     automatic  expansion  block  releases are disabled.  The number of
367     currently active pool blocks will  be  stored  into  the  variable
368     pointed  to  by  <npool>.  The variables pointed to by <npget> and
369     <nprel> will be filled with, respectively, the number of expansion
370     block   acquisitions   and	releases  which  have  occurred.   The
371     variables pointed to by <ndget> and <ndrel> will  be  filled  with
372     the  number  of  bget()  and  brel()  calls, respectively, managed
373     through blocks directly allocated by the acquisition  and  release
374     functions.
375 
376 	    void bufdump(void *buf);
377 
378     The buffer pointed to by <buf> is dumped on standard output.
379 
380 	    void bpoold(void *pool, int dumpalloc, int dumpfree);
381 
382     All buffers in the buffer pool <pool>, previously initialised by a
383     call on bpool(), are listed in ascending memory address order.  If
384     <dumpalloc> is nonzero, the  contents  of  allocated  buffers  are
385     dumped;  if <dumpfree> is nonzero, the contents of free blocks are
386     dumped.
387 
388 	    int bpoolv(void *pool);
389 
390     The  named	buffer	pool,  previously  initialised	by  a  call on
391     bpool(), is validated for bad pointers, overwritten data, etc.  If
392     compiled with NDEBUG not defined, any error generates an assertion
393     failure.  Otherwise 1 is returned if the pool is valid,  0	if  an
394     error is found.
395 
396 
397     BGET CONFIGURATION
398     ==================
399 */
400 
401 /*
402  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
403  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
404  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
405  * IN NO EVENT SHALL ST BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
406  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
407  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
408  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
409  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
410  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
411  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
412  */
413 
414 /* #define BGET_ENABLE_ALL_OPTIONS */
415 #ifdef BGET_ENABLE_OPTION
416 #define TestProg    20000	      /* Generate built-in test program
417 					 if defined.  The value specifies
418 					 how many buffer allocation attempts
419 					 the test program should make. */
420 
421 #define SizeQuant   4		      /* Buffer allocation size quantum:
422 					 all buffers allocated are a
423 					 multiple of this size.  This
424 					 MUST be a power of two. */
425 
426 #define BufDump     1		      /* Define this symbol to enable the
427 					 bpoold() function which dumps the
428 					 buffers in a buffer pool. */
429 
430 #define BufValid    1		      /* Define this symbol to enable the
431 					 bpoolv() function for validating
432 					 a buffer pool. */
433 
434 #define DumpData    1		      /* Define this symbol to enable the
435 					 bufdump() function which allows
436 					 dumping the contents of an allocated
437 					 or free buffer. */
438 
439 #define BufStats    1		      /* Define this symbol to enable the
440 					 bstats() function which calculates
441 					 the total free space in the buffer
442 					 pool, the largest available
443 					 buffer, and the total space
444 					 currently allocated. */
445 
446 #define FreeWipe    1		      /* Wipe free buffers to a guaranteed
447 					 pattern of garbage to trip up
448 					 miscreants who attempt to use
449 					 pointers into released buffers. */
450 
451 #define BestFit     1		      /* Use a best fit algorithm when
452 					 searching for space for an
453 					 allocation request.  This uses
454 					 memory more efficiently, but
455 					 allocation will be much slower. */
456 
457 #define BECtl	    1		      /* Define this symbol to enable the
458 					 bectl() function for automatic
459 					 pool space control.  */
460 #endif
461 
462 #include <stdio.h>
463 
464 #ifdef lint
465 #define NDEBUG			      /* Exits in asserts confuse lint */
466 /* LINTLIBRARY */                     /* Don't complain about def, no ref */
467 extern char *sprintf();               /* Sun includes don't define sprintf */
468 #endif
469 
470 #include <assert.h>
471 #include <memory.h>
472 
473 #ifdef BufDump			      /* BufDump implies DumpData */
474 #ifndef DumpData
475 #define DumpData    1
476 #endif
477 #endif
478 
479 #ifdef DumpData
480 #include <ctype.h>
481 #endif
482 
483 /*  Declare the interface, including the requested buffer size type,
484     bufsize.  */
485 
486 #include "bget.h"
487 
488 #define MemSize     int 	      /* Type for size arguments to memxxx()
489 					 functions such as memcmp(). */
490 
491 /* Queue links */
492 
493 struct qlinks {
494     struct bfhead *flink;	      /* Forward link */
495     struct bfhead *blink;	      /* Backward link */
496 };
497 
498 /* Header in allocated and free buffers */
499 
500 struct bhead {
501     bufsize prevfree;		      /* Relative link back to previous
502 					 free buffer in memory or 0 if
503 					 previous buffer is allocated.	*/
504     bufsize bsize;		      /* Buffer size: positive if free,
505 					 negative if allocated. */
506 };
507 #define BH(p)	((struct bhead *) (p))
508 
509 /*  Header in directly allocated buffers (by acqfcn) */
510 
511 struct bdhead {
512     bufsize tsize;		      /* Total size, including overhead */
513     struct bhead bh;		      /* Common header */
514 };
515 #define BDH(p)	((struct bdhead *) (p))
516 
517 /* Header in free buffers */
518 
519 struct bfhead {
520     struct bhead bh;		      /* Common allocated/free header */
521     struct qlinks ql;		      /* Links on free list */
522 };
523 #define BFH(p)	((struct bfhead *) (p))
524 
525 /* Poolset definition */
526 struct bpoolset {
527     struct bfhead freelist;
528 #ifdef BufStats
529     bufsize totalloc;		      /* Total space currently allocated */
530     long numget;		      /* Number of bget() calls */
531     long numrel;		      /* Number of brel() calls */
532 #ifdef BECtl
533     long numpblk;		      /* Number of pool blocks */
534     long numpget;		      /* Number of block gets and rels */
535     long numprel;
536     long numdget;		      /* Number of direct gets and rels */
537     long numdrel;
538 #endif /* BECtl */
539 #endif /* BufStats */
540 
541 #ifdef BECtl
542     /* Automatic expansion block management functions */
543 
544     int (*compfcn) _((bufsize sizereq, int sequence));
545     void *(*acqfcn) _((bufsize size));
546     void (*relfcn) _((void *buf));
547 
548     bufsize exp_incr;		      /* Expansion block size */
549     bufsize pool_len;		      /* 0: no bpool calls have been made
550 					 -1: not all pool blocks are
551 					     the same size
552 					 >0: (common) block size for all
553 					     bpool calls made so far
554 				      */
555 #endif
556 };
557 
558 /*  Minimum allocation quantum: */
559 
560 #define QLSize	(sizeof(struct qlinks))
561 #define SizeQ	((SizeQuant > QLSize) ? SizeQuant : QLSize)
562 
563 #define V   (void)		      /* To denote unwanted returned values */
564 
565 /* End sentinel: value placed in bsize field of dummy block delimiting
566    end of pool block.  The most negative number which will  fit  in  a
567    bufsize, defined in a way that the compiler will accept. */
568 
569 #define ESent	((bufsize) (-(((1L << (sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
570 
571 /*  BGET  --  Allocate a buffer.  */
572 
573 void *bget(requested_size, poolset)
574   bufsize requested_size;
575   struct bpoolset *poolset;
576 {
577     bufsize size = requested_size;
578     struct bfhead *b;
579 #ifdef BestFit
580     struct bfhead *best;
581 #endif
582     void *buf;
583 #ifdef BECtl
584     int compactseq = 0;
585 #endif
586 
587     assert(size > 0);
588 
589     if (size < SizeQ) { 	      /* Need at least room for the */
590 	size = SizeQ;		      /*    queue links.  */
591     }
592 #ifdef SizeQuant
593 #if SizeQuant > 1
594     size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1));
595 #endif
596 #endif
597 
598     size += sizeof(struct bhead);     /* Add overhead in allocated buffer
599 					 to size required. */
600 
601 #ifdef BECtl
602     /* If a compact function was provided in the call to bectl(), wrap
603        a loop around the allocation process  to  allow	compaction  to
604        intervene in case we don't find a suitable buffer in the chain. */
605 
606     while (1) {
607 #endif
608 	b = poolset->freelist.ql.flink;
609 #ifdef BestFit
610 	best = &poolset->freelist;
611 #endif
612 
613 
614 	/* Scan the free list searching for the first buffer big enough
615 	   to hold the requested size buffer. */
616 
617 #ifdef BestFit
618 	while (b != &poolset->freelist) {
619 	    if (b->bh.bsize >= size) {
620 		if ((best == &poolset->freelist) ||
621 		    (b->bh.bsize < best->bh.bsize)) {
622 		    best = b;
623 		}
624 	    }
625 	    b = b->ql.flink;		  /* Link to next buffer */
626 	}
627 	b = best;
628 #endif /* BestFit */
629 
630 	while (b != &poolset->freelist) {
631 	    if ((bufsize) b->bh.bsize >= size) {
632 
633 		/* Buffer  is big enough to satisfy  the request.  Allocate it
634 		   to the caller.  We must decide whether the buffer is  large
635 		   enough  to  split  into  the part given to the caller and a
636 		   free buffer that remains on the free list, or  whether  the
637 		   entire  buffer  should  be  removed	from the free list and
638 		   given to the caller in its entirety.   We  only  split  the
639 		   buffer if enough room remains for a header plus the minimum
640 		   quantum of allocation. */
641 
642 		if ((b->bh.bsize - size) > (SizeQ + (sizeof(struct bhead)))) {
643 		    struct bhead *ba, *bn;
644 
645 		    ba = BH(((char *) b) + (b->bh.bsize - size));
646 		    bn = BH(((char *) ba) + size);
647 		    assert(bn->prevfree == b->bh.bsize);
648 		    /* Subtract size from length of free block. */
649 		    b->bh.bsize -= size;
650 		    /* Link allocated buffer to the previous free buffer. */
651 		    ba->prevfree = b->bh.bsize;
652 		    /* Plug negative size into user buffer. */
653 		    ba->bsize = -(bufsize) size;
654 		    /* Mark buffer after this one not preceded by free block. */
655 		    bn->prevfree = 0;
656 
657 #ifdef BufStats
658 		    poolset->totalloc += size;
659 		    poolset->numget++;		  /* Increment number of bget() calls */
660 #endif
661 		    buf = (void *) ((((char *) ba) + sizeof(struct bhead)));
662 		    tag_asan_alloced(buf, size);
663 		    return buf;
664 		} else {
665 		    struct bhead *ba;
666 
667 		    ba = BH(((char *) b) + b->bh.bsize);
668 		    assert(ba->prevfree == b->bh.bsize);
669 
670                     /* The buffer isn't big enough to split.  Give  the  whole
671 		       shebang to the caller and remove it from the free list. */
672 
673 		    assert(b->ql.blink->ql.flink == b);
674 		    assert(b->ql.flink->ql.blink == b);
675 		    b->ql.blink->ql.flink = b->ql.flink;
676 		    b->ql.flink->ql.blink = b->ql.blink;
677 
678 #ifdef BufStats
679 		    poolset->totalloc += b->bh.bsize;
680 		    poolset->numget++;		  /* Increment number of bget() calls */
681 #endif
682 		    /* Negate size to mark buffer allocated. */
683 		    b->bh.bsize = -(b->bh.bsize);
684 
685 		    /* Zero the back pointer in the next buffer in memory
686 		       to indicate that this buffer is allocated. */
687 		    ba->prevfree = 0;
688 
689 		    /* Give user buffer starting at queue links. */
690 		    buf =  (void *) &(b->ql);
691 		    tag_asan_alloced(buf, size);
692 		    return buf;
693 		}
694 	    }
695 	    b = b->ql.flink;		  /* Link to next buffer */
696 	}
697 #ifdef BECtl
698 
699         /* We failed to find a buffer.  If there's a compact  function
700 	   defined,  notify  it  of the size requested.  If it returns
701 	   TRUE, try the allocation again. */
702 
703 	if ((poolset->compfcn == NULL) ||
704 	    (!(poolset->compfcn)(size, ++compactseq))) {
705 	    break;
706 	}
707     }
708 
709     /* No buffer available with requested size free. */
710 
711     /* Don't give up yet -- look in the reserve supply. */
712 
713     if (poolset->acqfcn != NULL) {
714 	if (size > exp_incr - sizeof(struct bhead)) {
715 
716 	    /* Request	is  too  large	to  fit in a single expansion
717 	       block.  Try to satisy it by a direct buffer acquisition. */
718 
719 	    struct bdhead *bdh;
720 
721 	    size += sizeof(struct bdhead) - sizeof(struct bhead);
722 	    if ((bdh = BDH((*acqfcn)((bufsize) size))) != NULL) {
723 
724 		/*  Mark the buffer special by setting the size field
725 		    of its header to zero.  */
726 		bdh->bh.bsize = 0;
727 		bdh->bh.prevfree = 0;
728 		bdh->tsize = size;
729 #ifdef BufStats
730 		poolset->totalloc += size;
731 		poolset->numget++;	  /* Increment number of bget() calls */
732 		poolset->numdget++;	  /* Direct bget() call count */
733 #endif
734 		buf =  (void *) (bdh + 1);
735 		tag_asan_alloced(buf, size);
736 		return buf;
737 	    }
738 
739 	} else {
740 
741 	    /*	Try to obtain a new expansion block */
742 
743 	    void *newpool;
744 
745 	    if ((newpool = poolset->acqfcn((bufsize) exp_incr)) != NULL) {
746 		bpool(newpool, exp_incr, poolset);
747                 buf =  bget(requested_size, pool);  /* This can't, I say, can't
748 						       get into a loop. */
749 		return buf;
750 	    }
751 	}
752     }
753 
754     /*	Still no buffer available */
755 
756 #endif /* BECtl */
757 
758     return NULL;
759 }
760 
761 /*  BGETZ  --  Allocate a buffer and clear its contents to zero.  We clear
762 	       the  entire  contents  of  the buffer to zero, not just the
763 	       region requested by the caller. */
764 
765 void *bgetz(size, poolset)
766   bufsize size;
767   struct bpoolset *poolset;
768 {
769     char *buf = (char *) bget(size, poolset);
770 
771     if (buf != NULL) {
772 	struct bhead *b;
773 	bufsize rsize;
774 
775 	b = BH(buf - sizeof(struct bhead));
776 	rsize = -(b->bsize);
777 	if (rsize == 0) {
778 	    struct bdhead *bd;
779 
780 	    bd = BDH(buf - sizeof(struct bdhead));
781 	    rsize = bd->tsize - sizeof(struct bdhead);
782 	} else {
783 	    rsize -= sizeof(struct bhead);
784 	}
785 	assert(rsize >= size);
786 	V memset_unchecked(buf, 0, (MemSize) rsize);
787     }
788     return ((void *) buf);
789 }
790 
791 /*  BGETR  --  Reallocate a buffer.  This is a minimal implementation,
792 	       simply in terms of brel()  and  bget().	 It  could  be
793 	       enhanced to allow the buffer to grow into adjacent free
794 	       blocks and to avoid moving data unnecessarily.  */
795 
796 void *bgetr(buf, size, poolset)
797   void *buf;
798   bufsize size;
799   struct bpoolset *poolset;
800 {
801     void *nbuf;
802     bufsize osize;		      /* Old size of buffer */
803     struct bhead *b;
804 
805     if ((nbuf = bget(size, poolset)) == NULL) { /* Acquire new buffer */
806 	return NULL;
807     }
808     if (buf == NULL) {
809 	return nbuf;
810     }
811     b = BH(((char *) buf) - sizeof(struct bhead));
812     osize = -b->bsize;
813 #ifdef BECtl
814     if (osize == 0) {
815 	/*  Buffer acquired directly through acqfcn. */
816 	struct bdhead *bd;
817 
818 	bd = BDH(((char *) buf) - sizeof(struct bdhead));
819 	osize = bd->tsize - sizeof(struct bdhead);
820     } else
821 #endif
822 	osize -= sizeof(struct bhead);
823     assert(osize > 0);
824     V memcpy((char *) nbuf, (char *) buf, /* Copy the data */
825 	     (MemSize) ((size < osize) ? size : osize));
826     brel(buf, poolset);
827     return nbuf;
828 }
829 
830 /*  BREL  --  Release a buffer.  */
831 
832 void brel(buf, poolset)
833   void *buf;
834   struct bpoolset *poolset;
835 {
836     struct bfhead *b, *bn;
837     bufsize bs;
838 
839     b = BFH(((char *) buf) - sizeof(struct bhead));
840 #ifdef BufStats
841     poolset->numrel++;		      /* Increment number of brel() calls */
842 #endif
843     assert(buf != NULL);
844 
845 #ifdef BECtl
846     if (b->bh.bsize == 0) {	      /* Directly-acquired buffer? */
847 	struct bdhead *bdh;
848 
849 	bdh = BDH(((char *) buf) - sizeof(struct bdhead));
850 	assert(b->bh.prevfree == 0);
851 #ifdef BufStats
852 	poolset->totalloc -= bdh->tsize;
853 	assert(poolset->totalloc >= 0);
854 	poolset->numdrel++;	       /* Number of direct releases */
855 #endif /* BufStats */
856 #ifdef FreeWipe
857 	V memset_unchecked((char *) buf, 0x55,
858 			   (MemSize) (bdh->tsize - sizeof(struct bdhead)));
859 #endif /* FreeWipe */
860 	bs = bdh->tsize - sizeof(struct bdhead);
861 	assert(poolset->relfcn != NULL);
862 	poolset->relfcn((void *) bdh);      /* Release it directly. */
863 	tag_asan_free(buf, bs);
864 	return;
865     }
866 #endif /* BECtl */
867 
868     /* Buffer size must be negative, indicating that the buffer is
869        allocated. */
870 
871     if (b->bh.bsize >= 0) {
872 	bn = NULL;
873     }
874     assert(b->bh.bsize < 0);
875     bs = -b->bh.bsize;
876 
877     /*	Back pointer in next buffer must be zero, indicating the
878 	same thing: */
879 
880     assert(BH((char *) b - b->bh.bsize)->prevfree == 0);
881 
882 #ifdef BufStats
883     poolset->totalloc += b->bh.bsize;
884     assert(poolset->totalloc >= 0);
885 #endif
886 
887     /* If the back link is nonzero, the previous buffer is free.  */
888 
889     if (b->bh.prevfree != 0) {
890 
891 	/* The previous buffer is free.  Consolidate this buffer  with	it
892 	   by  adding  the  length  of	this  buffer  to the previous free
893 	   buffer.  Note that we subtract the size  in	the  buffer  being
894            released,  since  it's  negative to indicate that the buffer is
895 	   allocated. */
896 
897 	register bufsize size = b->bh.bsize;
898 
899         /* Make the previous buffer the one we're working on. */
900 	assert(BH((char *) b - b->bh.prevfree)->bsize == b->bh.prevfree);
901 	b = BFH(((char *) b) - b->bh.prevfree);
902 	b->bh.bsize -= size;
903     } else {
904 
905         /* The previous buffer isn't allocated.  Insert this buffer
906 	   on the free list as an isolated free block. */
907 
908 	assert(poolset->freelist.ql.blink->ql.flink == &poolset->freelist);
909 	assert(poolset->freelist.ql.flink->ql.blink == &poolset->freelist);
910 	b->ql.flink = &poolset->freelist;
911 	b->ql.blink = poolset->freelist.ql.blink;
912 	poolset->freelist.ql.blink = b;
913 	b->ql.blink->ql.flink = b;
914 	b->bh.bsize = -b->bh.bsize;
915     }
916 
917     /* Now we look at the next buffer in memory, located by advancing from
918        the  start  of  this  buffer  by its size, to see if that buffer is
919        free.  If it is, we combine  this  buffer  with	the  next  one	in
920        memory, dechaining the second buffer from the free list. */
921 
922     bn =  BFH(((char *) b) + b->bh.bsize);
923     if (bn->bh.bsize > 0) {
924 
925 	/* The buffer is free.	Remove it from the free list and add
926 	   its size to that of our buffer. */
927 
928 	assert(BH((char *) bn + bn->bh.bsize)->prevfree == bn->bh.bsize);
929 	assert(bn->ql.blink->ql.flink == bn);
930 	assert(bn->ql.flink->ql.blink == bn);
931 	bn->ql.blink->ql.flink = bn->ql.flink;
932 	bn->ql.flink->ql.blink = bn->ql.blink;
933 	b->bh.bsize += bn->bh.bsize;
934 
935 	/* Finally,  advance  to   the	buffer	that   follows	the  newly
936 	   consolidated free block.  We must set its  backpointer  to  the
937 	   head  of  the  consolidated free block.  We know the next block
938 	   must be an allocated block because the process of recombination
939 	   guarantees  that  two  free	blocks will never be contiguous in
940 	   memory.  */
941 
942 	bn = BFH(((char *) b) + b->bh.bsize);
943     }
944 #ifdef FreeWipe
945     V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55,
946 		       (MemSize) (b->bh.bsize - sizeof(struct bfhead)));
947 #endif
948     assert(bn->bh.bsize < 0);
949 
950     /* The next buffer is allocated.  Set the backpointer in it  to  point
951        to this buffer; the previous free buffer in memory. */
952 
953     bn->bh.prevfree = b->bh.bsize;
954 
955 #ifdef BECtl
956 
957     /*	If  a  block-release function is defined, and this free buffer
958 	constitutes the entire block, release it.  Note that  pool_len
959 	is  defined  in  such a way that the test will fail unless all
960 	pool blocks are the same size.	*/
961 
962     if (poolset->relfcn != NULL &&
963 	((bufsize) b->bh.bsize) == (pool_len - sizeof(struct bhead))) {
964 
965 	assert(b->bh.prevfree == 0);
966 	assert(BH((char *) b + b->bh.bsize)->bsize == ESent);
967 	assert(BH((char *) b + b->bh.bsize)->prevfree == b->bh.bsize);
968 	/*  Unlink the buffer from the free list  */
969 	b->ql.blink->ql.flink = b->ql.flink;
970 	b->ql.flink->ql.blink = b->ql.blink;
971 
972 	poolset->relfcn(b);
973 #ifdef BufStats
974 	poolset->numprel++;	       /* Nr of expansion block releases */
975 	poolset->numpblk--;	       /* Total number of blocks */
976 	assert(numpblk == numpget - numprel);
977 #endif /* BufStats */
978     }
979 #endif /* BECtl */
980     tag_asan_free(buf, bs);
981 }
982 
983 #ifdef BECtl
984 
985 /*  BECTL  --  Establish automatic pool expansion control  */
986 
987 void bectl(compact, acquire, release, pool_incr, poolset)
988   int (*compact) _((bufsize sizereq, int sequence));
989   void *(*acquire) _((bufsize size));
990   void (*release) _((void *buf));
991   bufsize pool_incr;
992   struct bpoolset *poolset;
993 {
994     poolset->compfcn = compact;
995     poolset->acqfcn = acquire;
996     poolset->relfcn = release;
997     poolset->exp_incr = pool_incr;
998 }
999 #endif
1000 
1001 /*  BPOOL  --  Add a region of memory to the buffer pool.  */
1002 
1003 void bpool(buf, len, poolset)
1004   void *buf;
1005   bufsize len;
1006   struct bpoolset *poolset;
1007 {
1008     struct bfhead *b = BFH(buf);
1009     struct bhead *bn;
1010 
1011 #ifdef SizeQuant
1012     len &= ~(SizeQuant - 1);
1013 #endif
1014 #ifdef BECtl
1015     if (poolset->pool_len == 0) {
1016 	pool_len = len;
1017     } else if (len != poolset->pool_len) {
1018 	poolset->pool_len = -1;
1019     }
1020 #ifdef BufStats
1021     poolset->numpget++;		       /* Number of block acquisitions */
1022     poolset->numpblk++;		       /* Number of blocks total */
1023     assert(poolset->numpblk == poolset->numpget - poolset->numprel);
1024 #endif /* BufStats */
1025 #endif /* BECtl */
1026 
1027     /* Since the block is initially occupied by a single free  buffer,
1028        it  had	better	not  be  (much) larger than the largest buffer
1029        whose size we can store in bhead.bsize. */
1030 
1031     assert(len - sizeof(struct bhead) <= -((bufsize) ESent + 1));
1032 
1033     /* Clear  the  backpointer at  the start of the block to indicate that
1034        there  is  no  free  block  prior  to  this   one.    That   blocks
1035        recombination when the first block in memory is released. */
1036 
1037     b->bh.prevfree = 0;
1038 
1039     /* Chain the new block to the free list. */
1040 
1041     assert(poolset->freelist.ql.blink->ql.flink == &poolset->freelist);
1042     assert(poolset->freelist.ql.flink->ql.blink == &poolset->freelist);
1043     b->ql.flink = &poolset->freelist;
1044     b->ql.blink = poolset->freelist.ql.blink;
1045     poolset->freelist.ql.blink = b;
1046     b->ql.blink->ql.flink = b;
1047 
1048     /* Create a dummy allocated buffer at the end of the pool.	This dummy
1049        buffer is seen when a buffer at the end of the pool is released and
1050        blocks  recombination  of  the last buffer with the dummy buffer at
1051        the end.  The length in the dummy buffer  is  set  to  the  largest
1052        negative  number  to  denote  the  end  of  the pool for diagnostic
1053        routines (this specific value is  not  counted  on  by  the  actual
1054        allocation and release functions). */
1055 
1056     len -= sizeof(struct bhead);
1057     b->bh.bsize = (bufsize) len;
1058 #ifdef FreeWipe
1059     V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55,
1060 		       (MemSize) (len - sizeof(struct bfhead)));
1061 #endif
1062     bn = BH(((char *) b) + len);
1063     bn->prevfree = (bufsize) len;
1064     /* Definition of ESent assumes two's complement! */
1065     assert((~0) == -1);
1066     bn->bsize = ESent;
1067 }
1068 
1069 #ifdef BufStats
1070 
1071 /*  BSTATS  --	Return buffer allocation free space statistics.  */
1072 
1073 void bstats(curalloc, totfree, maxfree, nget, nrel, poolset)
1074   bufsize *curalloc, *totfree, *maxfree;
1075   long *nget, *nrel;
1076   struct bpoolset *poolset;
1077 {
1078     struct bfhead *b = poolset->freelist.ql.flink;
1079 
1080     *nget = poolset->numget;
1081     *nrel = poolset->numrel;
1082     *curalloc = poolset->totalloc;
1083     *totfree = 0;
1084     *maxfree = -1;
1085     while (b != &poolset->freelist) {
1086 	assert(b->bh.bsize > 0);
1087 	*totfree += b->bh.bsize;
1088 	if (b->bh.bsize > *maxfree) {
1089 	    *maxfree = b->bh.bsize;
1090 	}
1091 	b = b->ql.flink;	      /* Link to next buffer */
1092     }
1093 }
1094 
1095 #ifdef BECtl
1096 
1097 /*  BSTATSE  --  Return extended statistics  */
1098 
1099 void bstatse(pool_incr, npool, npget, nprel, ndget, ndrel, poolset)
1100   bufsize *pool_incr;
1101   long *npool, *npget, *nprel, *ndget, *ndrel;
1102   struct bpoolset *poolset;
1103 {
1104     *pool_incr = (poolset->pool_len < 0) ?
1105 	    -poolset->exp_incr : poolset->exp_incr;
1106     *npool = poolset->numpblk;
1107     *npget = poolset->numpget;
1108     *nprel = poolset->numprel;
1109     *ndget = poolset->numdget;
1110     *ndrel = poolset->numdrel;
1111 }
1112 #endif /* BECtl */
1113 #endif /* BufStats */
1114 
1115 #ifdef DumpData
1116 
1117 /*  BUFDUMP  --  Dump the data in a buffer.  This is called with the  user
1118 		 data pointer, and backs up to the buffer header.  It will
1119 		 dump either a free block or an allocated one.	*/
1120 
1121 void bufdump(buf)
1122   void *buf;
1123 {
1124     struct bfhead *b;
1125     unsigned char *bdump;
1126     bufsize bdlen;
1127 
1128     b = BFH(((char *) buf) - sizeof(struct bhead));
1129     assert(b->bh.bsize != 0);
1130     if (b->bh.bsize < 0) {
1131 	bdump = (unsigned char *) buf;
1132 	bdlen = (-b->bh.bsize) - sizeof(struct bhead);
1133     } else {
1134 	bdump = (unsigned char *) (((char *) b) + sizeof(struct bfhead));
1135 	bdlen = b->bh.bsize - sizeof(struct bfhead);
1136     }
1137 
1138     while (bdlen > 0) {
1139 	int i, dupes = 0;
1140 	bufsize l = bdlen;
1141 	char bhex[50], bascii[20];
1142 
1143 	if (l > 16) {
1144 	    l = 16;
1145 	}
1146 
1147 	for (i = 0; i < l; i++) {
1148 			V snprintf(bhex + i * 3, sizeof(bhex) - i * 3, "%02X ",
1149 				   bdump[i]);
1150             bascii[i] = isprint(bdump[i]) ? bdump[i] : ' ';
1151 	}
1152 	bascii[i] = 0;
1153         V printf("%-48s   %s\n", bhex, bascii);
1154 	bdump += l;
1155 	bdlen -= l;
1156 	while ((bdlen > 16) && (memcmp((char *) (bdump - 16),
1157 				       (char *) bdump, 16) == 0)) {
1158 	    dupes++;
1159 	    bdump += 16;
1160 	    bdlen -= 16;
1161 	}
1162 	if (dupes > 1) {
1163 	    V printf(
1164                 "     (%d lines [%d bytes] identical to above line skipped)\n",
1165 		dupes, dupes * 16);
1166 	} else if (dupes == 1) {
1167 	    bdump -= 16;
1168 	    bdlen += 16;
1169 	}
1170     }
1171 }
1172 #endif
1173 
1174 #ifdef BufDump
1175 
1176 /*  BPOOLD  --	Dump a buffer pool.  The buffer headers are always listed.
1177 		If DUMPALLOC is nonzero, the contents of allocated buffers
1178 		are  dumped.   If  DUMPFREE  is  nonzero,  free blocks are
1179 		dumped as well.  If FreeWipe  checking	is  enabled,  free
1180 		blocks	which  have  been clobbered will always be dumped. */
1181 
1182 void bpoold(buf, dumpalloc, dumpfree)
1183   void *buf;
1184   int dumpalloc, dumpfree;
1185 {
1186     struct bfhead *b = BFH(buf);
1187 
1188     while (b->bh.bsize != ESent) {
1189 	bufsize bs = b->bh.bsize;
1190 
1191 	if (bs < 0) {
1192 	    bs = -bs;
1193             V printf("Allocated buffer: size %6ld bytes.\n", (long) bs);
1194 	    if (dumpalloc) {
1195 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1196 	    }
1197 	} else {
1198             char *lerr = "";
1199 
1200 	    assert(bs > 0);
1201 	    if ((b->ql.blink->ql.flink != b) ||
1202 		(b->ql.flink->ql.blink != b)) {
1203                 lerr = "  (Bad free list links)";
1204 	    }
1205             V printf("Free block:       size %6ld bytes.%s\n",
1206 		(long) bs, lerr);
1207 #ifdef FreeWipe
1208 	    lerr = ((char *) b) + sizeof(struct bfhead);
1209 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1210 		(memcmp(lerr, lerr + 1,
1211 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1212 		V printf(
1213                     "(Contents of above free block have been overstored.)\n");
1214 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1215 	    } else
1216 #endif
1217 	    if (dumpfree) {
1218 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1219 	    }
1220 	}
1221 	b = BFH(((char *) b) + bs);
1222     }
1223 }
1224 #endif /* BufDump */
1225 
1226 #ifdef BufValid
1227 
1228 /*  BPOOLV  --  Validate a buffer pool.  If NDEBUG isn't defined,
1229 		any error generates an assertion failure.  */
1230 
1231 int bpoolv(buf)
1232   void *buf;
1233 {
1234     struct bfhead *b = BFH(buf);
1235 
1236     while (b->bh.bsize != ESent) {
1237 	bufsize bs = b->bh.bsize;
1238 
1239 	if (bs < 0) {
1240 	    bs = -bs;
1241 	} else {
1242 			const char *lerr = "";
1243 
1244 	    assert(bs > 0);
1245 	    if (bs <= 0) {
1246 		return 0;
1247 	    }
1248 	    if ((b->ql.blink->ql.flink != b) ||
1249 		(b->ql.flink->ql.blink != b)) {
1250                 V printf("Free block: size %6ld bytes.  (Bad free list links)\n",
1251 		     (long) bs);
1252 		assert(0);
1253 		return 0;
1254 	    }
1255 #ifdef FreeWipe
1256 	    lerr = ((char *) b) + sizeof(struct bfhead);
1257 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1258 		(memcmp(lerr, lerr + 1,
1259 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1260 		V printf(
1261                     "(Contents of above free block have been overstored.)\n");
1262 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1263 		assert(0);
1264 		return 0;
1265 	    }
1266 #endif
1267 	}
1268 	b = BFH(((char *) b) + bs);
1269     }
1270     return 1;
1271 }
1272 #endif /* BufValid */
1273 
1274         /***********************\
1275 	*			*
1276 	* Built-in test program *
1277 	*			*
1278         \***********************/
1279 
1280 #ifdef TestProg
1281 
1282 #define Repeatable  1		      /* Repeatable pseudorandom sequence */
1283 				      /* If Repeatable is not defined, a
1284 					 time-seeded pseudorandom sequence
1285 					 is generated, exercising BGET with
1286 					 a different pattern of calls on each
1287 					 run. */
1288 #define OUR_RAND		      /* Use our own built-in version of
1289 					 rand() to guarantee the test is
1290 					 100% repeatable. */
1291 
1292 #ifdef BECtl
1293 #define PoolSize    300000	      /* Test buffer pool size */
1294 #else
1295 #define PoolSize    50000	      /* Test buffer pool size */
1296 #endif
1297 #define ExpIncr     32768	      /* Test expansion block size */
1298 #define CompactTries 10 	      /* Maximum tries at compacting */
1299 
1300 #define dumpAlloc   0		      /* Dump allocated buffers ? */
1301 #define dumpFree    0		      /* Dump free buffers ? */
1302 
1303 #ifndef Repeatable
1304 extern long time();
1305 #endif
1306 
1307 extern char *malloc();
1308 extern int free _((char *));
1309 
1310 static char *bchain = NULL;	      /* Our private buffer chain */
1311 static char *bp = NULL; 	      /* Our initial buffer pool */
1312 
1313 #include <math.h>
1314 
1315 #ifdef OUR_RAND
1316 
1317 static unsigned long int next = 1;
1318 
1319 /* Return next random integer */
1320 
1321 int rand()
1322 {
1323 	next = next * 1103515245L + 12345;
1324 	return (unsigned int) (next / 65536L) % 32768L;
1325 }
1326 
1327 /* Set seed for random generator */
1328 
1329 void srand(seed)
1330   unsigned int seed;
1331 {
1332 	next = seed;
1333 }
1334 #endif
1335 
1336 /*  STATS  --  Edit statistics returned by bstats() or bstatse().  */
1337 
1338 static void stats(when)
1339   char *when;
1340 {
1341     bufsize cural, totfree, maxfree;
1342     long nget, nfree;
1343 #ifdef BECtl
1344     bufsize pincr;
1345     long totblocks, npget, nprel, ndget, ndrel;
1346 #endif
1347 
1348     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1349     V printf(
1350         "%s: %ld gets, %ld releases.  %ld in use, %ld free, largest = %ld\n",
1351 	when, nget, nfree, (long) cural, (long) totfree, (long) maxfree);
1352 #ifdef BECtl
1353     bstatse(&pincr, &totblocks, &npget, &nprel, &ndget, &ndrel);
1354     V printf(
1355          "  Blocks: size = %ld, %ld (%ld bytes) in use, %ld gets, %ld frees\n",
1356 	 (long)pincr, totblocks, pincr * totblocks, npget, nprel);
1357     V printf("  %ld direct gets, %ld direct frees\n", ndget, ndrel);
1358 #endif /* BECtl */
1359 }
1360 
1361 #ifdef BECtl
1362 static int protect = 0; 	      /* Disable compaction during bgetr() */
1363 
1364 /*  BCOMPACT  --  Compaction call-back function.  */
1365 
1366 static int bcompact(bsize, seq)
1367   bufsize bsize;
1368   int seq;
1369 {
1370 #ifdef CompactTries
1371     char *bc = bchain;
1372     int i = rand() & 0x3;
1373 
1374 #ifdef COMPACTRACE
1375     V printf("Compaction requested.  %ld bytes needed, sequence %d.\n",
1376 	(long) bsize, seq);
1377 #endif
1378 
1379     if (protect || (seq > CompactTries)) {
1380 #ifdef COMPACTRACE
1381         V printf("Compaction gave up.\n");
1382 #endif
1383 	return 0;
1384     }
1385 
1386     /* Based on a random cast, release a random buffer in the list
1387        of allocated buffers. */
1388 
1389     while (i > 0 && bc != NULL) {
1390 	bc = *((char **) bc);
1391 	i--;
1392     }
1393     if (bc != NULL) {
1394 	char *fb;
1395 
1396 	fb = *((char **) bc);
1397 	if (fb != NULL) {
1398 	    *((char **) bc) = *((char **) fb);
1399 	    brel((void *) fb);
1400 	    return 1;
1401 	}
1402     }
1403 
1404 #ifdef COMPACTRACE
1405     V printf("Compaction bailed out.\n");
1406 #endif
1407 #endif /* CompactTries */
1408     return 0;
1409 }
1410 
1411 /*  BEXPAND  --  Expand pool call-back function.  */
1412 
1413 static void *bexpand(size)
1414   bufsize size;
1415 {
1416     void *np = NULL;
1417     bufsize cural, totfree, maxfree;
1418     long nget, nfree;
1419 
1420     /* Don't expand beyond the total allocated size given by PoolSize. */
1421 
1422     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1423 
1424     if (cural < PoolSize) {
1425 	np = (void *) malloc((unsigned) size);
1426     }
1427 #ifdef EXPTRACE
1428     V printf("Expand pool by %ld -- %s.\n", (long) size,
1429         np == NULL ? "failed" : "succeeded");
1430 #endif
1431     return np;
1432 }
1433 
1434 /*  BSHRINK  --  Shrink buffer pool call-back function.  */
1435 
1436 static void bshrink(buf)
1437   void *buf;
1438 {
1439     if (((char *) buf) == bp) {
1440 #ifdef EXPTRACE
1441         V printf("Initial pool released.\n");
1442 #endif
1443 	bp = NULL;
1444     }
1445 #ifdef EXPTRACE
1446     V printf("Shrink pool.\n");
1447 #endif
1448     free((char *) buf);
1449 }
1450 
1451 #endif /* BECtl */
1452 
1453 /*  Restrict buffer requests to those large enough to contain our pointer and
1454     small enough for the CPU architecture.  */
1455 
1456 static bufsize blimit(bs)
1457   bufsize bs;
1458 {
1459     if (bs < sizeof(char *)) {
1460 	bs = sizeof(char *);
1461     }
1462 
1463     /* This is written out in this ugly fashion because the
1464        cool expression in sizeof(int) that auto-configured
1465        to any length int befuddled some compilers. */
1466 
1467     if (sizeof(int) == 2) {
1468 	if (bs > 32767) {
1469 	    bs = 32767;
1470 	}
1471     } else {
1472 	if (bs > 200000) {
1473 	    bs = 200000;
1474 	}
1475     }
1476     return bs;
1477 }
1478 
1479 int main()
1480 {
1481     int i;
1482     double x;
1483 
1484     /* Seed the random number generator.  If Repeatable is defined, we
1485        always use the same seed.  Otherwise, we seed from the clock to
1486        shake things up from run to run. */
1487 
1488 #ifdef Repeatable
1489     V srand(1234);
1490 #else
1491     V srand((int) time((long *) NULL));
1492 #endif
1493 
1494     /*	Compute x such that pow(x, p) ranges between 1 and 4*ExpIncr as
1495 	p ranges from 0 to ExpIncr-1, with a concentration in the lower
1496 	numbers.  */
1497 
1498     x = 4.0 * ExpIncr;
1499     x = log(x);
1500     x = exp(log(4.0 * ExpIncr) / (ExpIncr - 1.0));
1501 
1502 #ifdef BECtl
1503     bectl(bcompact, bexpand, bshrink, (bufsize) ExpIncr);
1504     bp = malloc(ExpIncr);
1505     assert(bp != NULL);
1506     bpool((void *) bp, (bufsize) ExpIncr);
1507 #else
1508     bp = malloc(PoolSize);
1509     assert(bp != NULL);
1510     bpool((void *) bp, (bufsize) PoolSize);
1511 #endif
1512 
1513     stats("Create pool");
1514     V bpoolv((void *) bp);
1515     bpoold((void *) bp, dumpAlloc, dumpFree);
1516 
1517     for (i = 0; i < TestProg; i++) {
1518 	char *cb;
1519 	bufsize bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1520 
1521 	assert(bs <= (((bufsize) 4) * ExpIncr));
1522 	bs = blimit(bs);
1523 	if (rand() & 0x400) {
1524 	    cb = (char *) bgetz(bs);
1525 	} else {
1526 	    cb = (char *) bget(bs);
1527 	}
1528 	if (cb == NULL) {
1529 #ifdef EasyOut
1530 	    break;
1531 #else
1532 	    char *bc = bchain;
1533 
1534 	    if (bc != NULL) {
1535 		char *fb;
1536 
1537 		fb = *((char **) bc);
1538 		if (fb != NULL) {
1539 		    *((char **) bc) = *((char **) fb);
1540 		    brel((void *) fb);
1541 		}
1542 		continue;
1543 	    }
1544 #endif
1545 	}
1546 	*((char **) cb) = (char *) bchain;
1547 	bchain = cb;
1548 
1549 	/* Based on a random cast, release a random buffer in the list
1550 	   of allocated buffers. */
1551 
1552 	if ((rand() & 0x10) == 0) {
1553 	    char *bc = bchain;
1554 	    int i = rand() & 0x3;
1555 
1556 	    while (i > 0 && bc != NULL) {
1557 		bc = *((char **) bc);
1558 		i--;
1559 	    }
1560 	    if (bc != NULL) {
1561 		char *fb;
1562 
1563 		fb = *((char **) bc);
1564 		if (fb != NULL) {
1565 		    *((char **) bc) = *((char **) fb);
1566 		    brel((void *) fb);
1567 		}
1568 	    }
1569 	}
1570 
1571 	/* Based on a random cast, reallocate a random buffer in the list
1572 	   to a random size */
1573 
1574 	if ((rand() & 0x20) == 0) {
1575 	    char *bc = bchain;
1576 	    int i = rand() & 0x3;
1577 
1578 	    while (i > 0 && bc != NULL) {
1579 		bc = *((char **) bc);
1580 		i--;
1581 	    }
1582 	    if (bc != NULL) {
1583 		char *fb;
1584 
1585 		fb = *((char **) bc);
1586 		if (fb != NULL) {
1587 		    char *newb;
1588 
1589 		    bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1590 		    bs = blimit(bs);
1591 #ifdef BECtl
1592 		    protect = 1;      /* Protect against compaction */
1593 #endif
1594 		    newb = (char *) bgetr((void *) fb, bs);
1595 #ifdef BECtl
1596 		    protect = 0;
1597 #endif
1598 		    if (newb != NULL) {
1599 			*((char **) bc) = newb;
1600 		    }
1601 		}
1602 	    }
1603 	}
1604     }
1605     stats("\nAfter allocation");
1606     if (bp != NULL) {
1607 	V bpoolv((void *) bp);
1608 	bpoold((void *) bp, dumpAlloc, dumpFree);
1609     }
1610 
1611     while (bchain != NULL) {
1612 	char *buf = bchain;
1613 
1614 	bchain = *((char **) buf);
1615 	brel((void *) buf);
1616     }
1617     stats("\nAfter release");
1618 #ifndef BECtl
1619     if (bp != NULL) {
1620 	V bpoolv((void *) bp);
1621 	bpoold((void *) bp, dumpAlloc, dumpFree);
1622     }
1623 #endif
1624 
1625     return 0;
1626 }
1627 #endif
1628