1 /* 2 3 B G E T 4 5 Buffer allocator 6 7 Designed and implemented in April of 1972 by John Walker, based on the 8 Case Algol OPRO$ algorithm implemented in 1966. 9 10 Reimplemented in 1975 by John Walker for the Interdata 70. 11 Reimplemented in 1977 by John Walker for the Marinchip 9900. 12 Reimplemented in 1982 by Duff Kurland for the Intel 8080. 13 14 Portable C version implemented in September of 1990 by an older, wiser 15 instance of the original implementor. 16 17 Souped up and/or weighed down slightly shortly thereafter by Greg 18 Lutz. 19 20 AMIX edition, including the new compaction call-back option, prepared 21 by John Walker in July of 1992. 22 23 Bug in built-in test program fixed, ANSI compiler warnings eradicated, 24 buffer pool validator implemented, and guaranteed repeatable test 25 added by John Walker in October of 1995. 26 27 This program is in the public domain. 28 29 1. This is the book of the generations of Adam. In the day that God 30 created man, in the likeness of God made he him; 31 2. Male and female created he them; and blessed them, and called 32 their name Adam, in the day when they were created. 33 3. And Adam lived an hundred and thirty years, and begat a son in 34 his own likeness, and after his image; and called his name Seth: 35 4. And the days of Adam after he had begotten Seth were eight 36 hundred years: and he begat sons and daughters: 37 5. And all the days that Adam lived were nine hundred and thirty 38 years: and he died. 39 6. And Seth lived an hundred and five years, and begat Enos: 40 7. And Seth lived after he begat Enos eight hundred and seven years, 41 and begat sons and daughters: 42 8. And all the days of Seth were nine hundred and twelve years: and 43 he died. 44 9. And Enos lived ninety years, and begat Cainan: 45 10. And Enos lived after he begat Cainan eight hundred and fifteen 46 years, and begat sons and daughters: 47 11. And all the days of Enos were nine hundred and five years: and 48 he died. 49 12. And Cainan lived seventy years and begat Mahalaleel: 50 13. And Cainan lived after he begat Mahalaleel eight hundred and 51 forty years, and begat sons and daughters: 52 14. And all the days of Cainan were nine hundred and ten years: and 53 he died. 54 15. And Mahalaleel lived sixty and five years, and begat Jared: 55 16. And Mahalaleel lived after he begat Jared eight hundred and 56 thirty years, and begat sons and daughters: 57 17. And all the days of Mahalaleel were eight hundred ninety and 58 five years: and he died. 59 18. And Jared lived an hundred sixty and two years, and he begat 60 Enoch: 61 19. And Jared lived after he begat Enoch eight hundred years, and 62 begat sons and daughters: 63 20. And all the days of Jared were nine hundred sixty and two years: 64 and he died. 65 21. And Enoch lived sixty and five years, and begat Methuselah: 66 22. And Enoch walked with God after he begat Methuselah three 67 hundred years, and begat sons and daughters: 68 23. And all the days of Enoch were three hundred sixty and five 69 years: 70 24. And Enoch walked with God: and he was not; for God took him. 71 25. And Methuselah lived an hundred eighty and seven years, and 72 begat Lamech. 73 26. And Methuselah lived after he begat Lamech seven hundred eighty 74 and two years, and begat sons and daughters: 75 27. And all the days of Methuselah were nine hundred sixty and nine 76 years: and he died. 77 28. And Lamech lived an hundred eighty and two years, and begat a 78 son: 79 29. And he called his name Noah, saying, This same shall comfort us 80 concerning our work and toil of our hands, because of the ground 81 which the LORD hath cursed. 82 30. And Lamech lived after he begat Noah five hundred ninety and 83 five years, and begat sons and daughters: 84 31. And all the days of Lamech were seven hundred seventy and seven 85 years: and he died. 86 32. And Noah was five hundred years old: and Noah begat Shem, Ham, 87 and Japheth. 88 89 And buffers begat buffers, and links begat links, and buffer pools 90 begat links to chains of buffer pools containing buffers, and lo the 91 buffers and links and pools of buffers and pools of links to chains of 92 pools of buffers were fruitful and they multiplied and the Operating 93 System looked down upon them and said that it was Good. 94 95 96 INTRODUCTION 97 ============ 98 99 BGET is a comprehensive memory allocation package which is easily 100 configured to the needs of an application. BGET is efficient in 101 both the time needed to allocate and release buffers and in the 102 memory overhead required for buffer pool management. It 103 automatically consolidates contiguous space to minimise 104 fragmentation. BGET is configured by compile-time definitions, 105 Major options include: 106 107 * A built-in test program to exercise BGET and 108 demonstrate how the various functions are used. 109 110 * Allocation by either the "first fit" or "best fit" 111 method. 112 113 * Wiping buffers at release time to catch code which 114 references previously released storage. 115 116 * Built-in routines to dump individual buffers or the 117 entire buffer pool. 118 119 * Retrieval of allocation and pool size statistics. 120 121 * Quantisation of buffer sizes to a power of two to 122 satisfy hardware alignment constraints. 123 124 * Automatic pool compaction, growth, and shrinkage by 125 means of call-backs to user defined functions. 126 127 Applications of BGET can range from storage management in 128 ROM-based embedded programs to providing the framework upon which 129 a multitasking system incorporating garbage collection is 130 constructed. BGET incorporates extensive internal consistency 131 checking using the <assert.h> mechanism; all these checks can be 132 turned off by compiling with NDEBUG defined, yielding a version of 133 BGET with minimal size and maximum speed. 134 135 The basic algorithm underlying BGET has withstood the test of 136 time; more than 25 years have passed since the first 137 implementation of this code. And yet, it is substantially more 138 efficient than the native allocation schemes of many operating 139 systems: the Macintosh and Microsoft Windows to name two, on which 140 programs have obtained substantial speed-ups by layering BGET as 141 an application level memory manager atop the underlying system's. 142 143 BGET has been implemented on the largest mainframes and the lowest 144 of microprocessors. It has served as the core for multitasking 145 operating systems, multi-thread applications, embedded software in 146 data network switching processors, and a host of C programs. And 147 while it has accreted flexibility and additional options over the 148 years, it remains fast, memory efficient, portable, and easy to 149 integrate into your program. 150 151 152 BGET IMPLEMENTATION ASSUMPTIONS 153 =============================== 154 155 BGET is written in as portable a dialect of C as possible. The 156 only fundamental assumption about the underlying hardware 157 architecture is that memory is allocated is a linear array which 158 can be addressed as a vector of C "char" objects. On segmented 159 address space architectures, this generally means that BGET should 160 be used to allocate storage within a single segment (although some 161 compilers simulate linear address spaces on segmented 162 architectures). On segmented architectures, then, BGET buffer 163 pools may not be larger than a segment, but since BGET allows any 164 number of separate buffer pools, there is no limit on the total 165 storage which can be managed, only on the largest individual 166 object which can be allocated. Machines with a linear address 167 architecture, such as the VAX, 680x0, Sparc, MIPS, or the Intel 168 80386 and above in native mode, may use BGET without restriction. 169 170 171 GETTING STARTED WITH BGET 172 ========================= 173 174 Although BGET can be configured in a multitude of fashions, there 175 are three basic ways of working with BGET. The functions 176 mentioned below are documented in the following section. Please 177 excuse the forward references which are made in the interest of 178 providing a roadmap to guide you to the BGET functions you're 179 likely to need. 180 181 Embedded Applications 182 --------------------- 183 184 Embedded applications typically have a fixed area of memory 185 dedicated to buffer allocation (often in a separate RAM address 186 space distinct from the ROM that contains the executable code). 187 To use BGET in such an environment, simply call bpool() with the 188 start address and length of the buffer pool area in RAM, then 189 allocate buffers with bget() and release them with brel(). 190 Embedded applications with very limited RAM but abundant CPU speed 191 may benefit by configuring BGET for BestFit allocation (which is 192 usually not worth it in other environments). 193 194 Malloc() Emulation 195 ------------------ 196 197 If the C library malloc() function is too slow, not present in 198 your development environment (for example, an a native Windows or 199 Macintosh program), or otherwise unsuitable, you can replace it 200 with BGET. Initially define a buffer pool of an appropriate size 201 with bpool()--usually obtained by making a call to the operating 202 system's low-level memory allocator. Then allocate buffers with 203 bget(), bgetz(), and bgetr() (the last two permit the allocation 204 of buffers initialised to zero and [inefficient] re-allocation of 205 existing buffers for compatibility with C library functions). 206 Release buffers by calling brel(). If a buffer allocation request 207 fails, obtain more storage from the underlying operating system, 208 add it to the buffer pool by another call to bpool(), and continue 209 execution. 210 211 Automatic Storage Management 212 ---------------------------- 213 214 You can use BGET as your application's native memory manager and 215 implement automatic storage pool expansion, contraction, and 216 optionally application-specific memory compaction by compiling 217 BGET with the BECtl variable defined, then calling bectl() and 218 supplying functions for storage compaction, acquisition, and 219 release, as well as a standard pool expansion increment. All of 220 these functions are optional (although it doesn't make much sense 221 to provide a release function without an acquisition function, 222 does it?). Once the call-back functions have been defined with 223 bectl(), you simply use bget() and brel() to allocate and release 224 storage as before. You can supply an initial buffer pool with 225 bpool() or rely on automatic allocation to acquire the entire 226 pool. When a call on bget() cannot be satisfied, BGET first 227 checks if a compaction function has been supplied. If so, it is 228 called (with the space required to satisfy the allocation request 229 and a sequence number to allow the compaction routine to be called 230 successively without looping). If the compaction function is able 231 to free any storage (it needn't know whether the storage it freed 232 was adequate) it should return a nonzero value, whereupon BGET 233 will retry the allocation request and, if it fails again, call the 234 compaction function again with the next-higher sequence number. 235 236 If the compaction function returns zero, indicating failure to 237 free space, or no compaction function is defined, BGET next tests 238 whether a non-NULL allocation function was supplied to bectl(). 239 If so, that function is called with an argument indicating how 240 many bytes of additional space are required. This will be the 241 standard pool expansion increment supplied in the call to bectl() 242 unless the original bget() call requested a buffer larger than 243 this; buffers larger than the standard pool block can be managed 244 "off the books" by BGET in this mode. If the allocation function 245 succeeds in obtaining the storage, it returns a pointer to the new 246 block and BGET expands the buffer pool; if it fails, the 247 allocation request fails and returns NULL to the caller. If a 248 non-NULL release function is supplied, expansion blocks which 249 become totally empty are released to the global free pool by 250 passing their addresses to the release function. 251 252 Equipped with appropriate allocation, release, and compaction 253 functions, BGET can be used as part of very sophisticated memory 254 management strategies, including garbage collection. (Note, 255 however, that BGET is *not* a garbage collector by itself, and 256 that developing such a system requires much additional logic and 257 careful design of the application's memory allocation strategy.) 258 259 260 BGET FUNCTION DESCRIPTIONS 261 ========================== 262 263 Functions implemented in this file (some are enabled by certain of 264 the optional settings below): 265 266 void bpool(void *buffer, bufsize len); 267 268 Create a buffer pool of <len> bytes, using the storage starting at 269 <buffer>. You can call bpool() subsequently to contribute 270 additional storage to the overall buffer pool. 271 272 void *bget(bufsize size); 273 274 Allocate a buffer of <size> bytes. The address of the buffer is 275 returned, or NULL if insufficient memory was available to allocate 276 the buffer. 277 278 void *bgetz(bufsize size); 279 280 Allocate a buffer of <size> bytes and clear it to all zeroes. The 281 address of the buffer is returned, or NULL if insufficient memory 282 was available to allocate the buffer. 283 284 void *bgetr(void *buffer, bufsize newsize); 285 286 Reallocate a buffer previously allocated by bget(), changing its 287 size to <newsize> and preserving all existing data. NULL is 288 returned if insufficient memory is available to reallocate the 289 buffer, in which case the original buffer remains intact. 290 291 void brel(void *buf); 292 293 Return the buffer <buf>, previously allocated by bget(), to the 294 free space pool. 295 296 void bectl(int (*compact)(bufsize sizereq, int sequence), 297 void *(*acquire)(bufsize size), 298 void (*release)(void *buf), 299 bufsize pool_incr); 300 301 Expansion control: specify functions through which the package may 302 compact storage (or take other appropriate action) when an 303 allocation request fails, and optionally automatically acquire 304 storage for expansion blocks when necessary, and release such 305 blocks when they become empty. If <compact> is non-NULL, whenever 306 a buffer allocation request fails, the <compact> function will be 307 called with arguments specifying the number of bytes (total buffer 308 size, including header overhead) required to satisfy the 309 allocation request, and a sequence number indicating the number of 310 consecutive calls on <compact> attempting to satisfy this 311 allocation request. The sequence number is 1 for the first call 312 on <compact> for a given allocation request, and increments on 313 subsequent calls, permitting the <compact> function to take 314 increasingly dire measures in an attempt to free up storage. If 315 the <compact> function returns a nonzero value, the allocation 316 attempt is re-tried. If <compact> returns 0 (as it must if it 317 isn't able to release any space or add storage to the buffer 318 pool), the allocation request fails, which can trigger automatic 319 pool expansion if the <acquire> argument is non-NULL. At the time 320 the <compact> function is called, the state of the buffer 321 allocator is identical to that at the moment the allocation 322 request was made; consequently, the <compact> function may call 323 brel(), bpool(), bstats(), and/or directly manipulate the buffer 324 pool in any manner which would be valid were the application in 325 control. This does not, however, relieve the <compact> function 326 of the need to ensure that whatever actions it takes do not change 327 things underneath the application that made the allocation 328 request. For example, a <compact> function that released a buffer 329 in the process of being reallocated with bgetr() would lead to 330 disaster. Implementing a safe and effective <compact> mechanism 331 requires careful design of an application's memory architecture, 332 and cannot generally be easily retrofitted into existing code. 333 334 If <acquire> is non-NULL, that function will be called whenever an 335 allocation request fails. If the <acquire> function succeeds in 336 allocating the requested space and returns a pointer to the new 337 area, allocation will proceed using the expanded buffer pool. If 338 <acquire> cannot obtain the requested space, it should return NULL 339 and the entire allocation process will fail. <pool_incr> 340 specifies the normal expansion block size. Providing an <acquire> 341 function will cause subsequent bget() requests for buffers too 342 large to be managed in the linked-block scheme (in other words, 343 larger than <pool_incr> minus the buffer overhead) to be satisfied 344 directly by calls to the <acquire> function. Automatic release of 345 empty pool blocks will occur only if all pool blocks in the system 346 are the size given by <pool_incr>. 347 348 void bstats(bufsize *curalloc, bufsize *totfree, 349 bufsize *maxfree, long *nget, long *nrel); 350 351 The amount of space currently allocated is stored into the 352 variable pointed to by <curalloc>. The total free space (sum of 353 all free blocks in the pool) is stored into the variable pointed 354 to by <totfree>, and the size of the largest single block in the 355 free space pool is stored into the variable pointed to by 356 <maxfree>. The variables pointed to by <nget> and <nrel> are 357 filled, respectively, with the number of successful (non-NULL 358 return) bget() calls and the number of brel() calls. 359 360 void bstatse(bufsize *pool_incr, long *npool, 361 long *npget, long *nprel, 362 long *ndget, long *ndrel); 363 364 Extended statistics: The expansion block size will be stored into 365 the variable pointed to by <pool_incr>, or the negative thereof if 366 automatic expansion block releases are disabled. The number of 367 currently active pool blocks will be stored into the variable 368 pointed to by <npool>. The variables pointed to by <npget> and 369 <nprel> will be filled with, respectively, the number of expansion 370 block acquisitions and releases which have occurred. The 371 variables pointed to by <ndget> and <ndrel> will be filled with 372 the number of bget() and brel() calls, respectively, managed 373 through blocks directly allocated by the acquisition and release 374 functions. 375 376 void bufdump(void *buf); 377 378 The buffer pointed to by <buf> is dumped on standard output. 379 380 void bpoold(void *pool, int dumpalloc, int dumpfree); 381 382 All buffers in the buffer pool <pool>, previously initialised by a 383 call on bpool(), are listed in ascending memory address order. If 384 <dumpalloc> is nonzero, the contents of allocated buffers are 385 dumped; if <dumpfree> is nonzero, the contents of free blocks are 386 dumped. 387 388 int bpoolv(void *pool); 389 390 The named buffer pool, previously initialised by a call on 391 bpool(), is validated for bad pointers, overwritten data, etc. If 392 compiled with NDEBUG not defined, any error generates an assertion 393 failure. Otherwise 1 is returned if the pool is valid, 0 if an 394 error is found. 395 396 397 BGET CONFIGURATION 398 ================== 399 */ 400 401 /* 402 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED 403 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 404 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 405 * IN NO EVENT SHALL ST BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 406 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 407 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 408 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 409 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 410 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 411 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 412 */ 413 414 /* #define BGET_ENABLE_ALL_OPTIONS */ 415 #ifdef BGET_ENABLE_OPTION 416 #define TestProg 20000 /* Generate built-in test program 417 if defined. The value specifies 418 how many buffer allocation attempts 419 the test program should make. */ 420 421 #define SizeQuant 4 /* Buffer allocation size quantum: 422 all buffers allocated are a 423 multiple of this size. This 424 MUST be a power of two. */ 425 426 #define BufDump 1 /* Define this symbol to enable the 427 bpoold() function which dumps the 428 buffers in a buffer pool. */ 429 430 #define BufValid 1 /* Define this symbol to enable the 431 bpoolv() function for validating 432 a buffer pool. */ 433 434 #define DumpData 1 /* Define this symbol to enable the 435 bufdump() function which allows 436 dumping the contents of an allocated 437 or free buffer. */ 438 439 #define BufStats 1 /* Define this symbol to enable the 440 bstats() function which calculates 441 the total free space in the buffer 442 pool, the largest available 443 buffer, and the total space 444 currently allocated. */ 445 446 #define FreeWipe 1 /* Wipe free buffers to a guaranteed 447 pattern of garbage to trip up 448 miscreants who attempt to use 449 pointers into released buffers. */ 450 451 #define BestFit 1 /* Use a best fit algorithm when 452 searching for space for an 453 allocation request. This uses 454 memory more efficiently, but 455 allocation will be much slower. */ 456 457 #define BECtl 1 /* Define this symbol to enable the 458 bectl() function for automatic 459 pool space control. */ 460 #endif 461 462 #include <stdio.h> 463 #include <stdbool.h> 464 465 #ifdef lint 466 #define NDEBUG /* Exits in asserts confuse lint */ 467 /* LINTLIBRARY */ /* Don't complain about def, no ref */ 468 extern char *sprintf(); /* Sun includes don't define sprintf */ 469 #endif 470 471 #include <assert.h> 472 #include <memory.h> 473 474 #ifdef BufDump /* BufDump implies DumpData */ 475 #ifndef DumpData 476 #define DumpData 1 477 #endif 478 #endif 479 480 #ifdef DumpData 481 #include <ctype.h> 482 #endif 483 484 #ifdef __KERNEL__ 485 #ifdef CFG_CORE_BGET_BESTFIT 486 #define BestFit 1 487 #endif 488 #endif 489 490 /* Declare the interface, including the requested buffer size type, 491 bufsize. */ 492 493 #include "bget.h" 494 495 #define MemSize int /* Type for size arguments to memxxx() 496 functions such as memcmp(). */ 497 498 /* Queue links */ 499 500 struct qlinks { 501 struct bfhead *flink; /* Forward link */ 502 struct bfhead *blink; /* Backward link */ 503 }; 504 505 /* Header in allocated and free buffers */ 506 507 struct bhead { 508 bufsize prevfree; /* Relative link back to previous 509 free buffer in memory or 0 if 510 previous buffer is allocated. */ 511 bufsize bsize; /* Buffer size: positive if free, 512 negative if allocated. */ 513 }; 514 #define BH(p) ((struct bhead *) (p)) 515 516 /* Header in directly allocated buffers (by acqfcn) */ 517 518 struct bdhead { 519 bufsize tsize; /* Total size, including overhead */ 520 bufsize offs; /* Offset from allocated buffer */ 521 struct bhead bh; /* Common header */ 522 }; 523 #define BDH(p) ((struct bdhead *) (p)) 524 525 /* Header in free buffers */ 526 527 struct bfhead { 528 struct bhead bh; /* Common allocated/free header */ 529 struct qlinks ql; /* Links on free list */ 530 }; 531 #define BFH(p) ((struct bfhead *) (p)) 532 533 /* Poolset definition */ 534 struct bpoolset { 535 struct bfhead freelist; 536 #ifdef BufStats 537 bufsize totalloc; /* Total space currently allocated */ 538 long numget; /* Number of bget() calls */ 539 long numrel; /* Number of brel() calls */ 540 #ifdef BECtl 541 long numpblk; /* Number of pool blocks */ 542 long numpget; /* Number of block gets and rels */ 543 long numprel; 544 long numdget; /* Number of direct gets and rels */ 545 long numdrel; 546 #endif /* BECtl */ 547 #endif /* BufStats */ 548 549 #ifdef BECtl 550 /* Automatic expansion block management functions */ 551 552 int (*compfcn) _((bufsize sizereq, int sequence)); 553 void *(*acqfcn) _((bufsize size)); 554 void (*relfcn) _((void *buf)); 555 556 bufsize exp_incr; /* Expansion block size */ 557 bufsize pool_len; /* 0: no bpool calls have been made 558 -1: not all pool blocks are 559 the same size 560 >0: (common) block size for all 561 bpool calls made so far 562 */ 563 #endif 564 }; 565 566 /* Minimum allocation quantum: */ 567 568 #define QLSize (sizeof(struct qlinks)) 569 #define SizeQ ((SizeQuant > QLSize) ? SizeQuant : QLSize) 570 571 #define V (void) /* To denote unwanted returned values */ 572 573 /* End sentinel: value placed in bsize field of dummy block delimiting 574 end of pool block. The most negative number which will fit in a 575 bufsize, defined in a way that the compiler will accept. */ 576 577 #define ESent ((bufsize) (-(((1L << (sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2)) 578 579 static bufsize buf_get_pos(struct bfhead *bf, bufsize align, bufsize size) 580 { 581 unsigned long buf = 0; 582 bufsize pos = 0; 583 584 if (bf->bh.bsize < size) 585 return -1; 586 587 /* 588 * plus sizeof(struct bhead) since buf will follow just after a struct 589 * bhead. 590 */ 591 buf = (unsigned long)bf + bf->bh.bsize - size + sizeof(struct bhead); 592 buf &= ~(align - 1); 593 pos = buf - (unsigned long)bf - sizeof(struct bhead); 594 595 if (pos == 0) /* exact match */ 596 return pos; 597 if (pos >= SizeQ + sizeof(struct bhead)) /* room for an empty buffer */ 598 return pos; 599 600 return -1; 601 } 602 603 /* BGET -- Allocate a buffer. */ 604 605 void *bget(requested_align, requested_size, poolset) 606 bufsize requested_align; 607 bufsize requested_size; 608 struct bpoolset *poolset; 609 { 610 bufsize align = requested_align; 611 bufsize size = requested_size; 612 bufsize pos; 613 struct bfhead *b; 614 #ifdef BestFit 615 struct bfhead *best; 616 #endif 617 void *buf; 618 #ifdef BECtl 619 int compactseq = 0; 620 #endif 621 622 assert(size > 0); 623 if (align < 0 || (align > 0 && !IS_POWER_OF_TWO((unsigned long)align))) 624 return NULL; 625 626 if (size < SizeQ) { /* Need at least room for the */ 627 size = SizeQ; /* queue links. */ 628 } 629 if (align < SizeQ) 630 align = SizeQ; 631 #ifdef SizeQuant 632 #if SizeQuant > 1 633 if (ADD_OVERFLOW(size, SizeQuant - 1, &size)) 634 return NULL; 635 636 size = ROUNDDOWN(size, SizeQuant); 637 #endif 638 #endif 639 640 /* Add overhead in allocated buffer to size required. */ 641 if (ADD_OVERFLOW(size, sizeof(struct bhead), &size)) 642 return NULL; 643 644 #ifdef BECtl 645 /* If a compact function was provided in the call to bectl(), wrap 646 a loop around the allocation process to allow compaction to 647 intervene in case we don't find a suitable buffer in the chain. */ 648 649 while (1) { 650 #endif 651 b = poolset->freelist.ql.flink; 652 #ifdef BestFit 653 best = &poolset->freelist; 654 #endif 655 656 657 /* Scan the free list searching for the first buffer big enough 658 to hold the requested size buffer. */ 659 660 #ifdef BestFit 661 while (b != &poolset->freelist) { 662 assert(b->bh.prevfree == 0); 663 pos = buf_get_pos(b, align, size); 664 if (pos >= 0) { 665 if ((best == &poolset->freelist) || 666 (b->bh.bsize < best->bh.bsize)) { 667 best = b; 668 } 669 } 670 b = b->ql.flink; /* Link to next buffer */ 671 } 672 b = best; 673 #endif /* BestFit */ 674 675 while (b != &poolset->freelist) { 676 pos = buf_get_pos(b, align, size); 677 if (pos >= 0) { 678 struct bhead *b_alloc = BH((char *)b + pos); 679 struct bhead *b_next = BH((char *)b + b->bh.bsize); 680 681 assert(b_next->prevfree == b->bh.bsize); 682 683 /* 684 * Zero the back pointer in the next buffer in memory 685 * to indicate that this buffer is allocated. 686 */ 687 b_next->prevfree = 0; 688 689 assert(b->ql.blink->ql.flink == b); 690 assert(b->ql.flink->ql.blink == b); 691 692 if (pos == 0) { 693 /* 694 * Need to allocate from the beginning of this free block. 695 * Unlink the block and mark it as allocated. 696 */ 697 b->ql.blink->ql.flink = b->ql.flink; 698 b->ql.flink->ql.blink = b->ql.blink; 699 700 /* Negate size to mark buffer allocated. */ 701 b->bh.bsize = -b->bh.bsize; 702 } else { 703 /* 704 * Carve out the memory allocation from the end of this 705 * free block. Negative size to mark buffer allocated. 706 */ 707 b_alloc->bsize = -(b->bh.bsize - pos); 708 b_alloc->prevfree = pos; 709 b->bh.bsize = pos; 710 } 711 712 assert(b_alloc->bsize < 0); 713 /* 714 * At this point is b_alloc pointing to the allocated 715 * buffer and b_next at the buffer following. b might be a 716 * free block or a used block now. 717 */ 718 if (-b_alloc->bsize - size > SizeQ + sizeof(struct bhead)) { 719 /* 720 * b_alloc has too much unused memory at the 721 * end we need to split the block and register that 722 * last part as free. 723 */ 724 b = BFH((char *)b_alloc + size); 725 b->bh.bsize = -b_alloc->bsize - size; 726 b->bh.prevfree = 0; 727 b_alloc->bsize += b->bh.bsize; 728 729 assert(poolset->freelist.ql.blink->ql.flink == 730 &poolset->freelist); 731 assert(poolset->freelist.ql.flink->ql.blink == 732 &poolset->freelist); 733 b->ql.flink = &poolset->freelist; 734 b->ql.blink = poolset->freelist.ql.blink; 735 poolset->freelist.ql.blink = b; 736 b->ql.blink->ql.flink = b; 737 738 assert(BH((char *)b + b->bh.bsize) == b_next); 739 b_next->prevfree = b->bh.bsize; 740 } 741 742 #ifdef BufStats 743 poolset->totalloc -= b_alloc->bsize; 744 poolset->numget++; /* Increment number of bget() calls */ 745 #endif 746 buf = (char *)b_alloc + sizeof(struct bhead); 747 tag_asan_alloced(buf, size); 748 return buf; 749 } 750 b = b->ql.flink; /* Link to next buffer */ 751 } 752 #ifdef BECtl 753 754 /* We failed to find a buffer. If there's a compact function 755 defined, notify it of the size requested. If it returns 756 TRUE, try the allocation again. */ 757 758 if ((poolset->compfcn == NULL) || 759 (!(poolset->compfcn)(size, ++compactseq))) { 760 break; 761 } 762 } 763 764 /* No buffer available with requested size free. */ 765 766 /* Don't give up yet -- look in the reserve supply. */ 767 768 if (poolset->acqfcn != NULL) { 769 if (size > exp_incr - sizeof(struct bfhead) - align) { 770 771 /* Request is too large to fit in a single expansion 772 block. Try to satisy it by a direct buffer acquisition. */ 773 char *p; 774 775 size += sizeof(struct bdhead) - sizeof(struct bhead); 776 if (align > QLSize) 777 size += align; 778 p = poolset->acqfcn(size); 779 if (p != NULL) { 780 struct bdhead *bdh; 781 782 if (align <= QLSize) { 783 bdh = BDH(p); 784 buf = bdh + 1; 785 } else { 786 buf = (void *)(((unsigned long)p + sizeof(*bdh) + align) & 787 ~(align - 1)); 788 bdh = BDH((char *)buf - sizeof(*bdh)); 789 } 790 791 /* Mark the buffer special by setting the size field 792 of its header to zero. */ 793 bdh->bh.bsize = 0; 794 bdh->bh.prevfree = 0; 795 bdh->tsize = size; 796 bdh->offs = (unsigned long)bdh - (unsigned long)p; 797 #ifdef BufStats 798 poolset->totalloc += size; 799 poolset->numget++; /* Increment number of bget() calls */ 800 poolset->numdget++; /* Direct bget() call count */ 801 #endif 802 buf = (void *) (bdh + 1); 803 tag_asan_alloced(buf, size); 804 return buf; 805 } 806 807 } else { 808 809 /* Try to obtain a new expansion block */ 810 811 void *newpool; 812 813 if ((newpool = poolset->acqfcn((bufsize) exp_incr)) != NULL) { 814 bpool(newpool, exp_incr, poolset); 815 buf = bget(align, requested_size, pool); /* This can't, I say, can't 816 get into a loop. */ 817 return buf; 818 } 819 } 820 } 821 822 /* Still no buffer available */ 823 824 #endif /* BECtl */ 825 826 return NULL; 827 } 828 829 /* BGETZ -- Allocate a buffer and clear its contents to zero. We clear 830 the entire contents of the buffer to zero, not just the 831 region requested by the caller. */ 832 833 void *bgetz(align, size, poolset) 834 bufsize align; 835 bufsize size; 836 struct bpoolset *poolset; 837 { 838 char *buf = (char *) bget(align, size, poolset); 839 840 if (buf != NULL) { 841 struct bhead *b; 842 bufsize rsize; 843 844 b = BH(buf - sizeof(struct bhead)); 845 rsize = -(b->bsize); 846 if (rsize == 0) { 847 struct bdhead *bd; 848 849 bd = BDH(buf - sizeof(struct bdhead)); 850 rsize = bd->tsize - sizeof(struct bdhead) - bd->offs; 851 } else { 852 rsize -= sizeof(struct bhead); 853 } 854 assert(rsize >= size); 855 V memset_unchecked(buf, 0, (MemSize) rsize); 856 } 857 return ((void *) buf); 858 } 859 860 /* BGETR -- Reallocate a buffer. This is a minimal implementation, 861 simply in terms of brel() and bget(). It could be 862 enhanced to allow the buffer to grow into adjacent free 863 blocks and to avoid moving data unnecessarily. */ 864 865 void *bgetr(buf, align, size, poolset) 866 void *buf; 867 bufsize align; 868 bufsize size; 869 struct bpoolset *poolset; 870 { 871 void *nbuf; 872 bufsize osize; /* Old size of buffer */ 873 struct bhead *b; 874 875 if ((nbuf = bget(align, size, poolset)) == NULL) { /* Acquire new buffer */ 876 return NULL; 877 } 878 if (buf == NULL) { 879 return nbuf; 880 } 881 b = BH(((char *) buf) - sizeof(struct bhead)); 882 osize = -b->bsize; 883 #ifdef BECtl 884 if (osize == 0) { 885 /* Buffer acquired directly through acqfcn. */ 886 struct bdhead *bd; 887 888 bd = BDH(((char *) buf) - sizeof(struct bdhead)); 889 osize = bd->tsize - sizeof(struct bdhead) - bd->offs; 890 } else 891 #endif 892 osize -= sizeof(struct bhead); 893 assert(osize > 0); 894 V memcpy((char *) nbuf, (char *) buf, /* Copy the data */ 895 (MemSize) ((size < osize) ? size : osize)); 896 #ifndef __KERNEL__ 897 /* User space reallocations are always zeroed */ 898 if (size > osize) 899 V memset((char *) nbuf + osize, 0, size - osize); 900 #endif 901 brel(buf, poolset, false /* !wipe */); 902 return nbuf; 903 } 904 905 /* BREL -- Release a buffer. */ 906 907 void brel(buf, poolset, wipe) 908 void *buf; 909 struct bpoolset *poolset; 910 int wipe; 911 { 912 struct bfhead *b, *bn; 913 bufsize bs; 914 915 b = BFH(((char *) buf) - sizeof(struct bhead)); 916 #ifdef BufStats 917 poolset->numrel++; /* Increment number of brel() calls */ 918 #endif 919 assert(buf != NULL); 920 921 #ifdef FreeWipe 922 wipe = true; 923 #endif 924 #ifdef BECtl 925 if (b->bh.bsize == 0) { /* Directly-acquired buffer? */ 926 struct bdhead *bdh; 927 928 bdh = BDH(((char *) buf) - sizeof(struct bdhead)); 929 assert(b->bh.prevfree == 0); 930 #ifdef BufStats 931 poolset->totalloc -= bdh->tsize; 932 assert(poolset->totalloc >= 0); 933 poolset->numdrel++; /* Number of direct releases */ 934 #endif /* BufStats */ 935 if (wipe) { 936 V memset_unchecked((char *) buf, 0x55, 937 (MemSize) (bdh->tsize - 938 sizeof(struct bdhead))); 939 } 940 bs = bdh->tsize - sizeof(struct bdhead); 941 assert(poolset->relfcn != NULL); 942 poolset->relfcn((char *)buf - sizeof(struct bdhead) - bdh->offs); /* Release it directly. */ 943 tag_asan_free(buf, bs); 944 return; 945 } 946 #endif /* BECtl */ 947 948 /* Buffer size must be negative, indicating that the buffer is 949 allocated. */ 950 951 if (b->bh.bsize >= 0) { 952 bn = NULL; 953 } 954 assert(b->bh.bsize < 0); 955 bs = -b->bh.bsize; 956 957 /* Back pointer in next buffer must be zero, indicating the 958 same thing: */ 959 960 assert(BH((char *) b - b->bh.bsize)->prevfree == 0); 961 962 #ifdef BufStats 963 poolset->totalloc += b->bh.bsize; 964 assert(poolset->totalloc >= 0); 965 #endif 966 967 /* If the back link is nonzero, the previous buffer is free. */ 968 969 if (b->bh.prevfree != 0) { 970 971 /* The previous buffer is free. Consolidate this buffer with it 972 by adding the length of this buffer to the previous free 973 buffer. Note that we subtract the size in the buffer being 974 released, since it's negative to indicate that the buffer is 975 allocated. */ 976 977 register bufsize size = b->bh.bsize; 978 979 /* Make the previous buffer the one we're working on. */ 980 assert(BH((char *) b - b->bh.prevfree)->bsize == b->bh.prevfree); 981 b = BFH(((char *) b) - b->bh.prevfree); 982 b->bh.bsize -= size; 983 } else { 984 985 /* The previous buffer isn't allocated. Insert this buffer 986 on the free list as an isolated free block. */ 987 988 assert(poolset->freelist.ql.blink->ql.flink == &poolset->freelist); 989 assert(poolset->freelist.ql.flink->ql.blink == &poolset->freelist); 990 b->ql.flink = &poolset->freelist; 991 b->ql.blink = poolset->freelist.ql.blink; 992 poolset->freelist.ql.blink = b; 993 b->ql.blink->ql.flink = b; 994 b->bh.bsize = -b->bh.bsize; 995 } 996 997 /* Now we look at the next buffer in memory, located by advancing from 998 the start of this buffer by its size, to see if that buffer is 999 free. If it is, we combine this buffer with the next one in 1000 memory, dechaining the second buffer from the free list. */ 1001 1002 bn = BFH(((char *) b) + b->bh.bsize); 1003 if (bn->bh.bsize > 0) { 1004 1005 /* The buffer is free. Remove it from the free list and add 1006 its size to that of our buffer. */ 1007 1008 assert(BH((char *) bn + bn->bh.bsize)->prevfree == bn->bh.bsize); 1009 assert(bn->ql.blink->ql.flink == bn); 1010 assert(bn->ql.flink->ql.blink == bn); 1011 bn->ql.blink->ql.flink = bn->ql.flink; 1012 bn->ql.flink->ql.blink = bn->ql.blink; 1013 b->bh.bsize += bn->bh.bsize; 1014 1015 /* Finally, advance to the buffer that follows the newly 1016 consolidated free block. We must set its backpointer to the 1017 head of the consolidated free block. We know the next block 1018 must be an allocated block because the process of recombination 1019 guarantees that two free blocks will never be contiguous in 1020 memory. */ 1021 1022 bn = BFH(((char *) b) + b->bh.bsize); 1023 } 1024 if (wipe) { 1025 V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55, 1026 (MemSize) (b->bh.bsize - sizeof(struct bfhead))); 1027 } 1028 assert(bn->bh.bsize < 0); 1029 1030 /* The next buffer is allocated. Set the backpointer in it to point 1031 to this buffer; the previous free buffer in memory. */ 1032 1033 bn->bh.prevfree = b->bh.bsize; 1034 1035 #ifdef BECtl 1036 1037 /* If a block-release function is defined, and this free buffer 1038 constitutes the entire block, release it. Note that pool_len 1039 is defined in such a way that the test will fail unless all 1040 pool blocks are the same size. */ 1041 1042 if (poolset->relfcn != NULL && 1043 ((bufsize) b->bh.bsize) == (pool_len - sizeof(struct bhead))) { 1044 1045 assert(b->bh.prevfree == 0); 1046 assert(BH((char *) b + b->bh.bsize)->bsize == ESent); 1047 assert(BH((char *) b + b->bh.bsize)->prevfree == b->bh.bsize); 1048 /* Unlink the buffer from the free list */ 1049 b->ql.blink->ql.flink = b->ql.flink; 1050 b->ql.flink->ql.blink = b->ql.blink; 1051 1052 poolset->relfcn(b); 1053 #ifdef BufStats 1054 poolset->numprel++; /* Nr of expansion block releases */ 1055 poolset->numpblk--; /* Total number of blocks */ 1056 assert(numpblk == numpget - numprel); 1057 #endif /* BufStats */ 1058 } 1059 #endif /* BECtl */ 1060 tag_asan_free(buf, bs); 1061 } 1062 1063 #ifdef BECtl 1064 1065 /* BECTL -- Establish automatic pool expansion control */ 1066 1067 void bectl(compact, acquire, release, pool_incr, poolset) 1068 int (*compact) _((bufsize sizereq, int sequence)); 1069 void *(*acquire) _((bufsize size)); 1070 void (*release) _((void *buf)); 1071 bufsize pool_incr; 1072 struct bpoolset *poolset; 1073 { 1074 poolset->compfcn = compact; 1075 poolset->acqfcn = acquire; 1076 poolset->relfcn = release; 1077 poolset->exp_incr = pool_incr; 1078 } 1079 #endif 1080 1081 /* BPOOL -- Add a region of memory to the buffer pool. */ 1082 1083 void bpool(buf, len, poolset) 1084 void *buf; 1085 bufsize len; 1086 struct bpoolset *poolset; 1087 { 1088 struct bfhead *b = BFH(buf); 1089 struct bhead *bn; 1090 1091 #ifdef SizeQuant 1092 len &= ~(SizeQuant - 1); 1093 #endif 1094 #ifdef BECtl 1095 if (poolset->pool_len == 0) { 1096 pool_len = len; 1097 } else if (len != poolset->pool_len) { 1098 poolset->pool_len = -1; 1099 } 1100 #ifdef BufStats 1101 poolset->numpget++; /* Number of block acquisitions */ 1102 poolset->numpblk++; /* Number of blocks total */ 1103 assert(poolset->numpblk == poolset->numpget - poolset->numprel); 1104 #endif /* BufStats */ 1105 #endif /* BECtl */ 1106 1107 /* Since the block is initially occupied by a single free buffer, 1108 it had better not be (much) larger than the largest buffer 1109 whose size we can store in bhead.bsize. */ 1110 1111 assert(len - sizeof(struct bhead) <= -((bufsize) ESent + 1)); 1112 1113 /* Clear the backpointer at the start of the block to indicate that 1114 there is no free block prior to this one. That blocks 1115 recombination when the first block in memory is released. */ 1116 1117 b->bh.prevfree = 0; 1118 1119 /* Chain the new block to the free list. */ 1120 1121 assert(poolset->freelist.ql.blink->ql.flink == &poolset->freelist); 1122 assert(poolset->freelist.ql.flink->ql.blink == &poolset->freelist); 1123 b->ql.flink = &poolset->freelist; 1124 b->ql.blink = poolset->freelist.ql.blink; 1125 poolset->freelist.ql.blink = b; 1126 b->ql.blink->ql.flink = b; 1127 1128 /* Create a dummy allocated buffer at the end of the pool. This dummy 1129 buffer is seen when a buffer at the end of the pool is released and 1130 blocks recombination of the last buffer with the dummy buffer at 1131 the end. The length in the dummy buffer is set to the largest 1132 negative number to denote the end of the pool for diagnostic 1133 routines (this specific value is not counted on by the actual 1134 allocation and release functions). */ 1135 1136 len -= sizeof(struct bhead); 1137 b->bh.bsize = (bufsize) len; 1138 #ifdef FreeWipe 1139 V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55, 1140 (MemSize) (len - sizeof(struct bfhead))); 1141 #endif 1142 bn = BH(((char *) b) + len); 1143 bn->prevfree = (bufsize) len; 1144 /* Definition of ESent assumes two's complement! */ 1145 assert((~0) == -1); 1146 bn->bsize = ESent; 1147 } 1148 1149 #ifdef BufStats 1150 1151 /* BSTATS -- Return buffer allocation free space statistics. */ 1152 1153 void bstats(curalloc, totfree, maxfree, nget, nrel, poolset) 1154 bufsize *curalloc, *totfree, *maxfree; 1155 long *nget, *nrel; 1156 struct bpoolset *poolset; 1157 { 1158 struct bfhead *b = poolset->freelist.ql.flink; 1159 1160 *nget = poolset->numget; 1161 *nrel = poolset->numrel; 1162 *curalloc = poolset->totalloc; 1163 *totfree = 0; 1164 *maxfree = -1; 1165 while (b != &poolset->freelist) { 1166 assert(b->bh.bsize > 0); 1167 *totfree += b->bh.bsize; 1168 if (b->bh.bsize > *maxfree) { 1169 *maxfree = b->bh.bsize; 1170 } 1171 b = b->ql.flink; /* Link to next buffer */ 1172 } 1173 } 1174 1175 #ifdef BECtl 1176 1177 /* BSTATSE -- Return extended statistics */ 1178 1179 void bstatse(pool_incr, npool, npget, nprel, ndget, ndrel, poolset) 1180 bufsize *pool_incr; 1181 long *npool, *npget, *nprel, *ndget, *ndrel; 1182 struct bpoolset *poolset; 1183 { 1184 *pool_incr = (poolset->pool_len < 0) ? 1185 -poolset->exp_incr : poolset->exp_incr; 1186 *npool = poolset->numpblk; 1187 *npget = poolset->numpget; 1188 *nprel = poolset->numprel; 1189 *ndget = poolset->numdget; 1190 *ndrel = poolset->numdrel; 1191 } 1192 #endif /* BECtl */ 1193 #endif /* BufStats */ 1194 1195 #ifdef DumpData 1196 1197 /* BUFDUMP -- Dump the data in a buffer. This is called with the user 1198 data pointer, and backs up to the buffer header. It will 1199 dump either a free block or an allocated one. */ 1200 1201 void bufdump(buf) 1202 void *buf; 1203 { 1204 struct bfhead *b; 1205 unsigned char *bdump; 1206 bufsize bdlen; 1207 1208 b = BFH(((char *) buf) - sizeof(struct bhead)); 1209 assert(b->bh.bsize != 0); 1210 if (b->bh.bsize < 0) { 1211 bdump = (unsigned char *) buf; 1212 bdlen = (-b->bh.bsize) - sizeof(struct bhead); 1213 } else { 1214 bdump = (unsigned char *) (((char *) b) + sizeof(struct bfhead)); 1215 bdlen = b->bh.bsize - sizeof(struct bfhead); 1216 } 1217 1218 while (bdlen > 0) { 1219 int i, dupes = 0; 1220 bufsize l = bdlen; 1221 char bhex[50], bascii[20]; 1222 1223 if (l > 16) { 1224 l = 16; 1225 } 1226 1227 for (i = 0; i < l; i++) { 1228 V snprintf(bhex + i * 3, sizeof(bhex) - i * 3, "%02X ", 1229 bdump[i]); 1230 bascii[i] = isprint(bdump[i]) ? bdump[i] : ' '; 1231 } 1232 bascii[i] = 0; 1233 V printf("%-48s %s\n", bhex, bascii); 1234 bdump += l; 1235 bdlen -= l; 1236 while ((bdlen > 16) && (memcmp((char *) (bdump - 16), 1237 (char *) bdump, 16) == 0)) { 1238 dupes++; 1239 bdump += 16; 1240 bdlen -= 16; 1241 } 1242 if (dupes > 1) { 1243 V printf( 1244 " (%d lines [%d bytes] identical to above line skipped)\n", 1245 dupes, dupes * 16); 1246 } else if (dupes == 1) { 1247 bdump -= 16; 1248 bdlen += 16; 1249 } 1250 } 1251 } 1252 #endif 1253 1254 #ifdef BufDump 1255 1256 /* BPOOLD -- Dump a buffer pool. The buffer headers are always listed. 1257 If DUMPALLOC is nonzero, the contents of allocated buffers 1258 are dumped. If DUMPFREE is nonzero, free blocks are 1259 dumped as well. If FreeWipe checking is enabled, free 1260 blocks which have been clobbered will always be dumped. */ 1261 1262 void bpoold(buf, dumpalloc, dumpfree) 1263 void *buf; 1264 int dumpalloc, dumpfree; 1265 { 1266 struct bfhead *b = BFH(buf); 1267 1268 while (b->bh.bsize != ESent) { 1269 bufsize bs = b->bh.bsize; 1270 1271 if (bs < 0) { 1272 bs = -bs; 1273 V printf("Allocated buffer: size %6ld bytes.\n", (long) bs); 1274 if (dumpalloc) { 1275 bufdump((void *) (((char *) b) + sizeof(struct bhead))); 1276 } 1277 } else { 1278 char *lerr = ""; 1279 1280 assert(bs > 0); 1281 if ((b->ql.blink->ql.flink != b) || 1282 (b->ql.flink->ql.blink != b)) { 1283 lerr = " (Bad free list links)"; 1284 } 1285 V printf("Free block: size %6ld bytes.%s\n", 1286 (long) bs, lerr); 1287 #ifdef FreeWipe 1288 lerr = ((char *) b) + sizeof(struct bfhead); 1289 if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) || 1290 (memcmp(lerr, lerr + 1, 1291 (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) { 1292 V printf( 1293 "(Contents of above free block have been overstored.)\n"); 1294 bufdump((void *) (((char *) b) + sizeof(struct bhead))); 1295 } else 1296 #endif 1297 if (dumpfree) { 1298 bufdump((void *) (((char *) b) + sizeof(struct bhead))); 1299 } 1300 } 1301 b = BFH(((char *) b) + bs); 1302 } 1303 } 1304 #endif /* BufDump */ 1305 1306 #ifdef BufValid 1307 1308 /* BPOOLV -- Validate a buffer pool. If NDEBUG isn't defined, 1309 any error generates an assertion failure. */ 1310 1311 int bpoolv(buf) 1312 void *buf; 1313 { 1314 struct bfhead *b = BFH(buf); 1315 1316 while (b->bh.bsize != ESent) { 1317 bufsize bs = b->bh.bsize; 1318 1319 if (bs < 0) { 1320 bs = -bs; 1321 } else { 1322 const char *lerr = ""; 1323 1324 assert(bs > 0); 1325 if (bs <= 0) { 1326 return 0; 1327 } 1328 if ((b->ql.blink->ql.flink != b) || 1329 (b->ql.flink->ql.blink != b)) { 1330 V printf("Free block: size %6ld bytes. (Bad free list links)\n", 1331 (long) bs); 1332 assert(0); 1333 return 0; 1334 } 1335 #ifdef FreeWipe 1336 lerr = ((char *) b) + sizeof(struct bfhead); 1337 if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) || 1338 (memcmp(lerr, lerr + 1, 1339 (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) { 1340 V printf( 1341 "(Contents of above free block have been overstored.)\n"); 1342 bufdump((void *) (((char *) b) + sizeof(struct bhead))); 1343 assert(0); 1344 return 0; 1345 } 1346 #endif 1347 } 1348 b = BFH(((char *) b) + bs); 1349 } 1350 return 1; 1351 } 1352 #endif /* BufValid */ 1353 1354 /***********************\ 1355 * * 1356 * Built-in test program * 1357 * * 1358 \***********************/ 1359 1360 #if !defined(__KERNEL__) && !defined(__LDELF__) && defined(CFG_TA_BGET_TEST) 1361 1362 #define TestProg 20000 1363 1364 #ifdef BECtl 1365 #define PoolSize 300000 /* Test buffer pool size */ 1366 #else 1367 #define PoolSize 50000 /* Test buffer pool size */ 1368 #endif 1369 #define ExpIncr 32768 /* Test expansion block size */ 1370 #define CompactTries 10 /* Maximum tries at compacting */ 1371 1372 #define dumpAlloc 0 /* Dump allocated buffers ? */ 1373 #define dumpFree 0 /* Dump free buffers ? */ 1374 1375 static char *bchain = NULL; /* Our private buffer chain */ 1376 static char *bp = NULL; /* Our initial buffer pool */ 1377 1378 #ifdef UsingFloat 1379 #include <math.h> 1380 #endif 1381 1382 static unsigned long int next = 1; 1383 1384 static void *(*mymalloc)(size_t size); 1385 static void (*myfree)(void *ptr); 1386 1387 static struct bpoolset mypoolset = { 1388 .freelist = { 1389 .bh = { 0, 0}, 1390 .ql = { &mypoolset.freelist, &mypoolset.freelist}, 1391 } 1392 }; 1393 1394 /* Return next random integer */ 1395 1396 static int myrand(void) 1397 { 1398 next = next * 1103515245L + 12345; 1399 return (unsigned int) (next / 65536L) % 32768L; 1400 } 1401 1402 /* Set seed for random generator */ 1403 1404 static void mysrand(unsigned int seed) 1405 { 1406 next = seed; 1407 } 1408 1409 /* STATS -- Edit statistics returned by bstats() or bstatse(). */ 1410 1411 static void stats(const char *when __maybe_unused, 1412 struct bpoolset *poolset __maybe_unused) 1413 { 1414 #ifdef BufStats 1415 bufsize cural, totfree, maxfree; 1416 long nget, nfree; 1417 #endif 1418 #ifdef BECtl 1419 bufsize pincr; 1420 long totblocks, npget, nprel, ndget, ndrel; 1421 #endif 1422 1423 #ifdef BufStats 1424 bstats(&cural, &totfree, &maxfree, &nget, &nfree, poolset); 1425 V printf( 1426 "%s: %ld gets, %ld releases. %ld in use, %ld free, largest = %ld\n", 1427 when, nget, nfree, (long) cural, (long) totfree, (long) maxfree); 1428 #endif 1429 #ifdef BECtl 1430 bstatse(&pincr, &totblocks, &npget, &nprel, &ndget, &ndrel, poolset); 1431 V printf( 1432 " Blocks: size = %ld, %ld (%ld bytes) in use, %ld gets, %ld frees\n", 1433 (long)pincr, totblocks, pincr * totblocks, npget, nprel); 1434 V printf(" %ld direct gets, %ld direct frees\n", ndget, ndrel); 1435 #endif /* BECtl */ 1436 } 1437 1438 #ifdef BECtl 1439 static int protect = 0; /* Disable compaction during bgetr() */ 1440 1441 /* BCOMPACT -- Compaction call-back function. */ 1442 1443 static int bcompact(bsize, seq) 1444 bufsize bsize; 1445 int seq; 1446 { 1447 #ifdef CompactTries 1448 char *bc = bchain; 1449 int i = myrand() & 0x3; 1450 1451 #ifdef COMPACTRACE 1452 V printf("Compaction requested. %ld bytes needed, sequence %d.\n", 1453 (long) bsize, seq); 1454 #endif 1455 1456 if (protect || (seq > CompactTries)) { 1457 #ifdef COMPACTRACE 1458 V printf("Compaction gave up.\n"); 1459 #endif 1460 return 0; 1461 } 1462 1463 /* Based on a random cast, release a random buffer in the list 1464 of allocated buffers. */ 1465 1466 while (i > 0 && bc != NULL) { 1467 bc = *((char **) bc); 1468 i--; 1469 } 1470 if (bc != NULL) { 1471 char *fb; 1472 1473 fb = *((char **) bc); 1474 if (fb != NULL) { 1475 *((char **) bc) = *((char **) fb); 1476 brel((void *) fb); 1477 return 1; 1478 } 1479 } 1480 1481 #ifdef COMPACTRACE 1482 V printf("Compaction bailed out.\n"); 1483 #endif 1484 #endif /* CompactTries */ 1485 return 0; 1486 } 1487 1488 /* BEXPAND -- Expand pool call-back function. */ 1489 1490 static void *bexpand(size) 1491 bufsize size; 1492 { 1493 void *np = NULL; 1494 bufsize cural, totfree, maxfree; 1495 long nget, nfree; 1496 1497 /* Don't expand beyond the total allocated size given by PoolSize. */ 1498 1499 bstats(&cural, &totfree, &maxfree, &nget, &nfree); 1500 1501 if (cural < PoolSize) { 1502 np = (void *) mymalloc((unsigned) size); 1503 } 1504 #ifdef EXPTRACE 1505 V printf("Expand pool by %ld -- %s.\n", (long) size, 1506 np == NULL ? "failed" : "succeeded"); 1507 #endif 1508 return np; 1509 } 1510 1511 /* BSHRINK -- Shrink buffer pool call-back function. */ 1512 1513 static void bshrink(buf) 1514 void *buf; 1515 { 1516 if (((char *) buf) == bp) { 1517 #ifdef EXPTRACE 1518 V printf("Initial pool released.\n"); 1519 #endif 1520 bp = NULL; 1521 } 1522 #ifdef EXPTRACE 1523 V printf("Shrink pool.\n"); 1524 #endif 1525 myfree((char *) buf); 1526 } 1527 1528 #endif /* BECtl */ 1529 1530 /* Restrict buffer requests to those large enough to contain our pointer and 1531 small enough for the CPU architecture. */ 1532 1533 static bufsize blimit(bufsize bs) 1534 { 1535 if (bs < sizeof(char *)) { 1536 bs = sizeof(char *); 1537 } 1538 1539 /* This is written out in this ugly fashion because the 1540 cool expression in sizeof(int) that auto-configured 1541 to any length int befuddled some compilers. */ 1542 1543 if (sizeof(int) == 2) { 1544 if (bs > 32767) { 1545 bs = 32767; 1546 } 1547 } else { 1548 if (bs > 200000) { 1549 bs = 200000; 1550 } 1551 } 1552 return bs; 1553 } 1554 1555 int bget_main_test(void *(*malloc_func)(size_t), void (*free_func)(void *)) 1556 { 1557 int i; 1558 #ifdef UsingFloat 1559 double x; 1560 #endif 1561 1562 mymalloc = malloc_func; 1563 myfree = free_func; 1564 1565 /* Seed the random number generator. If Repeatable is defined, we 1566 always use the same seed. Otherwise, we seed from the clock to 1567 shake things up from run to run. */ 1568 1569 mysrand(1234); 1570 1571 /* Compute x such that pow(x, p) ranges between 1 and 4*ExpIncr as 1572 p ranges from 0 to ExpIncr-1, with a concentration in the lower 1573 numbers. */ 1574 1575 #ifdef UsingFloat 1576 x = 4.0 * ExpIncr; 1577 x = log(x); 1578 x = exp(log(4.0 * ExpIncr) / (ExpIncr - 1.0)); 1579 #endif 1580 1581 #ifdef BECtl 1582 bectl(bcompact, bexpand, bshrink, (bufsize) ExpIncr, &mypoolset); 1583 bp = mymalloc(ExpIncr); 1584 assert(bp != NULL); 1585 bpool((void *) bp, (bufsize) ExpIncr); 1586 #else 1587 bp = mymalloc(PoolSize); 1588 assert(bp != NULL); 1589 bpool((void *) bp, (bufsize) PoolSize, &mypoolset); 1590 #endif 1591 1592 stats("Create pool", &mypoolset); 1593 #ifdef BufValid 1594 V bpoolv((void *) bp); 1595 #endif 1596 #ifdef BufDump 1597 bpoold((void *) bp, dumpAlloc, dumpFree); 1598 #endif 1599 1600 for (i = 0; i < TestProg; i++) { 1601 char *cb; 1602 #ifdef UsingFloat 1603 bufsize bs = pow(x, (double) (myrand() & (ExpIncr - 1))); 1604 #else 1605 bufsize bs = (myrand() & (ExpIncr * 4 - 1)) / (1 << (myrand() & 0x7)); 1606 #endif 1607 bufsize align = 0; 1608 1609 switch (rand() & 0x3) { 1610 case 1: 1611 align = 32; 1612 break; 1613 case 2: 1614 align = 64; 1615 break; 1616 case 3: 1617 align = 128; 1618 break; 1619 default: 1620 break; 1621 } 1622 1623 assert(bs <= (((bufsize) 4) * ExpIncr)); 1624 bs = blimit(bs); 1625 if (myrand() & 0x400) { 1626 cb = (char *) bgetz(align, bs, &mypoolset); 1627 } else { 1628 cb = (char *) bget(align, bs, &mypoolset); 1629 } 1630 if (cb == NULL) { 1631 #ifdef EasyOut 1632 break; 1633 #else 1634 char *bc = bchain; 1635 1636 if (bc != NULL) { 1637 char *fb; 1638 1639 fb = *((char **) bc); 1640 if (fb != NULL) { 1641 *((char **) bc) = *((char **) fb); 1642 brel((void *) fb, &mypoolset, true/*wipe*/); 1643 } 1644 } 1645 continue; 1646 #endif 1647 } 1648 assert(!align || !((unsigned long)cb & (align - 1))); 1649 *((char **) cb) = (char *) bchain; 1650 bchain = cb; 1651 1652 /* Based on a random cast, release a random buffer in the list 1653 of allocated buffers. */ 1654 1655 if ((myrand() & 0x10) == 0) { 1656 char *bc = bchain; 1657 int j = myrand() & 0x3; 1658 1659 while (j > 0 && bc != NULL) { 1660 bc = *((char **) bc); 1661 j--; 1662 } 1663 if (bc != NULL) { 1664 char *fb; 1665 1666 fb = *((char **) bc); 1667 if (fb != NULL) { 1668 *((char **) bc) = *((char **) fb); 1669 brel((void *) fb, &mypoolset, true/*wipe*/); 1670 } 1671 } 1672 } 1673 1674 /* Based on a random cast, reallocate a random buffer in the list 1675 to a random size */ 1676 1677 if ((myrand() & 0x20) == 0) { 1678 char *bc = bchain; 1679 int j = myrand() & 0x3; 1680 1681 while (j > 0 && bc != NULL) { 1682 bc = *((char **) bc); 1683 j--; 1684 } 1685 if (bc != NULL) { 1686 char *fb; 1687 1688 fb = *((char **) bc); 1689 if (fb != NULL) { 1690 char *newb; 1691 1692 #ifdef UsingFloat 1693 bs = pow(x, (double) (myrand() & (ExpIncr - 1))); 1694 #else 1695 bs = (rand() & (ExpIncr * 4 - 1)) / (1 << (rand() & 0x7)); 1696 #endif 1697 bs = blimit(bs); 1698 #ifdef BECtl 1699 protect = 1; /* Protect against compaction */ 1700 #endif 1701 newb = (char *) bgetr((void *) fb, align, bs, &mypoolset); 1702 #ifdef BECtl 1703 protect = 0; 1704 #endif 1705 if (newb != NULL) { 1706 *((char **) bc) = newb; 1707 } 1708 } 1709 } 1710 } 1711 } 1712 stats("\nAfter allocation", &mypoolset); 1713 if (bp != NULL) { 1714 #ifdef BufValid 1715 V bpoolv((void *) bp); 1716 #endif 1717 #ifdef BufDump 1718 bpoold((void *) bp, dumpAlloc, dumpFree); 1719 #endif 1720 } 1721 1722 while (bchain != NULL) { 1723 char *buf = bchain; 1724 1725 bchain = *((char **) buf); 1726 brel((void *) buf, &mypoolset, true/*wipe*/); 1727 } 1728 stats("\nAfter release", &mypoolset); 1729 #ifndef BECtl 1730 if (bp != NULL) { 1731 #ifdef BufValid 1732 V bpoolv((void *) bp); 1733 #endif 1734 #ifdef BufDump 1735 bpoold((void *) bp, dumpAlloc, dumpFree); 1736 #endif 1737 } 1738 #endif 1739 1740 return 0; 1741 } 1742 #endif 1743