xref: /optee_os/lib/libutils/isoc/bget.c (revision bc420748bfc44a9e09000a3966fc59e9e0219df4)
1 /*
2 
3 			       B G E T
4 
5 			   Buffer allocator
6 
7     Designed and implemented in April of 1972 by John Walker, based on the
8     Case Algol OPRO$ algorithm implemented in 1966.
9 
10     Reimplemented in 1975 by John Walker for the Interdata 70.
11     Reimplemented in 1977 by John Walker for the Marinchip 9900.
12     Reimplemented in 1982 by Duff Kurland for the Intel 8080.
13 
14     Portable C version implemented in September of 1990 by an older, wiser
15     instance of the original implementor.
16 
17     Souped up and/or weighed down  slightly  shortly  thereafter  by  Greg
18     Lutz.
19 
20     AMIX  edition, including the new compaction call-back option, prepared
21     by John Walker in July of 1992.
22 
23     Bug in built-in test program fixed, ANSI compiler warnings eradicated,
24     buffer pool validator  implemented,  and  guaranteed  repeatable  test
25     added by John Walker in October of 1995.
26 
27     This program is in the public domain.
28 
29      1. This is the book of the generations of Adam.   In the day that God
30 	created man, in the likeness of God made he him;
31      2. Male and female created he them;  and  blessed	them,  and  called
32 	their name Adam, in the day when they were created.
33      3. And  Adam  lived  an hundred and thirty years,	and begat a son in
34 	his own likeness, and after his image; and called his name Seth:
35      4. And the days of  Adam  after  he  had  begotten  Seth  were  eight
36 	hundred years: and he begat sons and daughters:
37      5. And  all  the  days  that Adam lived were nine	hundred and thirty
38 	years: and he died.
39      6. And Seth lived an hundred and five years, and begat Enos:
40      7. And Seth lived after he begat Enos eight hundred and seven  years,
41 	and begat sons and daughters:
42      8.  And  all the days of Seth were nine hundred and twelve years: and
43 	 he died.
44      9. And Enos lived ninety years, and begat Cainan:
45     10. And Enos lived after he begat  Cainan eight  hundred  and  fifteen
46 	years, and begat sons and daughters:
47     11. And  all  the days of Enos were nine hundred  and five years:  and
48 	he died.
49     12. And Cainan lived seventy years and begat Mahalaleel:
50     13. And Cainan lived  after he  begat  Mahalaleel  eight  hundred  and
51 	forty years, and begat sons and daughters:
52     14. And  all the days of Cainan were nine  hundred and ten years:  and
53 	he died.
54     15. And Mahalaleel lived sixty and five years, and begat Jared:
55     16. And Mahalaleel lived  after  he  begat	Jared  eight  hundred  and
56 	thirty years, and begat sons and daughters:
57     17. And  all  the  days  of Mahalaleel  were eight hundred	ninety and
58 	five years: and he died.
59     18. And Jared lived an hundred sixty and  two  years,   and  he  begat
60 	Enoch:
61     19. And  Jared  lived  after he begat Enoch  eight hundred years,  and
62 	begat sons and daughters:
63     20. And all the days of Jared  were nine hundred sixty and two  years:
64 	and he died.
65     21. And Enoch lived sixty and five years, and begat Methuselah:
66     22. And  Enoch  walked   with  God	after  he  begat Methuselah  three
67 	hundred years, and begat sons and daughters:
68     23. And all the days of  Enoch  were  three  hundred  sixty  and  five
69 	years:
70     24. And Enoch walked with God: and he was not; for God took him.
71     25. And  Methuselah  lived	an  hundred  eighty and  seven years,  and
72 	begat Lamech.
73     26. And Methuselah lived after he  begat Lamech seven  hundred  eighty
74 	and two years, and begat sons and daughters:
75     27. And  all the days of Methuselah  were nine hundred  sixty and nine
76 	years: and he died.
77     28. And Lamech lived an hundred eighty  and two  years,  and  begat  a
78 	son:
79     29. And  he called his name Noah, saying,  This same shall	comfort us
80 	concerning  our  work and toil of our hands, because of the ground
81 	which the LORD hath cursed.
82     30. And  Lamech  lived  after  he begat Noah  five hundred	ninety and
83 	five years, and begat sons and daughters:
84     31. And all the days of Lamech were  seven hundred seventy	and  seven
85 	years: and he died.
86     32. And  Noah  was five hundred years old:	and Noah begat Shem,  Ham,
87 	and Japheth.
88 
89     And buffers begat buffers, and links begat	links,	and  buffer  pools
90     begat  links  to chains of buffer pools containing buffers, and lo the
91     buffers and links and pools of buffers and pools of links to chains of
92     pools  of  buffers were fruitful and they multiplied and the Operating
93     System looked down upon them and said that it was Good.
94 
95 
96     INTRODUCTION
97     ============
98 
99     BGET  is a comprehensive memory allocation package which is easily
100     configured to the needs of an application.	BGET is  efficient  in
101     both  the  time  needed to allocate and release buffers and in the
102     memory  overhead  required	for  buffer   pool   management.    It
103     automatically    consolidates   contiguous	 space	 to   minimise
104     fragmentation.  BGET is configured	by  compile-time  definitions,
105     Major options include:
106 
107 	*   A  built-in  test  program	to  exercise  BGET   and
108 	    demonstrate how the various functions are used.
109 
110         *   Allocation  by  either the "first fit" or "best fit"
111 	    method.
112 
113 	*   Wiping buffers at release time to catch  code  which
114 	    references previously released storage.
115 
116 	*   Built-in  routines to dump individual buffers or the
117 	    entire buffer pool.
118 
119 	*   Retrieval of allocation and pool size statistics.
120 
121 	*   Quantisation of buffer sizes to a power  of  two  to
122 	    satisfy hardware alignment constraints.
123 
124 	*   Automatic  pool compaction, growth, and shrinkage by
125 	    means of call-backs to user defined functions.
126 
127     Applications  of  BGET  can  range	from  storage  management   in
128     ROM-based  embedded programs to providing the framework upon which
129     a  multitasking  system  incorporating   garbage   collection   is
130     constructed.   BGET  incorporates  extensive  internal consistency
131     checking using the <assert.h> mechanism; all these checks  can  be
132     turned off by compiling with NDEBUG defined, yielding a version of
133     BGET with minimal size and maximum speed.
134 
135     The  basic	algorithm  underlying  BGET  has withstood the test of
136     time;  more  than  25  years   have   passed   since   the	 first
137     implementation  of	this  code.  And yet, it is substantially more
138     efficient than the native allocation  schemes  of  many  operating
139     systems: the Macintosh and Microsoft Windows to name two, on which
140     programs have obtained substantial speed-ups by layering  BGET  as
141     an application level memory manager atop the underlying system's.
142 
143     BGET has been implemented on the largest mainframes and the lowest
144     of	microprocessors.   It  has served as the core for multitasking
145     operating systems, multi-thread applications, embedded software in
146     data  network switching processors, and a host of C programs.  And
147     while it has accreted flexibility and additional options over  the
148     years,  it	remains  fast, memory efficient, portable, and easy to
149     integrate into your program.
150 
151 
152     BGET IMPLEMENTATION ASSUMPTIONS
153     ===============================
154 
155     BGET is written in as portable a dialect of C  as  possible.   The
156     only   fundamental	 assumption   about  the  underlying  hardware
157     architecture is that memory is allocated is a linear  array  which
158     can  be  addressed  as a vector of C "char" objects.  On segmented
159     address space architectures, this generally means that BGET should
160     be used to allocate storage within a single segment (although some
161     compilers	simulate   linear   address   spaces   on    segmented
162     architectures).   On  segmented  architectures,  then, BGET buffer
163     pools  may not be larger than a segment, but since BGET allows any
164     number of separate buffer pools, there is no limit	on  the  total
165     storage  which  can  be  managed,  only  on the largest individual
166     object which can be allocated.  Machines  with  a  linear  address
167     architecture,  such  as  the VAX, 680x0, Sparc, MIPS, or the Intel
168     80386 and above in native mode, may use BGET without restriction.
169 
170 
171     GETTING STARTED WITH BGET
172     =========================
173 
174     Although BGET can be configured in a multitude of fashions,  there
175     are  three	basic  ways  of  working  with	BGET.	The  functions
176     mentioned below are documented in the following  section.	Please
177     excuse  the  forward  references which are made in the interest of
178     providing a roadmap to guide you  to  the  BGET  functions  you're
179     likely to need.
180 
181     Embedded Applications
182     ---------------------
183 
184     Embedded applications  typically  have  a  fixed  area  of	memory
185     dedicated  to  buffer  allocation (often in a separate RAM address
186     space distinct from the ROM that contains  the  executable	code).
187     To	use  BGET in such an environment, simply call bpool() with the
188     start address and length of the buffer  pool  area	in  RAM,  then
189     allocate  buffers  with  bget()  and  release  them  with  brel().
190     Embedded applications with very limited RAM but abundant CPU speed
191     may  benefit  by configuring BGET for BestFit allocation (which is
192     usually not worth it in other environments).
193 
194     Malloc() Emulation
195     ------------------
196 
197     If the C library malloc() function is too  slow,  not  present  in
198     your  development environment (for example, an a native Windows or
199     Macintosh program), or otherwise unsuitable, you  can  replace  it
200     with  BGET.  Initially define a buffer pool of an appropriate size
201     with bpool()--usually obtained by making a call to	the  operating
202     system's  low-level  memory allocator.  Then allocate buffers with
203     bget(), bgetz(), and bgetr() (the last two permit  the  allocation
204     of	buffers initialised to zero and [inefficient] re-allocation of
205     existing buffers for  compatibility  with  C  library  functions).
206     Release buffers by calling brel().	If a buffer allocation request
207     fails, obtain more storage from the underlying  operating  system,
208     add it to the buffer pool by another call to bpool(), and continue
209     execution.
210 
211     Automatic Storage Management
212     ----------------------------
213 
214     You can use BGET as your application's native memory  manager  and
215     implement  automatic  storage  pool  expansion,  contraction,  and
216     optionally application-specific  memory  compaction  by  compiling
217     BGET  with	the  BECtl  variable defined, then calling bectl() and
218     supplying  functions  for  storage	compaction,  acquisition,  and
219     release,  as  well as a standard pool expansion increment.	All of
220     these functions are optional (although it doesn't make much  sense
221     to	provide  a  release  function without an acquisition function,
222     does it?).	Once the call-back functions have  been  defined  with
223     bectl(),  you simply use bget() and brel() to allocate and release
224     storage as before.	You can supply an  initial  buffer  pool  with
225     bpool()  or  rely  on  automatic  allocation to acquire the entire
226     pool.  When a call on  bget()  cannot  be  satisfied,  BGET  first
227     checks  if	a compaction function has been supplied.  If so, it is
228     called (with the space required to satisfy the allocation  request
229     and a sequence number to allow the compaction routine to be called
230     successively without looping).  If the compaction function is able
231     to  free any storage (it needn't know whether the storage it freed
232     was adequate) it should return a  nonzero  value,  whereupon  BGET
233     will retry the allocation request and, if it fails again, call the
234     compaction function again with the next-higher sequence number.
235 
236     If	the  compaction  function  returns zero, indicating failure to
237     free space, or no compaction function is defined, BGET next  tests
238     whether  a	non-NULL  allocation function was supplied to bectl().
239     If so, that function is called with  an  argument  indicating  how
240     many  bytes  of  additional  space are required.  This will be the
241     standard pool expansion increment supplied in the call to  bectl()
242     unless  the  original  bget()  call requested a buffer larger than
243     this; buffers larger than the standard pool block can  be  managed
244     "off  the books" by BGET in this mode.  If the allocation function
245     succeeds in obtaining the storage, it returns a pointer to the new
246     block  and	BGET  expands  the  buffer  pool;  if  it  fails,  the
247     allocation request fails and returns NULL to  the  caller.	 If  a
248     non-NULL  release  function  is  supplied,	expansion blocks which
249     become totally empty are released  to  the	global	free  pool  by
250     passing their addresses to the release function.
251 
252     Equipped  with  appropriate  allocation,  release,	and compaction
253     functions, BGET can be used as part of very  sophisticated	memory
254     management	 strategies,  including  garbage  collection.	(Note,
255     however, that BGET is *not* a garbage  collector  by  itself,  and
256     that  developing  such a system requires much additional logic and
257     careful design of the application's memory allocation strategy.)
258 
259 
260     BGET FUNCTION DESCRIPTIONS
261     ==========================
262 
263     Functions implemented in this file (some are enabled by certain of
264     the optional settings below):
265 
266 	    void bpool(void *buffer, bufsize len);
267 
268     Create a buffer pool of <len> bytes, using the storage starting at
269     <buffer>.	You  can  call	bpool()  subsequently  to   contribute
270     additional storage to the overall buffer pool.
271 
272 	    void *bget(bufsize size);
273 
274     Allocate  a  buffer of <size> bytes.  The address of the buffer is
275     returned, or NULL if insufficient memory was available to allocate
276     the buffer.
277 
278 	    void *bgetz(bufsize size);
279 
280     Allocate a buffer of <size> bytes and clear it to all zeroes.  The
281     address of the buffer is returned, or NULL if insufficient	memory
282     was available to allocate the buffer.
283 
284 	    void *bgetr(void *buffer, bufsize newsize);
285 
286     Reallocate a buffer previously allocated by bget(),  changing  its
287     size  to  <newsize>  and  preserving  all  existing data.  NULL is
288     returned if insufficient memory is	available  to  reallocate  the
289     buffer, in which case the original buffer remains intact.
290 
291 	    void brel(void *buf);
292 
293     Return  the  buffer  <buf>, previously allocated by bget(), to the
294     free space pool.
295 
296 	    void bectl(int (*compact)(bufsize sizereq, int sequence),
297 		       void *(*acquire)(bufsize size),
298 		       void (*release)(void *buf),
299 		       bufsize pool_incr);
300 
301     Expansion control: specify functions through which the package may
302     compact  storage  (or  take  other	appropriate  action)  when  an
303     allocation	request  fails,  and  optionally automatically acquire
304     storage for expansion blocks  when	necessary,  and  release  such
305     blocks when they become empty.  If <compact> is non-NULL, whenever
306     a buffer allocation request fails, the <compact> function will  be
307     called with arguments specifying the number of bytes (total buffer
308     size,  including  header  overhead)  required   to	 satisfy   the
309     allocation request, and a sequence number indicating the number of
310     consecutive  calls	on  <compact>  attempting  to	satisfy   this
311     allocation	request.   The sequence number is 1 for the first call
312     on <compact> for a given allocation  request,  and	increments  on
313     subsequent	calls,	permitting  the  <compact>  function  to  take
314     increasingly dire measures in an attempt to free up  storage.   If
315     the  <compact>  function  returns  a nonzero value, the allocation
316     attempt is re-tried.  If <compact> returns 0 (as  it  must	if  it
317     isn't  able  to  release  any  space  or add storage to the buffer
318     pool), the allocation request fails, which can  trigger  automatic
319     pool expansion if the <acquire> argument is non-NULL.  At the time
320     the  <compact>  function  is  called,  the	state  of  the	buffer
321     allocator  is  identical  to  that	at  the  moment the allocation
322     request was made; consequently, the <compact>  function  may  call
323     brel(), bpool(), bstats(), and/or directly manipulate  the	buffer
324     pool  in  any  manner which would be valid were the application in
325     control.  This does not, however, relieve the  <compact>  function
326     of the need to ensure that whatever actions it takes do not change
327     things   underneath  the  application  that  made  the  allocation
328     request.  For example, a <compact> function that released a buffer
329     in	the  process  of  being reallocated with bgetr() would lead to
330     disaster.  Implementing a safe and effective  <compact>  mechanism
331     requires  careful  design of an application's memory architecture,
332     and cannot generally be easily retrofitted into existing code.
333 
334     If <acquire> is non-NULL, that function will be called whenever an
335     allocation	request  fails.  If the <acquire> function succeeds in
336     allocating the requested space and returns a pointer  to  the  new
337     area,  allocation will proceed using the expanded buffer pool.  If
338     <acquire> cannot obtain the requested space, it should return NULL
339     and   the	entire	allocation  process  will  fail.   <pool_incr>
340     specifies the normal expansion block size.	Providing an <acquire>
341     function will cause subsequent bget()  requests  for  buffers  too
342     large  to  be  managed in the linked-block scheme (in other words,
343     larger than <pool_incr> minus the buffer overhead) to be satisfied
344     directly by calls to the <acquire> function.  Automatic release of
345     empty pool blocks will occur only if all pool blocks in the system
346     are the size given by <pool_incr>.
347 
348 	    void bstats(bufsize *curalloc, bufsize *totfree,
349 			bufsize *maxfree, long *nget, long *nrel);
350 
351     The amount	of  space  currently  allocated  is  stored  into  the
352     variable  pointed  to by <curalloc>.  The total free space (sum of
353     all free blocks in the pool) is stored into the  variable  pointed
354     to	by  <totfree>, and the size of the largest single block in the
355     free space	pool  is  stored  into	the  variable  pointed	to  by
356     <maxfree>.	 The  variables  pointed  to  by <nget> and <nrel> are
357     filled, respectively, with	the  number  of  successful  (non-NULL
358     return) bget() calls and the number of brel() calls.
359 
360 	    void bstatse(bufsize *pool_incr, long *npool,
361 			 long *npget, long *nprel,
362 			 long *ndget, long *ndrel);
363 
364     Extended  statistics: The expansion block size will be stored into
365     the variable pointed to by <pool_incr>, or the negative thereof if
366     automatic  expansion  block  releases are disabled.  The number of
367     currently active pool blocks will  be  stored  into  the  variable
368     pointed  to  by  <npool>.  The variables pointed to by <npget> and
369     <nprel> will be filled with, respectively, the number of expansion
370     block   acquisitions   and	releases  which  have  occurred.   The
371     variables pointed to by <ndget> and <ndrel> will  be  filled  with
372     the  number  of  bget()  and  brel()  calls, respectively, managed
373     through blocks directly allocated by the acquisition  and  release
374     functions.
375 
376 	    void bufdump(void *buf);
377 
378     The buffer pointed to by <buf> is dumped on standard output.
379 
380 	    void bpoold(void *pool, int dumpalloc, int dumpfree);
381 
382     All buffers in the buffer pool <pool>, previously initialised by a
383     call on bpool(), are listed in ascending memory address order.  If
384     <dumpalloc> is nonzero, the  contents  of  allocated  buffers  are
385     dumped;  if <dumpfree> is nonzero, the contents of free blocks are
386     dumped.
387 
388 	    int bpoolv(void *pool);
389 
390     The  named	buffer	pool,  previously  initialised	by  a  call on
391     bpool(), is validated for bad pointers, overwritten data, etc.  If
392     compiled with NDEBUG not defined, any error generates an assertion
393     failure.  Otherwise 1 is returned if the pool is valid,  0	if  an
394     error is found.
395 
396 
397     BGET CONFIGURATION
398     ==================
399 */
400 
401 /*
402  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
403  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
404  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
405  * IN NO EVENT SHALL ST BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
406  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
407  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
408  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
409  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
410  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
411  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
412  */
413 
414 /* #define BGET_ENABLE_ALL_OPTIONS */
415 #ifdef BGET_ENABLE_OPTION
416 #define TestProg    20000	      /* Generate built-in test program
417 					 if defined.  The value specifies
418 					 how many buffer allocation attempts
419 					 the test program should make. */
420 
421 #define SizeQuant   4		      /* Buffer allocation size quantum:
422 					 all buffers allocated are a
423 					 multiple of this size.  This
424 					 MUST be a power of two. */
425 
426 #define BufDump     1		      /* Define this symbol to enable the
427 					 bpoold() function which dumps the
428 					 buffers in a buffer pool. */
429 
430 #define BufValid    1		      /* Define this symbol to enable the
431 					 bpoolv() function for validating
432 					 a buffer pool. */
433 
434 #define DumpData    1		      /* Define this symbol to enable the
435 					 bufdump() function which allows
436 					 dumping the contents of an allocated
437 					 or free buffer. */
438 
439 #define BufStats    1		      /* Define this symbol to enable the
440 					 bstats() function which calculates
441 					 the total free space in the buffer
442 					 pool, the largest available
443 					 buffer, and the total space
444 					 currently allocated. */
445 
446 #define FreeWipe    1		      /* Wipe free buffers to a guaranteed
447 					 pattern of garbage to trip up
448 					 miscreants who attempt to use
449 					 pointers into released buffers. */
450 
451 #define BestFit     1		      /* Use a best fit algorithm when
452 					 searching for space for an
453 					 allocation request.  This uses
454 					 memory more efficiently, but
455 					 allocation will be much slower. */
456 
457 #define BECtl	    1		      /* Define this symbol to enable the
458 					 bectl() function for automatic
459 					 pool space control.  */
460 #endif
461 
462 #include <stdio.h>
463 
464 #ifdef lint
465 #define NDEBUG			      /* Exits in asserts confuse lint */
466 /* LINTLIBRARY */                     /* Don't complain about def, no ref */
467 extern char *sprintf();               /* Sun includes don't define sprintf */
468 #endif
469 
470 #include <assert.h>
471 #include <memory.h>
472 
473 #ifdef BufDump			      /* BufDump implies DumpData */
474 #ifndef DumpData
475 #define DumpData    1
476 #endif
477 #endif
478 
479 #ifdef DumpData
480 #include <ctype.h>
481 #endif
482 
483 /*  Declare the interface, including the requested buffer size type,
484     bufsize.  */
485 
486 #include "bget.h"
487 
488 #define MemSize     int 	      /* Type for size arguments to memxxx()
489 					 functions such as memcmp(). */
490 
491 /* Queue links */
492 
493 struct qlinks {
494     struct bfhead *flink;	      /* Forward link */
495     struct bfhead *blink;	      /* Backward link */
496 };
497 
498 /* Header in allocated and free buffers */
499 
500 struct bhead {
501     bufsize prevfree;		      /* Relative link back to previous
502 					 free buffer in memory or 0 if
503 					 previous buffer is allocated.	*/
504     bufsize bsize;		      /* Buffer size: positive if free,
505 					 negative if allocated. */
506 };
507 #define BH(p)	((struct bhead *) (p))
508 
509 /*  Header in directly allocated buffers (by acqfcn) */
510 
511 struct bdhead {
512     bufsize tsize;		      /* Total size, including overhead */
513     struct bhead bh;		      /* Common header */
514 };
515 #define BDH(p)	((struct bdhead *) (p))
516 
517 /* Header in free buffers */
518 
519 struct bfhead {
520     struct bhead bh;		      /* Common allocated/free header */
521     struct qlinks ql;		      /* Links on free list */
522 };
523 #define BFH(p)	((struct bfhead *) (p))
524 
525 static struct bfhead freelist = {     /* List of free buffers */
526     {0, 0},
527     {&freelist, &freelist}
528 };
529 
530 
531 #ifdef BufStats
532 static bufsize totalloc = 0;	      /* Total space currently allocated */
533 static long numget = 0, numrel = 0;   /* Number of bget() and brel() calls */
534 #ifdef BECtl
535 static long numpblk = 0;	      /* Number of pool blocks */
536 static long numpget = 0, numprel = 0; /* Number of block gets and rels */
537 static long numdget = 0, numdrel = 0; /* Number of direct gets and rels */
538 #endif /* BECtl */
539 #endif /* BufStats */
540 
541 #ifdef BECtl
542 
543 /* Automatic expansion block management functions */
544 
545 static int (*compfcn) _((bufsize sizereq, int sequence)) = NULL;
546 static void *(*acqfcn) _((bufsize size)) = NULL;
547 static void (*relfcn) _((void *buf)) = NULL;
548 
549 static bufsize exp_incr = 0;	      /* Expansion block size */
550 static bufsize pool_len = 0;	      /* 0: no bpool calls have been made
551 					 -1: not all pool blocks are
552 					     the same size
553 					 >0: (common) block size for all
554 					     bpool calls made so far
555 				      */
556 #endif
557 
558 /*  Minimum allocation quantum: */
559 
560 #define QLSize	(sizeof(struct qlinks))
561 #define SizeQ	((SizeQuant > QLSize) ? SizeQuant : QLSize)
562 
563 #define V   (void)		      /* To denote unwanted returned values */
564 
565 /* End sentinel: value placed in bsize field of dummy block delimiting
566    end of pool block.  The most negative number which will  fit  in  a
567    bufsize, defined in a way that the compiler will accept. */
568 
569 #define ESent	((bufsize) (-(((1L << (sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
570 
571 /*  BGET  --  Allocate a buffer.  */
572 
573 void *bget(requested_size)
574   bufsize requested_size;
575 {
576     bufsize size = requested_size;
577     struct bfhead *b;
578 #ifdef BestFit
579     struct bfhead *best;
580 #endif
581     void *buf;
582 #ifdef BECtl
583     int compactseq = 0;
584 #endif
585 
586     assert(size > 0);
587 
588     if (size < SizeQ) { 	      /* Need at least room for the */
589 	size = SizeQ;		      /*    queue links.  */
590     }
591 #ifdef SizeQuant
592 #if SizeQuant > 1
593     size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1));
594 #endif
595 #endif
596 
597     size += sizeof(struct bhead);     /* Add overhead in allocated buffer
598 					 to size required. */
599 
600 #ifdef BECtl
601     /* If a compact function was provided in the call to bectl(), wrap
602        a loop around the allocation process  to  allow	compaction  to
603        intervene in case we don't find a suitable buffer in the chain. */
604 
605     while (1) {
606 #endif
607 	b = freelist.ql.flink;
608 #ifdef BestFit
609 	best = &freelist;
610 #endif
611 
612 
613 	/* Scan the free list searching for the first buffer big enough
614 	   to hold the requested size buffer. */
615 
616 #ifdef BestFit
617 	while (b != &freelist) {
618 	    if (b->bh.bsize >= size) {
619 		if ((best == &freelist) || (b->bh.bsize < best->bh.bsize)) {
620 		    best = b;
621 		}
622 	    }
623 	    b = b->ql.flink;		  /* Link to next buffer */
624 	}
625 	b = best;
626 #endif /* BestFit */
627 
628 	while (b != &freelist) {
629 	    if ((bufsize) b->bh.bsize >= size) {
630 
631 		/* Buffer  is big enough to satisfy  the request.  Allocate it
632 		   to the caller.  We must decide whether the buffer is  large
633 		   enough  to  split  into  the part given to the caller and a
634 		   free buffer that remains on the free list, or  whether  the
635 		   entire  buffer  should  be  removed	from the free list and
636 		   given to the caller in its entirety.   We  only  split  the
637 		   buffer if enough room remains for a header plus the minimum
638 		   quantum of allocation. */
639 
640 		if ((b->bh.bsize - size) > (SizeQ + (sizeof(struct bhead)))) {
641 		    struct bhead *ba, *bn;
642 
643 		    ba = BH(((char *) b) + (b->bh.bsize - size));
644 		    bn = BH(((char *) ba) + size);
645 		    assert(bn->prevfree == b->bh.bsize);
646 		    /* Subtract size from length of free block. */
647 		    b->bh.bsize -= size;
648 		    /* Link allocated buffer to the previous free buffer. */
649 		    ba->prevfree = b->bh.bsize;
650 		    /* Plug negative size into user buffer. */
651 		    ba->bsize = -(bufsize) size;
652 		    /* Mark buffer after this one not preceded by free block. */
653 		    bn->prevfree = 0;
654 
655 #ifdef BufStats
656 		    totalloc += size;
657 		    numget++;		  /* Increment number of bget() calls */
658 #endif
659 		    buf = (void *) ((((char *) ba) + sizeof(struct bhead)));
660 		    return buf;
661 		} else {
662 		    struct bhead *ba;
663 
664 		    ba = BH(((char *) b) + b->bh.bsize);
665 		    assert(ba->prevfree == b->bh.bsize);
666 
667                     /* The buffer isn't big enough to split.  Give  the  whole
668 		       shebang to the caller and remove it from the free list. */
669 
670 		    assert(b->ql.blink->ql.flink == b);
671 		    assert(b->ql.flink->ql.blink == b);
672 		    b->ql.blink->ql.flink = b->ql.flink;
673 		    b->ql.flink->ql.blink = b->ql.blink;
674 
675 #ifdef BufStats
676 		    totalloc += b->bh.bsize;
677 		    numget++;		  /* Increment number of bget() calls */
678 #endif
679 		    /* Negate size to mark buffer allocated. */
680 		    b->bh.bsize = -(b->bh.bsize);
681 
682 		    /* Zero the back pointer in the next buffer in memory
683 		       to indicate that this buffer is allocated. */
684 		    ba->prevfree = 0;
685 
686 		    /* Give user buffer starting at queue links. */
687 		    buf =  (void *) &(b->ql);
688 		    return buf;
689 		}
690 	    }
691 	    b = b->ql.flink;		  /* Link to next buffer */
692 	}
693 #ifdef BECtl
694 
695         /* We failed to find a buffer.  If there's a compact  function
696 	   defined,  notify  it  of the size requested.  If it returns
697 	   TRUE, try the allocation again. */
698 
699 	if ((compfcn == NULL) || (!(*compfcn)(size, ++compactseq))) {
700 	    break;
701 	}
702     }
703 
704     /* No buffer available with requested size free. */
705 
706     /* Don't give up yet -- look in the reserve supply. */
707 
708     if (acqfcn != NULL) {
709 	if (size > exp_incr - sizeof(struct bhead)) {
710 
711 	    /* Request	is  too  large	to  fit in a single expansion
712 	       block.  Try to satisy it by a direct buffer acquisition. */
713 
714 	    struct bdhead *bdh;
715 
716 	    size += sizeof(struct bdhead) - sizeof(struct bhead);
717 	    if ((bdh = BDH((*acqfcn)((bufsize) size))) != NULL) {
718 
719 		/*  Mark the buffer special by setting the size field
720 		    of its header to zero.  */
721 		bdh->bh.bsize = 0;
722 		bdh->bh.prevfree = 0;
723 		bdh->tsize = size;
724 #ifdef BufStats
725 		totalloc += size;
726 		numget++;	      /* Increment number of bget() calls */
727 		numdget++;	      /* Direct bget() call count */
728 #endif
729 		buf =  (void *) (bdh + 1);
730 		return buf;
731 	    }
732 
733 	} else {
734 
735 	    /*	Try to obtain a new expansion block */
736 
737 	    void *newpool;
738 
739 	    if ((newpool = (*acqfcn)((bufsize) exp_incr)) != NULL) {
740 		bpool(newpool, exp_incr);
741                 buf =  bget(requested_size);  /* This can't, I say, can't
742 						 get into a loop. */
743 		return buf;
744 	    }
745 	}
746     }
747 
748     /*	Still no buffer available */
749 
750 #endif /* BECtl */
751 
752     return NULL;
753 }
754 
755 /*  BGETZ  --  Allocate a buffer and clear its contents to zero.  We clear
756 	       the  entire  contents  of  the buffer to zero, not just the
757 	       region requested by the caller. */
758 
759 void *bgetz(size)
760   bufsize size;
761 {
762     char *buf = (char *) bget(size);
763 
764     if (buf != NULL) {
765 	struct bhead *b;
766 	bufsize rsize;
767 
768 	b = BH(buf - sizeof(struct bhead));
769 	rsize = -(b->bsize);
770 	if (rsize == 0) {
771 	    struct bdhead *bd;
772 
773 	    bd = BDH(buf - sizeof(struct bdhead));
774 	    rsize = bd->tsize - sizeof(struct bdhead);
775 	} else {
776 	    rsize -= sizeof(struct bhead);
777 	}
778 	assert(rsize >= size);
779 	V memset(buf, 0, (MemSize) rsize);
780     }
781     return ((void *) buf);
782 }
783 
784 /*  BGETR  --  Reallocate a buffer.  This is a minimal implementation,
785 	       simply in terms of brel()  and  bget().	 It  could  be
786 	       enhanced to allow the buffer to grow into adjacent free
787 	       blocks and to avoid moving data unnecessarily.  */
788 
789 void *bgetr(buf, size)
790   void *buf;
791   bufsize size;
792 {
793     void *nbuf;
794     bufsize osize;		      /* Old size of buffer */
795     struct bhead *b;
796 
797     if ((nbuf = bget(size)) == NULL) { /* Acquire new buffer */
798 	return NULL;
799     }
800     if (buf == NULL) {
801 	return nbuf;
802     }
803     b = BH(((char *) buf) - sizeof(struct bhead));
804     osize = -b->bsize;
805 #ifdef BECtl
806     if (osize == 0) {
807 	/*  Buffer acquired directly through acqfcn. */
808 	struct bdhead *bd;
809 
810 	bd = BDH(((char *) buf) - sizeof(struct bdhead));
811 	osize = bd->tsize - sizeof(struct bdhead);
812     } else
813 #endif
814 	osize -= sizeof(struct bhead);
815     assert(osize > 0);
816     V memcpy((char *) nbuf, (char *) buf, /* Copy the data */
817 	     (MemSize) ((size < osize) ? size : osize));
818     brel(buf);
819     return nbuf;
820 }
821 
822 /*  BREL  --  Release a buffer.  */
823 
824 void brel(buf)
825   void *buf;
826 {
827     struct bfhead *b, *bn;
828 
829     b = BFH(((char *) buf) - sizeof(struct bhead));
830 #ifdef BufStats
831     numrel++;			      /* Increment number of brel() calls */
832 #endif
833     assert(buf != NULL);
834 
835 #ifdef BECtl
836     if (b->bh.bsize == 0) {	      /* Directly-acquired buffer? */
837 	struct bdhead *bdh;
838 
839 	bdh = BDH(((char *) buf) - sizeof(struct bdhead));
840 	assert(b->bh.prevfree == 0);
841 #ifdef BufStats
842 	totalloc -= bdh->tsize;
843 	assert(totalloc >= 0);
844 	numdrel++;		      /* Number of direct releases */
845 #endif /* BufStats */
846 #ifdef FreeWipe
847 	V memset((char *) buf, 0x55,
848 		 (MemSize) (bdh->tsize - sizeof(struct bdhead)));
849 #endif /* FreeWipe */
850 	assert(relfcn != NULL);
851 	(*relfcn)((void *) bdh);      /* Release it directly. */
852 	return;
853     }
854 #endif /* BECtl */
855 
856     /* Buffer size must be negative, indicating that the buffer is
857        allocated. */
858 
859     if (b->bh.bsize >= 0) {
860 	bn = NULL;
861     }
862     assert(b->bh.bsize < 0);
863 
864     /*	Back pointer in next buffer must be zero, indicating the
865 	same thing: */
866 
867     assert(BH((char *) b - b->bh.bsize)->prevfree == 0);
868 
869 #ifdef BufStats
870     totalloc += b->bh.bsize;
871     assert(totalloc >= 0);
872 #endif
873 
874     /* If the back link is nonzero, the previous buffer is free.  */
875 
876     if (b->bh.prevfree != 0) {
877 
878 	/* The previous buffer is free.  Consolidate this buffer  with	it
879 	   by  adding  the  length  of	this  buffer  to the previous free
880 	   buffer.  Note that we subtract the size  in	the  buffer  being
881            released,  since  it's  negative to indicate that the buffer is
882 	   allocated. */
883 
884 	register bufsize size = b->bh.bsize;
885 
886         /* Make the previous buffer the one we're working on. */
887 	assert(BH((char *) b - b->bh.prevfree)->bsize == b->bh.prevfree);
888 	b = BFH(((char *) b) - b->bh.prevfree);
889 	b->bh.bsize -= size;
890     } else {
891 
892         /* The previous buffer isn't allocated.  Insert this buffer
893 	   on the free list as an isolated free block. */
894 
895 	assert(freelist.ql.blink->ql.flink == &freelist);
896 	assert(freelist.ql.flink->ql.blink == &freelist);
897 	b->ql.flink = &freelist;
898 	b->ql.blink = freelist.ql.blink;
899 	freelist.ql.blink = b;
900 	b->ql.blink->ql.flink = b;
901 	b->bh.bsize = -b->bh.bsize;
902     }
903 
904     /* Now we look at the next buffer in memory, located by advancing from
905        the  start  of  this  buffer  by its size, to see if that buffer is
906        free.  If it is, we combine  this  buffer  with	the  next  one	in
907        memory, dechaining the second buffer from the free list. */
908 
909     bn =  BFH(((char *) b) + b->bh.bsize);
910     if (bn->bh.bsize > 0) {
911 
912 	/* The buffer is free.	Remove it from the free list and add
913 	   its size to that of our buffer. */
914 
915 	assert(BH((char *) bn + bn->bh.bsize)->prevfree == bn->bh.bsize);
916 	assert(bn->ql.blink->ql.flink == bn);
917 	assert(bn->ql.flink->ql.blink == bn);
918 	bn->ql.blink->ql.flink = bn->ql.flink;
919 	bn->ql.flink->ql.blink = bn->ql.blink;
920 	b->bh.bsize += bn->bh.bsize;
921 
922 	/* Finally,  advance  to   the	buffer	that   follows	the  newly
923 	   consolidated free block.  We must set its  backpointer  to  the
924 	   head  of  the  consolidated free block.  We know the next block
925 	   must be an allocated block because the process of recombination
926 	   guarantees  that  two  free	blocks will never be contiguous in
927 	   memory.  */
928 
929 	bn = BFH(((char *) b) + b->bh.bsize);
930     }
931 #ifdef FreeWipe
932     V memset(((char *) b) + sizeof(struct bfhead), 0x55,
933 	    (MemSize) (b->bh.bsize - sizeof(struct bfhead)));
934 #endif
935     assert(bn->bh.bsize < 0);
936 
937     /* The next buffer is allocated.  Set the backpointer in it  to  point
938        to this buffer; the previous free buffer in memory. */
939 
940     bn->bh.prevfree = b->bh.bsize;
941 
942 #ifdef BECtl
943 
944     /*	If  a  block-release function is defined, and this free buffer
945 	constitutes the entire block, release it.  Note that  pool_len
946 	is  defined  in  such a way that the test will fail unless all
947 	pool blocks are the same size.	*/
948 
949     if (relfcn != NULL &&
950 	((bufsize) b->bh.bsize) == (pool_len - sizeof(struct bhead))) {
951 
952 	assert(b->bh.prevfree == 0);
953 	assert(BH((char *) b + b->bh.bsize)->bsize == ESent);
954 	assert(BH((char *) b + b->bh.bsize)->prevfree == b->bh.bsize);
955 	/*  Unlink the buffer from the free list  */
956 	b->ql.blink->ql.flink = b->ql.flink;
957 	b->ql.flink->ql.blink = b->ql.blink;
958 
959 	(*relfcn)(b);
960 #ifdef BufStats
961 	numprel++;		      /* Nr of expansion block releases */
962 	numpblk--;		      /* Total number of blocks */
963 	assert(numpblk == numpget - numprel);
964 #endif /* BufStats */
965     }
966 #endif /* BECtl */
967 }
968 
969 #ifdef BECtl
970 
971 /*  BECTL  --  Establish automatic pool expansion control  */
972 
973 void bectl(compact, acquire, release, pool_incr)
974   int (*compact) _((bufsize sizereq, int sequence));
975   void *(*acquire) _((bufsize size));
976   void (*release) _((void *buf));
977   bufsize pool_incr;
978 {
979     compfcn = compact;
980     acqfcn = acquire;
981     relfcn = release;
982     exp_incr = pool_incr;
983 }
984 #endif
985 
986 /*  BPOOL  --  Add a region of memory to the buffer pool.  */
987 
988 void bpool(buf, len)
989   void *buf;
990   bufsize len;
991 {
992     struct bfhead *b = BFH(buf);
993     struct bhead *bn;
994 
995 #ifdef SizeQuant
996     len &= ~(SizeQuant - 1);
997 #endif
998 #ifdef BECtl
999     if (pool_len == 0) {
1000 	pool_len = len;
1001     } else if (len != pool_len) {
1002 	pool_len = -1;
1003     }
1004 #ifdef BufStats
1005     numpget++;			      /* Number of block acquisitions */
1006     numpblk++;			      /* Number of blocks total */
1007     assert(numpblk == numpget - numprel);
1008 #endif /* BufStats */
1009 #endif /* BECtl */
1010 
1011     /* Since the block is initially occupied by a single free  buffer,
1012        it  had	better	not  be  (much) larger than the largest buffer
1013        whose size we can store in bhead.bsize. */
1014 
1015     assert(len - sizeof(struct bhead) <= -((bufsize) ESent + 1));
1016 
1017     /* Clear  the  backpointer at  the start of the block to indicate that
1018        there  is  no  free  block  prior  to  this   one.    That   blocks
1019        recombination when the first block in memory is released. */
1020 
1021     b->bh.prevfree = 0;
1022 
1023     /* Chain the new block to the free list. */
1024 
1025     assert(freelist.ql.blink->ql.flink == &freelist);
1026     assert(freelist.ql.flink->ql.blink == &freelist);
1027     b->ql.flink = &freelist;
1028     b->ql.blink = freelist.ql.blink;
1029     freelist.ql.blink = b;
1030     b->ql.blink->ql.flink = b;
1031 
1032     /* Create a dummy allocated buffer at the end of the pool.	This dummy
1033        buffer is seen when a buffer at the end of the pool is released and
1034        blocks  recombination  of  the last buffer with the dummy buffer at
1035        the end.  The length in the dummy buffer  is  set  to  the  largest
1036        negative  number  to  denote  the  end  of  the pool for diagnostic
1037        routines (this specific value is  not  counted  on  by  the  actual
1038        allocation and release functions). */
1039 
1040     len -= sizeof(struct bhead);
1041     b->bh.bsize = (bufsize) len;
1042 #ifdef FreeWipe
1043     V memset(((char *) b) + sizeof(struct bfhead), 0x55,
1044 	     (MemSize) (len - sizeof(struct bfhead)));
1045 #endif
1046     bn = BH(((char *) b) + len);
1047     bn->prevfree = (bufsize) len;
1048     /* Definition of ESent assumes two's complement! */
1049     assert((~0) == -1);
1050     bn->bsize = ESent;
1051 }
1052 
1053 #ifdef BufStats
1054 
1055 /*  BSTATS  --	Return buffer allocation free space statistics.  */
1056 
1057 void bstats(curalloc, totfree, maxfree, nget, nrel)
1058   bufsize *curalloc, *totfree, *maxfree;
1059   long *nget, *nrel;
1060 {
1061     struct bfhead *b = freelist.ql.flink;
1062 
1063     *nget = numget;
1064     *nrel = numrel;
1065     *curalloc = totalloc;
1066     *totfree = 0;
1067     *maxfree = -1;
1068     while (b != &freelist) {
1069 	assert(b->bh.bsize > 0);
1070 	*totfree += b->bh.bsize;
1071 	if (b->bh.bsize > *maxfree) {
1072 	    *maxfree = b->bh.bsize;
1073 	}
1074 	b = b->ql.flink;	      /* Link to next buffer */
1075     }
1076 }
1077 
1078 #ifdef BECtl
1079 
1080 /*  BSTATSE  --  Return extended statistics  */
1081 
1082 void bstatse(pool_incr, npool, npget, nprel, ndget, ndrel)
1083   bufsize *pool_incr;
1084   long *npool, *npget, *nprel, *ndget, *ndrel;
1085 {
1086     *pool_incr = (pool_len < 0) ? -exp_incr : exp_incr;
1087     *npool = numpblk;
1088     *npget = numpget;
1089     *nprel = numprel;
1090     *ndget = numdget;
1091     *ndrel = numdrel;
1092 }
1093 #endif /* BECtl */
1094 #endif /* BufStats */
1095 
1096 #ifdef DumpData
1097 
1098 /*  BUFDUMP  --  Dump the data in a buffer.  This is called with the  user
1099 		 data pointer, and backs up to the buffer header.  It will
1100 		 dump either a free block or an allocated one.	*/
1101 
1102 void bufdump(buf)
1103   void *buf;
1104 {
1105     struct bfhead *b;
1106     unsigned char *bdump;
1107     bufsize bdlen;
1108 
1109     b = BFH(((char *) buf) - sizeof(struct bhead));
1110     assert(b->bh.bsize != 0);
1111     if (b->bh.bsize < 0) {
1112 	bdump = (unsigned char *) buf;
1113 	bdlen = (-b->bh.bsize) - sizeof(struct bhead);
1114     } else {
1115 	bdump = (unsigned char *) (((char *) b) + sizeof(struct bfhead));
1116 	bdlen = b->bh.bsize - sizeof(struct bfhead);
1117     }
1118 
1119     while (bdlen > 0) {
1120 	int i, dupes = 0;
1121 	bufsize l = bdlen;
1122 	char bhex[50], bascii[20];
1123 
1124 	if (l > 16) {
1125 	    l = 16;
1126 	}
1127 
1128 	for (i = 0; i < l; i++) {
1129 			V snprintf(bhex + i * 3, sizeof(bhex) - i * 3, "%02X ",
1130 				   bdump[i]);
1131             bascii[i] = isprint(bdump[i]) ? bdump[i] : ' ';
1132 	}
1133 	bascii[i] = 0;
1134         V printf("%-48s   %s\n", bhex, bascii);
1135 	bdump += l;
1136 	bdlen -= l;
1137 	while ((bdlen > 16) && (memcmp((char *) (bdump - 16),
1138 				       (char *) bdump, 16) == 0)) {
1139 	    dupes++;
1140 	    bdump += 16;
1141 	    bdlen -= 16;
1142 	}
1143 	if (dupes > 1) {
1144 	    V printf(
1145                 "     (%d lines [%d bytes] identical to above line skipped)\n",
1146 		dupes, dupes * 16);
1147 	} else if (dupes == 1) {
1148 	    bdump -= 16;
1149 	    bdlen += 16;
1150 	}
1151     }
1152 }
1153 #endif
1154 
1155 #ifdef BufDump
1156 
1157 /*  BPOOLD  --	Dump a buffer pool.  The buffer headers are always listed.
1158 		If DUMPALLOC is nonzero, the contents of allocated buffers
1159 		are  dumped.   If  DUMPFREE  is  nonzero,  free blocks are
1160 		dumped as well.  If FreeWipe  checking	is  enabled,  free
1161 		blocks	which  have  been clobbered will always be dumped. */
1162 
1163 void bpoold(buf, dumpalloc, dumpfree)
1164   void *buf;
1165   int dumpalloc, dumpfree;
1166 {
1167     struct bfhead *b = BFH(buf);
1168 
1169     while (b->bh.bsize != ESent) {
1170 	bufsize bs = b->bh.bsize;
1171 
1172 	if (bs < 0) {
1173 	    bs = -bs;
1174             V printf("Allocated buffer: size %6ld bytes.\n", (long) bs);
1175 	    if (dumpalloc) {
1176 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1177 	    }
1178 	} else {
1179             char *lerr = "";
1180 
1181 	    assert(bs > 0);
1182 	    if ((b->ql.blink->ql.flink != b) ||
1183 		(b->ql.flink->ql.blink != b)) {
1184                 lerr = "  (Bad free list links)";
1185 	    }
1186             V printf("Free block:       size %6ld bytes.%s\n",
1187 		(long) bs, lerr);
1188 #ifdef FreeWipe
1189 	    lerr = ((char *) b) + sizeof(struct bfhead);
1190 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1191 		(memcmp(lerr, lerr + 1,
1192 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1193 		V printf(
1194                     "(Contents of above free block have been overstored.)\n");
1195 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1196 	    } else
1197 #endif
1198 	    if (dumpfree) {
1199 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1200 	    }
1201 	}
1202 	b = BFH(((char *) b) + bs);
1203     }
1204 }
1205 #endif /* BufDump */
1206 
1207 #ifdef BufValid
1208 
1209 /*  BPOOLV  --  Validate a buffer pool.  If NDEBUG isn't defined,
1210 		any error generates an assertion failure.  */
1211 
1212 int bpoolv(buf)
1213   void *buf;
1214 {
1215     struct bfhead *b = BFH(buf);
1216 
1217     while (b->bh.bsize != ESent) {
1218 	bufsize bs = b->bh.bsize;
1219 
1220 	if (bs < 0) {
1221 	    bs = -bs;
1222 	} else {
1223 			const char *lerr = "";
1224 
1225 	    assert(bs > 0);
1226 	    if (bs <= 0) {
1227 		return 0;
1228 	    }
1229 	    if ((b->ql.blink->ql.flink != b) ||
1230 		(b->ql.flink->ql.blink != b)) {
1231                 V printf("Free block: size %6ld bytes.  (Bad free list links)\n",
1232 		     (long) bs);
1233 		assert(0);
1234 		return 0;
1235 	    }
1236 #ifdef FreeWipe
1237 	    lerr = ((char *) b) + sizeof(struct bfhead);
1238 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1239 		(memcmp(lerr, lerr + 1,
1240 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1241 		V printf(
1242                     "(Contents of above free block have been overstored.)\n");
1243 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1244 		assert(0);
1245 		return 0;
1246 	    }
1247 #endif
1248 	}
1249 	b = BFH(((char *) b) + bs);
1250     }
1251     return 1;
1252 }
1253 #endif /* BufValid */
1254 
1255         /***********************\
1256 	*			*
1257 	* Built-in test program *
1258 	*			*
1259         \***********************/
1260 
1261 #ifdef TestProg
1262 
1263 #define Repeatable  1		      /* Repeatable pseudorandom sequence */
1264 				      /* If Repeatable is not defined, a
1265 					 time-seeded pseudorandom sequence
1266 					 is generated, exercising BGET with
1267 					 a different pattern of calls on each
1268 					 run. */
1269 #define OUR_RAND		      /* Use our own built-in version of
1270 					 rand() to guarantee the test is
1271 					 100% repeatable. */
1272 
1273 #ifdef BECtl
1274 #define PoolSize    300000	      /* Test buffer pool size */
1275 #else
1276 #define PoolSize    50000	      /* Test buffer pool size */
1277 #endif
1278 #define ExpIncr     32768	      /* Test expansion block size */
1279 #define CompactTries 10 	      /* Maximum tries at compacting */
1280 
1281 #define dumpAlloc   0		      /* Dump allocated buffers ? */
1282 #define dumpFree    0		      /* Dump free buffers ? */
1283 
1284 #ifndef Repeatable
1285 extern long time();
1286 #endif
1287 
1288 extern char *malloc();
1289 extern int free _((char *));
1290 
1291 static char *bchain = NULL;	      /* Our private buffer chain */
1292 static char *bp = NULL; 	      /* Our initial buffer pool */
1293 
1294 #include <math.h>
1295 
1296 #ifdef OUR_RAND
1297 
1298 static unsigned long int next = 1;
1299 
1300 /* Return next random integer */
1301 
1302 int rand()
1303 {
1304 	next = next * 1103515245L + 12345;
1305 	return (unsigned int) (next / 65536L) % 32768L;
1306 }
1307 
1308 /* Set seed for random generator */
1309 
1310 void srand(seed)
1311   unsigned int seed;
1312 {
1313 	next = seed;
1314 }
1315 #endif
1316 
1317 /*  STATS  --  Edit statistics returned by bstats() or bstatse().  */
1318 
1319 static void stats(when)
1320   char *when;
1321 {
1322     bufsize cural, totfree, maxfree;
1323     long nget, nfree;
1324 #ifdef BECtl
1325     bufsize pincr;
1326     long totblocks, npget, nprel, ndget, ndrel;
1327 #endif
1328 
1329     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1330     V printf(
1331         "%s: %ld gets, %ld releases.  %ld in use, %ld free, largest = %ld\n",
1332 	when, nget, nfree, (long) cural, (long) totfree, (long) maxfree);
1333 #ifdef BECtl
1334     bstatse(&pincr, &totblocks, &npget, &nprel, &ndget, &ndrel);
1335     V printf(
1336          "  Blocks: size = %ld, %ld (%ld bytes) in use, %ld gets, %ld frees\n",
1337 	 (long)pincr, totblocks, pincr * totblocks, npget, nprel);
1338     V printf("  %ld direct gets, %ld direct frees\n", ndget, ndrel);
1339 #endif /* BECtl */
1340 }
1341 
1342 #ifdef BECtl
1343 static int protect = 0; 	      /* Disable compaction during bgetr() */
1344 
1345 /*  BCOMPACT  --  Compaction call-back function.  */
1346 
1347 static int bcompact(bsize, seq)
1348   bufsize bsize;
1349   int seq;
1350 {
1351 #ifdef CompactTries
1352     char *bc = bchain;
1353     int i = rand() & 0x3;
1354 
1355 #ifdef COMPACTRACE
1356     V printf("Compaction requested.  %ld bytes needed, sequence %d.\n",
1357 	(long) bsize, seq);
1358 #endif
1359 
1360     if (protect || (seq > CompactTries)) {
1361 #ifdef COMPACTRACE
1362         V printf("Compaction gave up.\n");
1363 #endif
1364 	return 0;
1365     }
1366 
1367     /* Based on a random cast, release a random buffer in the list
1368        of allocated buffers. */
1369 
1370     while (i > 0 && bc != NULL) {
1371 	bc = *((char **) bc);
1372 	i--;
1373     }
1374     if (bc != NULL) {
1375 	char *fb;
1376 
1377 	fb = *((char **) bc);
1378 	if (fb != NULL) {
1379 	    *((char **) bc) = *((char **) fb);
1380 	    brel((void *) fb);
1381 	    return 1;
1382 	}
1383     }
1384 
1385 #ifdef COMPACTRACE
1386     V printf("Compaction bailed out.\n");
1387 #endif
1388 #endif /* CompactTries */
1389     return 0;
1390 }
1391 
1392 /*  BEXPAND  --  Expand pool call-back function.  */
1393 
1394 static void *bexpand(size)
1395   bufsize size;
1396 {
1397     void *np = NULL;
1398     bufsize cural, totfree, maxfree;
1399     long nget, nfree;
1400 
1401     /* Don't expand beyond the total allocated size given by PoolSize. */
1402 
1403     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1404 
1405     if (cural < PoolSize) {
1406 	np = (void *) malloc((unsigned) size);
1407     }
1408 #ifdef EXPTRACE
1409     V printf("Expand pool by %ld -- %s.\n", (long) size,
1410         np == NULL ? "failed" : "succeeded");
1411 #endif
1412     return np;
1413 }
1414 
1415 /*  BSHRINK  --  Shrink buffer pool call-back function.  */
1416 
1417 static void bshrink(buf)
1418   void *buf;
1419 {
1420     if (((char *) buf) == bp) {
1421 #ifdef EXPTRACE
1422         V printf("Initial pool released.\n");
1423 #endif
1424 	bp = NULL;
1425     }
1426 #ifdef EXPTRACE
1427     V printf("Shrink pool.\n");
1428 #endif
1429     free((char *) buf);
1430 }
1431 
1432 #endif /* BECtl */
1433 
1434 /*  Restrict buffer requests to those large enough to contain our pointer and
1435     small enough for the CPU architecture.  */
1436 
1437 static bufsize blimit(bs)
1438   bufsize bs;
1439 {
1440     if (bs < sizeof(char *)) {
1441 	bs = sizeof(char *);
1442     }
1443 
1444     /* This is written out in this ugly fashion because the
1445        cool expression in sizeof(int) that auto-configured
1446        to any length int befuddled some compilers. */
1447 
1448     if (sizeof(int) == 2) {
1449 	if (bs > 32767) {
1450 	    bs = 32767;
1451 	}
1452     } else {
1453 	if (bs > 200000) {
1454 	    bs = 200000;
1455 	}
1456     }
1457     return bs;
1458 }
1459 
1460 int main()
1461 {
1462     int i;
1463     double x;
1464 
1465     /* Seed the random number generator.  If Repeatable is defined, we
1466        always use the same seed.  Otherwise, we seed from the clock to
1467        shake things up from run to run. */
1468 
1469 #ifdef Repeatable
1470     V srand(1234);
1471 #else
1472     V srand((int) time((long *) NULL));
1473 #endif
1474 
1475     /*	Compute x such that pow(x, p) ranges between 1 and 4*ExpIncr as
1476 	p ranges from 0 to ExpIncr-1, with a concentration in the lower
1477 	numbers.  */
1478 
1479     x = 4.0 * ExpIncr;
1480     x = log(x);
1481     x = exp(log(4.0 * ExpIncr) / (ExpIncr - 1.0));
1482 
1483 #ifdef BECtl
1484     bectl(bcompact, bexpand, bshrink, (bufsize) ExpIncr);
1485     bp = malloc(ExpIncr);
1486     assert(bp != NULL);
1487     bpool((void *) bp, (bufsize) ExpIncr);
1488 #else
1489     bp = malloc(PoolSize);
1490     assert(bp != NULL);
1491     bpool((void *) bp, (bufsize) PoolSize);
1492 #endif
1493 
1494     stats("Create pool");
1495     V bpoolv((void *) bp);
1496     bpoold((void *) bp, dumpAlloc, dumpFree);
1497 
1498     for (i = 0; i < TestProg; i++) {
1499 	char *cb;
1500 	bufsize bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1501 
1502 	assert(bs <= (((bufsize) 4) * ExpIncr));
1503 	bs = blimit(bs);
1504 	if (rand() & 0x400) {
1505 	    cb = (char *) bgetz(bs);
1506 	} else {
1507 	    cb = (char *) bget(bs);
1508 	}
1509 	if (cb == NULL) {
1510 #ifdef EasyOut
1511 	    break;
1512 #else
1513 	    char *bc = bchain;
1514 
1515 	    if (bc != NULL) {
1516 		char *fb;
1517 
1518 		fb = *((char **) bc);
1519 		if (fb != NULL) {
1520 		    *((char **) bc) = *((char **) fb);
1521 		    brel((void *) fb);
1522 		}
1523 		continue;
1524 	    }
1525 #endif
1526 	}
1527 	*((char **) cb) = (char *) bchain;
1528 	bchain = cb;
1529 
1530 	/* Based on a random cast, release a random buffer in the list
1531 	   of allocated buffers. */
1532 
1533 	if ((rand() & 0x10) == 0) {
1534 	    char *bc = bchain;
1535 	    int i = rand() & 0x3;
1536 
1537 	    while (i > 0 && bc != NULL) {
1538 		bc = *((char **) bc);
1539 		i--;
1540 	    }
1541 	    if (bc != NULL) {
1542 		char *fb;
1543 
1544 		fb = *((char **) bc);
1545 		if (fb != NULL) {
1546 		    *((char **) bc) = *((char **) fb);
1547 		    brel((void *) fb);
1548 		}
1549 	    }
1550 	}
1551 
1552 	/* Based on a random cast, reallocate a random buffer in the list
1553 	   to a random size */
1554 
1555 	if ((rand() & 0x20) == 0) {
1556 	    char *bc = bchain;
1557 	    int i = rand() & 0x3;
1558 
1559 	    while (i > 0 && bc != NULL) {
1560 		bc = *((char **) bc);
1561 		i--;
1562 	    }
1563 	    if (bc != NULL) {
1564 		char *fb;
1565 
1566 		fb = *((char **) bc);
1567 		if (fb != NULL) {
1568 		    char *newb;
1569 
1570 		    bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1571 		    bs = blimit(bs);
1572 #ifdef BECtl
1573 		    protect = 1;      /* Protect against compaction */
1574 #endif
1575 		    newb = (char *) bgetr((void *) fb, bs);
1576 #ifdef BECtl
1577 		    protect = 0;
1578 #endif
1579 		    if (newb != NULL) {
1580 			*((char **) bc) = newb;
1581 		    }
1582 		}
1583 	    }
1584 	}
1585     }
1586     stats("\nAfter allocation");
1587     if (bp != NULL) {
1588 	V bpoolv((void *) bp);
1589 	bpoold((void *) bp, dumpAlloc, dumpFree);
1590     }
1591 
1592     while (bchain != NULL) {
1593 	char *buf = bchain;
1594 
1595 	bchain = *((char **) buf);
1596 	brel((void *) buf);
1597     }
1598     stats("\nAfter release");
1599 #ifndef BECtl
1600     if (bp != NULL) {
1601 	V bpoolv((void *) bp);
1602 	bpoold((void *) bp, dumpAlloc, dumpFree);
1603     }
1604 #endif
1605 
1606     return 0;
1607 }
1608 #endif
1609