xref: /optee_os/lib/libutils/isoc/bget.c (revision 3d3b05918ec9052ba13de82fbcaba204766eb636)
1 /*
2 
3 			       B G E T
4 
5 			   Buffer allocator
6 
7     Designed and implemented in April of 1972 by John Walker, based on the
8     Case Algol OPRO$ algorithm implemented in 1966.
9 
10     Reimplemented in 1975 by John Walker for the Interdata 70.
11     Reimplemented in 1977 by John Walker for the Marinchip 9900.
12     Reimplemented in 1982 by Duff Kurland for the Intel 8080.
13 
14     Portable C version implemented in September of 1990 by an older, wiser
15     instance of the original implementor.
16 
17     Souped up and/or weighed down  slightly  shortly  thereafter  by  Greg
18     Lutz.
19 
20     AMIX  edition, including the new compaction call-back option, prepared
21     by John Walker in July of 1992.
22 
23     Bug in built-in test program fixed, ANSI compiler warnings eradicated,
24     buffer pool validator  implemented,  and  guaranteed  repeatable  test
25     added by John Walker in October of 1995.
26 
27     This program is in the public domain.
28 
29      1. This is the book of the generations of Adam.   In the day that God
30 	created man, in the likeness of God made he him;
31      2. Male and female created he them;  and  blessed	them,  and  called
32 	their name Adam, in the day when they were created.
33      3. And  Adam  lived  an hundred and thirty years,	and begat a son in
34 	his own likeness, and after his image; and called his name Seth:
35      4. And the days of  Adam  after  he  had  begotten  Seth  were  eight
36 	hundred years: and he begat sons and daughters:
37      5. And  all  the  days  that Adam lived were nine	hundred and thirty
38 	years: and he died.
39      6. And Seth lived an hundred and five years, and begat Enos:
40      7. And Seth lived after he begat Enos eight hundred and seven  years,
41 	and begat sons and daughters:
42      8.  And  all the days of Seth were nine hundred and twelve years: and
43 	 he died.
44      9. And Enos lived ninety years, and begat Cainan:
45     10. And Enos lived after he begat  Cainan eight  hundred  and  fifteen
46 	years, and begat sons and daughters:
47     11. And  all  the days of Enos were nine hundred  and five years:  and
48 	he died.
49     12. And Cainan lived seventy years and begat Mahalaleel:
50     13. And Cainan lived  after he  begat  Mahalaleel  eight  hundred  and
51 	forty years, and begat sons and daughters:
52     14. And  all the days of Cainan were nine  hundred and ten years:  and
53 	he died.
54     15. And Mahalaleel lived sixty and five years, and begat Jared:
55     16. And Mahalaleel lived  after  he  begat	Jared  eight  hundred  and
56 	thirty years, and begat sons and daughters:
57     17. And  all  the  days  of Mahalaleel  were eight hundred	ninety and
58 	five years: and he died.
59     18. And Jared lived an hundred sixty and  two  years,   and  he  begat
60 	Enoch:
61     19. And  Jared  lived  after he begat Enoch  eight hundred years,  and
62 	begat sons and daughters:
63     20. And all the days of Jared  were nine hundred sixty and two  years:
64 	and he died.
65     21. And Enoch lived sixty and five years, and begat Methuselah:
66     22. And  Enoch  walked   with  God	after  he  begat Methuselah  three
67 	hundred years, and begat sons and daughters:
68     23. And all the days of  Enoch  were  three  hundred  sixty  and  five
69 	years:
70     24. And Enoch walked with God: and he was not; for God took him.
71     25. And  Methuselah  lived	an  hundred  eighty and  seven years,  and
72 	begat Lamech.
73     26. And Methuselah lived after he  begat Lamech seven  hundred  eighty
74 	and two years, and begat sons and daughters:
75     27. And  all the days of Methuselah  were nine hundred  sixty and nine
76 	years: and he died.
77     28. And Lamech lived an hundred eighty  and two  years,  and  begat  a
78 	son:
79     29. And  he called his name Noah, saying,  This same shall	comfort us
80 	concerning  our  work and toil of our hands, because of the ground
81 	which the LORD hath cursed.
82     30. And  Lamech  lived  after  he begat Noah  five hundred	ninety and
83 	five years, and begat sons and daughters:
84     31. And all the days of Lamech were  seven hundred seventy	and  seven
85 	years: and he died.
86     32. And  Noah  was five hundred years old:	and Noah begat Shem,  Ham,
87 	and Japheth.
88 
89     And buffers begat buffers, and links begat	links,	and  buffer  pools
90     begat  links  to chains of buffer pools containing buffers, and lo the
91     buffers and links and pools of buffers and pools of links to chains of
92     pools  of  buffers were fruitful and they multiplied and the Operating
93     System looked down upon them and said that it was Good.
94 
95 
96     INTRODUCTION
97     ============
98 
99     BGET  is a comprehensive memory allocation package which is easily
100     configured to the needs of an application.	BGET is  efficient  in
101     both  the  time  needed to allocate and release buffers and in the
102     memory  overhead  required	for  buffer   pool   management.    It
103     automatically    consolidates   contiguous	 space	 to   minimise
104     fragmentation.  BGET is configured	by  compile-time  definitions,
105     Major options include:
106 
107 	*   A  built-in  test  program	to  exercise  BGET   and
108 	    demonstrate how the various functions are used.
109 
110         *   Allocation  by  either the "first fit" or "best fit"
111 	    method.
112 
113 	*   Wiping buffers at release time to catch  code  which
114 	    references previously released storage.
115 
116 	*   Built-in  routines to dump individual buffers or the
117 	    entire buffer pool.
118 
119 	*   Retrieval of allocation and pool size statistics.
120 
121 	*   Quantisation of buffer sizes to a power  of  two  to
122 	    satisfy hardware alignment constraints.
123 
124 	*   Automatic  pool compaction, growth, and shrinkage by
125 	    means of call-backs to user defined functions.
126 
127     Applications  of  BGET  can  range	from  storage  management   in
128     ROM-based  embedded programs to providing the framework upon which
129     a  multitasking  system  incorporating   garbage   collection   is
130     constructed.   BGET  incorporates  extensive  internal consistency
131     checking using the <assert.h> mechanism; all these checks  can  be
132     turned off by compiling with NDEBUG defined, yielding a version of
133     BGET with minimal size and maximum speed.
134 
135     The  basic	algorithm  underlying  BGET  has withstood the test of
136     time;  more  than  25  years   have   passed   since   the	 first
137     implementation  of	this  code.  And yet, it is substantially more
138     efficient than the native allocation  schemes  of  many  operating
139     systems: the Macintosh and Microsoft Windows to name two, on which
140     programs have obtained substantial speed-ups by layering  BGET  as
141     an application level memory manager atop the underlying system's.
142 
143     BGET has been implemented on the largest mainframes and the lowest
144     of	microprocessors.   It  has served as the core for multitasking
145     operating systems, multi-thread applications, embedded software in
146     data  network switching processors, and a host of C programs.  And
147     while it has accreted flexibility and additional options over  the
148     years,  it	remains  fast, memory efficient, portable, and easy to
149     integrate into your program.
150 
151 
152     BGET IMPLEMENTATION ASSUMPTIONS
153     ===============================
154 
155     BGET is written in as portable a dialect of C  as  possible.   The
156     only   fundamental	 assumption   about  the  underlying  hardware
157     architecture is that memory is allocated is a linear  array  which
158     can  be  addressed  as a vector of C "char" objects.  On segmented
159     address space architectures, this generally means that BGET should
160     be used to allocate storage within a single segment (although some
161     compilers	simulate   linear   address   spaces   on    segmented
162     architectures).   On  segmented  architectures,  then, BGET buffer
163     pools  may not be larger than a segment, but since BGET allows any
164     number of separate buffer pools, there is no limit	on  the  total
165     storage  which  can  be  managed,  only  on the largest individual
166     object which can be allocated.  Machines  with  a  linear  address
167     architecture,  such  as  the VAX, 680x0, Sparc, MIPS, or the Intel
168     80386 and above in native mode, may use BGET without restriction.
169 
170 
171     GETTING STARTED WITH BGET
172     =========================
173 
174     Although BGET can be configured in a multitude of fashions,  there
175     are  three	basic  ways  of  working  with	BGET.	The  functions
176     mentioned below are documented in the following  section.	Please
177     excuse  the  forward  references which are made in the interest of
178     providing a roadmap to guide you  to  the  BGET  functions  you're
179     likely to need.
180 
181     Embedded Applications
182     ---------------------
183 
184     Embedded applications  typically  have  a  fixed  area  of	memory
185     dedicated  to  buffer  allocation (often in a separate RAM address
186     space distinct from the ROM that contains  the  executable	code).
187     To	use  BGET in such an environment, simply call bpool() with the
188     start address and length of the buffer  pool  area	in  RAM,  then
189     allocate  buffers  with  bget()  and  release  them  with  brel().
190     Embedded applications with very limited RAM but abundant CPU speed
191     may  benefit  by configuring BGET for BestFit allocation (which is
192     usually not worth it in other environments).
193 
194     Malloc() Emulation
195     ------------------
196 
197     If the C library malloc() function is too  slow,  not  present  in
198     your  development environment (for example, an a native Windows or
199     Macintosh program), or otherwise unsuitable, you  can  replace  it
200     with  BGET.  Initially define a buffer pool of an appropriate size
201     with bpool()--usually obtained by making a call to	the  operating
202     system's  low-level  memory allocator.  Then allocate buffers with
203     bget(), bgetz(), and bgetr() (the last two permit  the  allocation
204     of	buffers initialised to zero and [inefficient] re-allocation of
205     existing buffers for  compatibility  with  C  library  functions).
206     Release buffers by calling brel().	If a buffer allocation request
207     fails, obtain more storage from the underlying  operating  system,
208     add it to the buffer pool by another call to bpool(), and continue
209     execution.
210 
211     Automatic Storage Management
212     ----------------------------
213 
214     You can use BGET as your application's native memory  manager  and
215     implement  automatic  storage  pool  expansion,  contraction,  and
216     optionally application-specific  memory  compaction  by  compiling
217     BGET  with	the  BECtl  variable defined, then calling bectl() and
218     supplying  functions  for  storage	compaction,  acquisition,  and
219     release,  as  well as a standard pool expansion increment.	All of
220     these functions are optional (although it doesn't make much  sense
221     to	provide  a  release  function without an acquisition function,
222     does it?).	Once the call-back functions have  been  defined  with
223     bectl(),  you simply use bget() and brel() to allocate and release
224     storage as before.	You can supply an  initial  buffer  pool  with
225     bpool()  or  rely  on  automatic  allocation to acquire the entire
226     pool.  When a call on  bget()  cannot  be  satisfied,  BGET  first
227     checks  if	a compaction function has been supplied.  If so, it is
228     called (with the space required to satisfy the allocation  request
229     and a sequence number to allow the compaction routine to be called
230     successively without looping).  If the compaction function is able
231     to  free any storage (it needn't know whether the storage it freed
232     was adequate) it should return a  nonzero  value,  whereupon  BGET
233     will retry the allocation request and, if it fails again, call the
234     compaction function again with the next-higher sequence number.
235 
236     If	the  compaction  function  returns zero, indicating failure to
237     free space, or no compaction function is defined, BGET next  tests
238     whether  a	non-NULL  allocation function was supplied to bectl().
239     If so, that function is called with  an  argument  indicating  how
240     many  bytes  of  additional  space are required.  This will be the
241     standard pool expansion increment supplied in the call to  bectl()
242     unless  the  original  bget()  call requested a buffer larger than
243     this; buffers larger than the standard pool block can  be  managed
244     "off  the books" by BGET in this mode.  If the allocation function
245     succeeds in obtaining the storage, it returns a pointer to the new
246     block  and	BGET  expands  the  buffer  pool;  if  it  fails,  the
247     allocation request fails and returns NULL to  the  caller.	 If  a
248     non-NULL  release  function  is  supplied,	expansion blocks which
249     become totally empty are released  to  the	global	free  pool  by
250     passing their addresses to the release function.
251 
252     Equipped  with  appropriate  allocation,  release,	and compaction
253     functions, BGET can be used as part of very  sophisticated	memory
254     management	 strategies,  including  garbage  collection.	(Note,
255     however, that BGET is *not* a garbage  collector  by  itself,  and
256     that  developing  such a system requires much additional logic and
257     careful design of the application's memory allocation strategy.)
258 
259 
260     BGET FUNCTION DESCRIPTIONS
261     ==========================
262 
263     Functions implemented in this file (some are enabled by certain of
264     the optional settings below):
265 
266 	    void bpool(void *buffer, bufsize len);
267 
268     Create a buffer pool of <len> bytes, using the storage starting at
269     <buffer>.	You  can  call	bpool()  subsequently  to   contribute
270     additional storage to the overall buffer pool.
271 
272 	    void *bget(bufsize size);
273 
274     Allocate  a  buffer of <size> bytes.  The address of the buffer is
275     returned, or NULL if insufficient memory was available to allocate
276     the buffer.
277 
278 	    void *bgetz(bufsize size);
279 
280     Allocate a buffer of <size> bytes and clear it to all zeroes.  The
281     address of the buffer is returned, or NULL if insufficient	memory
282     was available to allocate the buffer.
283 
284 	    void *bgetr(void *buffer, bufsize newsize);
285 
286     Reallocate a buffer previously allocated by bget(),  changing  its
287     size  to  <newsize>  and  preserving  all  existing data.  NULL is
288     returned if insufficient memory is	available  to  reallocate  the
289     buffer, in which case the original buffer remains intact.
290 
291 	    void brel(void *buf);
292 
293     Return  the  buffer  <buf>, previously allocated by bget(), to the
294     free space pool.
295 
296 	    void bectl(int (*compact)(bufsize sizereq, int sequence),
297 		       void *(*acquire)(bufsize size),
298 		       void (*release)(void *buf),
299 		       bufsize pool_incr);
300 
301     Expansion control: specify functions through which the package may
302     compact  storage  (or  take  other	appropriate  action)  when  an
303     allocation	request  fails,  and  optionally automatically acquire
304     storage for expansion blocks  when	necessary,  and  release  such
305     blocks when they become empty.  If <compact> is non-NULL, whenever
306     a buffer allocation request fails, the <compact> function will  be
307     called with arguments specifying the number of bytes (total buffer
308     size,  including  header  overhead)  required   to	 satisfy   the
309     allocation request, and a sequence number indicating the number of
310     consecutive  calls	on  <compact>  attempting  to	satisfy   this
311     allocation	request.   The sequence number is 1 for the first call
312     on <compact> for a given allocation  request,  and	increments  on
313     subsequent	calls,	permitting  the  <compact>  function  to  take
314     increasingly dire measures in an attempt to free up  storage.   If
315     the  <compact>  function  returns  a nonzero value, the allocation
316     attempt is re-tried.  If <compact> returns 0 (as  it  must	if  it
317     isn't  able  to  release  any  space  or add storage to the buffer
318     pool), the allocation request fails, which can  trigger  automatic
319     pool expansion if the <acquire> argument is non-NULL.  At the time
320     the  <compact>  function  is  called,  the	state  of  the	buffer
321     allocator  is  identical  to  that	at  the  moment the allocation
322     request was made; consequently, the <compact>  function  may  call
323     brel(), bpool(), bstats(), and/or directly manipulate  the	buffer
324     pool  in  any  manner which would be valid were the application in
325     control.  This does not, however, relieve the  <compact>  function
326     of the need to ensure that whatever actions it takes do not change
327     things   underneath  the  application  that  made  the  allocation
328     request.  For example, a <compact> function that released a buffer
329     in	the  process  of  being reallocated with bgetr() would lead to
330     disaster.  Implementing a safe and effective  <compact>  mechanism
331     requires  careful  design of an application's memory architecture,
332     and cannot generally be easily retrofitted into existing code.
333 
334     If <acquire> is non-NULL, that function will be called whenever an
335     allocation	request  fails.  If the <acquire> function succeeds in
336     allocating the requested space and returns a pointer  to  the  new
337     area,  allocation will proceed using the expanded buffer pool.  If
338     <acquire> cannot obtain the requested space, it should return NULL
339     and   the	entire	allocation  process  will  fail.   <pool_incr>
340     specifies the normal expansion block size.	Providing an <acquire>
341     function will cause subsequent bget()  requests  for  buffers  too
342     large  to  be  managed in the linked-block scheme (in other words,
343     larger than <pool_incr> minus the buffer overhead) to be satisfied
344     directly by calls to the <acquire> function.  Automatic release of
345     empty pool blocks will occur only if all pool blocks in the system
346     are the size given by <pool_incr>.
347 
348 	    void bstats(bufsize *curalloc, bufsize *totfree,
349 			bufsize *maxfree, long *nget, long *nrel);
350 
351     The amount	of  space  currently  allocated  is  stored  into  the
352     variable  pointed  to by <curalloc>.  The total free space (sum of
353     all free blocks in the pool) is stored into the  variable  pointed
354     to	by  <totfree>, and the size of the largest single block in the
355     free space	pool  is  stored  into	the  variable  pointed	to  by
356     <maxfree>.	 The  variables  pointed  to  by <nget> and <nrel> are
357     filled, respectively, with	the  number  of  successful  (non-NULL
358     return) bget() calls and the number of brel() calls.
359 
360 	    void bstatse(bufsize *pool_incr, long *npool,
361 			 long *npget, long *nprel,
362 			 long *ndget, long *ndrel);
363 
364     Extended  statistics: The expansion block size will be stored into
365     the variable pointed to by <pool_incr>, or the negative thereof if
366     automatic  expansion  block  releases are disabled.  The number of
367     currently active pool blocks will  be  stored  into  the  variable
368     pointed  to  by  <npool>.  The variables pointed to by <npget> and
369     <nprel> will be filled with, respectively, the number of expansion
370     block   acquisitions   and	releases  which  have  occurred.   The
371     variables pointed to by <ndget> and <ndrel> will  be  filled  with
372     the  number  of  bget()  and  brel()  calls, respectively, managed
373     through blocks directly allocated by the acquisition  and  release
374     functions.
375 
376 	    void bufdump(void *buf);
377 
378     The buffer pointed to by <buf> is dumped on standard output.
379 
380 	    void bpoold(void *pool, int dumpalloc, int dumpfree);
381 
382     All buffers in the buffer pool <pool>, previously initialised by a
383     call on bpool(), are listed in ascending memory address order.  If
384     <dumpalloc> is nonzero, the  contents  of  allocated  buffers  are
385     dumped;  if <dumpfree> is nonzero, the contents of free blocks are
386     dumped.
387 
388 	    int bpoolv(void *pool);
389 
390     The  named	buffer	pool,  previously  initialised	by  a  call on
391     bpool(), is validated for bad pointers, overwritten data, etc.  If
392     compiled with NDEBUG not defined, any error generates an assertion
393     failure.  Otherwise 1 is returned if the pool is valid,  0	if  an
394     error is found.
395 
396 
397     BGET CONFIGURATION
398     ==================
399 */
400 
401 /*
402  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
403  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
404  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
405  * IN NO EVENT SHALL ST BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
406  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
407  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
408  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
409  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
410  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
411  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
412  */
413 
414 /* #define BGET_ENABLE_ALL_OPTIONS */
415 #ifdef BGET_ENABLE_OPTION
416 #define TestProg    20000	      /* Generate built-in test program
417 					 if defined.  The value specifies
418 					 how many buffer allocation attempts
419 					 the test program should make. */
420 
421 #define SizeQuant   4		      /* Buffer allocation size quantum:
422 					 all buffers allocated are a
423 					 multiple of this size.  This
424 					 MUST be a power of two. */
425 
426 #define BufDump     1		      /* Define this symbol to enable the
427 					 bpoold() function which dumps the
428 					 buffers in a buffer pool. */
429 
430 #define BufValid    1		      /* Define this symbol to enable the
431 					 bpoolv() function for validating
432 					 a buffer pool. */
433 
434 #define DumpData    1		      /* Define this symbol to enable the
435 					 bufdump() function which allows
436 					 dumping the contents of an allocated
437 					 or free buffer. */
438 
439 #define BufStats    1		      /* Define this symbol to enable the
440 					 bstats() function which calculates
441 					 the total free space in the buffer
442 					 pool, the largest available
443 					 buffer, and the total space
444 					 currently allocated. */
445 
446 #define FreeWipe    1		      /* Wipe free buffers to a guaranteed
447 					 pattern of garbage to trip up
448 					 miscreants who attempt to use
449 					 pointers into released buffers. */
450 
451 #define BestFit     1		      /* Use a best fit algorithm when
452 					 searching for space for an
453 					 allocation request.  This uses
454 					 memory more efficiently, but
455 					 allocation will be much slower. */
456 
457 #define BECtl	    1		      /* Define this symbol to enable the
458 					 bectl() function for automatic
459 					 pool space control.  */
460 #endif
461 
462 #include <stdio.h>
463 
464 #ifdef lint
465 #define NDEBUG			      /* Exits in asserts confuse lint */
466 /* LINTLIBRARY */                     /* Don't complain about def, no ref */
467 extern char *sprintf();               /* Sun includes don't define sprintf */
468 #endif
469 
470 #include <assert.h>
471 #include <memory.h>
472 
473 #ifdef BufDump			      /* BufDump implies DumpData */
474 #ifndef DumpData
475 #define DumpData    1
476 #endif
477 #endif
478 
479 #ifdef DumpData
480 #include <ctype.h>
481 #endif
482 
483 #ifdef __KERNEL__
484 #ifdef CFG_CORE_BGET_BESTFIT
485 #define BestFit 1
486 #endif
487 #endif
488 
489 /*  Declare the interface, including the requested buffer size type,
490     bufsize.  */
491 
492 #include "bget.h"
493 
494 #define MemSize     int 	      /* Type for size arguments to memxxx()
495 					 functions such as memcmp(). */
496 
497 /* Queue links */
498 
499 struct qlinks {
500     struct bfhead *flink;	      /* Forward link */
501     struct bfhead *blink;	      /* Backward link */
502 };
503 
504 /* Header in allocated and free buffers */
505 
506 struct bhead {
507     bufsize prevfree;		      /* Relative link back to previous
508 					 free buffer in memory or 0 if
509 					 previous buffer is allocated.	*/
510     bufsize bsize;		      /* Buffer size: positive if free,
511 					 negative if allocated. */
512 };
513 #define BH(p)	((struct bhead *) (p))
514 
515 /*  Header in directly allocated buffers (by acqfcn) */
516 
517 struct bdhead {
518     bufsize tsize;		      /* Total size, including overhead */
519     struct bhead bh;		      /* Common header */
520 };
521 #define BDH(p)	((struct bdhead *) (p))
522 
523 /* Header in free buffers */
524 
525 struct bfhead {
526     struct bhead bh;		      /* Common allocated/free header */
527     struct qlinks ql;		      /* Links on free list */
528 };
529 #define BFH(p)	((struct bfhead *) (p))
530 
531 /* Poolset definition */
532 struct bpoolset {
533     struct bfhead freelist;
534 #ifdef BufStats
535     bufsize totalloc;		      /* Total space currently allocated */
536     long numget;		      /* Number of bget() calls */
537     long numrel;		      /* Number of brel() calls */
538 #ifdef BECtl
539     long numpblk;		      /* Number of pool blocks */
540     long numpget;		      /* Number of block gets and rels */
541     long numprel;
542     long numdget;		      /* Number of direct gets and rels */
543     long numdrel;
544 #endif /* BECtl */
545 #endif /* BufStats */
546 
547 #ifdef BECtl
548     /* Automatic expansion block management functions */
549 
550     int (*compfcn) _((bufsize sizereq, int sequence));
551     void *(*acqfcn) _((bufsize size));
552     void (*relfcn) _((void *buf));
553 
554     bufsize exp_incr;		      /* Expansion block size */
555     bufsize pool_len;		      /* 0: no bpool calls have been made
556 					 -1: not all pool blocks are
557 					     the same size
558 					 >0: (common) block size for all
559 					     bpool calls made so far
560 				      */
561 #endif
562 };
563 
564 /*  Minimum allocation quantum: */
565 
566 #define QLSize	(sizeof(struct qlinks))
567 #define SizeQ	((SizeQuant > QLSize) ? SizeQuant : QLSize)
568 
569 #define V   (void)		      /* To denote unwanted returned values */
570 
571 /* End sentinel: value placed in bsize field of dummy block delimiting
572    end of pool block.  The most negative number which will  fit  in  a
573    bufsize, defined in a way that the compiler will accept. */
574 
575 #define ESent	((bufsize) (-(((1L << (sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
576 
577 /*  BGET  --  Allocate a buffer.  */
578 
579 void *bget(requested_size, poolset)
580   bufsize requested_size;
581   struct bpoolset *poolset;
582 {
583     bufsize size = requested_size;
584     struct bfhead *b;
585 #ifdef BestFit
586     struct bfhead *best;
587 #endif
588     void *buf;
589 #ifdef BECtl
590     int compactseq = 0;
591 #endif
592 
593     assert(size > 0);
594 
595     if (size < SizeQ) { 	      /* Need at least room for the */
596 	size = SizeQ;		      /*    queue links.  */
597     }
598 #ifdef SizeQuant
599 #if SizeQuant > 1
600     if (ADD_OVERFLOW(size, SizeQuant - 1, &size))
601         return NULL;
602 
603     size = ROUNDDOWN(size, SizeQuant);
604 #endif
605 #endif
606 
607     /* Add overhead in allocated buffer to size required. */
608     if (ADD_OVERFLOW(size, sizeof(struct bhead), &size))
609         return NULL;
610 
611 #ifdef BECtl
612     /* If a compact function was provided in the call to bectl(), wrap
613        a loop around the allocation process  to  allow	compaction  to
614        intervene in case we don't find a suitable buffer in the chain. */
615 
616     while (1) {
617 #endif
618 	b = poolset->freelist.ql.flink;
619 #ifdef BestFit
620 	best = &poolset->freelist;
621 #endif
622 
623 
624 	/* Scan the free list searching for the first buffer big enough
625 	   to hold the requested size buffer. */
626 
627 #ifdef BestFit
628 	while (b != &poolset->freelist) {
629 	    if (b->bh.bsize >= size) {
630 		if ((best == &poolset->freelist) ||
631 		    (b->bh.bsize < best->bh.bsize)) {
632 		    best = b;
633 		}
634 	    }
635 	    b = b->ql.flink;		  /* Link to next buffer */
636 	}
637 	b = best;
638 #endif /* BestFit */
639 
640 	while (b != &poolset->freelist) {
641 	    if ((bufsize) b->bh.bsize >= size) {
642 
643 		/* Buffer  is big enough to satisfy  the request.  Allocate it
644 		   to the caller.  We must decide whether the buffer is  large
645 		   enough  to  split  into  the part given to the caller and a
646 		   free buffer that remains on the free list, or  whether  the
647 		   entire  buffer  should  be  removed	from the free list and
648 		   given to the caller in its entirety.   We  only  split  the
649 		   buffer if enough room remains for a header plus the minimum
650 		   quantum of allocation. */
651 
652 		if ((b->bh.bsize - size) > (SizeQ + (sizeof(struct bhead)))) {
653 		    struct bhead *ba, *bn;
654 
655 		    ba = BH(((char *) b) + (b->bh.bsize - size));
656 		    bn = BH(((char *) ba) + size);
657 		    assert(bn->prevfree == b->bh.bsize);
658 		    /* Subtract size from length of free block. */
659 		    b->bh.bsize -= size;
660 		    /* Link allocated buffer to the previous free buffer. */
661 		    ba->prevfree = b->bh.bsize;
662 		    /* Plug negative size into user buffer. */
663 		    ba->bsize = -(bufsize) size;
664 		    /* Mark buffer after this one not preceded by free block. */
665 		    bn->prevfree = 0;
666 
667 #ifdef BufStats
668 		    poolset->totalloc += size;
669 		    poolset->numget++;		  /* Increment number of bget() calls */
670 #endif
671 		    buf = (void *) ((((char *) ba) + sizeof(struct bhead)));
672 		    tag_asan_alloced(buf, size);
673 		    return buf;
674 		} else {
675 		    struct bhead *ba;
676 
677 		    ba = BH(((char *) b) + b->bh.bsize);
678 		    assert(ba->prevfree == b->bh.bsize);
679 
680                     /* The buffer isn't big enough to split.  Give  the  whole
681 		       shebang to the caller and remove it from the free list. */
682 
683 		    assert(b->ql.blink->ql.flink == b);
684 		    assert(b->ql.flink->ql.blink == b);
685 		    b->ql.blink->ql.flink = b->ql.flink;
686 		    b->ql.flink->ql.blink = b->ql.blink;
687 
688 #ifdef BufStats
689 		    poolset->totalloc += b->bh.bsize;
690 		    poolset->numget++;		  /* Increment number of bget() calls */
691 #endif
692 		    /* Negate size to mark buffer allocated. */
693 		    b->bh.bsize = -(b->bh.bsize);
694 
695 		    /* Zero the back pointer in the next buffer in memory
696 		       to indicate that this buffer is allocated. */
697 		    ba->prevfree = 0;
698 
699 		    /* Give user buffer starting at queue links. */
700 		    buf =  (void *) &(b->ql);
701 		    tag_asan_alloced(buf, size);
702 		    return buf;
703 		}
704 	    }
705 	    b = b->ql.flink;		  /* Link to next buffer */
706 	}
707 #ifdef BECtl
708 
709         /* We failed to find a buffer.  If there's a compact  function
710 	   defined,  notify  it  of the size requested.  If it returns
711 	   TRUE, try the allocation again. */
712 
713 	if ((poolset->compfcn == NULL) ||
714 	    (!(poolset->compfcn)(size, ++compactseq))) {
715 	    break;
716 	}
717     }
718 
719     /* No buffer available with requested size free. */
720 
721     /* Don't give up yet -- look in the reserve supply. */
722 
723     if (poolset->acqfcn != NULL) {
724 	if (size > exp_incr - sizeof(struct bhead)) {
725 
726 	    /* Request	is  too  large	to  fit in a single expansion
727 	       block.  Try to satisy it by a direct buffer acquisition. */
728 
729 	    struct bdhead *bdh;
730 
731 	    size += sizeof(struct bdhead) - sizeof(struct bhead);
732 	    if ((bdh = BDH((*acqfcn)((bufsize) size))) != NULL) {
733 
734 		/*  Mark the buffer special by setting the size field
735 		    of its header to zero.  */
736 		bdh->bh.bsize = 0;
737 		bdh->bh.prevfree = 0;
738 		bdh->tsize = size;
739 #ifdef BufStats
740 		poolset->totalloc += size;
741 		poolset->numget++;	  /* Increment number of bget() calls */
742 		poolset->numdget++;	  /* Direct bget() call count */
743 #endif
744 		buf =  (void *) (bdh + 1);
745 		tag_asan_alloced(buf, size);
746 		return buf;
747 	    }
748 
749 	} else {
750 
751 	    /*	Try to obtain a new expansion block */
752 
753 	    void *newpool;
754 
755 	    if ((newpool = poolset->acqfcn((bufsize) exp_incr)) != NULL) {
756 		bpool(newpool, exp_incr, poolset);
757                 buf =  bget(requested_size, pool);  /* This can't, I say, can't
758 						       get into a loop. */
759 		return buf;
760 	    }
761 	}
762     }
763 
764     /*	Still no buffer available */
765 
766 #endif /* BECtl */
767 
768     return NULL;
769 }
770 
771 /*  BGETZ  --  Allocate a buffer and clear its contents to zero.  We clear
772 	       the  entire  contents  of  the buffer to zero, not just the
773 	       region requested by the caller. */
774 
775 void *bgetz(size, poolset)
776   bufsize size;
777   struct bpoolset *poolset;
778 {
779     char *buf = (char *) bget(size, poolset);
780 
781     if (buf != NULL) {
782 	struct bhead *b;
783 	bufsize rsize;
784 
785 	b = BH(buf - sizeof(struct bhead));
786 	rsize = -(b->bsize);
787 	if (rsize == 0) {
788 	    struct bdhead *bd;
789 
790 	    bd = BDH(buf - sizeof(struct bdhead));
791 	    rsize = bd->tsize - sizeof(struct bdhead);
792 	} else {
793 	    rsize -= sizeof(struct bhead);
794 	}
795 	assert(rsize >= size);
796 	V memset_unchecked(buf, 0, (MemSize) rsize);
797     }
798     return ((void *) buf);
799 }
800 
801 /*  BGETR  --  Reallocate a buffer.  This is a minimal implementation,
802 	       simply in terms of brel()  and  bget().	 It  could  be
803 	       enhanced to allow the buffer to grow into adjacent free
804 	       blocks and to avoid moving data unnecessarily.  */
805 
806 void *bgetr(buf, size, poolset)
807   void *buf;
808   bufsize size;
809   struct bpoolset *poolset;
810 {
811     void *nbuf;
812     bufsize osize;		      /* Old size of buffer */
813     struct bhead *b;
814 
815     if ((nbuf = bget(size, poolset)) == NULL) { /* Acquire new buffer */
816 	return NULL;
817     }
818     if (buf == NULL) {
819 	return nbuf;
820     }
821     b = BH(((char *) buf) - sizeof(struct bhead));
822     osize = -b->bsize;
823 #ifdef BECtl
824     if (osize == 0) {
825 	/*  Buffer acquired directly through acqfcn. */
826 	struct bdhead *bd;
827 
828 	bd = BDH(((char *) buf) - sizeof(struct bdhead));
829 	osize = bd->tsize - sizeof(struct bdhead);
830     } else
831 #endif
832 	osize -= sizeof(struct bhead);
833     assert(osize > 0);
834     V memcpy((char *) nbuf, (char *) buf, /* Copy the data */
835 	     (MemSize) ((size < osize) ? size : osize));
836 #ifndef __KERNEL__
837     /* User space reallocations are always zeroed */
838     if (size > osize)
839          V memset((char *) nbuf + osize, 0, size - osize);
840 #endif
841     brel(buf, poolset);
842     return nbuf;
843 }
844 
845 /*  BREL  --  Release a buffer.  */
846 
847 void brel(buf, poolset)
848   void *buf;
849   struct bpoolset *poolset;
850 {
851     struct bfhead *b, *bn;
852     bufsize bs;
853 
854     b = BFH(((char *) buf) - sizeof(struct bhead));
855 #ifdef BufStats
856     poolset->numrel++;		      /* Increment number of brel() calls */
857 #endif
858     assert(buf != NULL);
859 
860 #ifdef BECtl
861     if (b->bh.bsize == 0) {	      /* Directly-acquired buffer? */
862 	struct bdhead *bdh;
863 
864 	bdh = BDH(((char *) buf) - sizeof(struct bdhead));
865 	assert(b->bh.prevfree == 0);
866 #ifdef BufStats
867 	poolset->totalloc -= bdh->tsize;
868 	assert(poolset->totalloc >= 0);
869 	poolset->numdrel++;	       /* Number of direct releases */
870 #endif /* BufStats */
871 #ifdef FreeWipe
872 	V memset_unchecked((char *) buf, 0x55,
873 			   (MemSize) (bdh->tsize - sizeof(struct bdhead)));
874 #endif /* FreeWipe */
875 	bs = bdh->tsize - sizeof(struct bdhead);
876 	assert(poolset->relfcn != NULL);
877 	poolset->relfcn((void *) bdh);      /* Release it directly. */
878 	tag_asan_free(buf, bs);
879 	return;
880     }
881 #endif /* BECtl */
882 
883     /* Buffer size must be negative, indicating that the buffer is
884        allocated. */
885 
886     if (b->bh.bsize >= 0) {
887 	bn = NULL;
888     }
889     assert(b->bh.bsize < 0);
890     bs = -b->bh.bsize;
891 
892     /*	Back pointer in next buffer must be zero, indicating the
893 	same thing: */
894 
895     assert(BH((char *) b - b->bh.bsize)->prevfree == 0);
896 
897 #ifdef BufStats
898     poolset->totalloc += b->bh.bsize;
899     assert(poolset->totalloc >= 0);
900 #endif
901 
902     /* If the back link is nonzero, the previous buffer is free.  */
903 
904     if (b->bh.prevfree != 0) {
905 
906 	/* The previous buffer is free.  Consolidate this buffer  with	it
907 	   by  adding  the  length  of	this  buffer  to the previous free
908 	   buffer.  Note that we subtract the size  in	the  buffer  being
909            released,  since  it's  negative to indicate that the buffer is
910 	   allocated. */
911 
912 	register bufsize size = b->bh.bsize;
913 
914         /* Make the previous buffer the one we're working on. */
915 	assert(BH((char *) b - b->bh.prevfree)->bsize == b->bh.prevfree);
916 	b = BFH(((char *) b) - b->bh.prevfree);
917 	b->bh.bsize -= size;
918     } else {
919 
920         /* The previous buffer isn't allocated.  Insert this buffer
921 	   on the free list as an isolated free block. */
922 
923 	assert(poolset->freelist.ql.blink->ql.flink == &poolset->freelist);
924 	assert(poolset->freelist.ql.flink->ql.blink == &poolset->freelist);
925 	b->ql.flink = &poolset->freelist;
926 	b->ql.blink = poolset->freelist.ql.blink;
927 	poolset->freelist.ql.blink = b;
928 	b->ql.blink->ql.flink = b;
929 	b->bh.bsize = -b->bh.bsize;
930     }
931 
932     /* Now we look at the next buffer in memory, located by advancing from
933        the  start  of  this  buffer  by its size, to see if that buffer is
934        free.  If it is, we combine  this  buffer  with	the  next  one	in
935        memory, dechaining the second buffer from the free list. */
936 
937     bn =  BFH(((char *) b) + b->bh.bsize);
938     if (bn->bh.bsize > 0) {
939 
940 	/* The buffer is free.	Remove it from the free list and add
941 	   its size to that of our buffer. */
942 
943 	assert(BH((char *) bn + bn->bh.bsize)->prevfree == bn->bh.bsize);
944 	assert(bn->ql.blink->ql.flink == bn);
945 	assert(bn->ql.flink->ql.blink == bn);
946 	bn->ql.blink->ql.flink = bn->ql.flink;
947 	bn->ql.flink->ql.blink = bn->ql.blink;
948 	b->bh.bsize += bn->bh.bsize;
949 
950 	/* Finally,  advance  to   the	buffer	that   follows	the  newly
951 	   consolidated free block.  We must set its  backpointer  to  the
952 	   head  of  the  consolidated free block.  We know the next block
953 	   must be an allocated block because the process of recombination
954 	   guarantees  that  two  free	blocks will never be contiguous in
955 	   memory.  */
956 
957 	bn = BFH(((char *) b) + b->bh.bsize);
958     }
959 #ifdef FreeWipe
960     V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55,
961 		       (MemSize) (b->bh.bsize - sizeof(struct bfhead)));
962 #endif
963     assert(bn->bh.bsize < 0);
964 
965     /* The next buffer is allocated.  Set the backpointer in it  to  point
966        to this buffer; the previous free buffer in memory. */
967 
968     bn->bh.prevfree = b->bh.bsize;
969 
970 #ifdef BECtl
971 
972     /*	If  a  block-release function is defined, and this free buffer
973 	constitutes the entire block, release it.  Note that  pool_len
974 	is  defined  in  such a way that the test will fail unless all
975 	pool blocks are the same size.	*/
976 
977     if (poolset->relfcn != NULL &&
978 	((bufsize) b->bh.bsize) == (pool_len - sizeof(struct bhead))) {
979 
980 	assert(b->bh.prevfree == 0);
981 	assert(BH((char *) b + b->bh.bsize)->bsize == ESent);
982 	assert(BH((char *) b + b->bh.bsize)->prevfree == b->bh.bsize);
983 	/*  Unlink the buffer from the free list  */
984 	b->ql.blink->ql.flink = b->ql.flink;
985 	b->ql.flink->ql.blink = b->ql.blink;
986 
987 	poolset->relfcn(b);
988 #ifdef BufStats
989 	poolset->numprel++;	       /* Nr of expansion block releases */
990 	poolset->numpblk--;	       /* Total number of blocks */
991 	assert(numpblk == numpget - numprel);
992 #endif /* BufStats */
993     }
994 #endif /* BECtl */
995     tag_asan_free(buf, bs);
996 }
997 
998 #ifdef BECtl
999 
1000 /*  BECTL  --  Establish automatic pool expansion control  */
1001 
1002 void bectl(compact, acquire, release, pool_incr, poolset)
1003   int (*compact) _((bufsize sizereq, int sequence));
1004   void *(*acquire) _((bufsize size));
1005   void (*release) _((void *buf));
1006   bufsize pool_incr;
1007   struct bpoolset *poolset;
1008 {
1009     poolset->compfcn = compact;
1010     poolset->acqfcn = acquire;
1011     poolset->relfcn = release;
1012     poolset->exp_incr = pool_incr;
1013 }
1014 #endif
1015 
1016 /*  BPOOL  --  Add a region of memory to the buffer pool.  */
1017 
1018 void bpool(buf, len, poolset)
1019   void *buf;
1020   bufsize len;
1021   struct bpoolset *poolset;
1022 {
1023     struct bfhead *b = BFH(buf);
1024     struct bhead *bn;
1025 
1026 #ifdef SizeQuant
1027     len &= ~(SizeQuant - 1);
1028 #endif
1029 #ifdef BECtl
1030     if (poolset->pool_len == 0) {
1031 	pool_len = len;
1032     } else if (len != poolset->pool_len) {
1033 	poolset->pool_len = -1;
1034     }
1035 #ifdef BufStats
1036     poolset->numpget++;		       /* Number of block acquisitions */
1037     poolset->numpblk++;		       /* Number of blocks total */
1038     assert(poolset->numpblk == poolset->numpget - poolset->numprel);
1039 #endif /* BufStats */
1040 #endif /* BECtl */
1041 
1042     /* Since the block is initially occupied by a single free  buffer,
1043        it  had	better	not  be  (much) larger than the largest buffer
1044        whose size we can store in bhead.bsize. */
1045 
1046     assert(len - sizeof(struct bhead) <= -((bufsize) ESent + 1));
1047 
1048     /* Clear  the  backpointer at  the start of the block to indicate that
1049        there  is  no  free  block  prior  to  this   one.    That   blocks
1050        recombination when the first block in memory is released. */
1051 
1052     b->bh.prevfree = 0;
1053 
1054     /* Chain the new block to the free list. */
1055 
1056     assert(poolset->freelist.ql.blink->ql.flink == &poolset->freelist);
1057     assert(poolset->freelist.ql.flink->ql.blink == &poolset->freelist);
1058     b->ql.flink = &poolset->freelist;
1059     b->ql.blink = poolset->freelist.ql.blink;
1060     poolset->freelist.ql.blink = b;
1061     b->ql.blink->ql.flink = b;
1062 
1063     /* Create a dummy allocated buffer at the end of the pool.	This dummy
1064        buffer is seen when a buffer at the end of the pool is released and
1065        blocks  recombination  of  the last buffer with the dummy buffer at
1066        the end.  The length in the dummy buffer  is  set  to  the  largest
1067        negative  number  to  denote  the  end  of  the pool for diagnostic
1068        routines (this specific value is  not  counted  on  by  the  actual
1069        allocation and release functions). */
1070 
1071     len -= sizeof(struct bhead);
1072     b->bh.bsize = (bufsize) len;
1073 #ifdef FreeWipe
1074     V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55,
1075 		       (MemSize) (len - sizeof(struct bfhead)));
1076 #endif
1077     bn = BH(((char *) b) + len);
1078     bn->prevfree = (bufsize) len;
1079     /* Definition of ESent assumes two's complement! */
1080     assert((~0) == -1);
1081     bn->bsize = ESent;
1082 }
1083 
1084 #ifdef BufStats
1085 
1086 /*  BSTATS  --	Return buffer allocation free space statistics.  */
1087 
1088 void bstats(curalloc, totfree, maxfree, nget, nrel, poolset)
1089   bufsize *curalloc, *totfree, *maxfree;
1090   long *nget, *nrel;
1091   struct bpoolset *poolset;
1092 {
1093     struct bfhead *b = poolset->freelist.ql.flink;
1094 
1095     *nget = poolset->numget;
1096     *nrel = poolset->numrel;
1097     *curalloc = poolset->totalloc;
1098     *totfree = 0;
1099     *maxfree = -1;
1100     while (b != &poolset->freelist) {
1101 	assert(b->bh.bsize > 0);
1102 	*totfree += b->bh.bsize;
1103 	if (b->bh.bsize > *maxfree) {
1104 	    *maxfree = b->bh.bsize;
1105 	}
1106 	b = b->ql.flink;	      /* Link to next buffer */
1107     }
1108 }
1109 
1110 #ifdef BECtl
1111 
1112 /*  BSTATSE  --  Return extended statistics  */
1113 
1114 void bstatse(pool_incr, npool, npget, nprel, ndget, ndrel, poolset)
1115   bufsize *pool_incr;
1116   long *npool, *npget, *nprel, *ndget, *ndrel;
1117   struct bpoolset *poolset;
1118 {
1119     *pool_incr = (poolset->pool_len < 0) ?
1120 	    -poolset->exp_incr : poolset->exp_incr;
1121     *npool = poolset->numpblk;
1122     *npget = poolset->numpget;
1123     *nprel = poolset->numprel;
1124     *ndget = poolset->numdget;
1125     *ndrel = poolset->numdrel;
1126 }
1127 #endif /* BECtl */
1128 #endif /* BufStats */
1129 
1130 #ifdef DumpData
1131 
1132 /*  BUFDUMP  --  Dump the data in a buffer.  This is called with the  user
1133 		 data pointer, and backs up to the buffer header.  It will
1134 		 dump either a free block or an allocated one.	*/
1135 
1136 void bufdump(buf)
1137   void *buf;
1138 {
1139     struct bfhead *b;
1140     unsigned char *bdump;
1141     bufsize bdlen;
1142 
1143     b = BFH(((char *) buf) - sizeof(struct bhead));
1144     assert(b->bh.bsize != 0);
1145     if (b->bh.bsize < 0) {
1146 	bdump = (unsigned char *) buf;
1147 	bdlen = (-b->bh.bsize) - sizeof(struct bhead);
1148     } else {
1149 	bdump = (unsigned char *) (((char *) b) + sizeof(struct bfhead));
1150 	bdlen = b->bh.bsize - sizeof(struct bfhead);
1151     }
1152 
1153     while (bdlen > 0) {
1154 	int i, dupes = 0;
1155 	bufsize l = bdlen;
1156 	char bhex[50], bascii[20];
1157 
1158 	if (l > 16) {
1159 	    l = 16;
1160 	}
1161 
1162 	for (i = 0; i < l; i++) {
1163 			V snprintf(bhex + i * 3, sizeof(bhex) - i * 3, "%02X ",
1164 				   bdump[i]);
1165             bascii[i] = isprint(bdump[i]) ? bdump[i] : ' ';
1166 	}
1167 	bascii[i] = 0;
1168         V printf("%-48s   %s\n", bhex, bascii);
1169 	bdump += l;
1170 	bdlen -= l;
1171 	while ((bdlen > 16) && (memcmp((char *) (bdump - 16),
1172 				       (char *) bdump, 16) == 0)) {
1173 	    dupes++;
1174 	    bdump += 16;
1175 	    bdlen -= 16;
1176 	}
1177 	if (dupes > 1) {
1178 	    V printf(
1179                 "     (%d lines [%d bytes] identical to above line skipped)\n",
1180 		dupes, dupes * 16);
1181 	} else if (dupes == 1) {
1182 	    bdump -= 16;
1183 	    bdlen += 16;
1184 	}
1185     }
1186 }
1187 #endif
1188 
1189 #ifdef BufDump
1190 
1191 /*  BPOOLD  --	Dump a buffer pool.  The buffer headers are always listed.
1192 		If DUMPALLOC is nonzero, the contents of allocated buffers
1193 		are  dumped.   If  DUMPFREE  is  nonzero,  free blocks are
1194 		dumped as well.  If FreeWipe  checking	is  enabled,  free
1195 		blocks	which  have  been clobbered will always be dumped. */
1196 
1197 void bpoold(buf, dumpalloc, dumpfree)
1198   void *buf;
1199   int dumpalloc, dumpfree;
1200 {
1201     struct bfhead *b = BFH(buf);
1202 
1203     while (b->bh.bsize != ESent) {
1204 	bufsize bs = b->bh.bsize;
1205 
1206 	if (bs < 0) {
1207 	    bs = -bs;
1208             V printf("Allocated buffer: size %6ld bytes.\n", (long) bs);
1209 	    if (dumpalloc) {
1210 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1211 	    }
1212 	} else {
1213             char *lerr = "";
1214 
1215 	    assert(bs > 0);
1216 	    if ((b->ql.blink->ql.flink != b) ||
1217 		(b->ql.flink->ql.blink != b)) {
1218                 lerr = "  (Bad free list links)";
1219 	    }
1220             V printf("Free block:       size %6ld bytes.%s\n",
1221 		(long) bs, lerr);
1222 #ifdef FreeWipe
1223 	    lerr = ((char *) b) + sizeof(struct bfhead);
1224 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1225 		(memcmp(lerr, lerr + 1,
1226 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1227 		V printf(
1228                     "(Contents of above free block have been overstored.)\n");
1229 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1230 	    } else
1231 #endif
1232 	    if (dumpfree) {
1233 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1234 	    }
1235 	}
1236 	b = BFH(((char *) b) + bs);
1237     }
1238 }
1239 #endif /* BufDump */
1240 
1241 #ifdef BufValid
1242 
1243 /*  BPOOLV  --  Validate a buffer pool.  If NDEBUG isn't defined,
1244 		any error generates an assertion failure.  */
1245 
1246 int bpoolv(buf)
1247   void *buf;
1248 {
1249     struct bfhead *b = BFH(buf);
1250 
1251     while (b->bh.bsize != ESent) {
1252 	bufsize bs = b->bh.bsize;
1253 
1254 	if (bs < 0) {
1255 	    bs = -bs;
1256 	} else {
1257 			const char *lerr = "";
1258 
1259 	    assert(bs > 0);
1260 	    if (bs <= 0) {
1261 		return 0;
1262 	    }
1263 	    if ((b->ql.blink->ql.flink != b) ||
1264 		(b->ql.flink->ql.blink != b)) {
1265                 V printf("Free block: size %6ld bytes.  (Bad free list links)\n",
1266 		     (long) bs);
1267 		assert(0);
1268 		return 0;
1269 	    }
1270 #ifdef FreeWipe
1271 	    lerr = ((char *) b) + sizeof(struct bfhead);
1272 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1273 		(memcmp(lerr, lerr + 1,
1274 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1275 		V printf(
1276                     "(Contents of above free block have been overstored.)\n");
1277 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1278 		assert(0);
1279 		return 0;
1280 	    }
1281 #endif
1282 	}
1283 	b = BFH(((char *) b) + bs);
1284     }
1285     return 1;
1286 }
1287 #endif /* BufValid */
1288 
1289         /***********************\
1290 	*			*
1291 	* Built-in test program *
1292 	*			*
1293         \***********************/
1294 
1295 #ifdef TestProg
1296 
1297 #define Repeatable  1		      /* Repeatable pseudorandom sequence */
1298 				      /* If Repeatable is not defined, a
1299 					 time-seeded pseudorandom sequence
1300 					 is generated, exercising BGET with
1301 					 a different pattern of calls on each
1302 					 run. */
1303 #define OUR_RAND		      /* Use our own built-in version of
1304 					 rand() to guarantee the test is
1305 					 100% repeatable. */
1306 
1307 #ifdef BECtl
1308 #define PoolSize    300000	      /* Test buffer pool size */
1309 #else
1310 #define PoolSize    50000	      /* Test buffer pool size */
1311 #endif
1312 #define ExpIncr     32768	      /* Test expansion block size */
1313 #define CompactTries 10 	      /* Maximum tries at compacting */
1314 
1315 #define dumpAlloc   0		      /* Dump allocated buffers ? */
1316 #define dumpFree    0		      /* Dump free buffers ? */
1317 
1318 #ifndef Repeatable
1319 extern long time();
1320 #endif
1321 
1322 extern char *malloc();
1323 extern int free _((char *));
1324 
1325 static char *bchain = NULL;	      /* Our private buffer chain */
1326 static char *bp = NULL; 	      /* Our initial buffer pool */
1327 
1328 #include <math.h>
1329 
1330 #ifdef OUR_RAND
1331 
1332 static unsigned long int next = 1;
1333 
1334 /* Return next random integer */
1335 
1336 int rand()
1337 {
1338 	next = next * 1103515245L + 12345;
1339 	return (unsigned int) (next / 65536L) % 32768L;
1340 }
1341 
1342 /* Set seed for random generator */
1343 
1344 void srand(seed)
1345   unsigned int seed;
1346 {
1347 	next = seed;
1348 }
1349 #endif
1350 
1351 /*  STATS  --  Edit statistics returned by bstats() or bstatse().  */
1352 
1353 static void stats(when)
1354   char *when;
1355 {
1356     bufsize cural, totfree, maxfree;
1357     long nget, nfree;
1358 #ifdef BECtl
1359     bufsize pincr;
1360     long totblocks, npget, nprel, ndget, ndrel;
1361 #endif
1362 
1363     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1364     V printf(
1365         "%s: %ld gets, %ld releases.  %ld in use, %ld free, largest = %ld\n",
1366 	when, nget, nfree, (long) cural, (long) totfree, (long) maxfree);
1367 #ifdef BECtl
1368     bstatse(&pincr, &totblocks, &npget, &nprel, &ndget, &ndrel);
1369     V printf(
1370          "  Blocks: size = %ld, %ld (%ld bytes) in use, %ld gets, %ld frees\n",
1371 	 (long)pincr, totblocks, pincr * totblocks, npget, nprel);
1372     V printf("  %ld direct gets, %ld direct frees\n", ndget, ndrel);
1373 #endif /* BECtl */
1374 }
1375 
1376 #ifdef BECtl
1377 static int protect = 0; 	      /* Disable compaction during bgetr() */
1378 
1379 /*  BCOMPACT  --  Compaction call-back function.  */
1380 
1381 static int bcompact(bsize, seq)
1382   bufsize bsize;
1383   int seq;
1384 {
1385 #ifdef CompactTries
1386     char *bc = bchain;
1387     int i = rand() & 0x3;
1388 
1389 #ifdef COMPACTRACE
1390     V printf("Compaction requested.  %ld bytes needed, sequence %d.\n",
1391 	(long) bsize, seq);
1392 #endif
1393 
1394     if (protect || (seq > CompactTries)) {
1395 #ifdef COMPACTRACE
1396         V printf("Compaction gave up.\n");
1397 #endif
1398 	return 0;
1399     }
1400 
1401     /* Based on a random cast, release a random buffer in the list
1402        of allocated buffers. */
1403 
1404     while (i > 0 && bc != NULL) {
1405 	bc = *((char **) bc);
1406 	i--;
1407     }
1408     if (bc != NULL) {
1409 	char *fb;
1410 
1411 	fb = *((char **) bc);
1412 	if (fb != NULL) {
1413 	    *((char **) bc) = *((char **) fb);
1414 	    brel((void *) fb);
1415 	    return 1;
1416 	}
1417     }
1418 
1419 #ifdef COMPACTRACE
1420     V printf("Compaction bailed out.\n");
1421 #endif
1422 #endif /* CompactTries */
1423     return 0;
1424 }
1425 
1426 /*  BEXPAND  --  Expand pool call-back function.  */
1427 
1428 static void *bexpand(size)
1429   bufsize size;
1430 {
1431     void *np = NULL;
1432     bufsize cural, totfree, maxfree;
1433     long nget, nfree;
1434 
1435     /* Don't expand beyond the total allocated size given by PoolSize. */
1436 
1437     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1438 
1439     if (cural < PoolSize) {
1440 	np = (void *) malloc((unsigned) size);
1441     }
1442 #ifdef EXPTRACE
1443     V printf("Expand pool by %ld -- %s.\n", (long) size,
1444         np == NULL ? "failed" : "succeeded");
1445 #endif
1446     return np;
1447 }
1448 
1449 /*  BSHRINK  --  Shrink buffer pool call-back function.  */
1450 
1451 static void bshrink(buf)
1452   void *buf;
1453 {
1454     if (((char *) buf) == bp) {
1455 #ifdef EXPTRACE
1456         V printf("Initial pool released.\n");
1457 #endif
1458 	bp = NULL;
1459     }
1460 #ifdef EXPTRACE
1461     V printf("Shrink pool.\n");
1462 #endif
1463     free((char *) buf);
1464 }
1465 
1466 #endif /* BECtl */
1467 
1468 /*  Restrict buffer requests to those large enough to contain our pointer and
1469     small enough for the CPU architecture.  */
1470 
1471 static bufsize blimit(bs)
1472   bufsize bs;
1473 {
1474     if (bs < sizeof(char *)) {
1475 	bs = sizeof(char *);
1476     }
1477 
1478     /* This is written out in this ugly fashion because the
1479        cool expression in sizeof(int) that auto-configured
1480        to any length int befuddled some compilers. */
1481 
1482     if (sizeof(int) == 2) {
1483 	if (bs > 32767) {
1484 	    bs = 32767;
1485 	}
1486     } else {
1487 	if (bs > 200000) {
1488 	    bs = 200000;
1489 	}
1490     }
1491     return bs;
1492 }
1493 
1494 int main()
1495 {
1496     int i;
1497     double x;
1498 
1499     /* Seed the random number generator.  If Repeatable is defined, we
1500        always use the same seed.  Otherwise, we seed from the clock to
1501        shake things up from run to run. */
1502 
1503 #ifdef Repeatable
1504     V srand(1234);
1505 #else
1506     V srand((int) time((long *) NULL));
1507 #endif
1508 
1509     /*	Compute x such that pow(x, p) ranges between 1 and 4*ExpIncr as
1510 	p ranges from 0 to ExpIncr-1, with a concentration in the lower
1511 	numbers.  */
1512 
1513     x = 4.0 * ExpIncr;
1514     x = log(x);
1515     x = exp(log(4.0 * ExpIncr) / (ExpIncr - 1.0));
1516 
1517 #ifdef BECtl
1518     bectl(bcompact, bexpand, bshrink, (bufsize) ExpIncr);
1519     bp = malloc(ExpIncr);
1520     assert(bp != NULL);
1521     bpool((void *) bp, (bufsize) ExpIncr);
1522 #else
1523     bp = malloc(PoolSize);
1524     assert(bp != NULL);
1525     bpool((void *) bp, (bufsize) PoolSize);
1526 #endif
1527 
1528     stats("Create pool");
1529     V bpoolv((void *) bp);
1530     bpoold((void *) bp, dumpAlloc, dumpFree);
1531 
1532     for (i = 0; i < TestProg; i++) {
1533 	char *cb;
1534 	bufsize bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1535 
1536 	assert(bs <= (((bufsize) 4) * ExpIncr));
1537 	bs = blimit(bs);
1538 	if (rand() & 0x400) {
1539 	    cb = (char *) bgetz(bs);
1540 	} else {
1541 	    cb = (char *) bget(bs);
1542 	}
1543 	if (cb == NULL) {
1544 #ifdef EasyOut
1545 	    break;
1546 #else
1547 	    char *bc = bchain;
1548 
1549 	    if (bc != NULL) {
1550 		char *fb;
1551 
1552 		fb = *((char **) bc);
1553 		if (fb != NULL) {
1554 		    *((char **) bc) = *((char **) fb);
1555 		    brel((void *) fb);
1556 		}
1557 		continue;
1558 	    }
1559 #endif
1560 	}
1561 	*((char **) cb) = (char *) bchain;
1562 	bchain = cb;
1563 
1564 	/* Based on a random cast, release a random buffer in the list
1565 	   of allocated buffers. */
1566 
1567 	if ((rand() & 0x10) == 0) {
1568 	    char *bc = bchain;
1569 	    int i = rand() & 0x3;
1570 
1571 	    while (i > 0 && bc != NULL) {
1572 		bc = *((char **) bc);
1573 		i--;
1574 	    }
1575 	    if (bc != NULL) {
1576 		char *fb;
1577 
1578 		fb = *((char **) bc);
1579 		if (fb != NULL) {
1580 		    *((char **) bc) = *((char **) fb);
1581 		    brel((void *) fb);
1582 		}
1583 	    }
1584 	}
1585 
1586 	/* Based on a random cast, reallocate a random buffer in the list
1587 	   to a random size */
1588 
1589 	if ((rand() & 0x20) == 0) {
1590 	    char *bc = bchain;
1591 	    int i = rand() & 0x3;
1592 
1593 	    while (i > 0 && bc != NULL) {
1594 		bc = *((char **) bc);
1595 		i--;
1596 	    }
1597 	    if (bc != NULL) {
1598 		char *fb;
1599 
1600 		fb = *((char **) bc);
1601 		if (fb != NULL) {
1602 		    char *newb;
1603 
1604 		    bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1605 		    bs = blimit(bs);
1606 #ifdef BECtl
1607 		    protect = 1;      /* Protect against compaction */
1608 #endif
1609 		    newb = (char *) bgetr((void *) fb, bs);
1610 #ifdef BECtl
1611 		    protect = 0;
1612 #endif
1613 		    if (newb != NULL) {
1614 			*((char **) bc) = newb;
1615 		    }
1616 		}
1617 	    }
1618 	}
1619     }
1620     stats("\nAfter allocation");
1621     if (bp != NULL) {
1622 	V bpoolv((void *) bp);
1623 	bpoold((void *) bp, dumpAlloc, dumpFree);
1624     }
1625 
1626     while (bchain != NULL) {
1627 	char *buf = bchain;
1628 
1629 	bchain = *((char **) buf);
1630 	brel((void *) buf);
1631     }
1632     stats("\nAfter release");
1633 #ifndef BECtl
1634     if (bp != NULL) {
1635 	V bpoolv((void *) bp);
1636 	bpoold((void *) bp, dumpAlloc, dumpFree);
1637     }
1638 #endif
1639 
1640     return 0;
1641 }
1642 #endif
1643