xref: /optee_os/lib/libutils/isoc/bget.c (revision 1bb929836182ecb96d2d9d268daa807c67596396)
1 /*
2 
3 			       B G E T
4 
5 			   Buffer allocator
6 
7     Designed and implemented in April of 1972 by John Walker, based on the
8     Case Algol OPRO$ algorithm implemented in 1966.
9 
10     Reimplemented in 1975 by John Walker for the Interdata 70.
11     Reimplemented in 1977 by John Walker for the Marinchip 9900.
12     Reimplemented in 1982 by Duff Kurland for the Intel 8080.
13 
14     Portable C version implemented in September of 1990 by an older, wiser
15     instance of the original implementor.
16 
17     Souped up and/or weighed down  slightly  shortly  thereafter  by  Greg
18     Lutz.
19 
20     AMIX  edition, including the new compaction call-back option, prepared
21     by John Walker in July of 1992.
22 
23     Bug in built-in test program fixed, ANSI compiler warnings eradicated,
24     buffer pool validator  implemented,  and  guaranteed  repeatable  test
25     added by John Walker in October of 1995.
26 
27     This program is in the public domain.
28 
29      1. This is the book of the generations of Adam.   In the day that God
30 	created man, in the likeness of God made he him;
31      2. Male and female created he them;  and  blessed	them,  and  called
32 	their name Adam, in the day when they were created.
33      3. And  Adam  lived  an hundred and thirty years,	and begat a son in
34 	his own likeness, and after his image; and called his name Seth:
35      4. And the days of  Adam  after  he  had  begotten  Seth  were  eight
36 	hundred years: and he begat sons and daughters:
37      5. And  all  the  days  that Adam lived were nine	hundred and thirty
38 	years: and he died.
39      6. And Seth lived an hundred and five years, and begat Enos:
40      7. And Seth lived after he begat Enos eight hundred and seven  years,
41 	and begat sons and daughters:
42      8.  And  all the days of Seth were nine hundred and twelve years: and
43 	 he died.
44      9. And Enos lived ninety years, and begat Cainan:
45     10. And Enos lived after he begat  Cainan eight  hundred  and  fifteen
46 	years, and begat sons and daughters:
47     11. And  all  the days of Enos were nine hundred  and five years:  and
48 	he died.
49     12. And Cainan lived seventy years and begat Mahalaleel:
50     13. And Cainan lived  after he  begat  Mahalaleel  eight  hundred  and
51 	forty years, and begat sons and daughters:
52     14. And  all the days of Cainan were nine  hundred and ten years:  and
53 	he died.
54     15. And Mahalaleel lived sixty and five years, and begat Jared:
55     16. And Mahalaleel lived  after  he  begat	Jared  eight  hundred  and
56 	thirty years, and begat sons and daughters:
57     17. And  all  the  days  of Mahalaleel  were eight hundred	ninety and
58 	five years: and he died.
59     18. And Jared lived an hundred sixty and  two  years,   and  he  begat
60 	Enoch:
61     19. And  Jared  lived  after he begat Enoch  eight hundred years,  and
62 	begat sons and daughters:
63     20. And all the days of Jared  were nine hundred sixty and two  years:
64 	and he died.
65     21. And Enoch lived sixty and five years, and begat Methuselah:
66     22. And  Enoch  walked   with  God	after  he  begat Methuselah  three
67 	hundred years, and begat sons and daughters:
68     23. And all the days of  Enoch  were  three  hundred  sixty  and  five
69 	years:
70     24. And Enoch walked with God: and he was not; for God took him.
71     25. And  Methuselah  lived	an  hundred  eighty and  seven years,  and
72 	begat Lamech.
73     26. And Methuselah lived after he  begat Lamech seven  hundred  eighty
74 	and two years, and begat sons and daughters:
75     27. And  all the days of Methuselah  were nine hundred  sixty and nine
76 	years: and he died.
77     28. And Lamech lived an hundred eighty  and two  years,  and  begat  a
78 	son:
79     29. And  he called his name Noah, saying,  This same shall	comfort us
80 	concerning  our  work and toil of our hands, because of the ground
81 	which the LORD hath cursed.
82     30. And  Lamech  lived  after  he begat Noah  five hundred	ninety and
83 	five years, and begat sons and daughters:
84     31. And all the days of Lamech were  seven hundred seventy	and  seven
85 	years: and he died.
86     32. And  Noah  was five hundred years old:	and Noah begat Shem,  Ham,
87 	and Japheth.
88 
89     And buffers begat buffers, and links begat	links,	and  buffer  pools
90     begat  links  to chains of buffer pools containing buffers, and lo the
91     buffers and links and pools of buffers and pools of links to chains of
92     pools  of  buffers were fruitful and they multiplied and the Operating
93     System looked down upon them and said that it was Good.
94 
95 
96     INTRODUCTION
97     ============
98 
99     BGET  is a comprehensive memory allocation package which is easily
100     configured to the needs of an application.	BGET is  efficient  in
101     both  the  time  needed to allocate and release buffers and in the
102     memory  overhead  required	for  buffer   pool   management.    It
103     automatically    consolidates   contiguous	 space	 to   minimise
104     fragmentation.  BGET is configured	by  compile-time  definitions,
105     Major options include:
106 
107 	*   A  built-in  test  program	to  exercise  BGET   and
108 	    demonstrate how the various functions are used.
109 
110         *   Allocation  by  either the "first fit" or "best fit"
111 	    method.
112 
113 	*   Wiping buffers at release time to catch  code  which
114 	    references previously released storage.
115 
116 	*   Built-in  routines to dump individual buffers or the
117 	    entire buffer pool.
118 
119 	*   Retrieval of allocation and pool size statistics.
120 
121 	*   Quantisation of buffer sizes to a power  of  two  to
122 	    satisfy hardware alignment constraints.
123 
124 	*   Automatic  pool compaction, growth, and shrinkage by
125 	    means of call-backs to user defined functions.
126 
127     Applications  of  BGET  can  range	from  storage  management   in
128     ROM-based  embedded programs to providing the framework upon which
129     a  multitasking  system  incorporating   garbage   collection   is
130     constructed.   BGET  incorporates  extensive  internal consistency
131     checking using the <assert.h> mechanism; all these checks  can  be
132     turned off by compiling with NDEBUG defined, yielding a version of
133     BGET with minimal size and maximum speed.
134 
135     The  basic	algorithm  underlying  BGET  has withstood the test of
136     time;  more  than  25  years   have   passed   since   the	 first
137     implementation  of	this  code.  And yet, it is substantially more
138     efficient than the native allocation  schemes  of  many  operating
139     systems: the Macintosh and Microsoft Windows to name two, on which
140     programs have obtained substantial speed-ups by layering  BGET  as
141     an application level memory manager atop the underlying system's.
142 
143     BGET has been implemented on the largest mainframes and the lowest
144     of	microprocessors.   It  has served as the core for multitasking
145     operating systems, multi-thread applications, embedded software in
146     data  network switching processors, and a host of C programs.  And
147     while it has accreted flexibility and additional options over  the
148     years,  it	remains  fast, memory efficient, portable, and easy to
149     integrate into your program.
150 
151 
152     BGET IMPLEMENTATION ASSUMPTIONS
153     ===============================
154 
155     BGET is written in as portable a dialect of C  as  possible.   The
156     only   fundamental	 assumption   about  the  underlying  hardware
157     architecture is that memory is allocated is a linear  array  which
158     can  be  addressed  as a vector of C "char" objects.  On segmented
159     address space architectures, this generally means that BGET should
160     be used to allocate storage within a single segment (although some
161     compilers	simulate   linear   address   spaces   on    segmented
162     architectures).   On  segmented  architectures,  then, BGET buffer
163     pools  may not be larger than a segment, but since BGET allows any
164     number of separate buffer pools, there is no limit	on  the  total
165     storage  which  can  be  managed,  only  on the largest individual
166     object which can be allocated.  Machines  with  a  linear  address
167     architecture,  such  as  the VAX, 680x0, Sparc, MIPS, or the Intel
168     80386 and above in native mode, may use BGET without restriction.
169 
170 
171     GETTING STARTED WITH BGET
172     =========================
173 
174     Although BGET can be configured in a multitude of fashions,  there
175     are  three	basic  ways  of  working  with	BGET.	The  functions
176     mentioned below are documented in the following  section.	Please
177     excuse  the  forward  references which are made in the interest of
178     providing a roadmap to guide you  to  the  BGET  functions  you're
179     likely to need.
180 
181     Embedded Applications
182     ---------------------
183 
184     Embedded applications  typically  have  a  fixed  area  of	memory
185     dedicated  to  buffer  allocation (often in a separate RAM address
186     space distinct from the ROM that contains  the  executable	code).
187     To	use  BGET in such an environment, simply call bpool() with the
188     start address and length of the buffer  pool  area	in  RAM,  then
189     allocate  buffers  with  bget()  and  release  them  with  brel().
190     Embedded applications with very limited RAM but abundant CPU speed
191     may  benefit  by configuring BGET for BestFit allocation (which is
192     usually not worth it in other environments).
193 
194     Malloc() Emulation
195     ------------------
196 
197     If the C library malloc() function is too  slow,  not  present  in
198     your  development environment (for example, an a native Windows or
199     Macintosh program), or otherwise unsuitable, you  can  replace  it
200     with  BGET.  Initially define a buffer pool of an appropriate size
201     with bpool()--usually obtained by making a call to	the  operating
202     system's  low-level  memory allocator.  Then allocate buffers with
203     bget(), bgetz(), and bgetr() (the last two permit  the  allocation
204     of	buffers initialised to zero and [inefficient] re-allocation of
205     existing buffers for  compatibility  with  C  library  functions).
206     Release buffers by calling brel().	If a buffer allocation request
207     fails, obtain more storage from the underlying  operating  system,
208     add it to the buffer pool by another call to bpool(), and continue
209     execution.
210 
211     Automatic Storage Management
212     ----------------------------
213 
214     You can use BGET as your application's native memory  manager  and
215     implement  automatic  storage  pool  expansion,  contraction,  and
216     optionally application-specific  memory  compaction  by  compiling
217     BGET  with	the  BECtl  variable defined, then calling bectl() and
218     supplying  functions  for  storage	compaction,  acquisition,  and
219     release,  as  well as a standard pool expansion increment.	All of
220     these functions are optional (although it doesn't make much  sense
221     to	provide  a  release  function without an acquisition function,
222     does it?).	Once the call-back functions have  been  defined  with
223     bectl(),  you simply use bget() and brel() to allocate and release
224     storage as before.	You can supply an  initial  buffer  pool  with
225     bpool()  or  rely  on  automatic  allocation to acquire the entire
226     pool.  When a call on  bget()  cannot  be  satisfied,  BGET  first
227     checks  if	a compaction function has been supplied.  If so, it is
228     called (with the space required to satisfy the allocation  request
229     and a sequence number to allow the compaction routine to be called
230     successively without looping).  If the compaction function is able
231     to  free any storage (it needn't know whether the storage it freed
232     was adequate) it should return a  nonzero  value,  whereupon  BGET
233     will retry the allocation request and, if it fails again, call the
234     compaction function again with the next-higher sequence number.
235 
236     If	the  compaction  function  returns zero, indicating failure to
237     free space, or no compaction function is defined, BGET next  tests
238     whether  a	non-NULL  allocation function was supplied to bectl().
239     If so, that function is called with  an  argument  indicating  how
240     many  bytes  of  additional  space are required.  This will be the
241     standard pool expansion increment supplied in the call to  bectl()
242     unless  the  original  bget()  call requested a buffer larger than
243     this; buffers larger than the standard pool block can  be  managed
244     "off  the books" by BGET in this mode.  If the allocation function
245     succeeds in obtaining the storage, it returns a pointer to the new
246     block  and	BGET  expands  the  buffer  pool;  if  it  fails,  the
247     allocation request fails and returns NULL to  the  caller.	 If  a
248     non-NULL  release  function  is  supplied,	expansion blocks which
249     become totally empty are released  to  the	global	free  pool  by
250     passing their addresses to the release function.
251 
252     Equipped  with  appropriate  allocation,  release,	and compaction
253     functions, BGET can be used as part of very  sophisticated	memory
254     management	 strategies,  including  garbage  collection.	(Note,
255     however, that BGET is *not* a garbage  collector  by  itself,  and
256     that  developing  such a system requires much additional logic and
257     careful design of the application's memory allocation strategy.)
258 
259 
260     BGET FUNCTION DESCRIPTIONS
261     ==========================
262 
263     Functions implemented in this file (some are enabled by certain of
264     the optional settings below):
265 
266 	    void bpool(void *buffer, bufsize len);
267 
268     Create a buffer pool of <len> bytes, using the storage starting at
269     <buffer>.	You  can  call	bpool()  subsequently  to   contribute
270     additional storage to the overall buffer pool.
271 
272 	    void *bget(bufsize size);
273 
274     Allocate  a  buffer of <size> bytes.  The address of the buffer is
275     returned, or NULL if insufficient memory was available to allocate
276     the buffer.
277 
278 	    void *bgetz(bufsize size);
279 
280     Allocate a buffer of <size> bytes and clear it to all zeroes.  The
281     address of the buffer is returned, or NULL if insufficient	memory
282     was available to allocate the buffer.
283 
284 	    void *bgetr(void *buffer, bufsize newsize);
285 
286     Reallocate a buffer previously allocated by bget(),  changing  its
287     size  to  <newsize>  and  preserving  all  existing data.  NULL is
288     returned if insufficient memory is	available  to  reallocate  the
289     buffer, in which case the original buffer remains intact.
290 
291 	    void brel(void *buf);
292 
293     Return  the  buffer  <buf>, previously allocated by bget(), to the
294     free space pool.
295 
296 	    void bectl(int (*compact)(bufsize sizereq, int sequence),
297 		       void *(*acquire)(bufsize size),
298 		       void (*release)(void *buf),
299 		       bufsize pool_incr);
300 
301     Expansion control: specify functions through which the package may
302     compact  storage  (or  take  other	appropriate  action)  when  an
303     allocation	request  fails,  and  optionally automatically acquire
304     storage for expansion blocks  when	necessary,  and  release  such
305     blocks when they become empty.  If <compact> is non-NULL, whenever
306     a buffer allocation request fails, the <compact> function will  be
307     called with arguments specifying the number of bytes (total buffer
308     size,  including  header  overhead)  required   to	 satisfy   the
309     allocation request, and a sequence number indicating the number of
310     consecutive  calls	on  <compact>  attempting  to	satisfy   this
311     allocation	request.   The sequence number is 1 for the first call
312     on <compact> for a given allocation  request,  and	increments  on
313     subsequent	calls,	permitting  the  <compact>  function  to  take
314     increasingly dire measures in an attempt to free up  storage.   If
315     the  <compact>  function  returns  a nonzero value, the allocation
316     attempt is re-tried.  If <compact> returns 0 (as  it  must	if  it
317     isn't  able  to  release  any  space  or add storage to the buffer
318     pool), the allocation request fails, which can  trigger  automatic
319     pool expansion if the <acquire> argument is non-NULL.  At the time
320     the  <compact>  function  is  called,  the	state  of  the	buffer
321     allocator  is  identical  to  that	at  the  moment the allocation
322     request was made; consequently, the <compact>  function  may  call
323     brel(), bpool(), bstats(), and/or directly manipulate  the	buffer
324     pool  in  any  manner which would be valid were the application in
325     control.  This does not, however, relieve the  <compact>  function
326     of the need to ensure that whatever actions it takes do not change
327     things   underneath  the  application  that  made  the  allocation
328     request.  For example, a <compact> function that released a buffer
329     in	the  process  of  being reallocated with bgetr() would lead to
330     disaster.  Implementing a safe and effective  <compact>  mechanism
331     requires  careful  design of an application's memory architecture,
332     and cannot generally be easily retrofitted into existing code.
333 
334     If <acquire> is non-NULL, that function will be called whenever an
335     allocation	request  fails.  If the <acquire> function succeeds in
336     allocating the requested space and returns a pointer  to  the  new
337     area,  allocation will proceed using the expanded buffer pool.  If
338     <acquire> cannot obtain the requested space, it should return NULL
339     and   the	entire	allocation  process  will  fail.   <pool_incr>
340     specifies the normal expansion block size.	Providing an <acquire>
341     function will cause subsequent bget()  requests  for  buffers  too
342     large  to  be  managed in the linked-block scheme (in other words,
343     larger than <pool_incr> minus the buffer overhead) to be satisfied
344     directly by calls to the <acquire> function.  Automatic release of
345     empty pool blocks will occur only if all pool blocks in the system
346     are the size given by <pool_incr>.
347 
348 	    void bstats(bufsize *curalloc, bufsize *totfree,
349 			bufsize *maxfree, long *nget, long *nrel);
350 
351     The amount	of  space  currently  allocated  is  stored  into  the
352     variable  pointed  to by <curalloc>.  The total free space (sum of
353     all free blocks in the pool) is stored into the  variable  pointed
354     to	by  <totfree>, and the size of the largest single block in the
355     free space	pool  is  stored  into	the  variable  pointed	to  by
356     <maxfree>.	 The  variables  pointed  to  by <nget> and <nrel> are
357     filled, respectively, with	the  number  of  successful  (non-NULL
358     return) bget() calls and the number of brel() calls.
359 
360 	    void bstatse(bufsize *pool_incr, long *npool,
361 			 long *npget, long *nprel,
362 			 long *ndget, long *ndrel);
363 
364     Extended  statistics: The expansion block size will be stored into
365     the variable pointed to by <pool_incr>, or the negative thereof if
366     automatic  expansion  block  releases are disabled.  The number of
367     currently active pool blocks will  be  stored  into  the  variable
368     pointed  to  by  <npool>.  The variables pointed to by <npget> and
369     <nprel> will be filled with, respectively, the number of expansion
370     block   acquisitions   and	releases  which  have  occurred.   The
371     variables pointed to by <ndget> and <ndrel> will  be  filled  with
372     the  number  of  bget()  and  brel()  calls, respectively, managed
373     through blocks directly allocated by the acquisition  and  release
374     functions.
375 
376 	    void bufdump(void *buf);
377 
378     The buffer pointed to by <buf> is dumped on standard output.
379 
380 	    void bpoold(void *pool, int dumpalloc, int dumpfree);
381 
382     All buffers in the buffer pool <pool>, previously initialised by a
383     call on bpool(), are listed in ascending memory address order.  If
384     <dumpalloc> is nonzero, the  contents  of  allocated  buffers  are
385     dumped;  if <dumpfree> is nonzero, the contents of free blocks are
386     dumped.
387 
388 	    int bpoolv(void *pool);
389 
390     The  named	buffer	pool,  previously  initialised	by  a  call on
391     bpool(), is validated for bad pointers, overwritten data, etc.  If
392     compiled with NDEBUG not defined, any error generates an assertion
393     failure.  Otherwise 1 is returned if the pool is valid,  0	if  an
394     error is found.
395 
396 
397     BGET CONFIGURATION
398     ==================
399 */
400 
401 /*
402  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
403  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
404  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
405  * IN NO EVENT SHALL ST BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
406  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
407  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
408  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
409  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
410  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
411  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
412  */
413 
414 /* #define BGET_ENABLE_ALL_OPTIONS */
415 #ifdef BGET_ENABLE_OPTION
416 #define TestProg    20000	      /* Generate built-in test program
417 					 if defined.  The value specifies
418 					 how many buffer allocation attempts
419 					 the test program should make. */
420 
421 #define SizeQuant   4		      /* Buffer allocation size quantum:
422 					 all buffers allocated are a
423 					 multiple of this size.  This
424 					 MUST be a power of two. */
425 
426 #define BufDump     1		      /* Define this symbol to enable the
427 					 bpoold() function which dumps the
428 					 buffers in a buffer pool. */
429 
430 #define BufValid    1		      /* Define this symbol to enable the
431 					 bpoolv() function for validating
432 					 a buffer pool. */
433 
434 #define DumpData    1		      /* Define this symbol to enable the
435 					 bufdump() function which allows
436 					 dumping the contents of an allocated
437 					 or free buffer. */
438 
439 #define BufStats    1		      /* Define this symbol to enable the
440 					 bstats() function which calculates
441 					 the total free space in the buffer
442 					 pool, the largest available
443 					 buffer, and the total space
444 					 currently allocated. */
445 
446 #define FreeWipe    1		      /* Wipe free buffers to a guaranteed
447 					 pattern of garbage to trip up
448 					 miscreants who attempt to use
449 					 pointers into released buffers. */
450 
451 #define BestFit     1		      /* Use a best fit algorithm when
452 					 searching for space for an
453 					 allocation request.  This uses
454 					 memory more efficiently, but
455 					 allocation will be much slower. */
456 
457 #define BECtl	    1		      /* Define this symbol to enable the
458 					 bectl() function for automatic
459 					 pool space control.  */
460 #endif
461 
462 #include <stdio.h>
463 
464 #ifdef lint
465 #define NDEBUG			      /* Exits in asserts confuse lint */
466 /* LINTLIBRARY */                     /* Don't complain about def, no ref */
467 extern char *sprintf();               /* Sun includes don't define sprintf */
468 #endif
469 
470 #include <assert.h>
471 #include <memory.h>
472 
473 #ifdef BufDump			      /* BufDump implies DumpData */
474 #ifndef DumpData
475 #define DumpData    1
476 #endif
477 #endif
478 
479 #ifdef DumpData
480 #include <ctype.h>
481 #endif
482 
483 /*  Declare the interface, including the requested buffer size type,
484     bufsize.  */
485 
486 #include "bget.h"
487 
488 #define MemSize     int 	      /* Type for size arguments to memxxx()
489 					 functions such as memcmp(). */
490 
491 /* Queue links */
492 
493 struct qlinks {
494     struct bfhead *flink;	      /* Forward link */
495     struct bfhead *blink;	      /* Backward link */
496 };
497 
498 /* Header in allocated and free buffers */
499 
500 struct bhead {
501     bufsize prevfree;		      /* Relative link back to previous
502 					 free buffer in memory or 0 if
503 					 previous buffer is allocated.	*/
504     bufsize bsize;		      /* Buffer size: positive if free,
505 					 negative if allocated. */
506 };
507 #define BH(p)	((struct bhead *) (p))
508 
509 /*  Header in directly allocated buffers (by acqfcn) */
510 
511 struct bdhead {
512     bufsize tsize;		      /* Total size, including overhead */
513     struct bhead bh;		      /* Common header */
514 };
515 #define BDH(p)	((struct bdhead *) (p))
516 
517 /* Header in free buffers */
518 
519 struct bfhead {
520     struct bhead bh;		      /* Common allocated/free header */
521     struct qlinks ql;		      /* Links on free list */
522 };
523 #define BFH(p)	((struct bfhead *) (p))
524 
525 static struct bfhead freelist = {     /* List of free buffers */
526     {0, 0},
527     {&freelist, &freelist}
528 };
529 
530 
531 #ifdef BufStats
532 static bufsize totalloc = 0;	      /* Total space currently allocated */
533 static long numget = 0, numrel = 0;   /* Number of bget() and brel() calls */
534 #ifdef BECtl
535 static long numpblk = 0;	      /* Number of pool blocks */
536 static long numpget = 0, numprel = 0; /* Number of block gets and rels */
537 static long numdget = 0, numdrel = 0; /* Number of direct gets and rels */
538 #endif /* BECtl */
539 #endif /* BufStats */
540 
541 #ifdef BECtl
542 
543 /* Automatic expansion block management functions */
544 
545 static int (*compfcn) _((bufsize sizereq, int sequence)) = NULL;
546 static void *(*acqfcn) _((bufsize size)) = NULL;
547 static void (*relfcn) _((void *buf)) = NULL;
548 
549 static bufsize exp_incr = 0;	      /* Expansion block size */
550 static bufsize pool_len = 0;	      /* 0: no bpool calls have been made
551 					 -1: not all pool blocks are
552 					     the same size
553 					 >0: (common) block size for all
554 					     bpool calls made so far
555 				      */
556 #endif
557 
558 /*  Minimum allocation quantum: */
559 
560 #define QLSize	(sizeof(struct qlinks))
561 #define SizeQ	((SizeQuant > QLSize) ? SizeQuant : QLSize)
562 
563 #define V   (void)		      /* To denote unwanted returned values */
564 
565 /* End sentinel: value placed in bsize field of dummy block delimiting
566    end of pool block.  The most negative number which will  fit  in  a
567    bufsize, defined in a way that the compiler will accept. */
568 
569 #define ESent	((bufsize) (-(((1L << (sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
570 
571 /*  BGET  --  Allocate a buffer.  */
572 
573 void *bget(requested_size)
574   bufsize requested_size;
575 {
576     bufsize size = requested_size;
577     struct bfhead *b;
578 #ifdef BestFit
579     struct bfhead *best;
580 #endif
581     void *buf;
582 #ifdef BECtl
583     int compactseq = 0;
584 #endif
585 
586     assert(size > 0);
587 
588     if (size < SizeQ) { 	      /* Need at least room for the */
589 	size = SizeQ;		      /*    queue links.  */
590     }
591 #ifdef SizeQuant
592 #if SizeQuant > 1
593     size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1));
594 #endif
595 #endif
596 
597     size += sizeof(struct bhead);     /* Add overhead in allocated buffer
598 					 to size required. */
599 
600 #ifdef BECtl
601     /* If a compact function was provided in the call to bectl(), wrap
602        a loop around the allocation process  to  allow	compaction  to
603        intervene in case we don't find a suitable buffer in the chain. */
604 
605     while (1) {
606 #endif
607 	b = freelist.ql.flink;
608 #ifdef BestFit
609 	best = &freelist;
610 #endif
611 
612 
613 	/* Scan the free list searching for the first buffer big enough
614 	   to hold the requested size buffer. */
615 
616 #ifdef BestFit
617 	while (b != &freelist) {
618 	    if (b->bh.bsize >= size) {
619 		if ((best == &freelist) || (b->bh.bsize < best->bh.bsize)) {
620 		    best = b;
621 		}
622 	    }
623 	    b = b->ql.flink;		  /* Link to next buffer */
624 	}
625 	b = best;
626 #endif /* BestFit */
627 
628 	while (b != &freelist) {
629 	    if ((bufsize) b->bh.bsize >= size) {
630 
631 		/* Buffer  is big enough to satisfy  the request.  Allocate it
632 		   to the caller.  We must decide whether the buffer is  large
633 		   enough  to  split  into  the part given to the caller and a
634 		   free buffer that remains on the free list, or  whether  the
635 		   entire  buffer  should  be  removed	from the free list and
636 		   given to the caller in its entirety.   We  only  split  the
637 		   buffer if enough room remains for a header plus the minimum
638 		   quantum of allocation. */
639 
640 		if ((b->bh.bsize - size) > (SizeQ + (sizeof(struct bhead)))) {
641 		    struct bhead *ba, *bn;
642 
643 		    ba = BH(((char *) b) + (b->bh.bsize - size));
644 		    bn = BH(((char *) ba) + size);
645 		    assert(bn->prevfree == b->bh.bsize);
646 		    /* Subtract size from length of free block. */
647 		    b->bh.bsize -= size;
648 		    /* Link allocated buffer to the previous free buffer. */
649 		    ba->prevfree = b->bh.bsize;
650 		    /* Plug negative size into user buffer. */
651 		    ba->bsize = -(bufsize) size;
652 		    /* Mark buffer after this one not preceded by free block. */
653 		    bn->prevfree = 0;
654 
655 #ifdef BufStats
656 		    totalloc += size;
657 		    numget++;		  /* Increment number of bget() calls */
658 #endif
659 		    buf = (void *) ((((char *) ba) + sizeof(struct bhead)));
660 		    tag_asan_alloced(buf, size);
661 		    return buf;
662 		} else {
663 		    struct bhead *ba;
664 
665 		    ba = BH(((char *) b) + b->bh.bsize);
666 		    assert(ba->prevfree == b->bh.bsize);
667 
668                     /* The buffer isn't big enough to split.  Give  the  whole
669 		       shebang to the caller and remove it from the free list. */
670 
671 		    assert(b->ql.blink->ql.flink == b);
672 		    assert(b->ql.flink->ql.blink == b);
673 		    b->ql.blink->ql.flink = b->ql.flink;
674 		    b->ql.flink->ql.blink = b->ql.blink;
675 
676 #ifdef BufStats
677 		    totalloc += b->bh.bsize;
678 		    numget++;		  /* Increment number of bget() calls */
679 #endif
680 		    /* Negate size to mark buffer allocated. */
681 		    b->bh.bsize = -(b->bh.bsize);
682 
683 		    /* Zero the back pointer in the next buffer in memory
684 		       to indicate that this buffer is allocated. */
685 		    ba->prevfree = 0;
686 
687 		    /* Give user buffer starting at queue links. */
688 		    buf =  (void *) &(b->ql);
689 		    tag_asan_alloced(buf, size);
690 		    return buf;
691 		}
692 	    }
693 	    b = b->ql.flink;		  /* Link to next buffer */
694 	}
695 #ifdef BECtl
696 
697         /* We failed to find a buffer.  If there's a compact  function
698 	   defined,  notify  it  of the size requested.  If it returns
699 	   TRUE, try the allocation again. */
700 
701 	if ((compfcn == NULL) || (!(*compfcn)(size, ++compactseq))) {
702 	    break;
703 	}
704     }
705 
706     /* No buffer available with requested size free. */
707 
708     /* Don't give up yet -- look in the reserve supply. */
709 
710     if (acqfcn != NULL) {
711 	if (size > exp_incr - sizeof(struct bhead)) {
712 
713 	    /* Request	is  too  large	to  fit in a single expansion
714 	       block.  Try to satisy it by a direct buffer acquisition. */
715 
716 	    struct bdhead *bdh;
717 
718 	    size += sizeof(struct bdhead) - sizeof(struct bhead);
719 	    if ((bdh = BDH((*acqfcn)((bufsize) size))) != NULL) {
720 
721 		/*  Mark the buffer special by setting the size field
722 		    of its header to zero.  */
723 		bdh->bh.bsize = 0;
724 		bdh->bh.prevfree = 0;
725 		bdh->tsize = size;
726 #ifdef BufStats
727 		totalloc += size;
728 		numget++;	      /* Increment number of bget() calls */
729 		numdget++;	      /* Direct bget() call count */
730 #endif
731 		buf =  (void *) (bdh + 1);
732 		tag_asan_alloced(buf, size);
733 		return buf;
734 	    }
735 
736 	} else {
737 
738 	    /*	Try to obtain a new expansion block */
739 
740 	    void *newpool;
741 
742 	    if ((newpool = (*acqfcn)((bufsize) exp_incr)) != NULL) {
743 		bpool(newpool, exp_incr);
744                 buf =  bget(requested_size);  /* This can't, I say, can't
745 						 get into a loop. */
746 		return buf;
747 	    }
748 	}
749     }
750 
751     /*	Still no buffer available */
752 
753 #endif /* BECtl */
754 
755     return NULL;
756 }
757 
758 /*  BGETZ  --  Allocate a buffer and clear its contents to zero.  We clear
759 	       the  entire  contents  of  the buffer to zero, not just the
760 	       region requested by the caller. */
761 
762 void *bgetz(size)
763   bufsize size;
764 {
765     char *buf = (char *) bget(size);
766 
767     if (buf != NULL) {
768 	struct bhead *b;
769 	bufsize rsize;
770 
771 	b = BH(buf - sizeof(struct bhead));
772 	rsize = -(b->bsize);
773 	if (rsize == 0) {
774 	    struct bdhead *bd;
775 
776 	    bd = BDH(buf - sizeof(struct bdhead));
777 	    rsize = bd->tsize - sizeof(struct bdhead);
778 	} else {
779 	    rsize -= sizeof(struct bhead);
780 	}
781 	assert(rsize >= size);
782 	V memset_unchecked(buf, 0, (MemSize) rsize);
783     }
784     return ((void *) buf);
785 }
786 
787 /*  BGETR  --  Reallocate a buffer.  This is a minimal implementation,
788 	       simply in terms of brel()  and  bget().	 It  could  be
789 	       enhanced to allow the buffer to grow into adjacent free
790 	       blocks and to avoid moving data unnecessarily.  */
791 
792 void *bgetr(buf, size)
793   void *buf;
794   bufsize size;
795 {
796     void *nbuf;
797     bufsize osize;		      /* Old size of buffer */
798     struct bhead *b;
799 
800     if ((nbuf = bget(size)) == NULL) { /* Acquire new buffer */
801 	return NULL;
802     }
803     if (buf == NULL) {
804 	return nbuf;
805     }
806     b = BH(((char *) buf) - sizeof(struct bhead));
807     osize = -b->bsize;
808 #ifdef BECtl
809     if (osize == 0) {
810 	/*  Buffer acquired directly through acqfcn. */
811 	struct bdhead *bd;
812 
813 	bd = BDH(((char *) buf) - sizeof(struct bdhead));
814 	osize = bd->tsize - sizeof(struct bdhead);
815     } else
816 #endif
817 	osize -= sizeof(struct bhead);
818     assert(osize > 0);
819     V memcpy((char *) nbuf, (char *) buf, /* Copy the data */
820 	     (MemSize) ((size < osize) ? size : osize));
821     brel(buf);
822     return nbuf;
823 }
824 
825 /*  BREL  --  Release a buffer.  */
826 
827 void brel(buf)
828   void *buf;
829 {
830     struct bfhead *b, *bn;
831     bufsize bs;
832 
833     b = BFH(((char *) buf) - sizeof(struct bhead));
834 #ifdef BufStats
835     numrel++;			      /* Increment number of brel() calls */
836 #endif
837     assert(buf != NULL);
838 
839 #ifdef BECtl
840     if (b->bh.bsize == 0) {	      /* Directly-acquired buffer? */
841 	struct bdhead *bdh;
842 
843 	bdh = BDH(((char *) buf) - sizeof(struct bdhead));
844 	assert(b->bh.prevfree == 0);
845 #ifdef BufStats
846 	totalloc -= bdh->tsize;
847 	assert(totalloc >= 0);
848 	numdrel++;		      /* Number of direct releases */
849 #endif /* BufStats */
850 #ifdef FreeWipe
851 	V memset_unchecked((char *) buf, 0x55,
852 			   (MemSize) (bdh->tsize - sizeof(struct bdhead)));
853 #endif /* FreeWipe */
854 	bs = bdh->tsize - sizeof(struct bdhead);
855 	assert(relfcn != NULL);
856 	(*relfcn)((void *) bdh);      /* Release it directly. */
857 	tag_asan_free(buf, bs);
858 	return;
859     }
860 #endif /* BECtl */
861 
862     /* Buffer size must be negative, indicating that the buffer is
863        allocated. */
864 
865     if (b->bh.bsize >= 0) {
866 	bn = NULL;
867     }
868     assert(b->bh.bsize < 0);
869     bs = -b->bh.bsize;
870 
871     /*	Back pointer in next buffer must be zero, indicating the
872 	same thing: */
873 
874     assert(BH((char *) b - b->bh.bsize)->prevfree == 0);
875 
876 #ifdef BufStats
877     totalloc += b->bh.bsize;
878     assert(totalloc >= 0);
879 #endif
880 
881     /* If the back link is nonzero, the previous buffer is free.  */
882 
883     if (b->bh.prevfree != 0) {
884 
885 	/* The previous buffer is free.  Consolidate this buffer  with	it
886 	   by  adding  the  length  of	this  buffer  to the previous free
887 	   buffer.  Note that we subtract the size  in	the  buffer  being
888            released,  since  it's  negative to indicate that the buffer is
889 	   allocated. */
890 
891 	register bufsize size = b->bh.bsize;
892 
893         /* Make the previous buffer the one we're working on. */
894 	assert(BH((char *) b - b->bh.prevfree)->bsize == b->bh.prevfree);
895 	b = BFH(((char *) b) - b->bh.prevfree);
896 	b->bh.bsize -= size;
897     } else {
898 
899         /* The previous buffer isn't allocated.  Insert this buffer
900 	   on the free list as an isolated free block. */
901 
902 	assert(freelist.ql.blink->ql.flink == &freelist);
903 	assert(freelist.ql.flink->ql.blink == &freelist);
904 	b->ql.flink = &freelist;
905 	b->ql.blink = freelist.ql.blink;
906 	freelist.ql.blink = b;
907 	b->ql.blink->ql.flink = b;
908 	b->bh.bsize = -b->bh.bsize;
909     }
910 
911     /* Now we look at the next buffer in memory, located by advancing from
912        the  start  of  this  buffer  by its size, to see if that buffer is
913        free.  If it is, we combine  this  buffer  with	the  next  one	in
914        memory, dechaining the second buffer from the free list. */
915 
916     bn =  BFH(((char *) b) + b->bh.bsize);
917     if (bn->bh.bsize > 0) {
918 
919 	/* The buffer is free.	Remove it from the free list and add
920 	   its size to that of our buffer. */
921 
922 	assert(BH((char *) bn + bn->bh.bsize)->prevfree == bn->bh.bsize);
923 	assert(bn->ql.blink->ql.flink == bn);
924 	assert(bn->ql.flink->ql.blink == bn);
925 	bn->ql.blink->ql.flink = bn->ql.flink;
926 	bn->ql.flink->ql.blink = bn->ql.blink;
927 	b->bh.bsize += bn->bh.bsize;
928 
929 	/* Finally,  advance  to   the	buffer	that   follows	the  newly
930 	   consolidated free block.  We must set its  backpointer  to  the
931 	   head  of  the  consolidated free block.  We know the next block
932 	   must be an allocated block because the process of recombination
933 	   guarantees  that  two  free	blocks will never be contiguous in
934 	   memory.  */
935 
936 	bn = BFH(((char *) b) + b->bh.bsize);
937     }
938 #ifdef FreeWipe
939     V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55,
940 		       (MemSize) (b->bh.bsize - sizeof(struct bfhead)));
941 #endif
942     assert(bn->bh.bsize < 0);
943 
944     /* The next buffer is allocated.  Set the backpointer in it  to  point
945        to this buffer; the previous free buffer in memory. */
946 
947     bn->bh.prevfree = b->bh.bsize;
948 
949 #ifdef BECtl
950 
951     /*	If  a  block-release function is defined, and this free buffer
952 	constitutes the entire block, release it.  Note that  pool_len
953 	is  defined  in  such a way that the test will fail unless all
954 	pool blocks are the same size.	*/
955 
956     if (relfcn != NULL &&
957 	((bufsize) b->bh.bsize) == (pool_len - sizeof(struct bhead))) {
958 
959 	assert(b->bh.prevfree == 0);
960 	assert(BH((char *) b + b->bh.bsize)->bsize == ESent);
961 	assert(BH((char *) b + b->bh.bsize)->prevfree == b->bh.bsize);
962 	/*  Unlink the buffer from the free list  */
963 	b->ql.blink->ql.flink = b->ql.flink;
964 	b->ql.flink->ql.blink = b->ql.blink;
965 
966 	(*relfcn)(b);
967 #ifdef BufStats
968 	numprel++;		      /* Nr of expansion block releases */
969 	numpblk--;		      /* Total number of blocks */
970 	assert(numpblk == numpget - numprel);
971 #endif /* BufStats */
972     }
973 #endif /* BECtl */
974     tag_asan_free(buf, bs);
975 }
976 
977 #ifdef BECtl
978 
979 /*  BECTL  --  Establish automatic pool expansion control  */
980 
981 void bectl(compact, acquire, release, pool_incr)
982   int (*compact) _((bufsize sizereq, int sequence));
983   void *(*acquire) _((bufsize size));
984   void (*release) _((void *buf));
985   bufsize pool_incr;
986 {
987     compfcn = compact;
988     acqfcn = acquire;
989     relfcn = release;
990     exp_incr = pool_incr;
991 }
992 #endif
993 
994 /*  BPOOL  --  Add a region of memory to the buffer pool.  */
995 
996 void bpool(buf, len)
997   void *buf;
998   bufsize len;
999 {
1000     struct bfhead *b = BFH(buf);
1001     struct bhead *bn;
1002 
1003 #ifdef SizeQuant
1004     len &= ~(SizeQuant - 1);
1005 #endif
1006 #ifdef BECtl
1007     if (pool_len == 0) {
1008 	pool_len = len;
1009     } else if (len != pool_len) {
1010 	pool_len = -1;
1011     }
1012 #ifdef BufStats
1013     numpget++;			      /* Number of block acquisitions */
1014     numpblk++;			      /* Number of blocks total */
1015     assert(numpblk == numpget - numprel);
1016 #endif /* BufStats */
1017 #endif /* BECtl */
1018 
1019     /* Since the block is initially occupied by a single free  buffer,
1020        it  had	better	not  be  (much) larger than the largest buffer
1021        whose size we can store in bhead.bsize. */
1022 
1023     assert(len - sizeof(struct bhead) <= -((bufsize) ESent + 1));
1024 
1025     /* Clear  the  backpointer at  the start of the block to indicate that
1026        there  is  no  free  block  prior  to  this   one.    That   blocks
1027        recombination when the first block in memory is released. */
1028 
1029     b->bh.prevfree = 0;
1030 
1031     /* Chain the new block to the free list. */
1032 
1033     assert(freelist.ql.blink->ql.flink == &freelist);
1034     assert(freelist.ql.flink->ql.blink == &freelist);
1035     b->ql.flink = &freelist;
1036     b->ql.blink = freelist.ql.blink;
1037     freelist.ql.blink = b;
1038     b->ql.blink->ql.flink = b;
1039 
1040     /* Create a dummy allocated buffer at the end of the pool.	This dummy
1041        buffer is seen when a buffer at the end of the pool is released and
1042        blocks  recombination  of  the last buffer with the dummy buffer at
1043        the end.  The length in the dummy buffer  is  set  to  the  largest
1044        negative  number  to  denote  the  end  of  the pool for diagnostic
1045        routines (this specific value is  not  counted  on  by  the  actual
1046        allocation and release functions). */
1047 
1048     len -= sizeof(struct bhead);
1049     b->bh.bsize = (bufsize) len;
1050 #ifdef FreeWipe
1051     V memset_unchecked(((char *) b) + sizeof(struct bfhead), 0x55,
1052 		       (MemSize) (len - sizeof(struct bfhead)));
1053 #endif
1054     bn = BH(((char *) b) + len);
1055     bn->prevfree = (bufsize) len;
1056     /* Definition of ESent assumes two's complement! */
1057     assert((~0) == -1);
1058     bn->bsize = ESent;
1059 }
1060 
1061 #ifdef BufStats
1062 
1063 /*  BSTATS  --	Return buffer allocation free space statistics.  */
1064 
1065 void bstats(curalloc, totfree, maxfree, nget, nrel)
1066   bufsize *curalloc, *totfree, *maxfree;
1067   long *nget, *nrel;
1068 {
1069     struct bfhead *b = freelist.ql.flink;
1070 
1071     *nget = numget;
1072     *nrel = numrel;
1073     *curalloc = totalloc;
1074     *totfree = 0;
1075     *maxfree = -1;
1076     while (b != &freelist) {
1077 	assert(b->bh.bsize > 0);
1078 	*totfree += b->bh.bsize;
1079 	if (b->bh.bsize > *maxfree) {
1080 	    *maxfree = b->bh.bsize;
1081 	}
1082 	b = b->ql.flink;	      /* Link to next buffer */
1083     }
1084 }
1085 
1086 #ifdef BECtl
1087 
1088 /*  BSTATSE  --  Return extended statistics  */
1089 
1090 void bstatse(pool_incr, npool, npget, nprel, ndget, ndrel)
1091   bufsize *pool_incr;
1092   long *npool, *npget, *nprel, *ndget, *ndrel;
1093 {
1094     *pool_incr = (pool_len < 0) ? -exp_incr : exp_incr;
1095     *npool = numpblk;
1096     *npget = numpget;
1097     *nprel = numprel;
1098     *ndget = numdget;
1099     *ndrel = numdrel;
1100 }
1101 #endif /* BECtl */
1102 #endif /* BufStats */
1103 
1104 #ifdef DumpData
1105 
1106 /*  BUFDUMP  --  Dump the data in a buffer.  This is called with the  user
1107 		 data pointer, and backs up to the buffer header.  It will
1108 		 dump either a free block or an allocated one.	*/
1109 
1110 void bufdump(buf)
1111   void *buf;
1112 {
1113     struct bfhead *b;
1114     unsigned char *bdump;
1115     bufsize bdlen;
1116 
1117     b = BFH(((char *) buf) - sizeof(struct bhead));
1118     assert(b->bh.bsize != 0);
1119     if (b->bh.bsize < 0) {
1120 	bdump = (unsigned char *) buf;
1121 	bdlen = (-b->bh.bsize) - sizeof(struct bhead);
1122     } else {
1123 	bdump = (unsigned char *) (((char *) b) + sizeof(struct bfhead));
1124 	bdlen = b->bh.bsize - sizeof(struct bfhead);
1125     }
1126 
1127     while (bdlen > 0) {
1128 	int i, dupes = 0;
1129 	bufsize l = bdlen;
1130 	char bhex[50], bascii[20];
1131 
1132 	if (l > 16) {
1133 	    l = 16;
1134 	}
1135 
1136 	for (i = 0; i < l; i++) {
1137 			V snprintf(bhex + i * 3, sizeof(bhex) - i * 3, "%02X ",
1138 				   bdump[i]);
1139             bascii[i] = isprint(bdump[i]) ? bdump[i] : ' ';
1140 	}
1141 	bascii[i] = 0;
1142         V printf("%-48s   %s\n", bhex, bascii);
1143 	bdump += l;
1144 	bdlen -= l;
1145 	while ((bdlen > 16) && (memcmp((char *) (bdump - 16),
1146 				       (char *) bdump, 16) == 0)) {
1147 	    dupes++;
1148 	    bdump += 16;
1149 	    bdlen -= 16;
1150 	}
1151 	if (dupes > 1) {
1152 	    V printf(
1153                 "     (%d lines [%d bytes] identical to above line skipped)\n",
1154 		dupes, dupes * 16);
1155 	} else if (dupes == 1) {
1156 	    bdump -= 16;
1157 	    bdlen += 16;
1158 	}
1159     }
1160 }
1161 #endif
1162 
1163 #ifdef BufDump
1164 
1165 /*  BPOOLD  --	Dump a buffer pool.  The buffer headers are always listed.
1166 		If DUMPALLOC is nonzero, the contents of allocated buffers
1167 		are  dumped.   If  DUMPFREE  is  nonzero,  free blocks are
1168 		dumped as well.  If FreeWipe  checking	is  enabled,  free
1169 		blocks	which  have  been clobbered will always be dumped. */
1170 
1171 void bpoold(buf, dumpalloc, dumpfree)
1172   void *buf;
1173   int dumpalloc, dumpfree;
1174 {
1175     struct bfhead *b = BFH(buf);
1176 
1177     while (b->bh.bsize != ESent) {
1178 	bufsize bs = b->bh.bsize;
1179 
1180 	if (bs < 0) {
1181 	    bs = -bs;
1182             V printf("Allocated buffer: size %6ld bytes.\n", (long) bs);
1183 	    if (dumpalloc) {
1184 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1185 	    }
1186 	} else {
1187             char *lerr = "";
1188 
1189 	    assert(bs > 0);
1190 	    if ((b->ql.blink->ql.flink != b) ||
1191 		(b->ql.flink->ql.blink != b)) {
1192                 lerr = "  (Bad free list links)";
1193 	    }
1194             V printf("Free block:       size %6ld bytes.%s\n",
1195 		(long) bs, lerr);
1196 #ifdef FreeWipe
1197 	    lerr = ((char *) b) + sizeof(struct bfhead);
1198 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1199 		(memcmp(lerr, lerr + 1,
1200 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1201 		V printf(
1202                     "(Contents of above free block have been overstored.)\n");
1203 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1204 	    } else
1205 #endif
1206 	    if (dumpfree) {
1207 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1208 	    }
1209 	}
1210 	b = BFH(((char *) b) + bs);
1211     }
1212 }
1213 #endif /* BufDump */
1214 
1215 #ifdef BufValid
1216 
1217 /*  BPOOLV  --  Validate a buffer pool.  If NDEBUG isn't defined,
1218 		any error generates an assertion failure.  */
1219 
1220 int bpoolv(buf)
1221   void *buf;
1222 {
1223     struct bfhead *b = BFH(buf);
1224 
1225     while (b->bh.bsize != ESent) {
1226 	bufsize bs = b->bh.bsize;
1227 
1228 	if (bs < 0) {
1229 	    bs = -bs;
1230 	} else {
1231 			const char *lerr = "";
1232 
1233 	    assert(bs > 0);
1234 	    if (bs <= 0) {
1235 		return 0;
1236 	    }
1237 	    if ((b->ql.blink->ql.flink != b) ||
1238 		(b->ql.flink->ql.blink != b)) {
1239                 V printf("Free block: size %6ld bytes.  (Bad free list links)\n",
1240 		     (long) bs);
1241 		assert(0);
1242 		return 0;
1243 	    }
1244 #ifdef FreeWipe
1245 	    lerr = ((char *) b) + sizeof(struct bfhead);
1246 	    if ((bs > sizeof(struct bfhead)) && ((*lerr != 0x55) ||
1247 		(memcmp(lerr, lerr + 1,
1248 		  (MemSize) (bs - (sizeof(struct bfhead) + 1))) != 0))) {
1249 		V printf(
1250                     "(Contents of above free block have been overstored.)\n");
1251 		bufdump((void *) (((char *) b) + sizeof(struct bhead)));
1252 		assert(0);
1253 		return 0;
1254 	    }
1255 #endif
1256 	}
1257 	b = BFH(((char *) b) + bs);
1258     }
1259     return 1;
1260 }
1261 #endif /* BufValid */
1262 
1263         /***********************\
1264 	*			*
1265 	* Built-in test program *
1266 	*			*
1267         \***********************/
1268 
1269 #ifdef TestProg
1270 
1271 #define Repeatable  1		      /* Repeatable pseudorandom sequence */
1272 				      /* If Repeatable is not defined, a
1273 					 time-seeded pseudorandom sequence
1274 					 is generated, exercising BGET with
1275 					 a different pattern of calls on each
1276 					 run. */
1277 #define OUR_RAND		      /* Use our own built-in version of
1278 					 rand() to guarantee the test is
1279 					 100% repeatable. */
1280 
1281 #ifdef BECtl
1282 #define PoolSize    300000	      /* Test buffer pool size */
1283 #else
1284 #define PoolSize    50000	      /* Test buffer pool size */
1285 #endif
1286 #define ExpIncr     32768	      /* Test expansion block size */
1287 #define CompactTries 10 	      /* Maximum tries at compacting */
1288 
1289 #define dumpAlloc   0		      /* Dump allocated buffers ? */
1290 #define dumpFree    0		      /* Dump free buffers ? */
1291 
1292 #ifndef Repeatable
1293 extern long time();
1294 #endif
1295 
1296 extern char *malloc();
1297 extern int free _((char *));
1298 
1299 static char *bchain = NULL;	      /* Our private buffer chain */
1300 static char *bp = NULL; 	      /* Our initial buffer pool */
1301 
1302 #include <math.h>
1303 
1304 #ifdef OUR_RAND
1305 
1306 static unsigned long int next = 1;
1307 
1308 /* Return next random integer */
1309 
1310 int rand()
1311 {
1312 	next = next * 1103515245L + 12345;
1313 	return (unsigned int) (next / 65536L) % 32768L;
1314 }
1315 
1316 /* Set seed for random generator */
1317 
1318 void srand(seed)
1319   unsigned int seed;
1320 {
1321 	next = seed;
1322 }
1323 #endif
1324 
1325 /*  STATS  --  Edit statistics returned by bstats() or bstatse().  */
1326 
1327 static void stats(when)
1328   char *when;
1329 {
1330     bufsize cural, totfree, maxfree;
1331     long nget, nfree;
1332 #ifdef BECtl
1333     bufsize pincr;
1334     long totblocks, npget, nprel, ndget, ndrel;
1335 #endif
1336 
1337     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1338     V printf(
1339         "%s: %ld gets, %ld releases.  %ld in use, %ld free, largest = %ld\n",
1340 	when, nget, nfree, (long) cural, (long) totfree, (long) maxfree);
1341 #ifdef BECtl
1342     bstatse(&pincr, &totblocks, &npget, &nprel, &ndget, &ndrel);
1343     V printf(
1344          "  Blocks: size = %ld, %ld (%ld bytes) in use, %ld gets, %ld frees\n",
1345 	 (long)pincr, totblocks, pincr * totblocks, npget, nprel);
1346     V printf("  %ld direct gets, %ld direct frees\n", ndget, ndrel);
1347 #endif /* BECtl */
1348 }
1349 
1350 #ifdef BECtl
1351 static int protect = 0; 	      /* Disable compaction during bgetr() */
1352 
1353 /*  BCOMPACT  --  Compaction call-back function.  */
1354 
1355 static int bcompact(bsize, seq)
1356   bufsize bsize;
1357   int seq;
1358 {
1359 #ifdef CompactTries
1360     char *bc = bchain;
1361     int i = rand() & 0x3;
1362 
1363 #ifdef COMPACTRACE
1364     V printf("Compaction requested.  %ld bytes needed, sequence %d.\n",
1365 	(long) bsize, seq);
1366 #endif
1367 
1368     if (protect || (seq > CompactTries)) {
1369 #ifdef COMPACTRACE
1370         V printf("Compaction gave up.\n");
1371 #endif
1372 	return 0;
1373     }
1374 
1375     /* Based on a random cast, release a random buffer in the list
1376        of allocated buffers. */
1377 
1378     while (i > 0 && bc != NULL) {
1379 	bc = *((char **) bc);
1380 	i--;
1381     }
1382     if (bc != NULL) {
1383 	char *fb;
1384 
1385 	fb = *((char **) bc);
1386 	if (fb != NULL) {
1387 	    *((char **) bc) = *((char **) fb);
1388 	    brel((void *) fb);
1389 	    return 1;
1390 	}
1391     }
1392 
1393 #ifdef COMPACTRACE
1394     V printf("Compaction bailed out.\n");
1395 #endif
1396 #endif /* CompactTries */
1397     return 0;
1398 }
1399 
1400 /*  BEXPAND  --  Expand pool call-back function.  */
1401 
1402 static void *bexpand(size)
1403   bufsize size;
1404 {
1405     void *np = NULL;
1406     bufsize cural, totfree, maxfree;
1407     long nget, nfree;
1408 
1409     /* Don't expand beyond the total allocated size given by PoolSize. */
1410 
1411     bstats(&cural, &totfree, &maxfree, &nget, &nfree);
1412 
1413     if (cural < PoolSize) {
1414 	np = (void *) malloc((unsigned) size);
1415     }
1416 #ifdef EXPTRACE
1417     V printf("Expand pool by %ld -- %s.\n", (long) size,
1418         np == NULL ? "failed" : "succeeded");
1419 #endif
1420     return np;
1421 }
1422 
1423 /*  BSHRINK  --  Shrink buffer pool call-back function.  */
1424 
1425 static void bshrink(buf)
1426   void *buf;
1427 {
1428     if (((char *) buf) == bp) {
1429 #ifdef EXPTRACE
1430         V printf("Initial pool released.\n");
1431 #endif
1432 	bp = NULL;
1433     }
1434 #ifdef EXPTRACE
1435     V printf("Shrink pool.\n");
1436 #endif
1437     free((char *) buf);
1438 }
1439 
1440 #endif /* BECtl */
1441 
1442 /*  Restrict buffer requests to those large enough to contain our pointer and
1443     small enough for the CPU architecture.  */
1444 
1445 static bufsize blimit(bs)
1446   bufsize bs;
1447 {
1448     if (bs < sizeof(char *)) {
1449 	bs = sizeof(char *);
1450     }
1451 
1452     /* This is written out in this ugly fashion because the
1453        cool expression in sizeof(int) that auto-configured
1454        to any length int befuddled some compilers. */
1455 
1456     if (sizeof(int) == 2) {
1457 	if (bs > 32767) {
1458 	    bs = 32767;
1459 	}
1460     } else {
1461 	if (bs > 200000) {
1462 	    bs = 200000;
1463 	}
1464     }
1465     return bs;
1466 }
1467 
1468 int main()
1469 {
1470     int i;
1471     double x;
1472 
1473     /* Seed the random number generator.  If Repeatable is defined, we
1474        always use the same seed.  Otherwise, we seed from the clock to
1475        shake things up from run to run. */
1476 
1477 #ifdef Repeatable
1478     V srand(1234);
1479 #else
1480     V srand((int) time((long *) NULL));
1481 #endif
1482 
1483     /*	Compute x such that pow(x, p) ranges between 1 and 4*ExpIncr as
1484 	p ranges from 0 to ExpIncr-1, with a concentration in the lower
1485 	numbers.  */
1486 
1487     x = 4.0 * ExpIncr;
1488     x = log(x);
1489     x = exp(log(4.0 * ExpIncr) / (ExpIncr - 1.0));
1490 
1491 #ifdef BECtl
1492     bectl(bcompact, bexpand, bshrink, (bufsize) ExpIncr);
1493     bp = malloc(ExpIncr);
1494     assert(bp != NULL);
1495     bpool((void *) bp, (bufsize) ExpIncr);
1496 #else
1497     bp = malloc(PoolSize);
1498     assert(bp != NULL);
1499     bpool((void *) bp, (bufsize) PoolSize);
1500 #endif
1501 
1502     stats("Create pool");
1503     V bpoolv((void *) bp);
1504     bpoold((void *) bp, dumpAlloc, dumpFree);
1505 
1506     for (i = 0; i < TestProg; i++) {
1507 	char *cb;
1508 	bufsize bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1509 
1510 	assert(bs <= (((bufsize) 4) * ExpIncr));
1511 	bs = blimit(bs);
1512 	if (rand() & 0x400) {
1513 	    cb = (char *) bgetz(bs);
1514 	} else {
1515 	    cb = (char *) bget(bs);
1516 	}
1517 	if (cb == NULL) {
1518 #ifdef EasyOut
1519 	    break;
1520 #else
1521 	    char *bc = bchain;
1522 
1523 	    if (bc != NULL) {
1524 		char *fb;
1525 
1526 		fb = *((char **) bc);
1527 		if (fb != NULL) {
1528 		    *((char **) bc) = *((char **) fb);
1529 		    brel((void *) fb);
1530 		}
1531 		continue;
1532 	    }
1533 #endif
1534 	}
1535 	*((char **) cb) = (char *) bchain;
1536 	bchain = cb;
1537 
1538 	/* Based on a random cast, release a random buffer in the list
1539 	   of allocated buffers. */
1540 
1541 	if ((rand() & 0x10) == 0) {
1542 	    char *bc = bchain;
1543 	    int i = rand() & 0x3;
1544 
1545 	    while (i > 0 && bc != NULL) {
1546 		bc = *((char **) bc);
1547 		i--;
1548 	    }
1549 	    if (bc != NULL) {
1550 		char *fb;
1551 
1552 		fb = *((char **) bc);
1553 		if (fb != NULL) {
1554 		    *((char **) bc) = *((char **) fb);
1555 		    brel((void *) fb);
1556 		}
1557 	    }
1558 	}
1559 
1560 	/* Based on a random cast, reallocate a random buffer in the list
1561 	   to a random size */
1562 
1563 	if ((rand() & 0x20) == 0) {
1564 	    char *bc = bchain;
1565 	    int i = rand() & 0x3;
1566 
1567 	    while (i > 0 && bc != NULL) {
1568 		bc = *((char **) bc);
1569 		i--;
1570 	    }
1571 	    if (bc != NULL) {
1572 		char *fb;
1573 
1574 		fb = *((char **) bc);
1575 		if (fb != NULL) {
1576 		    char *newb;
1577 
1578 		    bs = pow(x, (double) (rand() & (ExpIncr - 1)));
1579 		    bs = blimit(bs);
1580 #ifdef BECtl
1581 		    protect = 1;      /* Protect against compaction */
1582 #endif
1583 		    newb = (char *) bgetr((void *) fb, bs);
1584 #ifdef BECtl
1585 		    protect = 0;
1586 #endif
1587 		    if (newb != NULL) {
1588 			*((char **) bc) = newb;
1589 		    }
1590 		}
1591 	    }
1592 	}
1593     }
1594     stats("\nAfter allocation");
1595     if (bp != NULL) {
1596 	V bpoolv((void *) bp);
1597 	bpoold((void *) bp, dumpAlloc, dumpFree);
1598     }
1599 
1600     while (bchain != NULL) {
1601 	char *buf = bchain;
1602 
1603 	bchain = *((char **) buf);
1604 	brel((void *) buf);
1605     }
1606     stats("\nAfter release");
1607 #ifndef BECtl
1608     if (bp != NULL) {
1609 	V bpoolv((void *) bp);
1610 	bpoold((void *) bp, dumpAlloc, dumpFree);
1611     }
1612 #endif
1613 
1614     return 0;
1615 }
1616 #endif
1617