xref: /optee_os/lib/libutils/ext/mempool.c (revision 62f21181c547da3bd098908300e5699e9ae5cca9)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2018, Linaro Limited
5  */
6 
7 
8 #include <assert.h>
9 #include <compiler.h>
10 #include <malloc.h>
11 #include <mempool.h>
12 #include <util.h>
13 
14 #if defined(__KERNEL__)
15 #include <kernel/mutex.h>
16 #include <kernel/panic.h>
17 #include <kernel/thread.h>
18 #include <kernel/refcount.h>
19 #endif
20 
21 /*
22  * Allocation of temporary memory buffers which are used in a stack like
23  * fashion. One exmaple is when a Big Number is needed for a temporary
24  * variable in a Big Number computation: Big Number operations (add,...),
25  * crypto algorithms (rsa, ecc,,...).
26  *
27  *  The allocation algorithm takes memory buffers from a pool,
28  *  characterized by (cf. struct mempool):
29  * - the total size (in bytes) of the pool
30  * - the offset of the last item allocated in the pool (struct
31  *   mempool_item). This offset is -1 is nothing is allocated yet.
32  *
33  * Each item consists of (struct mempool_item)
34  * - the size of the item
35  * - the offsets, in the pool, of the previous and next items
36  *
37  * The allocation allocates an item for a given size.
38  * The allocation is performed in the pool after the last
39  * allocated items. This means:
40  * - the heap is never used.
41  * - there is no assumption on the size of the allocated memory buffers. Only
42  *   the size of the pool will limit the allocation.
43  * - a constant time allocation and free as there is no list scan
44  * - but a potentially fragmented memory as the allocation does not take into
45  *   account "holes" in the pool (allocation is performed after the last
46  *   allocated variable). Indeed, this interface is supposed to be used
47  *   with stack like allocations to avoid this issue. This means that
48  *   allocated items:
49  *   - should have a short life cycle
50  *   - if an item A is allocated before another item B, then A should be
51  *     released after B.
52  *   So the potential fragmentation is mitigated.
53  */
54 
55 #define POOL_ALIGN	__alignof__(long)
56 
57 struct mempool {
58 	size_t size;  /* size of the memory pool, in bytes */
59 	ssize_t last_offset;   /* offset to the last one */
60 	vaddr_t data;
61 #ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
62 	ssize_t max_last_offset;
63 #endif
64 #if defined(__KERNEL__)
65 	void (*release_mem)(void *ptr, size_t size);
66 	struct mutex mu;
67 	struct condvar cv;
68 	struct refcount refc;
69 	int owner;
70 #endif
71 };
72 
73 static void get_pool(struct mempool *pool __maybe_unused)
74 {
75 #if defined(__KERNEL__)
76 	if (refcount_inc(&pool->refc)) {
77 		if (pool->owner == thread_get_id())
78 			return;
79 		refcount_dec(&pool->refc);
80 	}
81 
82 	mutex_lock(&pool->mu);
83 
84 	/* Wait until the pool is available */
85 	while (pool->owner != THREAD_ID_INVALID)
86 		condvar_wait(&pool->cv, &pool->mu);
87 
88 	pool->owner = thread_get_id();
89 	refcount_set(&pool->refc, 1);
90 
91 	mutex_unlock(&pool->mu);
92 #endif
93 }
94 
95 static void put_pool(struct mempool *pool __maybe_unused)
96 {
97 #if defined(__KERNEL__)
98 	assert(pool->owner == thread_get_id());
99 
100 	if (refcount_dec(&pool->refc)) {
101 		mutex_lock(&pool->mu);
102 
103 		pool->owner = THREAD_ID_INVALID;
104 		condvar_signal(&pool->cv);
105 
106 		/* As the refcount is 0 there should be no items left */
107 		if (pool->last_offset >= 0)
108 			panic();
109 		if (pool->release_mem)
110 			pool->release_mem((void *)pool->data, pool->size);
111 
112 		mutex_unlock(&pool->mu);
113 	}
114 #endif
115 }
116 
117 struct mempool *
118 mempool_alloc_pool(void *data, size_t size,
119 		   void (*release_mem)(void *ptr, size_t size) __maybe_unused)
120 {
121 	struct mempool *pool = calloc(1, sizeof(*pool));
122 
123 	COMPILE_TIME_ASSERT(POOL_ALIGN >= __alignof__(struct mempool_item));
124 	assert(!((vaddr_t)data & (POOL_ALIGN - 1)));
125 
126 	if (pool) {
127 		pool->size = size;
128 		pool->data = (vaddr_t)data;
129 		pool->last_offset = -1;
130 #if defined(__KERNEL__)
131 		pool->release_mem = release_mem;
132 		mutex_init(&pool->mu);
133 		condvar_init(&pool->cv);
134 		pool->owner = THREAD_ID_INVALID;
135 #endif
136 	}
137 
138 	return pool;
139 }
140 
141 void *mempool_alloc(struct mempool *pool, size_t size)
142 {
143 	size_t offset;
144 	struct mempool_item *new_item;
145 	struct mempool_item *last_item = NULL;
146 
147 	get_pool(pool);
148 
149 	if (pool->last_offset < 0) {
150 		offset = 0;
151 	} else {
152 		last_item = (struct mempool_item *)(pool->data +
153 						    pool->last_offset);
154 		offset = pool->last_offset + last_item->size;
155 
156 		offset = ROUNDUP(offset, POOL_ALIGN);
157 		if (offset > pool->size)
158 			goto error;
159 	}
160 
161 	size = sizeof(struct mempool_item) + size;
162 	size = ROUNDUP(size, POOL_ALIGN);
163 	if (offset + size > pool->size)
164 		goto error;
165 
166 	new_item = (struct mempool_item *)(pool->data + offset);
167 	new_item->size = size;
168 	new_item->prev_item_offset = pool->last_offset;
169 	if (last_item)
170 		last_item->next_item_offset = offset;
171 	new_item->next_item_offset = -1;
172 	pool->last_offset = offset;
173 #ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
174 	if (pool->last_offset > pool->max_last_offset) {
175 		pool->max_last_offset = pool->last_offset;
176 		DMSG("Max memory usage increased to %zu",
177 		     (size_t)pool->max_last_offset);
178 	}
179 #endif
180 
181 	return new_item + 1;
182 
183 error:
184 	EMSG("Failed to allocate %zu bytes, please tune the pool size", size);
185 	put_pool(pool);
186 	return NULL;
187 }
188 
189 void mempool_free(struct mempool *pool, void *ptr)
190 {
191 	struct mempool_item *item;
192 	struct mempool_item *prev_item;
193 	struct mempool_item *next_item;
194 	ssize_t last_offset = -1;
195 
196 	if (!ptr)
197 		return;
198 
199 	item = (struct mempool_item *)((vaddr_t)ptr -
200 				       sizeof(struct mempool_item));
201 	if (item->prev_item_offset >= 0) {
202 		prev_item = (struct mempool_item *)(pool->data +
203 						    item->prev_item_offset);
204 		prev_item->next_item_offset = item->next_item_offset;
205 		last_offset = item->prev_item_offset;
206 	}
207 
208 	if (item->next_item_offset >= 0) {
209 		next_item = (struct mempool_item *)(pool->data +
210 						    item->next_item_offset);
211 		next_item->prev_item_offset = item->prev_item_offset;
212 		last_offset = pool->last_offset;
213 	}
214 
215 	pool->last_offset = last_offset;
216 	put_pool(pool);
217 }
218