xref: /optee_os/lib/libutils/ext/mempool.c (revision 336e32995d9c419d9fc2a6fd5974f99761285415)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2018-2019, Linaro Limited
5  */
6 
7 
8 #include <assert.h>
9 #include <compiler.h>
10 #include <malloc.h>
11 #include <mempool.h>
12 #include <string.h>
13 #include <util.h>
14 
15 #if defined(__KERNEL__)
16 #include <kernel/mutex.h>
17 #include <kernel/panic.h>
18 #include <kernel/thread.h>
19 #include <kernel/refcount.h>
20 #endif
21 
22 /*
23  * Allocation of temporary memory buffers which are used in a stack like
24  * fashion. One exmaple is when a Big Number is needed for a temporary
25  * variable in a Big Number computation: Big Number operations (add,...),
26  * crypto algorithms (rsa, ecc,,...).
27  *
28  *  The allocation algorithm takes memory buffers from a pool,
29  *  characterized by (cf. struct mempool):
30  * - the total size (in bytes) of the pool
31  * - the offset of the last item allocated in the pool (struct
32  *   mempool_item). This offset is -1 is nothing is allocated yet.
33  *
34  * Each item consists of (struct mempool_item)
35  * - the size of the item
36  * - the offsets, in the pool, of the previous and next items
37  *
38  * The allocation allocates an item for a given size.
39  * The allocation is performed in the pool after the last
40  * allocated items. This means:
41  * - the heap is never used.
42  * - there is no assumption on the size of the allocated memory buffers. Only
43  *   the size of the pool will limit the allocation.
44  * - a constant time allocation and free as there is no list scan
45  * - but a potentially fragmented memory as the allocation does not take into
46  *   account "holes" in the pool (allocation is performed after the last
47  *   allocated variable). Indeed, this interface is supposed to be used
48  *   with stack like allocations to avoid this issue. This means that
49  *   allocated items:
50  *   - should have a short life cycle
51  *   - if an item A is allocated before another item B, then A should be
52  *     released after B.
53  *   So the potential fragmentation is mitigated.
54  */
55 
56 #define POOL_ALIGN	__alignof__(long)
57 
58 struct mempool {
59 	size_t size;  /* size of the memory pool, in bytes */
60 	ssize_t last_offset;   /* offset to the last one */
61 	vaddr_t data;
62 #ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
63 	ssize_t max_last_offset;
64 #endif
65 #if defined(__KERNEL__)
66 	void (*release_mem)(void *ptr, size_t size);
67 	struct mutex mu;
68 	struct condvar cv;
69 	struct refcount refc;
70 	int owner;
71 #endif
72 };
73 
74 static void get_pool(struct mempool *pool __maybe_unused)
75 {
76 #if defined(__KERNEL__)
77 	/*
78 	 * Owner matches our thread it cannot be changed. If it doesn't
79 	 * match it can change any at time we're not holding the mutex to
80 	 * any value but our thread id.
81 	 */
82 	if (atomic_load_int(&pool->owner) == thread_get_id()) {
83 		if (!refcount_inc(&pool->refc))
84 			panic();
85 		return;
86 	}
87 
88 	mutex_lock(&pool->mu);
89 
90 	/* Wait until the pool is available */
91 	while (pool->owner != THREAD_ID_INVALID)
92 		condvar_wait(&pool->cv, &pool->mu);
93 
94 	pool->owner = thread_get_id();
95 	refcount_set(&pool->refc, 1);
96 
97 	mutex_unlock(&pool->mu);
98 #endif
99 }
100 
101 static void put_pool(struct mempool *pool __maybe_unused)
102 {
103 #if defined(__KERNEL__)
104 	assert(atomic_load_int(&pool->owner) == thread_get_id());
105 
106 	if (refcount_dec(&pool->refc)) {
107 		mutex_lock(&pool->mu);
108 
109 		/*
110 		 * Do an atomic store to match the atomic load in
111 		 * get_pool() above.
112 		 */
113 		atomic_store_int(&pool->owner, THREAD_ID_INVALID);
114 		condvar_signal(&pool->cv);
115 
116 		/* As the refcount is 0 there should be no items left */
117 		if (pool->last_offset >= 0)
118 			panic();
119 		if (pool->release_mem)
120 			pool->release_mem((void *)pool->data, pool->size);
121 
122 		mutex_unlock(&pool->mu);
123 	}
124 #endif
125 }
126 
127 struct mempool *
128 mempool_alloc_pool(void *data, size_t size,
129 		   void (*release_mem)(void *ptr, size_t size) __maybe_unused)
130 {
131 	struct mempool *pool = calloc(1, sizeof(*pool));
132 
133 	COMPILE_TIME_ASSERT(POOL_ALIGN >= __alignof__(struct mempool_item));
134 	assert(!((vaddr_t)data & (POOL_ALIGN - 1)));
135 
136 	if (pool) {
137 		pool->size = size;
138 		pool->data = (vaddr_t)data;
139 		pool->last_offset = -1;
140 #if defined(__KERNEL__)
141 		pool->release_mem = release_mem;
142 		mutex_init(&pool->mu);
143 		condvar_init(&pool->cv);
144 		pool->owner = THREAD_ID_INVALID;
145 #endif
146 	}
147 
148 	return pool;
149 }
150 
151 void *mempool_alloc(struct mempool *pool, size_t size)
152 {
153 	size_t offset;
154 	struct mempool_item *new_item;
155 	struct mempool_item *last_item = NULL;
156 
157 	get_pool(pool);
158 
159 	if (pool->last_offset < 0) {
160 		offset = 0;
161 	} else {
162 		last_item = (struct mempool_item *)(pool->data +
163 						    pool->last_offset);
164 		offset = pool->last_offset + last_item->size;
165 
166 		offset = ROUNDUP(offset, POOL_ALIGN);
167 		if (offset > pool->size)
168 			goto error;
169 	}
170 
171 	size = sizeof(struct mempool_item) + size;
172 	size = ROUNDUP(size, POOL_ALIGN);
173 	if (offset + size > pool->size)
174 		goto error;
175 
176 	new_item = (struct mempool_item *)(pool->data + offset);
177 	new_item->size = size;
178 	new_item->prev_item_offset = pool->last_offset;
179 	if (last_item)
180 		last_item->next_item_offset = offset;
181 	new_item->next_item_offset = -1;
182 	pool->last_offset = offset;
183 #ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
184 	if (pool->last_offset > pool->max_last_offset) {
185 		pool->max_last_offset = pool->last_offset;
186 		DMSG("Max memory usage increased to %zu",
187 		     (size_t)pool->max_last_offset);
188 	}
189 #endif
190 
191 	return new_item + 1;
192 
193 error:
194 	EMSG("Failed to allocate %zu bytes, please tune the pool size", size);
195 	put_pool(pool);
196 	return NULL;
197 }
198 
199 void *mempool_calloc(struct mempool *pool, size_t nmemb, size_t size)
200 {
201 	size_t sz;
202 	void *p;
203 
204 	if (MUL_OVERFLOW(nmemb, size, &sz))
205 		return NULL;
206 
207 	p = mempool_alloc(pool, sz);
208 	if (p)
209 		memset(p, 0, sz);
210 
211 	return p;
212 }
213 
214 void mempool_free(struct mempool *pool, void *ptr)
215 {
216 	struct mempool_item *item;
217 	struct mempool_item *prev_item;
218 	struct mempool_item *next_item;
219 	ssize_t last_offset = -1;
220 
221 	if (!ptr)
222 		return;
223 
224 	item = (struct mempool_item *)((vaddr_t)ptr -
225 				       sizeof(struct mempool_item));
226 	if (item->prev_item_offset >= 0) {
227 		prev_item = (struct mempool_item *)(pool->data +
228 						    item->prev_item_offset);
229 		prev_item->next_item_offset = item->next_item_offset;
230 		last_offset = item->prev_item_offset;
231 	}
232 
233 	if (item->next_item_offset >= 0) {
234 		next_item = (struct mempool_item *)(pool->data +
235 						    item->next_item_offset);
236 		next_item->prev_item_offset = item->prev_item_offset;
237 		last_offset = pool->last_offset;
238 	}
239 
240 	pool->last_offset = last_offset;
241 	put_pool(pool);
242 }
243