xref: /optee_os/lib/libutils/ext/mempool.c (revision 18c5148d357e51235bc842b7826ff6e8da109902)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2018, Linaro Limited
5  */
6 
7 
8 #include <assert.h>
9 #include <compiler.h>
10 #include <malloc.h>
11 #include <mempool.h>
12 #include <string.h>
13 #include <util.h>
14 
15 #if defined(__KERNEL__)
16 #include <kernel/mutex.h>
17 #include <kernel/panic.h>
18 #include <kernel/thread.h>
19 #include <kernel/refcount.h>
20 #endif
21 
22 /*
23  * Allocation of temporary memory buffers which are used in a stack like
24  * fashion. One exmaple is when a Big Number is needed for a temporary
25  * variable in a Big Number computation: Big Number operations (add,...),
26  * crypto algorithms (rsa, ecc,,...).
27  *
28  *  The allocation algorithm takes memory buffers from a pool,
29  *  characterized by (cf. struct mempool):
30  * - the total size (in bytes) of the pool
31  * - the offset of the last item allocated in the pool (struct
32  *   mempool_item). This offset is -1 is nothing is allocated yet.
33  *
34  * Each item consists of (struct mempool_item)
35  * - the size of the item
36  * - the offsets, in the pool, of the previous and next items
37  *
38  * The allocation allocates an item for a given size.
39  * The allocation is performed in the pool after the last
40  * allocated items. This means:
41  * - the heap is never used.
42  * - there is no assumption on the size of the allocated memory buffers. Only
43  *   the size of the pool will limit the allocation.
44  * - a constant time allocation and free as there is no list scan
45  * - but a potentially fragmented memory as the allocation does not take into
46  *   account "holes" in the pool (allocation is performed after the last
47  *   allocated variable). Indeed, this interface is supposed to be used
48  *   with stack like allocations to avoid this issue. This means that
49  *   allocated items:
50  *   - should have a short life cycle
51  *   - if an item A is allocated before another item B, then A should be
52  *     released after B.
53  *   So the potential fragmentation is mitigated.
54  */
55 
56 #define POOL_ALIGN	__alignof__(long)
57 
58 struct mempool {
59 	size_t size;  /* size of the memory pool, in bytes */
60 	ssize_t last_offset;   /* offset to the last one */
61 	vaddr_t data;
62 #ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
63 	ssize_t max_last_offset;
64 #endif
65 #if defined(__KERNEL__)
66 	void (*release_mem)(void *ptr, size_t size);
67 	struct mutex mu;
68 	struct condvar cv;
69 	struct refcount refc;
70 	int owner;
71 #endif
72 };
73 
74 static void get_pool(struct mempool *pool __maybe_unused)
75 {
76 #if defined(__KERNEL__)
77 	if (refcount_inc(&pool->refc)) {
78 		if (pool->owner == thread_get_id())
79 			return;
80 		refcount_dec(&pool->refc);
81 	}
82 
83 	mutex_lock(&pool->mu);
84 
85 	/* Wait until the pool is available */
86 	while (pool->owner != THREAD_ID_INVALID)
87 		condvar_wait(&pool->cv, &pool->mu);
88 
89 	pool->owner = thread_get_id();
90 	refcount_set(&pool->refc, 1);
91 
92 	mutex_unlock(&pool->mu);
93 #endif
94 }
95 
96 static void put_pool(struct mempool *pool __maybe_unused)
97 {
98 #if defined(__KERNEL__)
99 	assert(pool->owner == thread_get_id());
100 
101 	if (refcount_dec(&pool->refc)) {
102 		mutex_lock(&pool->mu);
103 
104 		pool->owner = THREAD_ID_INVALID;
105 		condvar_signal(&pool->cv);
106 
107 		/* As the refcount is 0 there should be no items left */
108 		if (pool->last_offset >= 0)
109 			panic();
110 		if (pool->release_mem)
111 			pool->release_mem((void *)pool->data, pool->size);
112 
113 		mutex_unlock(&pool->mu);
114 	}
115 #endif
116 }
117 
118 struct mempool *
119 mempool_alloc_pool(void *data, size_t size,
120 		   void (*release_mem)(void *ptr, size_t size) __maybe_unused)
121 {
122 	struct mempool *pool = calloc(1, sizeof(*pool));
123 
124 	COMPILE_TIME_ASSERT(POOL_ALIGN >= __alignof__(struct mempool_item));
125 	assert(!((vaddr_t)data & (POOL_ALIGN - 1)));
126 
127 	if (pool) {
128 		pool->size = size;
129 		pool->data = (vaddr_t)data;
130 		pool->last_offset = -1;
131 #if defined(__KERNEL__)
132 		pool->release_mem = release_mem;
133 		mutex_init(&pool->mu);
134 		condvar_init(&pool->cv);
135 		pool->owner = THREAD_ID_INVALID;
136 #endif
137 	}
138 
139 	return pool;
140 }
141 
142 void *mempool_alloc(struct mempool *pool, size_t size)
143 {
144 	size_t offset;
145 	struct mempool_item *new_item;
146 	struct mempool_item *last_item = NULL;
147 
148 	get_pool(pool);
149 
150 	if (pool->last_offset < 0) {
151 		offset = 0;
152 	} else {
153 		last_item = (struct mempool_item *)(pool->data +
154 						    pool->last_offset);
155 		offset = pool->last_offset + last_item->size;
156 
157 		offset = ROUNDUP(offset, POOL_ALIGN);
158 		if (offset > pool->size)
159 			goto error;
160 	}
161 
162 	size = sizeof(struct mempool_item) + size;
163 	size = ROUNDUP(size, POOL_ALIGN);
164 	if (offset + size > pool->size)
165 		goto error;
166 
167 	new_item = (struct mempool_item *)(pool->data + offset);
168 	new_item->size = size;
169 	new_item->prev_item_offset = pool->last_offset;
170 	if (last_item)
171 		last_item->next_item_offset = offset;
172 	new_item->next_item_offset = -1;
173 	pool->last_offset = offset;
174 #ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
175 	if (pool->last_offset > pool->max_last_offset) {
176 		pool->max_last_offset = pool->last_offset;
177 		DMSG("Max memory usage increased to %zu",
178 		     (size_t)pool->max_last_offset);
179 	}
180 #endif
181 
182 	return new_item + 1;
183 
184 error:
185 	EMSG("Failed to allocate %zu bytes, please tune the pool size", size);
186 	put_pool(pool);
187 	return NULL;
188 }
189 
190 void *mempool_calloc(struct mempool *pool, size_t nmemb, size_t size)
191 {
192 	size_t sz;
193 	void *p;
194 
195 	if (MUL_OVERFLOW(nmemb, size, &sz))
196 		return NULL;
197 
198 	p = mempool_alloc(pool, sz);
199 	if (p)
200 		memset(p, 0, sz);
201 
202 	return p;
203 }
204 
205 void mempool_free(struct mempool *pool, void *ptr)
206 {
207 	struct mempool_item *item;
208 	struct mempool_item *prev_item;
209 	struct mempool_item *next_item;
210 	ssize_t last_offset = -1;
211 
212 	if (!ptr)
213 		return;
214 
215 	item = (struct mempool_item *)((vaddr_t)ptr -
216 				       sizeof(struct mempool_item));
217 	if (item->prev_item_offset >= 0) {
218 		prev_item = (struct mempool_item *)(pool->data +
219 						    item->prev_item_offset);
220 		prev_item->next_item_offset = item->next_item_offset;
221 		last_offset = item->prev_item_offset;
222 	}
223 
224 	if (item->next_item_offset >= 0) {
225 		next_item = (struct mempool_item *)(pool->data +
226 						    item->next_item_offset);
227 		next_item->prev_item_offset = item->prev_item_offset;
228 		last_offset = pool->last_offset;
229 	}
230 
231 	pool->last_offset = last_offset;
232 	put_pool(pool);
233 }
234