1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 */ 5 #ifndef UTIL_H 6 #define UTIL_H 7 8 #include <compiler.h> 9 #include <inttypes.h> 10 11 #ifndef __ASSEMBLER__ 12 #include <stddef.h> 13 #endif 14 15 #define SIZE_4K UINTPTR_C(0x1000) 16 #define SIZE_1M UINTPTR_C(0x100000) 17 #define SIZE_2M UINTPTR_C(0x200000) 18 #define SIZE_4M UINTPTR_C(0x400000) 19 #define SIZE_8M UINTPTR_C(0x800000) 20 #define SIZE_2G UINTPTR_C(0x80000000) 21 22 #ifndef MAX 23 #ifndef __ASSEMBLER__ 24 #define MAX(a, b) \ 25 (__extension__({ __typeof__(a) _a = (a); \ 26 __typeof__(b) _b = (b); \ 27 _a > _b ? _a : _b; })) 28 29 #define MIN(a, b) \ 30 (__extension__({ __typeof__(a) _a = (a); \ 31 __typeof__(b) _b = (b); \ 32 _a < _b ? _a : _b; })) 33 #else 34 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 35 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) 36 #endif 37 #endif 38 39 /* 40 * In some particular conditions MAX and MIN macros fail to 41 * build from C source file implmentation. In such case one 42 * need to use MAX_UNSAFE/MIN_UNSAFE instead. 43 */ 44 #define MAX_UNSAFE(a, b) (((a) > (b)) ? (a) : (b)) 45 #define MIN_UNSAFE(a, b) (((a) < (b)) ? (a) : (b)) 46 47 #ifndef ARRAY_SIZE 48 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 49 #endif 50 51 #ifndef __ASSEMBLER__ 52 /* Round up the even multiple of size, size has to be a power of 2 */ 53 #define ROUNDUP(v, size) (((v) + ((__typeof__(v))(size) - 1)) & \ 54 ~((__typeof__(v))(size) - 1)) 55 56 /* 57 * Round up the even multiple of size and return if result overflow 58 * output value range. Size has to be a power of 2. 59 */ 60 #define ROUNDUP_OVERFLOW(v, size, res) (__extension__({ \ 61 typeof(*(res)) __roundup_tmp = 0; \ 62 typeof(v) __roundup_mask = (typeof(v))(size) - 1; \ 63 \ 64 ADD_OVERFLOW((v), __roundup_mask, &__roundup_tmp) ? 1 : \ 65 ((void)(*(res) = __roundup_tmp & ~__roundup_mask), 0); \ 66 })) 67 68 /* 69 * Rounds up to the nearest multiple of y and then divides by y. Safe 70 * against overflow, y has to be a power of 2. 71 * 72 * This macro is intended to be used to convert from "number of bytes" to 73 * "number of pages" or similar units. Example: 74 * num_pages = ROUNDUP_DIV(num_bytes, SMALL_PAGE_SIZE); 75 */ 76 #define ROUNDUP_DIV(x, y) (__extension__({ \ 77 typeof(x) __roundup_x = (x); \ 78 typeof(y) __roundup_mask = (typeof(x))(y) - 1; \ 79 \ 80 (__roundup_x / (y)) + (__roundup_x & __roundup_mask ? 1 : 0); \ 81 })) 82 83 /* Round down the even multiple of size, size has to be a power of 2 */ 84 #define ROUNDDOWN(v, size) ((v) & ~((__typeof__(v))(size) - 1)) 85 86 /* 87 * Round up the result of x / y to the nearest upper integer if result is not 88 * already an integer. 89 */ 90 #define DIV_ROUND_UP(x, y) (((x) + (y) - 1) / (y)) 91 92 /* Unsigned integer division with nearest rounding variant */ 93 #define UDIV_ROUND_NEAREST(x, y) \ 94 (__extension__ ({ __typeof__(x) _x = (x); \ 95 __typeof__(y) _y = (y); \ 96 (_x + (_y / 2)) / _y; })) 97 #else 98 #define ROUNDUP(x, y) ((((x) + (y) - 1) / (y)) * (y)) 99 #define ROUNDDOWN(x, y) (((x) / (y)) * (y)) 100 #define UDIV_ROUND_NEAREST(x, y) (((x) + ((y) / 2)) / (y)) 101 #endif 102 103 /* x has to be of an unsigned type */ 104 #define IS_POWER_OF_TWO(x) (((x) != 0) && (((x) & (~(x) + 1)) == (x))) 105 106 #define IS_ALIGNED(x, a) (((x) & ((a) - 1)) == 0) 107 #define IS_ALIGNED_WITH_TYPE(x, type) \ 108 (__extension__({ \ 109 type __is_aligned_y; \ 110 IS_ALIGNED((uintptr_t)(x), __alignof__(__is_aligned_y)); \ 111 })) 112 113 #define TO_STR(x) _TO_STR(x) 114 #define _TO_STR(x) #x 115 116 #define CONCAT(x, y) _CONCAT(x, y) 117 #define _CONCAT(x, y) x##y 118 119 #define container_of(ptr, type, member) \ 120 (__extension__({ \ 121 const typeof(((type *)0)->member) *__ptr = (ptr); \ 122 (type *)((unsigned long)(__ptr) - offsetof(type, member)); \ 123 })) 124 125 #define MEMBER_SIZE(type, member) sizeof(((type *)0)->member) 126 127 #ifdef __ASSEMBLER__ 128 #define BIT32(nr) (1 << (nr)) 129 #define BIT64(nr) (1 << (nr)) 130 #define SHIFT_U32(v, shift) ((v) << (shift)) 131 #define SHIFT_U64(v, shift) ((v) << (shift)) 132 #else 133 #define BIT32(nr) (UINT32_C(1) << (nr)) 134 #define BIT64(nr) (UINT64_C(1) << (nr)) 135 #define SHIFT_U32(v, shift) ((uint32_t)(v) << (shift)) 136 #define SHIFT_U64(v, shift) ((uint64_t)(v) << (shift)) 137 #endif 138 #define BIT(nr) BIT32(nr) 139 140 /* 141 * Create a contiguous bitmask starting at bit position @l and ending at 142 * position @h. For example 143 * GENMASK_64(39, 21) gives us the 64bit vector 0x000000ffffe00000. 144 */ 145 #define GENMASK_32(h, l) \ 146 ((UINT32_C(0xffffffff) << (l)) & \ 147 (UINT32_C(0xffffffff) >> (32 - 1 - (h)))) 148 149 #define GENMASK_64(h, l) \ 150 (((~UINT64_C(0)) << (l)) & (~UINT64_C(0) >> (64 - 1 - (h)))) 151 152 /* 153 * Checking overflow for addition, subtraction and multiplication. Result 154 * of operation is stored in res which is a pointer to some kind of 155 * integer. 156 * 157 * The macros return true if an overflow occurred and *res is undefined. 158 */ 159 #define ADD_OVERFLOW(a, b, res) __compiler_add_overflow((a), (b), (res)) 160 #define SUB_OVERFLOW(a, b, res) __compiler_sub_overflow((a), (b), (res)) 161 #define MUL_OVERFLOW(a, b, res) __compiler_mul_overflow((a), (b), (res)) 162 163 /* Return a signed +1, 0 or -1 value based on data comparison */ 164 #define CMP_TRILEAN(a, b) \ 165 (__extension__({ \ 166 __typeof__(a) _a = (a); \ 167 __typeof__(b) _b = (b); \ 168 \ 169 _a > _b ? 1 : _a < _b ? -1 : 0; \ 170 })) 171 172 #ifndef __ASSEMBLER__ 173 static inline uint64_t reg_pair_to_64(uint32_t reg0, uint32_t reg1) 174 { 175 return (uint64_t)reg0 << 32 | reg1; 176 } 177 178 static inline uint32_t high32_from_64(uint64_t val) 179 { 180 return val >> 32; 181 } 182 183 static inline uint32_t low32_from_64(uint64_t val) 184 { 185 return val; 186 } 187 188 static inline void reg_pair_from_64(uint64_t val, uint32_t *reg0, 189 uint32_t *reg1) 190 { 191 *reg0 = high32_from_64(val); 192 *reg1 = low32_from_64(val); 193 } 194 195 /* Get and set bit fields */ 196 static inline uint32_t get_field_u32(uint32_t reg, uint32_t mask) 197 { 198 return (reg & mask) / (mask & ~(mask - 1)); 199 } 200 201 static inline uint32_t set_field_u32(uint32_t reg, uint32_t mask, uint32_t val) 202 { 203 return (reg & ~mask) | (val * (mask & ~(mask - 1))); 204 } 205 206 static inline uint64_t get_field_u64(uint64_t reg, uint64_t mask) 207 { 208 return (reg & mask) / (mask & ~(mask - 1)); 209 } 210 211 static inline uint64_t set_field_u64(uint64_t reg, uint64_t mask, uint64_t val) 212 { 213 return (reg & ~mask) | (val * (mask & ~(mask - 1))); 214 } 215 216 /* Helper function for qsort with standard types */ 217 void qsort_int(int *aa, size_t n); 218 void qsort_uint(unsigned int *aa, size_t n); 219 void qsort_long(long int *aa, size_t n); 220 void qsort_ul(unsigned long int *aa, size_t n); 221 void qsort_ll(long long int *aa, size_t n); 222 void qsort_ull(unsigned long long int *aa, size_t n); 223 void qsort_s8(int8_t *aa, size_t n); 224 void qsort_u8(uint8_t *aa, size_t n); 225 void qsort_s16(int16_t *aa, size_t n); 226 void qsort_u16(uint16_t *aa, size_t n); 227 void qsort_s32(int32_t *aa, size_t n); 228 void qsort_u32(uint32_t *aa, size_t n); 229 void qsort_s64(int64_t *aa, size_t n); 230 void qsort_u64(uint64_t *aa, size_t n); 231 #endif 232 233 #endif /*UTIL_H*/ 234