1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 */ 5 #ifndef UTIL_H 6 #define UTIL_H 7 8 #include <compiler.h> 9 #include <inttypes.h> 10 11 #ifndef __ASSEMBLER__ 12 #include <assert.h> 13 #include <stddef.h> 14 #endif 15 16 #define SIZE_4K UINTPTR_C(0x1000) 17 #define SIZE_1M UINTPTR_C(0x100000) 18 #define SIZE_2M UINTPTR_C(0x200000) 19 #define SIZE_4M UINTPTR_C(0x400000) 20 #define SIZE_8M UINTPTR_C(0x800000) 21 #define SIZE_2G UINTPTR_C(0x80000000) 22 23 #ifndef MAX 24 #ifndef __ASSEMBLER__ 25 #define MAX(a, b) \ 26 (__extension__({ __typeof__(a) _a = (a); \ 27 __typeof__(b) _b = (b); \ 28 _a > _b ? _a : _b; })) 29 30 #define MIN(a, b) \ 31 (__extension__({ __typeof__(a) _a = (a); \ 32 __typeof__(b) _b = (b); \ 33 _a < _b ? _a : _b; })) 34 #else 35 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 36 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) 37 #endif 38 #endif 39 40 /* 41 * In some particular conditions MAX and MIN macros fail to 42 * build from C source file implmentation. In such case one 43 * need to use MAX_UNSAFE/MIN_UNSAFE instead. 44 */ 45 #define MAX_UNSAFE(a, b) (((a) > (b)) ? (a) : (b)) 46 #define MIN_UNSAFE(a, b) (((a) < (b)) ? (a) : (b)) 47 48 #ifndef ARRAY_SIZE 49 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 50 #endif 51 52 #ifndef __ASSEMBLER__ 53 /* Round up the even multiple of size */ 54 #define ROUNDUP(x, y) \ 55 ((((x) + (__typeof__(x))(y) - 1) / (__typeof__(x))(y)) * \ 56 (__typeof__(x))(y)) 57 58 /* Round up the even multiple of size, size has to be a power of 2 */ 59 #define ROUNDUP2(v, size) \ 60 (__extension__({ \ 61 assert(IS_POWER_OF_TWO(size)); \ 62 (((v) + ((__typeof__(v))(size) - 1)) & \ 63 ~((__typeof__(v))(size) - 1)); \ 64 })) 65 66 /* 67 * ROUNDUP_OVERFLOW(v, size, res) 68 * 69 * @v: Input value to round 70 * @size: Rounding operand 71 * @res: Pointer where boolean overflow status (0/false or 1/true) is stored 72 * @return: boolean overflow status of the resulting rounded value 73 * 74 * Round up value @v to the even multiple of @size and return if result 75 * overflows the output value range pointed by @res. The rounded value is 76 * stored in the memory address pointed by @res. 77 */ 78 #define ROUNDUP_OVERFLOW(v, size, res) \ 79 (__extension__({ \ 80 typeof(v) __roundup_mod = 0; \ 81 typeof(v) __roundup_add = 0; \ 82 \ 83 __roundup_mod = (v) % (typeof(v))(size); \ 84 if (__roundup_mod) \ 85 __roundup_add = (typeof(v))(size) - __roundup_mod; \ 86 ADD_OVERFLOW((v), __roundup_add, (res)); \ 87 })) 88 89 /* 90 * ROUNDUP2_OVERFLOW(v, size, res) 91 * 92 * @v: Input value to round 93 * @size: Rounding operand, must be a power of 2 94 * @res: Pointer where boolean overflow status (0/false or 1/true) is stored 95 * @return: boolean overflow status of the resulting rounded value 96 * 97 * Round up value @v to the even multiple of @size and return if result 98 * overflows the output value range pointed by @res. The rounded value is 99 * stored in the memory address pointed by @res. 100 */ 101 #define ROUNDUP2_OVERFLOW(v, size, res) \ 102 (__extension__({ \ 103 typeof(*(res)) __roundup_tmp = 0; \ 104 typeof(v) __roundup_mask = (typeof(v))(size) - 1; \ 105 \ 106 assert(IS_POWER_OF_TWO(size)); \ 107 ADD_OVERFLOW((v), __roundup_mask, &__roundup_tmp) ? 1 : \ 108 ((void)(*(res) = __roundup_tmp & ~__roundup_mask), 0); \ 109 })) 110 111 /* 112 * ROUNDUP2_DIV(x, y) 113 * 114 * Rounds up to the nearest multiple of y and then divides by y. Safe 115 * against overflow, y has to be a power of 2. 116 * 117 * This macro is intended to be used to convert from "number of bytes" to 118 * "number of pages" or similar units. Example: 119 * num_pages = ROUNDUP2_DIV(num_bytes, SMALL_PAGE_SIZE); 120 */ 121 #define ROUNDUP2_DIV(x, y) \ 122 (__extension__({ \ 123 typeof(x) __roundup_x = (x); \ 124 typeof(y) __roundup_mask = (typeof(x))(y) - 1; \ 125 \ 126 assert(IS_POWER_OF_TWO(y)); \ 127 (__roundup_x / (y)) + (__roundup_x & __roundup_mask ? 1 : 0); \ 128 })) 129 130 /* 131 * ROUNDUP_DIV(x, y) 132 * 133 * Rounds up to the nearest multiple of y and then divides by y. Safe 134 * against overflow. 135 */ 136 #define ROUNDUP_DIV(x, y) (ROUNDUP((x), (y)) / (__typeof__(x))(y)) 137 138 /* Round down the even multiple of size */ 139 #define ROUNDDOWN(x, y) (((x) / (__typeof__(x))(y)) * (__typeof__(x))(y)) 140 141 /* Round down the even multiple of size, size has to be a power of 2 */ 142 #define ROUNDDOWN2(v, size) \ 143 (__extension__({ \ 144 assert(IS_POWER_OF_TWO(size)); \ 145 ((v) & ~((__typeof__(v))(size) - 1)); \ 146 })) 147 148 /* 149 * Round up the result of x / y to the nearest upper integer if result is not 150 * already an integer. 151 */ 152 #define DIV_ROUND_UP(x, y) (((x) + (y) - 1) / (y)) 153 154 /* Unsigned integer division with nearest rounding variant */ 155 #define UDIV_ROUND_NEAREST(x, y) \ 156 (__extension__ ({ __typeof__(x) _x = (x); \ 157 __typeof__(y) _y = (y); \ 158 (_x + (_y / 2)) / _y; })) 159 #else /* __ASSEMBLER__ */ 160 #define ROUNDUP(x, y) ((((x) + (y) - 1) / (y)) * (y)) 161 #define ROUNDDOWN(x, y) (((x) / (y)) * (y)) 162 #define UDIV_ROUND_NEAREST(x, y) (((x) + ((y) / 2)) / (y)) 163 #endif /* __ASSEMBLER__ */ 164 165 /* x has to be of an unsigned type */ 166 #define IS_POWER_OF_TWO(x) (((x) != 0) && (((x) & (~(x) + 1)) == (x))) 167 168 #define IS_ALIGNED(x, a) (((x) & ((a) - 1)) == 0) 169 #define IS_ALIGNED_WITH_TYPE(x, type) \ 170 (__extension__({ \ 171 type __is_aligned_y; \ 172 IS_ALIGNED((uintptr_t)(x), __alignof__(__is_aligned_y)); \ 173 })) 174 175 #define TO_STR(x) _TO_STR(x) 176 #define _TO_STR(x) #x 177 178 #define CONCAT(x, y) _CONCAT(x, y) 179 #define _CONCAT(x, y) x##y 180 181 #define container_of(ptr, type, member) \ 182 (__extension__({ \ 183 const typeof(((type *)0)->member) *__ptr = (ptr); \ 184 (type *)((unsigned long)(__ptr) - offsetof(type, member)); \ 185 })) 186 187 #define MEMBER_SIZE(type, member) sizeof(((type *)0)->member) 188 189 #ifdef __ASSEMBLER__ 190 #define BIT32(nr) (1 << (nr)) 191 #define BIT64(nr) (1 << (nr)) 192 #define SHIFT_U32(v, shift) ((v) << (shift)) 193 #define SHIFT_U64(v, shift) ((v) << (shift)) 194 #else 195 #define BIT32(nr) (UINT32_C(1) << (nr)) 196 #define BIT64(nr) (UINT64_C(1) << (nr)) 197 #define SHIFT_U32(v, shift) ((uint32_t)(v) << (shift)) 198 #define SHIFT_U64(v, shift) ((uint64_t)(v) << (shift)) 199 #endif 200 #define BIT(nr) BIT32(nr) 201 202 /* 203 * Create a contiguous bitmask starting at bit position @l and ending at 204 * position @h. For example 205 * GENMASK_64(39, 21) gives us the 64bit vector 0x000000ffffe00000. 206 */ 207 #define GENMASK_32(h, l) \ 208 ((UINT32_C(0xffffffff) << (l)) & \ 209 (UINT32_C(0xffffffff) >> (32 - 1 - (h)))) 210 211 #define GENMASK_64(h, l) \ 212 (((~UINT64_C(0)) << (l)) & (~UINT64_C(0) >> (64 - 1 - (h)))) 213 214 /* 215 * Checking overflow for addition, subtraction and multiplication. Result 216 * of operation is stored in res which is a pointer to some kind of 217 * integer. 218 * 219 * The macros return true if an overflow occurred and *res is undefined. 220 */ 221 #define ADD_OVERFLOW(a, b, res) __compiler_add_overflow((a), (b), (res)) 222 #define SUB_OVERFLOW(a, b, res) __compiler_sub_overflow((a), (b), (res)) 223 #define MUL_OVERFLOW(a, b, res) __compiler_mul_overflow((a), (b), (res)) 224 225 /* Return a signed +1, 0 or -1 value based on data comparison */ 226 #define CMP_TRILEAN(a, b) \ 227 (__extension__({ \ 228 __typeof__(a) _a = (a); \ 229 __typeof__(b) _b = (b); \ 230 \ 231 _a > _b ? 1 : _a < _b ? -1 : 0; \ 232 })) 233 234 #ifndef __ASSEMBLER__ 235 static inline uint64_t reg_pair_to_64(uint32_t reg0, uint32_t reg1) 236 { 237 return (uint64_t)reg0 << 32 | reg1; 238 } 239 240 static inline uint32_t high32_from_64(uint64_t val) 241 { 242 return val >> 32; 243 } 244 245 static inline uint32_t low32_from_64(uint64_t val) 246 { 247 return val; 248 } 249 250 static inline void reg_pair_from_64(uint64_t val, uint32_t *reg0, 251 uint32_t *reg1) 252 { 253 *reg0 = high32_from_64(val); 254 *reg1 = low32_from_64(val); 255 } 256 257 /* Get and set bit fields */ 258 static inline uint32_t get_field_u32(uint32_t reg, uint32_t mask) 259 { 260 return (reg & mask) / (mask & ~(mask - 1)); 261 } 262 263 static inline uint32_t set_field_u32(uint32_t reg, uint32_t mask, uint32_t val) 264 { 265 return (reg & ~mask) | (val * (mask & ~(mask - 1))); 266 } 267 268 static inline uint64_t get_field_u64(uint64_t reg, uint64_t mask) 269 { 270 return (reg & mask) / (mask & ~(mask - 1)); 271 } 272 273 static inline uint64_t set_field_u64(uint64_t reg, uint64_t mask, uint64_t val) 274 { 275 return (reg & ~mask) | (val * (mask & ~(mask - 1))); 276 } 277 278 /* Helper function for qsort with standard types */ 279 void qsort_int(int *aa, size_t n); 280 void qsort_uint(unsigned int *aa, size_t n); 281 void qsort_long(long int *aa, size_t n); 282 void qsort_ul(unsigned long int *aa, size_t n); 283 void qsort_ll(long long int *aa, size_t n); 284 void qsort_ull(unsigned long long int *aa, size_t n); 285 void qsort_s8(int8_t *aa, size_t n); 286 void qsort_u8(uint8_t *aa, size_t n); 287 void qsort_s16(int16_t *aa, size_t n); 288 void qsort_u16(uint16_t *aa, size_t n); 289 void qsort_s32(int32_t *aa, size_t n); 290 void qsort_u32(uint32_t *aa, size_t n); 291 void qsort_s64(int64_t *aa, size_t n); 292 void qsort_u64(uint64_t *aa, size_t n); 293 #endif 294 295 #endif /*UTIL_H*/ 296