xref: /optee_os/lib/libutee/tee_api_operations.c (revision d1d226a5264ce5654695edc656ef759fc48f675f)
1 /*
2  * Copyright (c) 2014, STMicroelectronics International N.V.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <stdlib.h>
28 #include <string.h>
29 #include <string_ext.h>
30 
31 #include <tee_api.h>
32 #include <tee_internal_api_extensions.h>
33 #include <utee_syscalls.h>
34 #include <utee_defines.h>
35 
36 struct __TEE_OperationHandle {
37 	TEE_OperationInfo info;
38 	TEE_ObjectHandle key1;
39 	TEE_ObjectHandle key2;
40 	uint8_t *buffer;	/* buffer to collect complete blocks */
41 	bool buffer_two_blocks;	/* True if two blocks need to be buffered */
42 	size_t block_size;	/* Block size of cipher */
43 	size_t buffer_offs;	/* Offset in buffer */
44 	uint32_t state;		/* Handle to state in TEE Core */
45 	uint32_t ae_tag_len;	/*
46 				 * tag_len in bytes for AE operation else unused
47 				 */
48 };
49 
50 /* Cryptographic Operations API - Generic Operation Functions */
51 
52 TEE_Result TEE_AllocateOperation(TEE_OperationHandle *operation,
53 				 uint32_t algorithm, uint32_t mode,
54 				 uint32_t maxKeySize)
55 {
56 	TEE_Result res;
57 	TEE_OperationHandle op = TEE_HANDLE_NULL;
58 	uint32_t handle_state = 0;
59 	size_t block_size = 1;
60 	uint32_t req_key_usage;
61 	bool with_private_key = false;
62 	bool buffer_two_blocks = false;
63 
64 	if (operation == NULL)
65 		TEE_Panic(0);
66 
67 	if (algorithm == TEE_ALG_AES_XTS)
68 		handle_state = TEE_HANDLE_FLAG_EXPECT_TWO_KEYS;
69 
70 	switch (algorithm) {
71 	case TEE_ALG_AES_CTS:
72 	case TEE_ALG_AES_XTS:
73 		buffer_two_blocks = true;
74 	 /*FALLTHROUGH*/ case TEE_ALG_AES_ECB_NOPAD:
75 	case TEE_ALG_AES_CBC_NOPAD:
76 	case TEE_ALG_AES_CTR:
77 	case TEE_ALG_AES_CCM:
78 	case TEE_ALG_AES_GCM:
79 	case TEE_ALG_DES_ECB_NOPAD:
80 	case TEE_ALG_DES_CBC_NOPAD:
81 	case TEE_ALG_DES3_ECB_NOPAD:
82 	case TEE_ALG_DES3_CBC_NOPAD:
83 		if (TEE_ALG_GET_MAIN_ALG(algorithm) == TEE_MAIN_ALGO_AES)
84 			block_size = TEE_AES_BLOCK_SIZE;
85 		else
86 			block_size = TEE_DES_BLOCK_SIZE;
87 
88 		if (mode == TEE_MODE_ENCRYPT)
89 			req_key_usage = TEE_USAGE_ENCRYPT;
90 		else if (mode == TEE_MODE_DECRYPT)
91 			req_key_usage = TEE_USAGE_DECRYPT;
92 		else
93 			return TEE_ERROR_NOT_SUPPORTED;
94 		break;
95 
96 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
97 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
98 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
99 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
100 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
101 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
102 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
103 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
104 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
105 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
106 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
107 	case TEE_ALG_DSA_SHA1:
108 		if (mode == TEE_MODE_SIGN) {
109 			with_private_key = true;
110 			req_key_usage = TEE_USAGE_SIGN;
111 		} else if (mode == TEE_MODE_VERIFY) {
112 			req_key_usage = TEE_USAGE_VERIFY;
113 		} else {
114 			return TEE_ERROR_NOT_SUPPORTED;
115 		}
116 		break;
117 
118 	case TEE_ALG_RSAES_PKCS1_V1_5:
119 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
120 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
121 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
122 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
123 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
124 		if (mode == TEE_MODE_ENCRYPT) {
125 			req_key_usage = TEE_USAGE_ENCRYPT;
126 		} else if (mode == TEE_MODE_DECRYPT) {
127 			with_private_key = true;
128 			req_key_usage = TEE_USAGE_DECRYPT;
129 		} else {
130 			return TEE_ERROR_NOT_SUPPORTED;
131 		}
132 		break;
133 
134 	case TEE_ALG_RSA_NOPAD:
135 		if (mode == TEE_MODE_ENCRYPT) {
136 			req_key_usage = TEE_USAGE_ENCRYPT | TEE_USAGE_VERIFY;
137 		} else if (mode == TEE_MODE_DECRYPT) {
138 			with_private_key = true;
139 			req_key_usage = TEE_USAGE_DECRYPT | TEE_USAGE_SIGN;
140 		} else {
141 			return TEE_ERROR_NOT_SUPPORTED;
142 		}
143 		break;
144 
145 	case TEE_ALG_DH_DERIVE_SHARED_SECRET:
146 		if (mode != TEE_MODE_DERIVE)
147 			return TEE_ERROR_NOT_SUPPORTED;
148 		with_private_key = true;
149 		req_key_usage = TEE_USAGE_DERIVE;
150 		break;
151 
152 	case TEE_ALG_MD5:
153 	case TEE_ALG_SHA1:
154 	case TEE_ALG_SHA224:
155 	case TEE_ALG_SHA256:
156 	case TEE_ALG_SHA384:
157 	case TEE_ALG_SHA512:
158 		if (mode != TEE_MODE_DIGEST)
159 			return TEE_ERROR_NOT_SUPPORTED;
160 		handle_state |= TEE_HANDLE_FLAG_KEY_SET;
161 		req_key_usage = 0;
162 		break;
163 
164 	case TEE_ALG_DES_CBC_MAC_NOPAD:
165 	case TEE_ALG_AES_CBC_MAC_NOPAD:
166 	case TEE_ALG_AES_CBC_MAC_PKCS5:
167 	case TEE_ALG_AES_CMAC:
168 	case TEE_ALG_DES_CBC_MAC_PKCS5:
169 	case TEE_ALG_DES3_CBC_MAC_NOPAD:
170 	case TEE_ALG_DES3_CBC_MAC_PKCS5:
171 	case TEE_ALG_HMAC_MD5:
172 	case TEE_ALG_HMAC_SHA1:
173 	case TEE_ALG_HMAC_SHA224:
174 	case TEE_ALG_HMAC_SHA256:
175 	case TEE_ALG_HMAC_SHA384:
176 	case TEE_ALG_HMAC_SHA512:
177 		if (mode != TEE_MODE_MAC)
178 			return TEE_ERROR_NOT_SUPPORTED;
179 		req_key_usage = TEE_USAGE_MAC;
180 		break;
181 
182 	default:
183 		return TEE_ERROR_NOT_SUPPORTED;
184 	}
185 
186 	op = TEE_Malloc(sizeof(*op), 0);
187 	if (op == NULL)
188 		return TEE_ERROR_OUT_OF_MEMORY;
189 
190 	op->info.algorithm = algorithm;
191 	op->info.operationClass = TEE_ALG_GET_CLASS(algorithm);
192 	op->info.mode = mode;
193 	op->info.maxKeySize = maxKeySize;
194 	op->info.requiredKeyUsage = req_key_usage;
195 	op->info.handleState = handle_state;
196 
197 	if (block_size > 1) {
198 		size_t buffer_size = block_size;
199 
200 		if (buffer_two_blocks)
201 			buffer_size *= 2;
202 
203 		op->buffer =
204 		    TEE_Malloc(buffer_size, TEE_USER_MEM_HINT_NO_FILL_ZERO);
205 		if (op->buffer == NULL) {
206 			res = TEE_ERROR_OUT_OF_MEMORY;
207 			goto out;
208 		}
209 	}
210 	op->block_size = block_size;
211 	op->buffer_two_blocks = buffer_two_blocks;
212 
213 	if (TEE_ALG_GET_CLASS(algorithm) != TEE_OPERATION_DIGEST) {
214 		uint32_t mks = maxKeySize;
215 		TEE_ObjectType key_type = TEE_ALG_GET_KEY_TYPE(algorithm,
216 						       with_private_key);
217 
218 		/*
219 		 * If two keys are expected the max key size is the sum of
220 		 * the size of both keys.
221 		 */
222 		if (op->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS)
223 			mks /= 2;
224 
225 		res = TEE_AllocateTransientObject(key_type, mks, &op->key1);
226 		if (res != TEE_SUCCESS)
227 			goto out;
228 
229 		if ((op->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) !=
230 		    0) {
231 			res =
232 			    TEE_AllocateTransientObject(key_type, mks,
233 							&op->key2);
234 			if (res != TEE_SUCCESS)
235 				goto out;
236 		}
237 	}
238 
239 	res = utee_cryp_state_alloc(algorithm, mode, (uint32_t) op->key1,
240 				    (uint32_t) op->key2, &op->state);
241 	if (res != TEE_SUCCESS)
242 		goto out;
243 
244 	/* For multi-stage operation do an "init". */
245 	TEE_ResetOperation(op);
246 	*operation = op;
247 
248 out:
249 	if (res != TEE_SUCCESS) {
250 		TEE_FreeTransientObject(op->key1);
251 		TEE_FreeTransientObject(op->key2);
252 		TEE_FreeOperation(op);
253 	}
254 
255 	return res;
256 }
257 
258 void TEE_FreeOperation(TEE_OperationHandle operation)
259 {
260 	if (operation != TEE_HANDLE_NULL) {
261 		/*
262 		 * Note that keys should not be freed here, since they are
263 		 * claimed by the operation they will be freed by
264 		 * utee_cryp_state_free().
265 		 */
266 		utee_cryp_state_free(operation->state);
267 		TEE_Free(operation->buffer);
268 		TEE_Free(operation);
269 	}
270 }
271 
272 void TEE_GetOperationInfo(TEE_OperationHandle operation,
273 			  TEE_OperationInfo *operationInfo)
274 {
275 	if (operation == TEE_HANDLE_NULL)
276 		TEE_Panic(0);
277 
278 	if (operationInfo == NULL)
279 		TEE_Panic(0);
280 
281 	*operationInfo = operation->info;
282 }
283 
284 void TEE_ResetOperation(TEE_OperationHandle operation)
285 {
286 	TEE_Result res;
287 
288 	if (operation == TEE_HANDLE_NULL)
289 		TEE_Panic(0);
290 	if (operation->info.operationClass == TEE_OPERATION_DIGEST) {
291 		res = utee_hash_init(operation->state, NULL, 0);
292 		if (res != TEE_SUCCESS)
293 			TEE_Panic(res);
294 	}
295 	operation->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
296 }
297 
298 TEE_Result TEE_SetOperationKey(TEE_OperationHandle operation,
299 			       TEE_ObjectHandle key)
300 {
301 	uint32_t key_size = 0;
302 
303 	if (operation == TEE_HANDLE_NULL)
304 		TEE_Panic(0);
305 
306 	/* No key for digests */
307 	if (operation->info.operationClass == TEE_OPERATION_DIGEST)
308 		TEE_Panic(0);
309 
310 	/* Two keys expected */
311 	if ((operation->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) !=
312 	    0)
313 		TEE_Panic(0);
314 
315 	if (key != TEE_HANDLE_NULL) {
316 		TEE_ObjectInfo key_info;
317 
318 		TEE_GetObjectInfo(key, &key_info);
319 		/* Supplied key has to meet required usage */
320 		if ((key_info.objectUsage & operation->info.requiredKeyUsage) !=
321 		    operation->info.requiredKeyUsage) {
322 			TEE_Panic(0);
323 		}
324 
325 		if (operation->info.maxKeySize < key_info.objectSize)
326 			TEE_Panic(0);
327 
328 		key_size = key_info.objectSize;
329 	}
330 
331 	TEE_ResetTransientObject(operation->key1);
332 	operation->info.handleState &= ~TEE_HANDLE_FLAG_KEY_SET;
333 
334 	if (key != TEE_HANDLE_NULL) {
335 		TEE_CopyObjectAttributes(operation->key1, key);
336 		operation->info.handleState |= TEE_HANDLE_FLAG_KEY_SET;
337 	}
338 
339 	operation->info.keySize = key_size;
340 
341 	return TEE_SUCCESS;
342 }
343 
344 TEE_Result TEE_SetOperationKey2(TEE_OperationHandle operation,
345 				TEE_ObjectHandle key1, TEE_ObjectHandle key2)
346 {
347 	uint32_t key_size = 0;
348 
349 	if (operation == TEE_HANDLE_NULL)
350 		TEE_Panic(0);
351 
352 	/* Two keys not expected */
353 	if ((operation->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) ==
354 	    0)
355 		TEE_Panic(0);
356 
357 	/* Either both keys are NULL or both are not NULL */
358 	if ((key1 == TEE_HANDLE_NULL || key2 == TEE_HANDLE_NULL) &&
359 	    key1 != key2)
360 		TEE_Panic(0);
361 
362 	if (key1 != TEE_HANDLE_NULL) {
363 		TEE_ObjectInfo key_info1;
364 		TEE_ObjectInfo key_info2;
365 
366 		TEE_GetObjectInfo(key1, &key_info1);
367 		/* Supplied key has to meet required usage */
368 		if ((key_info1.objectUsage & operation->info.
369 		     requiredKeyUsage) != operation->info.requiredKeyUsage) {
370 			TEE_Panic(0);
371 		}
372 
373 		TEE_GetObjectInfo(key2, &key_info2);
374 		/* Supplied key has to meet required usage */
375 		if ((key_info2.objectUsage & operation->info.
376 		     requiredKeyUsage) != operation->info.requiredKeyUsage) {
377 			TEE_Panic(0);
378 		}
379 
380 		/*
381 		 * AES-XTS (the only multi key algorithm supported, requires the
382 		 * keys to be of equal size.
383 		 */
384 		if (operation->info.algorithm == TEE_ALG_AES_XTS &&
385 		    key_info1.objectSize != key_info2.objectSize)
386 			TEE_Panic(0);
387 
388 		if (operation->info.maxKeySize < key_info1.objectSize)
389 			TEE_Panic(0);
390 
391 		/*
392 		 * Odd that only the size of one key should be reported while
393 		 * size of two key are used when allocating the operation.
394 		 */
395 		key_size = key_info1.objectSize;
396 	}
397 
398 	TEE_ResetTransientObject(operation->key1);
399 	TEE_ResetTransientObject(operation->key2);
400 	operation->info.handleState &= ~TEE_HANDLE_FLAG_KEY_SET;
401 
402 	if (key1 != TEE_HANDLE_NULL) {
403 		TEE_CopyObjectAttributes(operation->key1, key1);
404 		TEE_CopyObjectAttributes(operation->key2, key2);
405 		operation->info.handleState |= TEE_HANDLE_FLAG_KEY_SET;
406 	}
407 
408 	operation->info.keySize = key_size;
409 
410 	return TEE_SUCCESS;
411 }
412 
413 void TEE_CopyOperation(TEE_OperationHandle dst_op, TEE_OperationHandle src_op)
414 {
415 	TEE_Result res;
416 
417 	if (dst_op == TEE_HANDLE_NULL || src_op == TEE_HANDLE_NULL)
418 		TEE_Panic(0);
419 	if (dst_op->info.algorithm != src_op->info.algorithm)
420 		TEE_Panic(0);
421 	if (src_op->info.operationClass != TEE_OPERATION_DIGEST) {
422 		TEE_ObjectHandle key1 = TEE_HANDLE_NULL;
423 		TEE_ObjectHandle key2 = TEE_HANDLE_NULL;
424 
425 		if (src_op->info.handleState & TEE_HANDLE_FLAG_KEY_SET) {
426 			key1 = src_op->key1;
427 			key2 = src_op->key2;
428 		}
429 
430 		if ((src_op->info.handleState &
431 		     TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) == 0) {
432 			TEE_SetOperationKey(dst_op, key1);
433 		} else {
434 			TEE_SetOperationKey2(dst_op, key1, key2);
435 		}
436 	}
437 	dst_op->info.handleState = src_op->info.handleState;
438 	dst_op->info.keySize = src_op->info.keySize;
439 
440 	if (dst_op->buffer_two_blocks != src_op->buffer_two_blocks ||
441 	    dst_op->block_size != src_op->block_size)
442 		TEE_Panic(0);
443 
444 	if (dst_op->buffer != NULL) {
445 		if (src_op->buffer == NULL)
446 			TEE_Panic(0);
447 
448 		memcpy(dst_op->buffer, src_op->buffer, src_op->buffer_offs);
449 		dst_op->buffer_offs = src_op->buffer_offs;
450 	} else if (src_op->buffer != NULL) {
451 		TEE_Panic(0);
452 	}
453 
454 	res = utee_cryp_state_copy(dst_op->state, src_op->state);
455 	if (res != TEE_SUCCESS)
456 		TEE_Panic(res);
457 }
458 
459 /* Cryptographic Operations API - Message Digest Functions */
460 
461 void TEE_DigestUpdate(TEE_OperationHandle operation,
462 		      void *chunk, size_t chunkSize)
463 {
464 	TEE_Result res = TEE_ERROR_GENERIC;
465 
466 	if (operation == TEE_HANDLE_NULL ||
467 	    operation->info.operationClass != TEE_OPERATION_DIGEST)
468 		TEE_Panic(0);
469 
470 	res = utee_hash_update(operation->state, chunk, chunkSize);
471 	if (res != TEE_SUCCESS)
472 		TEE_Panic(res);
473 }
474 
475 TEE_Result TEE_DigestDoFinal(TEE_OperationHandle operation, const void *chunk,
476 			     size_t chunkLen, void *hash, size_t *hashLen)
477 {
478 	if ((operation == TEE_HANDLE_NULL) || (!chunk && chunkLen) ||
479 	    !hash || !hashLen ||
480 	    (operation->info.operationClass != TEE_OPERATION_DIGEST))
481 		TEE_Panic(0);
482 
483 	return utee_hash_final(operation->state, chunk, chunkLen, hash,
484 			       hashLen);
485 }
486 
487 /* Cryptographic Operations API - Symmetric Cipher Functions */
488 
489 void TEE_CipherInit(TEE_OperationHandle operation, const void *IV, size_t IVLen)
490 {
491 	TEE_Result res;
492 
493 	if (operation == TEE_HANDLE_NULL)
494 		TEE_Panic(0);
495 	if (operation->info.operationClass != TEE_OPERATION_CIPHER)
496 		TEE_Panic(0);
497 	res = utee_cipher_init(operation->state, IV, IVLen);
498 	if (res != TEE_SUCCESS)
499 		TEE_Panic(res);
500 	operation->buffer_offs = 0;
501 	operation->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED;
502 }
503 
504 static TEE_Result tee_buffer_update(
505 		TEE_OperationHandle op,
506 		TEE_Result(*update_func) (uint32_t state, const void *src,
507 					  size_t slen, void *dst, size_t *dlen),
508 		const void *src_data, size_t src_len,
509 		void *dest_data, size_t *dest_len)
510 {
511 	TEE_Result res;
512 	const uint8_t *src = src_data;
513 	size_t slen = src_len;
514 	uint8_t *dst = dest_data;
515 	size_t dlen = *dest_len;
516 	size_t acc_dlen = 0;
517 	size_t tmp_dlen;
518 	size_t l;
519 	size_t buffer_size;
520 
521 	if (op->buffer_two_blocks)
522 		buffer_size = op->block_size * 2;
523 	else
524 		buffer_size = op->block_size;
525 
526 	if (op->buffer_offs > 0) {
527 		/* Fill up complete block */
528 		if (op->buffer_offs < op->block_size)
529 			l = MIN(slen, op->block_size - op->buffer_offs);
530 		else
531 			l = MIN(slen, buffer_size - op->buffer_offs);
532 		memcpy(op->buffer + op->buffer_offs, src, l);
533 		op->buffer_offs += l;
534 		src += l;
535 		slen -= l;
536 		if ((op->buffer_offs % op->block_size) != 0)
537 			goto out;	/* Nothing left to do */
538 	}
539 
540 	/* If we can feed from buffer */
541 	if (op->buffer_offs > 0 && (op->buffer_offs + slen) > buffer_size) {
542 		l = ROUNDUP(op->buffer_offs + slen - buffer_size,
543 				op->block_size);
544 		l = MIN(op->buffer_offs, l);
545 		tmp_dlen = dlen;
546 		res = update_func(op->state, op->buffer, l, dst, &tmp_dlen);
547 		if (res != TEE_SUCCESS)
548 			TEE_Panic(res);
549 		dst += tmp_dlen;
550 		dlen -= tmp_dlen;
551 		acc_dlen += tmp_dlen;
552 		op->buffer_offs -= l;
553 		if (op->buffer_offs > 0) {
554 			/*
555 			 * Slen is small enough to be contained in rest buffer.
556 			 */
557 			memcpy(op->buffer, op->buffer + l, buffer_size - l);
558 			memcpy(op->buffer + op->buffer_offs, src, slen);
559 			op->buffer_offs += slen;
560 			goto out;	/* Nothing left to do */
561 		}
562 	}
563 
564 	if (slen > buffer_size) {
565 		/* Buffer is empty, feed as much as possible from src */
566 		if (TEE_ALIGNMENT_IS_OK(src, uint32_t)) {
567 			l = ROUNDUP(slen - buffer_size + 1, op->block_size);
568 
569 			tmp_dlen = dlen;
570 			res = update_func(op->state, src, l, dst, &tmp_dlen);
571 			if (res != TEE_SUCCESS)
572 				TEE_Panic(res);
573 			src += l;
574 			slen -= l;
575 			dst += tmp_dlen;
576 			dlen -= tmp_dlen;
577 			acc_dlen += tmp_dlen;
578 		} else {
579 			/*
580 			 * Supplied data isn't well aligned, we're forced to
581 			 * feed through the buffer.
582 			 */
583 			while (slen >= op->block_size) {
584 				memcpy(op->buffer, src, op->block_size);
585 
586 				tmp_dlen = dlen;
587 				res =
588 				    update_func(op->state, op->buffer,
589 						op->block_size, dst, &tmp_dlen);
590 				if (res != TEE_SUCCESS)
591 					TEE_Panic(res);
592 				src += op->block_size;
593 				slen -= op->block_size;
594 				dst += tmp_dlen;
595 				dlen -= tmp_dlen;
596 				acc_dlen += tmp_dlen;
597 			}
598 		}
599 	}
600 
601 	/* Slen is small enough to be contained in buffer. */
602 	memcpy(op->buffer + op->buffer_offs, src, slen);
603 	op->buffer_offs += slen;
604 
605 out:
606 	*dest_len = acc_dlen;
607 	return TEE_SUCCESS;
608 }
609 
610 TEE_Result TEE_CipherUpdate(TEE_OperationHandle op, const void *srcData,
611 			    size_t srcLen, void *destData, size_t *destLen)
612 {
613 	size_t req_dlen;
614 
615 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
616 	    destLen == NULL || (destData == NULL && *destLen != 0))
617 		TEE_Panic(0);
618 	if (op->info.operationClass != TEE_OPERATION_CIPHER)
619 		TEE_Panic(0);
620 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
621 		TEE_Panic(0);
622 
623 	/* Calculate required dlen */
624 	req_dlen = ((op->buffer_offs + srcLen) / op->block_size) *
625 	    op->block_size;
626 	if (op->buffer_two_blocks) {
627 		if (req_dlen > op->block_size * 2)
628 			req_dlen -= op->block_size * 2;
629 		else
630 			req_dlen = 0;
631 	}
632 	/*
633 	 * Check that required destLen is big enough before starting to feed
634 	 * data to the algorithm. Errors during feeding of data are fatal as we
635 	 * can't restore sync with this API.
636 	 */
637 	if (*destLen < req_dlen) {
638 		*destLen = req_dlen;
639 		return TEE_ERROR_SHORT_BUFFER;
640 	}
641 
642 	tee_buffer_update(op, utee_cipher_update, srcData, srcLen, destData,
643 			  destLen);
644 
645 	return TEE_SUCCESS;
646 }
647 
648 TEE_Result TEE_CipherDoFinal(TEE_OperationHandle op,
649 			     const void *srcData, size_t srcLen, void *destData,
650 			     size_t *destLen)
651 {
652 	TEE_Result res;
653 	uint8_t *dst = destData;
654 	size_t acc_dlen = 0;
655 	size_t tmp_dlen;
656 	size_t req_dlen;
657 
658 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
659 	    destLen == NULL || (destData == NULL && *destLen != 0))
660 		TEE_Panic(0);
661 	if (op->info.operationClass != TEE_OPERATION_CIPHER)
662 		TEE_Panic(0);
663 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
664 		TEE_Panic(0);
665 
666 	/*
667 	 * Check that the final block doesn't require padding for those
668 	 * algorithms that requires client to supply padding.
669 	 */
670 	if (op->info.algorithm == TEE_ALG_AES_ECB_NOPAD ||
671 	    op->info.algorithm == TEE_ALG_AES_CBC_NOPAD ||
672 	    op->info.algorithm == TEE_ALG_DES_ECB_NOPAD ||
673 	    op->info.algorithm == TEE_ALG_DES_CBC_NOPAD ||
674 	    op->info.algorithm == TEE_ALG_DES3_ECB_NOPAD ||
675 	    op->info.algorithm == TEE_ALG_DES3_CBC_NOPAD) {
676 		if (((op->buffer_offs + srcLen) % op->block_size) != 0)
677 			return TEE_ERROR_BAD_PARAMETERS;
678 	}
679 
680 	/*
681 	 * Check that required destLen is big enough before starting to feed
682 	 * data to the algorithm. Errors during feeding of data are fatal as we
683 	 * can't restore sync with this API.
684 	 */
685 	req_dlen = op->buffer_offs + srcLen;
686 	if (*destLen < req_dlen) {
687 		*destLen = req_dlen;
688 		return TEE_ERROR_SHORT_BUFFER;
689 	}
690 
691 	tmp_dlen = *destLen - acc_dlen;
692 	tee_buffer_update(op, utee_cipher_update, srcData, srcLen, dst,
693 			  &tmp_dlen);
694 	dst += tmp_dlen;
695 	acc_dlen += tmp_dlen;
696 
697 	tmp_dlen = *destLen - acc_dlen;
698 	res = utee_cipher_final(op->state, op->buffer, op->buffer_offs,
699 				dst, &tmp_dlen);
700 	if (res != TEE_SUCCESS)
701 		TEE_Panic(res);
702 	acc_dlen += tmp_dlen;
703 
704 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
705 	*destLen = acc_dlen;
706 	return TEE_SUCCESS;
707 }
708 
709 /* Cryptographic Operations API - MAC Functions */
710 
711 void TEE_MACInit(TEE_OperationHandle operation, const void *IV, size_t IVLen)
712 {
713 	TEE_Result res;
714 
715 	if (operation == TEE_HANDLE_NULL)
716 		TEE_Panic(0);
717 	if (IV == NULL && IVLen != 0)
718 		TEE_Panic(0);
719 	if (operation->info.operationClass != TEE_OPERATION_MAC)
720 		TEE_Panic(0);
721 	res = utee_hash_init(operation->state, IV, IVLen);
722 	if (res != TEE_SUCCESS)
723 		TEE_Panic(res);
724 	operation->buffer_offs = 0;
725 	operation->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED;
726 }
727 
728 void TEE_MACUpdate(TEE_OperationHandle op, const void *chunk, size_t chunkSize)
729 {
730 	TEE_Result res;
731 
732 	if (op == TEE_HANDLE_NULL || (chunk == NULL && chunkSize != 0))
733 		TEE_Panic(0);
734 	if (op->info.operationClass != TEE_OPERATION_MAC)
735 		TEE_Panic(0);
736 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
737 		TEE_Panic(0);
738 
739 	res = utee_hash_update(op->state, chunk, chunkSize);
740 	if (res != TEE_SUCCESS)
741 		TEE_Panic(res);
742 }
743 
744 TEE_Result TEE_MACComputeFinal(TEE_OperationHandle op,
745 			       const void *message, size_t messageLen,
746 			       void *mac, size_t *macLen)
747 {
748 	TEE_Result res;
749 
750 	if (op == TEE_HANDLE_NULL || (message == NULL && messageLen != 0) ||
751 	    mac == NULL || macLen == NULL)
752 		TEE_Panic(0);
753 	if (op->info.operationClass != TEE_OPERATION_MAC)
754 		TEE_Panic(0);
755 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
756 		TEE_Panic(0);
757 
758 	res = utee_hash_final(op->state, message, messageLen, mac, macLen);
759 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
760 	return res;
761 }
762 
763 TEE_Result TEE_MACCompareFinal(TEE_OperationHandle operation,
764 			       const void *message, size_t messageLen,
765 			       const void *mac, size_t macLen)
766 {
767 	TEE_Result res;
768 	uint8_t computed_mac[TEE_MAX_HASH_SIZE];
769 	size_t computed_mac_size = TEE_MAX_HASH_SIZE;
770 
771 	res = TEE_MACComputeFinal(operation, message, messageLen, computed_mac,
772 				  &computed_mac_size);
773 	if (res != TEE_SUCCESS)
774 		return res;
775 	if (computed_mac_size != macLen)
776 		return TEE_ERROR_MAC_INVALID;
777 	if (buf_compare_ct(mac, computed_mac, computed_mac_size) != 0)
778 		return TEE_ERROR_MAC_INVALID;
779 	return TEE_SUCCESS;
780 }
781 
782 /* Cryptographic Operations API - Authenticated Encryption Functions */
783 
784 TEE_Result TEE_AEInit(TEE_OperationHandle op, const void *nonce,
785 		      size_t nonceLen, uint32_t tagLen, uint32_t AADLen,
786 		      uint32_t payloadLen)
787 {
788 	TEE_Result res;
789 
790 	if (op == TEE_HANDLE_NULL || nonce == NULL)
791 		TEE_Panic(0);
792 	if (op->info.operationClass != TEE_OPERATION_AE)
793 		TEE_Panic(0);
794 
795 	/*
796 	 * AES-CCM tag len is specified by AES-CCM spec and handled in TEE Core
797 	 * in the implementation. But AES-GCM spec doesn't specify the tag len
798 	 * according to the same principle so we have to check here instead to
799 	 * be GP compliant.
800 	 */
801 	if (op->info.algorithm == TEE_ALG_AES_GCM) {
802 		/*
803 		 * From GP spec: For AES-GCM, can be 128, 120, 112, 104, or 96
804 		 */
805 		if (tagLen < 96 || tagLen > 128 || (tagLen % 8 != 0))
806 			return TEE_ERROR_NOT_SUPPORTED;
807 	}
808 
809 	res = utee_authenc_init(op->state, nonce, nonceLen, tagLen / 8, AADLen,
810 				payloadLen);
811 	if (res != TEE_SUCCESS) {
812 		if (res != TEE_ERROR_NOT_SUPPORTED)
813 			TEE_Panic(res);
814 		return res;
815 	}
816 	op->ae_tag_len = tagLen / 8;
817 
818 	op->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED;
819 	return TEE_SUCCESS;
820 }
821 
822 void TEE_AEUpdateAAD(TEE_OperationHandle op, const void *AADdata,
823 		     size_t AADdataLen)
824 {
825 	TEE_Result res;
826 
827 	if (op == TEE_HANDLE_NULL || (AADdata == NULL && AADdataLen != 0))
828 		TEE_Panic(0);
829 	if (op->info.operationClass != TEE_OPERATION_AE)
830 		TEE_Panic(0);
831 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
832 		TEE_Panic(0);
833 
834 	res = utee_authenc_update_aad(op->state, AADdata, AADdataLen);
835 	if (res != TEE_SUCCESS)
836 		TEE_Panic(res);
837 }
838 
839 TEE_Result TEE_AEUpdate(TEE_OperationHandle op, const void *srcData,
840 			size_t srcLen, void *destData, size_t *destLen)
841 {
842 	size_t req_dlen;
843 
844 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
845 	    destLen == NULL || (destData == NULL && *destLen != 0))
846 		TEE_Panic(0);
847 	if (op->info.operationClass != TEE_OPERATION_AE)
848 		TEE_Panic(0);
849 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
850 		TEE_Panic(0);
851 
852 	/*
853 	 * Check that required destLen is big enough before starting to feed
854 	 * data to the algorithm. Errors during feeding of data are fatal as we
855 	 * can't restore sync with this API.
856 	 */
857 	req_dlen = ROUNDDOWN(op->buffer_offs + srcLen, op->block_size);
858 	if (*destLen < req_dlen) {
859 		*destLen = req_dlen;
860 		return TEE_ERROR_SHORT_BUFFER;
861 	}
862 
863 	tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen,
864 			  destData, destLen);
865 
866 	return TEE_SUCCESS;
867 }
868 
869 TEE_Result TEE_AEEncryptFinal(TEE_OperationHandle op,
870 			      const void *srcData, size_t srcLen,
871 			      void *destData, size_t *destLen, void *tag,
872 			      size_t *tagLen)
873 {
874 	TEE_Result res;
875 	uint8_t *dst = destData;
876 	size_t acc_dlen = 0;
877 	size_t tmp_dlen;
878 	size_t req_dlen;
879 
880 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
881 	    destLen == NULL || (destData == NULL && *destLen != 0) ||
882 	    tag == NULL || tagLen == NULL)
883 		TEE_Panic(0);
884 	if (op->info.operationClass != TEE_OPERATION_AE)
885 		TEE_Panic(0);
886 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
887 		TEE_Panic(0);
888 
889 	/*
890 	 * Check that required destLen is big enough before starting to feed
891 	 * data to the algorithm. Errors during feeding of data are fatal as we
892 	 * can't restore sync with this API.
893 	 */
894 	req_dlen = op->buffer_offs + srcLen;
895 	if (*destLen < req_dlen) {
896 		*destLen = req_dlen;
897 		return TEE_ERROR_SHORT_BUFFER;
898 	}
899 
900 	/*
901 	 * Need to check this before update_payload since sync would be lost if
902 	 * we return short buffer after that.
903 	 */
904 	if (*tagLen < op->ae_tag_len) {
905 		*tagLen = op->ae_tag_len;
906 		return TEE_ERROR_SHORT_BUFFER;
907 	}
908 
909 	tmp_dlen = *destLen - acc_dlen;
910 	tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen,
911 			  dst, &tmp_dlen);
912 	dst += tmp_dlen;
913 	acc_dlen += tmp_dlen;
914 
915 	tmp_dlen = *destLen - acc_dlen;
916 	res =
917 	    utee_authenc_enc_final(op->state, op->buffer, op->buffer_offs, dst,
918 				   &tmp_dlen, tag, tagLen);
919 	if (res != TEE_SUCCESS)
920 		TEE_Panic(res);
921 	acc_dlen += tmp_dlen;
922 
923 	*destLen = acc_dlen;
924 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
925 
926 	return res;
927 }
928 
929 TEE_Result TEE_AEDecryptFinal(TEE_OperationHandle op,
930 			      const void *srcData, size_t srcLen,
931 			      void *destData, size_t *destLen, const void *tag,
932 			      size_t tagLen)
933 {
934 	TEE_Result res;
935 	uint8_t *dst = destData;
936 	size_t acc_dlen = 0;
937 	size_t tmp_dlen;
938 	size_t req_dlen;
939 
940 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
941 	    destLen == NULL || (destData == NULL && *destLen != 0) ||
942 	    (tag == NULL && tagLen != 0))
943 		TEE_Panic(0);
944 	if (op->info.operationClass != TEE_OPERATION_AE)
945 		TEE_Panic(0);
946 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
947 		TEE_Panic(0);
948 
949 	/*
950 	 * Check that required destLen is big enough before starting to feed
951 	 * data to the algorithm. Errors during feeding of data are fatal as we
952 	 * can't restore sync with this API.
953 	 */
954 	req_dlen = op->buffer_offs + srcLen;
955 	if (*destLen < req_dlen) {
956 		*destLen = req_dlen;
957 		return TEE_ERROR_SHORT_BUFFER;
958 	}
959 
960 	tmp_dlen = *destLen - acc_dlen;
961 	tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen,
962 			  dst, &tmp_dlen);
963 	dst += tmp_dlen;
964 	acc_dlen += tmp_dlen;
965 
966 	tmp_dlen = *destLen - acc_dlen;
967 	res =
968 	    utee_authenc_dec_final(op->state, op->buffer, op->buffer_offs, dst,
969 				   &tmp_dlen, tag, tagLen);
970 	if (res != TEE_SUCCESS && res != TEE_ERROR_MAC_INVALID)
971 		TEE_Panic(res);
972 	/* Supplied tagLen should match what we initiated with */
973 	if (tagLen != op->ae_tag_len)
974 		res = TEE_ERROR_MAC_INVALID;
975 
976 	acc_dlen += tmp_dlen;
977 
978 	*destLen = acc_dlen;
979 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
980 
981 	return res;
982 }
983 
984 /* Cryptographic Operations API - Asymmetric Functions */
985 
986 TEE_Result TEE_AsymmetricEncrypt(TEE_OperationHandle op,
987 				 const TEE_Attribute *params,
988 				 uint32_t paramCount, const void *srcData,
989 				 size_t srcLen, void *destData,
990 				 size_t *destLen)
991 {
992 	TEE_Result res;
993 
994 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
995 	    destLen == NULL || (destData == NULL && *destLen != 0))
996 		TEE_Panic(0);
997 	if (paramCount != 0 && params == NULL)
998 		TEE_Panic(0);
999 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_CIPHER)
1000 		TEE_Panic(0);
1001 	if (op->info.mode != TEE_MODE_ENCRYPT)
1002 		TEE_Panic(0);
1003 
1004 	res = utee_asymm_operate(op->state, params, paramCount, srcData, srcLen,
1005 				 destData, destLen);
1006 	if (res != TEE_SUCCESS &&
1007 	    res != TEE_ERROR_SHORT_BUFFER &&
1008 	    res != TEE_ERROR_BAD_PARAMETERS)
1009 		TEE_Panic(res);
1010 	return res;
1011 }
1012 
1013 TEE_Result TEE_AsymmetricDecrypt(TEE_OperationHandle op,
1014 				 const TEE_Attribute *params,
1015 				 uint32_t paramCount, const void *srcData,
1016 				 size_t srcLen, void *destData,
1017 				 size_t *destLen)
1018 {
1019 	TEE_Result res;
1020 
1021 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
1022 	    destLen == NULL || (destData == NULL && *destLen != 0))
1023 		TEE_Panic(0);
1024 	if (paramCount != 0 && params == NULL)
1025 		TEE_Panic(0);
1026 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_CIPHER)
1027 		TEE_Panic(0);
1028 	if (op->info.mode != TEE_MODE_DECRYPT)
1029 		TEE_Panic(0);
1030 
1031 	res = utee_asymm_operate(op->state, params, paramCount, srcData, srcLen,
1032 				 destData, destLen);
1033 	if (res != TEE_SUCCESS &&
1034 	    res != TEE_ERROR_SHORT_BUFFER &&
1035 	    res != TEE_ERROR_BAD_PARAMETERS)
1036 		TEE_Panic(res);
1037 	return res;
1038 }
1039 
1040 TEE_Result TEE_AsymmetricSignDigest(TEE_OperationHandle op,
1041 				    const TEE_Attribute *params,
1042 				    uint32_t paramCount, const void *digest,
1043 				    size_t digestLen, void *signature,
1044 				    size_t *signatureLen)
1045 {
1046 	TEE_Result res;
1047 
1048 	if (op == TEE_HANDLE_NULL || (digest == NULL && digestLen != 0) ||
1049 	    signature == NULL || signatureLen == NULL)
1050 		TEE_Panic(0);
1051 	if (paramCount != 0 && params == NULL)
1052 		TEE_Panic(0);
1053 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_SIGNATURE)
1054 		TEE_Panic(0);
1055 	if (op->info.mode != TEE_MODE_SIGN)
1056 		TEE_Panic(0);
1057 
1058 	res =
1059 	    utee_asymm_operate(op->state, params, paramCount, digest, digestLen,
1060 			       signature, signatureLen);
1061 	if (res != TEE_SUCCESS && res != TEE_ERROR_SHORT_BUFFER)
1062 		TEE_Panic(res);
1063 	return res;
1064 }
1065 
1066 TEE_Result TEE_AsymmetricVerifyDigest(TEE_OperationHandle op,
1067 				      const TEE_Attribute *params,
1068 				      uint32_t paramCount, const void *digest,
1069 				      size_t digestLen, const void *signature,
1070 				      size_t signatureLen)
1071 {
1072 	TEE_Result res;
1073 
1074 	if (op == TEE_HANDLE_NULL || (digest == NULL && digestLen != 0) ||
1075 	    (signature == NULL && signatureLen != 0))
1076 		TEE_Panic(0);
1077 	if (paramCount != 0 && params == NULL)
1078 		TEE_Panic(0);
1079 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_SIGNATURE)
1080 		TEE_Panic(0);
1081 	if (op->info.mode != TEE_MODE_VERIFY)
1082 		TEE_Panic(0);
1083 
1084 	res =
1085 	    utee_asymm_verify(op->state, params, paramCount, digest, digestLen,
1086 			      signature, signatureLen);
1087 	if (res != TEE_SUCCESS && res != TEE_ERROR_SIGNATURE_INVALID)
1088 		TEE_Panic(res);
1089 	return res;
1090 }
1091 
1092 /* Cryptographic Operations API - Key Derivation Functions */
1093 
1094 void TEE_DeriveKey(TEE_OperationHandle operation,
1095 		   const TEE_Attribute *params, uint32_t paramCount,
1096 		   TEE_ObjectHandle derivedKey)
1097 {
1098 	TEE_Result res;
1099 	TEE_ObjectInfo key_info;
1100 
1101 	if (operation == TEE_HANDLE_NULL || derivedKey == 0)
1102 		TEE_Panic(0);
1103 	if (paramCount != 0 && params == NULL)
1104 		TEE_Panic(0);
1105 
1106 	if (operation->info.algorithm != TEE_ALG_DH_DERIVE_SHARED_SECRET)
1107 		TEE_Panic(0);
1108 
1109 	if (operation->info.operationClass != TEE_OPERATION_KEY_DERIVATION)
1110 		TEE_Panic(0);
1111 	if (operation->info.mode != TEE_MODE_DERIVE)
1112 		TEE_Panic(0);
1113 	if ((operation->info.handleState & TEE_HANDLE_FLAG_KEY_SET) == 0)
1114 		TEE_Panic(0);
1115 
1116 	res = utee_cryp_obj_get_info((uint32_t) derivedKey, &key_info);
1117 	if (res != TEE_SUCCESS)
1118 		TEE_Panic(0);
1119 
1120 	if (key_info.objectType != TEE_TYPE_GENERIC_SECRET)
1121 		TEE_Panic(0);
1122 	if ((key_info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1123 		TEE_Panic(0);
1124 
1125 	if ((operation->info.algorithm == TEE_ALG_DH_DERIVE_SHARED_SECRET) &&
1126 	    (paramCount != 1 ||
1127 	     params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE))
1128 		TEE_Panic(0);
1129 
1130 	res = utee_cryp_derive_key(operation->state, params, paramCount,
1131 				   (uint32_t) derivedKey);
1132 	if (res != TEE_SUCCESS)
1133 		TEE_Panic(res);
1134 }
1135 
1136 /* Cryptographic Operations API - Random Number Generation Functions */
1137 
1138 void TEE_GenerateRandom(void *randomBuffer, size_t randomBufferLen)
1139 {
1140 	TEE_Result res;
1141 
1142 	res = utee_cryp_random_number_generate(randomBuffer, randomBufferLen);
1143 	if (res != TEE_SUCCESS)
1144 		TEE_Panic(res);
1145 }
1146