1 /* 2 * Copyright (c) 2014, STMicroelectronics International N.V. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright notice, 12 * this list of conditions and the following disclaimer in the documentation 13 * and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 * POSSIBILITY OF SUCH DAMAGE. 26 */ 27 #include <stdlib.h> 28 #include <string.h> 29 #include <string_ext.h> 30 31 #include <tee_api.h> 32 #include <tee_api_defines_extensions.h> 33 #include <tee_internal_api_extensions.h> 34 #include <utee_syscalls.h> 35 #include <utee_defines.h> 36 #include <util.h> 37 38 struct __TEE_OperationHandle { 39 TEE_OperationInfo info; 40 TEE_ObjectHandle key1; 41 TEE_ObjectHandle key2; 42 uint8_t *buffer; /* buffer to collect complete blocks */ 43 bool buffer_two_blocks; /* True if two blocks need to be buffered */ 44 size_t block_size; /* Block size of cipher */ 45 size_t buffer_offs; /* Offset in buffer */ 46 uint32_t state; /* Handle to state in TEE Core */ 47 uint32_t ae_tag_len; /* 48 * tag_len in bytes for AE operation else unused 49 */ 50 }; 51 52 /* Cryptographic Operations API - Generic Operation Functions */ 53 54 TEE_Result TEE_AllocateOperation(TEE_OperationHandle *operation, 55 uint32_t algorithm, uint32_t mode, 56 uint32_t maxKeySize) 57 { 58 TEE_Result res; 59 TEE_OperationHandle op = TEE_HANDLE_NULL; 60 uint32_t handle_state = 0; 61 size_t block_size = 1; 62 uint32_t req_key_usage; 63 bool with_private_key = false; 64 bool buffer_two_blocks = false; 65 66 if (operation == NULL) 67 TEE_Panic(0); 68 69 if (algorithm == TEE_ALG_AES_XTS) 70 handle_state = TEE_HANDLE_FLAG_EXPECT_TWO_KEYS; 71 72 switch (algorithm) { 73 case TEE_ALG_AES_CTS: 74 case TEE_ALG_AES_XTS: 75 buffer_two_blocks = true; 76 /*FALLTHROUGH*/ case TEE_ALG_AES_ECB_NOPAD: 77 case TEE_ALG_AES_CBC_NOPAD: 78 case TEE_ALG_AES_CTR: 79 case TEE_ALG_AES_CCM: 80 case TEE_ALG_AES_GCM: 81 case TEE_ALG_DES_ECB_NOPAD: 82 case TEE_ALG_DES_CBC_NOPAD: 83 case TEE_ALG_DES3_ECB_NOPAD: 84 case TEE_ALG_DES3_CBC_NOPAD: 85 if (TEE_ALG_GET_MAIN_ALG(algorithm) == TEE_MAIN_ALGO_AES) 86 block_size = TEE_AES_BLOCK_SIZE; 87 else 88 block_size = TEE_DES_BLOCK_SIZE; 89 90 if (mode == TEE_MODE_ENCRYPT) 91 req_key_usage = TEE_USAGE_ENCRYPT; 92 else if (mode == TEE_MODE_DECRYPT) 93 req_key_usage = TEE_USAGE_DECRYPT; 94 else 95 return TEE_ERROR_NOT_SUPPORTED; 96 break; 97 98 case TEE_ALG_RSASSA_PKCS1_V1_5_MD5: 99 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1: 100 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224: 101 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256: 102 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384: 103 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512: 104 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1: 105 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224: 106 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256: 107 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384: 108 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512: 109 case TEE_ALG_DSA_SHA1: 110 if (mode == TEE_MODE_SIGN) { 111 with_private_key = true; 112 req_key_usage = TEE_USAGE_SIGN; 113 } else if (mode == TEE_MODE_VERIFY) { 114 req_key_usage = TEE_USAGE_VERIFY; 115 } else { 116 return TEE_ERROR_NOT_SUPPORTED; 117 } 118 break; 119 120 case TEE_ALG_RSAES_PKCS1_V1_5: 121 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1: 122 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224: 123 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256: 124 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384: 125 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512: 126 if (mode == TEE_MODE_ENCRYPT) { 127 req_key_usage = TEE_USAGE_ENCRYPT; 128 } else if (mode == TEE_MODE_DECRYPT) { 129 with_private_key = true; 130 req_key_usage = TEE_USAGE_DECRYPT; 131 } else { 132 return TEE_ERROR_NOT_SUPPORTED; 133 } 134 break; 135 136 case TEE_ALG_RSA_NOPAD: 137 if (mode == TEE_MODE_ENCRYPT) { 138 req_key_usage = TEE_USAGE_ENCRYPT | TEE_USAGE_VERIFY; 139 } else if (mode == TEE_MODE_DECRYPT) { 140 with_private_key = true; 141 req_key_usage = TEE_USAGE_DECRYPT | TEE_USAGE_SIGN; 142 } else { 143 return TEE_ERROR_NOT_SUPPORTED; 144 } 145 break; 146 147 case TEE_ALG_DH_DERIVE_SHARED_SECRET: 148 case TEE_ALG_HKDF_MD5_DERIVE_KEY: 149 case TEE_ALG_HKDF_SHA1_DERIVE_KEY: 150 case TEE_ALG_HKDF_SHA224_DERIVE_KEY: 151 case TEE_ALG_HKDF_SHA256_DERIVE_KEY: 152 case TEE_ALG_HKDF_SHA384_DERIVE_KEY: 153 case TEE_ALG_HKDF_SHA512_DERIVE_KEY: 154 case TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY: 155 case TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY: 156 case TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY: 157 case TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY: 158 case TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY: 159 case TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEY: 160 if (mode != TEE_MODE_DERIVE) 161 return TEE_ERROR_NOT_SUPPORTED; 162 with_private_key = true; 163 req_key_usage = TEE_USAGE_DERIVE; 164 break; 165 166 case TEE_ALG_MD5: 167 case TEE_ALG_SHA1: 168 case TEE_ALG_SHA224: 169 case TEE_ALG_SHA256: 170 case TEE_ALG_SHA384: 171 case TEE_ALG_SHA512: 172 if (mode != TEE_MODE_DIGEST) 173 return TEE_ERROR_NOT_SUPPORTED; 174 handle_state |= TEE_HANDLE_FLAG_KEY_SET; 175 req_key_usage = 0; 176 break; 177 178 case TEE_ALG_DES_CBC_MAC_NOPAD: 179 case TEE_ALG_AES_CBC_MAC_NOPAD: 180 case TEE_ALG_AES_CBC_MAC_PKCS5: 181 case TEE_ALG_AES_CMAC: 182 case TEE_ALG_DES_CBC_MAC_PKCS5: 183 case TEE_ALG_DES3_CBC_MAC_NOPAD: 184 case TEE_ALG_DES3_CBC_MAC_PKCS5: 185 case TEE_ALG_HMAC_MD5: 186 case TEE_ALG_HMAC_SHA1: 187 case TEE_ALG_HMAC_SHA224: 188 case TEE_ALG_HMAC_SHA256: 189 case TEE_ALG_HMAC_SHA384: 190 case TEE_ALG_HMAC_SHA512: 191 if (mode != TEE_MODE_MAC) 192 return TEE_ERROR_NOT_SUPPORTED; 193 req_key_usage = TEE_USAGE_MAC; 194 break; 195 196 default: 197 return TEE_ERROR_NOT_SUPPORTED; 198 } 199 200 op = TEE_Malloc(sizeof(*op), 0); 201 if (op == NULL) 202 return TEE_ERROR_OUT_OF_MEMORY; 203 204 op->info.algorithm = algorithm; 205 op->info.operationClass = TEE_ALG_GET_CLASS(algorithm); 206 op->info.mode = mode; 207 op->info.maxKeySize = maxKeySize; 208 op->info.requiredKeyUsage = req_key_usage; 209 op->info.handleState = handle_state; 210 211 if (block_size > 1) { 212 size_t buffer_size = block_size; 213 214 if (buffer_two_blocks) 215 buffer_size *= 2; 216 217 op->buffer = 218 TEE_Malloc(buffer_size, TEE_USER_MEM_HINT_NO_FILL_ZERO); 219 if (op->buffer == NULL) { 220 res = TEE_ERROR_OUT_OF_MEMORY; 221 goto out; 222 } 223 } 224 op->block_size = block_size; 225 op->buffer_two_blocks = buffer_two_blocks; 226 227 if (TEE_ALG_GET_CLASS(algorithm) != TEE_OPERATION_DIGEST) { 228 uint32_t mks = maxKeySize; 229 TEE_ObjectType key_type = TEE_ALG_GET_KEY_TYPE(algorithm, 230 with_private_key); 231 232 /* 233 * If two keys are expected the max key size is the sum of 234 * the size of both keys. 235 */ 236 if (op->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) 237 mks /= 2; 238 239 res = TEE_AllocateTransientObject(key_type, mks, &op->key1); 240 if (res != TEE_SUCCESS) 241 goto out; 242 243 if ((op->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) != 244 0) { 245 res = 246 TEE_AllocateTransientObject(key_type, mks, 247 &op->key2); 248 if (res != TEE_SUCCESS) 249 goto out; 250 } 251 } 252 253 res = utee_cryp_state_alloc(algorithm, mode, (uint32_t) op->key1, 254 (uint32_t) op->key2, &op->state); 255 if (res != TEE_SUCCESS) 256 goto out; 257 258 /* For multi-stage operation do an "init". */ 259 TEE_ResetOperation(op); 260 *operation = op; 261 262 out: 263 if (res != TEE_SUCCESS) { 264 TEE_FreeTransientObject(op->key1); 265 TEE_FreeTransientObject(op->key2); 266 TEE_FreeOperation(op); 267 } 268 269 return res; 270 } 271 272 void TEE_FreeOperation(TEE_OperationHandle operation) 273 { 274 if (operation != TEE_HANDLE_NULL) { 275 /* 276 * Note that keys should not be freed here, since they are 277 * claimed by the operation they will be freed by 278 * utee_cryp_state_free(). 279 */ 280 utee_cryp_state_free(operation->state); 281 TEE_Free(operation->buffer); 282 TEE_Free(operation); 283 } 284 } 285 286 void TEE_GetOperationInfo(TEE_OperationHandle operation, 287 TEE_OperationInfo *operationInfo) 288 { 289 if (operation == TEE_HANDLE_NULL) 290 TEE_Panic(0); 291 292 if (operationInfo == NULL) 293 TEE_Panic(0); 294 295 *operationInfo = operation->info; 296 } 297 298 void TEE_ResetOperation(TEE_OperationHandle operation) 299 { 300 TEE_Result res; 301 302 if (operation == TEE_HANDLE_NULL) 303 TEE_Panic(0); 304 if (operation->info.operationClass == TEE_OPERATION_DIGEST) { 305 res = utee_hash_init(operation->state, NULL, 0); 306 if (res != TEE_SUCCESS) 307 TEE_Panic(res); 308 } 309 operation->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED; 310 } 311 312 TEE_Result TEE_SetOperationKey(TEE_OperationHandle operation, 313 TEE_ObjectHandle key) 314 { 315 TEE_Result res; 316 uint32_t key_size = 0; 317 318 if (operation == TEE_HANDLE_NULL) 319 TEE_Panic(0); 320 321 /* No key for digests */ 322 if (operation->info.operationClass == TEE_OPERATION_DIGEST) 323 TEE_Panic(0); 324 325 /* Two keys expected */ 326 if ((operation->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) != 327 0) 328 TEE_Panic(0); 329 330 if (key != TEE_HANDLE_NULL) { 331 TEE_ObjectInfo key_info; 332 333 res = TEE_GetObjectInfo1(key, &key_info); 334 if (res != TEE_SUCCESS) 335 goto err; 336 337 /* Supplied key has to meet required usage */ 338 if ((key_info.objectUsage & operation->info.requiredKeyUsage) != 339 operation->info.requiredKeyUsage) { 340 TEE_Panic(0); 341 } 342 343 if (operation->info.maxKeySize < key_info.keySize) 344 TEE_Panic(0); 345 346 key_size = key_info.keySize; 347 } 348 349 TEE_ResetTransientObject(operation->key1); 350 operation->info.handleState &= ~TEE_HANDLE_FLAG_KEY_SET; 351 352 if (key != TEE_HANDLE_NULL) { 353 res = TEE_CopyObjectAttributes1(operation->key1, key); 354 if (res != TEE_SUCCESS) 355 goto err; 356 357 operation->info.handleState |= TEE_HANDLE_FLAG_KEY_SET; 358 } 359 360 operation->info.keySize = key_size; 361 362 goto out; 363 364 err: 365 if (res == TEE_ERROR_CORRUPT_OBJECT || 366 res == TEE_ERROR_STORAGE_NOT_AVAILABLE) 367 return res; 368 TEE_Panic(0); 369 out: 370 return TEE_SUCCESS; 371 } 372 373 TEE_Result TEE_SetOperationKey2(TEE_OperationHandle operation, 374 TEE_ObjectHandle key1, TEE_ObjectHandle key2) 375 { 376 TEE_Result res; 377 uint32_t key_size = 0; 378 379 if (operation == TEE_HANDLE_NULL) 380 TEE_Panic(0); 381 382 /* Two keys not expected */ 383 if ((operation->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) == 384 0) 385 TEE_Panic(0); 386 387 /* Either both keys are NULL or both are not NULL */ 388 if ((key1 == TEE_HANDLE_NULL || key2 == TEE_HANDLE_NULL) && 389 key1 != key2) 390 TEE_Panic(0); 391 392 if (key1 != TEE_HANDLE_NULL) { 393 TEE_ObjectInfo key_info1; 394 TEE_ObjectInfo key_info2; 395 396 res = TEE_GetObjectInfo1(key1, &key_info1); 397 if (res != TEE_SUCCESS) 398 goto err; 399 400 /* Supplied key has to meet required usage */ 401 if ((key_info1.objectUsage & operation->info. 402 requiredKeyUsage) != operation->info.requiredKeyUsage) { 403 TEE_Panic(0); 404 } 405 406 res = TEE_GetObjectInfo1(key2, &key_info2); 407 if (res != TEE_SUCCESS) { 408 if (res == TEE_ERROR_CORRUPT_OBJECT) 409 res = TEE_ERROR_CORRUPT_OBJECT_2; 410 goto err; 411 } 412 413 /* Supplied key has to meet required usage */ 414 if ((key_info2.objectUsage & operation->info. 415 requiredKeyUsage) != operation->info.requiredKeyUsage) { 416 TEE_Panic(0); 417 } 418 419 /* 420 * AES-XTS (the only multi key algorithm supported, requires the 421 * keys to be of equal size. 422 */ 423 if (operation->info.algorithm == TEE_ALG_AES_XTS && 424 key_info1.keySize != key_info2.keySize) 425 TEE_Panic(0); 426 427 if (operation->info.maxKeySize < key_info1.keySize) 428 TEE_Panic(0); 429 430 /* 431 * Odd that only the size of one key should be reported while 432 * size of two key are used when allocating the operation. 433 */ 434 key_size = key_info1.keySize; 435 } 436 437 TEE_ResetTransientObject(operation->key1); 438 TEE_ResetTransientObject(operation->key2); 439 operation->info.handleState &= ~TEE_HANDLE_FLAG_KEY_SET; 440 441 if (key1 != TEE_HANDLE_NULL) { 442 res = TEE_CopyObjectAttributes1(operation->key1, key1); 443 if (res != TEE_SUCCESS) 444 goto err; 445 446 res = TEE_CopyObjectAttributes1(operation->key2, key2); 447 if (res != TEE_SUCCESS) { 448 if (res == TEE_ERROR_CORRUPT_OBJECT) 449 res = TEE_ERROR_CORRUPT_OBJECT_2; 450 goto err; 451 } 452 453 operation->info.handleState |= TEE_HANDLE_FLAG_KEY_SET; 454 } 455 456 operation->info.keySize = key_size; 457 458 goto out; 459 460 err: 461 if (res == TEE_ERROR_CORRUPT_OBJECT || 462 res == TEE_ERROR_CORRUPT_OBJECT_2 || 463 res == TEE_ERROR_STORAGE_NOT_AVAILABLE || 464 res == TEE_ERROR_STORAGE_NOT_AVAILABLE_2) 465 return res; 466 TEE_Panic(0); 467 out: 468 return TEE_SUCCESS; 469 } 470 471 void TEE_CopyOperation(TEE_OperationHandle dst_op, TEE_OperationHandle src_op) 472 { 473 TEE_Result res; 474 475 if (dst_op == TEE_HANDLE_NULL || src_op == TEE_HANDLE_NULL) 476 TEE_Panic(0); 477 if (dst_op->info.algorithm != src_op->info.algorithm) 478 TEE_Panic(0); 479 if (src_op->info.operationClass != TEE_OPERATION_DIGEST) { 480 TEE_ObjectHandle key1 = TEE_HANDLE_NULL; 481 TEE_ObjectHandle key2 = TEE_HANDLE_NULL; 482 483 if (src_op->info.handleState & TEE_HANDLE_FLAG_KEY_SET) { 484 key1 = src_op->key1; 485 key2 = src_op->key2; 486 } 487 488 if ((src_op->info.handleState & 489 TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) == 0) { 490 TEE_SetOperationKey(dst_op, key1); 491 } else { 492 TEE_SetOperationKey2(dst_op, key1, key2); 493 } 494 } 495 dst_op->info.handleState = src_op->info.handleState; 496 dst_op->info.keySize = src_op->info.keySize; 497 498 if (dst_op->buffer_two_blocks != src_op->buffer_two_blocks || 499 dst_op->block_size != src_op->block_size) 500 TEE_Panic(0); 501 502 if (dst_op->buffer != NULL) { 503 if (src_op->buffer == NULL) 504 TEE_Panic(0); 505 506 memcpy(dst_op->buffer, src_op->buffer, src_op->buffer_offs); 507 dst_op->buffer_offs = src_op->buffer_offs; 508 } else if (src_op->buffer != NULL) { 509 TEE_Panic(0); 510 } 511 512 res = utee_cryp_state_copy(dst_op->state, src_op->state); 513 if (res != TEE_SUCCESS) 514 TEE_Panic(res); 515 } 516 517 /* Cryptographic Operations API - Message Digest Functions */ 518 519 void TEE_DigestUpdate(TEE_OperationHandle operation, 520 void *chunk, uint32_t chunkSize) 521 { 522 TEE_Result res = TEE_ERROR_GENERIC; 523 524 if (operation == TEE_HANDLE_NULL || 525 operation->info.operationClass != TEE_OPERATION_DIGEST) 526 TEE_Panic(0); 527 528 res = utee_hash_update(operation->state, chunk, chunkSize); 529 if (res != TEE_SUCCESS) 530 TEE_Panic(res); 531 } 532 533 TEE_Result TEE_DigestDoFinal(TEE_OperationHandle operation, const void *chunk, 534 uint32_t chunkLen, void *hash, uint32_t *hashLen) 535 { 536 if ((operation == TEE_HANDLE_NULL) || (!chunk && chunkLen) || 537 !hash || !hashLen || 538 (operation->info.operationClass != TEE_OPERATION_DIGEST)) 539 TEE_Panic(0); 540 541 return utee_hash_final(operation->state, chunk, chunkLen, hash, 542 hashLen); 543 } 544 545 /* Cryptographic Operations API - Symmetric Cipher Functions */ 546 547 void TEE_CipherInit(TEE_OperationHandle operation, const void *IV, uint32_t IVLen) 548 { 549 TEE_Result res; 550 551 if (operation == TEE_HANDLE_NULL) 552 TEE_Panic(0); 553 if (operation->info.operationClass != TEE_OPERATION_CIPHER) 554 TEE_Panic(0); 555 res = utee_cipher_init(operation->state, IV, IVLen); 556 if (res != TEE_SUCCESS) 557 TEE_Panic(res); 558 operation->buffer_offs = 0; 559 operation->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED; 560 } 561 562 static TEE_Result tee_buffer_update( 563 TEE_OperationHandle op, 564 TEE_Result(*update_func) (uint32_t state, const void *src, 565 size_t slen, void *dst, uint32_t *dlen), 566 const void *src_data, size_t src_len, 567 void *dest_data, uint32_t *dest_len) 568 { 569 TEE_Result res; 570 const uint8_t *src = src_data; 571 size_t slen = src_len; 572 uint8_t *dst = dest_data; 573 size_t dlen = *dest_len; 574 size_t acc_dlen = 0; 575 uint32_t tmp_dlen; 576 size_t l; 577 size_t buffer_size; 578 size_t buffer_left; 579 580 if (op->buffer_two_blocks) { 581 buffer_size = op->block_size * 2; 582 buffer_left = 1; 583 } else { 584 buffer_size = op->block_size; 585 buffer_left = 0; 586 } 587 588 if (op->buffer_offs > 0) { 589 /* Fill up complete block */ 590 if (op->buffer_offs < op->block_size) 591 l = MIN(slen, op->block_size - op->buffer_offs); 592 else 593 l = MIN(slen, buffer_size - op->buffer_offs); 594 memcpy(op->buffer + op->buffer_offs, src, l); 595 op->buffer_offs += l; 596 src += l; 597 slen -= l; 598 if ((op->buffer_offs % op->block_size) != 0) 599 goto out; /* Nothing left to do */ 600 } 601 602 /* If we can feed from buffer */ 603 if ((op->buffer_offs > 0) && 604 ((op->buffer_offs + slen) >= (buffer_size + buffer_left))) { 605 l = ROUNDUP(op->buffer_offs + slen - buffer_size, 606 op->block_size); 607 l = MIN(op->buffer_offs, l); 608 tmp_dlen = dlen; 609 res = update_func(op->state, op->buffer, l, dst, &tmp_dlen); 610 if (res != TEE_SUCCESS) 611 TEE_Panic(res); 612 dst += tmp_dlen; 613 dlen -= tmp_dlen; 614 acc_dlen += tmp_dlen; 615 op->buffer_offs -= l; 616 if (op->buffer_offs > 0) { 617 /* 618 * Slen is small enough to be contained in rest buffer. 619 */ 620 memcpy(op->buffer, op->buffer + l, buffer_size - l); 621 memcpy(op->buffer + op->buffer_offs, src, slen); 622 op->buffer_offs += slen; 623 goto out; /* Nothing left to do */ 624 } 625 } 626 627 if (slen >= (buffer_size + buffer_left)) { 628 /* Buffer is empty, feed as much as possible from src */ 629 if (TEE_ALIGNMENT_IS_OK(src, uint32_t)) { 630 l = ROUNDUP(slen - buffer_size + 1, op->block_size); 631 632 tmp_dlen = dlen; 633 res = update_func(op->state, src, l, dst, &tmp_dlen); 634 if (res != TEE_SUCCESS) 635 TEE_Panic(res); 636 src += l; 637 slen -= l; 638 dst += tmp_dlen; 639 dlen -= tmp_dlen; 640 acc_dlen += tmp_dlen; 641 } else { 642 /* 643 * Supplied data isn't well aligned, we're forced to 644 * feed through the buffer. 645 */ 646 while (slen >= op->block_size) { 647 memcpy(op->buffer, src, op->block_size); 648 649 tmp_dlen = dlen; 650 res = 651 update_func(op->state, op->buffer, 652 op->block_size, dst, &tmp_dlen); 653 if (res != TEE_SUCCESS) 654 TEE_Panic(res); 655 src += op->block_size; 656 slen -= op->block_size; 657 dst += tmp_dlen; 658 dlen -= tmp_dlen; 659 acc_dlen += tmp_dlen; 660 } 661 } 662 } 663 664 /* Slen is small enough to be contained in buffer. */ 665 memcpy(op->buffer + op->buffer_offs, src, slen); 666 op->buffer_offs += slen; 667 668 out: 669 *dest_len = acc_dlen; 670 return TEE_SUCCESS; 671 } 672 673 TEE_Result TEE_CipherUpdate(TEE_OperationHandle op, const void *srcData, 674 uint32_t srcLen, void *destData, uint32_t *destLen) 675 { 676 size_t req_dlen; 677 678 if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) || 679 destLen == NULL || (destData == NULL && *destLen != 0)) 680 TEE_Panic(0); 681 if (op->info.operationClass != TEE_OPERATION_CIPHER) 682 TEE_Panic(0); 683 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 684 TEE_Panic(0); 685 686 /* Calculate required dlen */ 687 req_dlen = ((op->buffer_offs + srcLen) / op->block_size) * 688 op->block_size; 689 if (op->buffer_two_blocks) { 690 if (req_dlen > op->block_size * 2) 691 req_dlen -= op->block_size * 2; 692 else 693 req_dlen = 0; 694 } 695 /* 696 * Check that required destLen is big enough before starting to feed 697 * data to the algorithm. Errors during feeding of data are fatal as we 698 * can't restore sync with this API. 699 */ 700 if (*destLen < req_dlen) { 701 *destLen = req_dlen; 702 return TEE_ERROR_SHORT_BUFFER; 703 } 704 705 tee_buffer_update(op, utee_cipher_update, srcData, srcLen, destData, 706 destLen); 707 708 return TEE_SUCCESS; 709 } 710 711 TEE_Result TEE_CipherDoFinal(TEE_OperationHandle op, 712 const void *srcData, uint32_t srcLen, void *destData, 713 uint32_t *destLen) 714 { 715 TEE_Result res; 716 uint8_t *dst = destData; 717 size_t acc_dlen = 0; 718 uint32_t tmp_dlen; 719 size_t req_dlen; 720 721 if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) || 722 destLen == NULL || (destData == NULL && *destLen != 0)) 723 TEE_Panic(0); 724 if (op->info.operationClass != TEE_OPERATION_CIPHER) 725 TEE_Panic(0); 726 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 727 TEE_Panic(0); 728 729 /* 730 * Check that the final block doesn't require padding for those 731 * algorithms that requires client to supply padding. 732 */ 733 if (op->info.algorithm == TEE_ALG_AES_ECB_NOPAD || 734 op->info.algorithm == TEE_ALG_AES_CBC_NOPAD || 735 op->info.algorithm == TEE_ALG_DES_ECB_NOPAD || 736 op->info.algorithm == TEE_ALG_DES_CBC_NOPAD || 737 op->info.algorithm == TEE_ALG_DES3_ECB_NOPAD || 738 op->info.algorithm == TEE_ALG_DES3_CBC_NOPAD) { 739 if (((op->buffer_offs + srcLen) % op->block_size) != 0) 740 return TEE_ERROR_BAD_PARAMETERS; 741 } 742 743 /* 744 * Check that required destLen is big enough before starting to feed 745 * data to the algorithm. Errors during feeding of data are fatal as we 746 * can't restore sync with this API. 747 */ 748 req_dlen = op->buffer_offs + srcLen; 749 if (*destLen < req_dlen) { 750 *destLen = req_dlen; 751 return TEE_ERROR_SHORT_BUFFER; 752 } 753 754 tmp_dlen = *destLen - acc_dlen; 755 tee_buffer_update(op, utee_cipher_update, srcData, srcLen, dst, 756 &tmp_dlen); 757 dst += tmp_dlen; 758 acc_dlen += tmp_dlen; 759 760 tmp_dlen = *destLen - acc_dlen; 761 res = utee_cipher_final(op->state, op->buffer, op->buffer_offs, 762 dst, &tmp_dlen); 763 if (res != TEE_SUCCESS) 764 TEE_Panic(res); 765 acc_dlen += tmp_dlen; 766 767 op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED; 768 *destLen = acc_dlen; 769 return TEE_SUCCESS; 770 } 771 772 /* Cryptographic Operations API - MAC Functions */ 773 774 void TEE_MACInit(TEE_OperationHandle operation, const void *IV, uint32_t IVLen) 775 { 776 TEE_Result res; 777 778 if (operation == TEE_HANDLE_NULL) 779 TEE_Panic(0); 780 if (IV == NULL && IVLen != 0) 781 TEE_Panic(0); 782 if (operation->info.operationClass != TEE_OPERATION_MAC) 783 TEE_Panic(0); 784 res = utee_hash_init(operation->state, IV, IVLen); 785 if (res != TEE_SUCCESS) 786 TEE_Panic(res); 787 operation->buffer_offs = 0; 788 operation->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED; 789 } 790 791 void TEE_MACUpdate(TEE_OperationHandle op, const void *chunk, uint32_t chunkSize) 792 { 793 TEE_Result res; 794 795 if (op == TEE_HANDLE_NULL || (chunk == NULL && chunkSize != 0)) 796 TEE_Panic(0); 797 if (op->info.operationClass != TEE_OPERATION_MAC) 798 TEE_Panic(0); 799 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 800 TEE_Panic(0); 801 802 res = utee_hash_update(op->state, chunk, chunkSize); 803 if (res != TEE_SUCCESS) 804 TEE_Panic(res); 805 } 806 807 TEE_Result TEE_MACComputeFinal(TEE_OperationHandle op, 808 const void *message, uint32_t messageLen, 809 void *mac, uint32_t *macLen) 810 { 811 TEE_Result res; 812 813 if (op == TEE_HANDLE_NULL || (message == NULL && messageLen != 0) || 814 mac == NULL || macLen == NULL) 815 TEE_Panic(0); 816 if (op->info.operationClass != TEE_OPERATION_MAC) 817 TEE_Panic(0); 818 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 819 TEE_Panic(0); 820 821 res = utee_hash_final(op->state, message, messageLen, mac, macLen); 822 op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED; 823 return res; 824 } 825 826 TEE_Result TEE_MACCompareFinal(TEE_OperationHandle operation, 827 const void *message, uint32_t messageLen, 828 const void *mac, uint32_t macLen) 829 { 830 TEE_Result res; 831 uint8_t computed_mac[TEE_MAX_HASH_SIZE]; 832 uint32_t computed_mac_size = TEE_MAX_HASH_SIZE; 833 834 res = TEE_MACComputeFinal(operation, message, messageLen, computed_mac, 835 &computed_mac_size); 836 if (res != TEE_SUCCESS) 837 return res; 838 if (computed_mac_size != macLen) 839 return TEE_ERROR_MAC_INVALID; 840 if (buf_compare_ct(mac, computed_mac, computed_mac_size) != 0) 841 return TEE_ERROR_MAC_INVALID; 842 return TEE_SUCCESS; 843 } 844 845 /* Cryptographic Operations API - Authenticated Encryption Functions */ 846 847 TEE_Result TEE_AEInit(TEE_OperationHandle op, const void *nonce, 848 uint32_t nonceLen, uint32_t tagLen, uint32_t AADLen, 849 uint32_t payloadLen) 850 { 851 TEE_Result res; 852 853 if (op == TEE_HANDLE_NULL || nonce == NULL) 854 TEE_Panic(0); 855 if (op->info.operationClass != TEE_OPERATION_AE) 856 TEE_Panic(0); 857 858 /* 859 * AES-CCM tag len is specified by AES-CCM spec and handled in TEE Core 860 * in the implementation. But AES-GCM spec doesn't specify the tag len 861 * according to the same principle so we have to check here instead to 862 * be GP compliant. 863 */ 864 if (op->info.algorithm == TEE_ALG_AES_GCM) { 865 /* 866 * From GP spec: For AES-GCM, can be 128, 120, 112, 104, or 96 867 */ 868 if (tagLen < 96 || tagLen > 128 || (tagLen % 8 != 0)) 869 return TEE_ERROR_NOT_SUPPORTED; 870 } 871 872 res = utee_authenc_init(op->state, nonce, nonceLen, tagLen / 8, AADLen, 873 payloadLen); 874 if (res != TEE_SUCCESS) { 875 if (res != TEE_ERROR_NOT_SUPPORTED) 876 TEE_Panic(res); 877 return res; 878 } 879 op->ae_tag_len = tagLen / 8; 880 881 op->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED; 882 return TEE_SUCCESS; 883 } 884 885 void TEE_AEUpdateAAD(TEE_OperationHandle op, const void *AADdata, 886 uint32_t AADdataLen) 887 { 888 TEE_Result res; 889 890 if (op == TEE_HANDLE_NULL || (AADdata == NULL && AADdataLen != 0)) 891 TEE_Panic(0); 892 if (op->info.operationClass != TEE_OPERATION_AE) 893 TEE_Panic(0); 894 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 895 TEE_Panic(0); 896 897 res = utee_authenc_update_aad(op->state, AADdata, AADdataLen); 898 if (res != TEE_SUCCESS) 899 TEE_Panic(res); 900 } 901 902 TEE_Result TEE_AEUpdate(TEE_OperationHandle op, const void *srcData, 903 uint32_t srcLen, void *destData, uint32_t *destLen) 904 { 905 size_t req_dlen; 906 907 if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) || 908 destLen == NULL || (destData == NULL && *destLen != 0)) 909 TEE_Panic(0); 910 if (op->info.operationClass != TEE_OPERATION_AE) 911 TEE_Panic(0); 912 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 913 TEE_Panic(0); 914 915 /* 916 * Check that required destLen is big enough before starting to feed 917 * data to the algorithm. Errors during feeding of data are fatal as we 918 * can't restore sync with this API. 919 */ 920 req_dlen = ROUNDDOWN(op->buffer_offs + srcLen, op->block_size); 921 if (*destLen < req_dlen) { 922 *destLen = req_dlen; 923 return TEE_ERROR_SHORT_BUFFER; 924 } 925 926 tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen, 927 destData, destLen); 928 929 return TEE_SUCCESS; 930 } 931 932 TEE_Result TEE_AEEncryptFinal(TEE_OperationHandle op, 933 const void *srcData, uint32_t srcLen, 934 void *destData, uint32_t *destLen, void *tag, 935 uint32_t *tagLen) 936 { 937 TEE_Result res; 938 uint8_t *dst = destData; 939 size_t acc_dlen = 0; 940 uint32_t tmp_dlen; 941 size_t req_dlen; 942 943 if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) || 944 destLen == NULL || (destData == NULL && *destLen != 0) || 945 tag == NULL || tagLen == NULL) 946 TEE_Panic(0); 947 if (op->info.operationClass != TEE_OPERATION_AE) 948 TEE_Panic(0); 949 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 950 TEE_Panic(0); 951 952 /* 953 * Check that required destLen is big enough before starting to feed 954 * data to the algorithm. Errors during feeding of data are fatal as we 955 * can't restore sync with this API. 956 */ 957 req_dlen = op->buffer_offs + srcLen; 958 if (*destLen < req_dlen) { 959 *destLen = req_dlen; 960 return TEE_ERROR_SHORT_BUFFER; 961 } 962 963 /* 964 * Need to check this before update_payload since sync would be lost if 965 * we return short buffer after that. 966 */ 967 if (*tagLen < op->ae_tag_len) { 968 *tagLen = op->ae_tag_len; 969 return TEE_ERROR_SHORT_BUFFER; 970 } 971 972 tmp_dlen = *destLen - acc_dlen; 973 tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen, 974 dst, &tmp_dlen); 975 dst += tmp_dlen; 976 acc_dlen += tmp_dlen; 977 978 tmp_dlen = *destLen - acc_dlen; 979 res = 980 utee_authenc_enc_final(op->state, op->buffer, op->buffer_offs, dst, 981 &tmp_dlen, tag, tagLen); 982 if (res != TEE_SUCCESS) 983 TEE_Panic(res); 984 acc_dlen += tmp_dlen; 985 986 *destLen = acc_dlen; 987 op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED; 988 989 return res; 990 } 991 992 TEE_Result TEE_AEDecryptFinal(TEE_OperationHandle op, 993 const void *srcData, uint32_t srcLen, 994 void *destData, uint32_t *destLen, const void *tag, 995 uint32_t tagLen) 996 { 997 TEE_Result res; 998 uint8_t *dst = destData; 999 size_t acc_dlen = 0; 1000 uint32_t tmp_dlen; 1001 size_t req_dlen; 1002 1003 if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) || 1004 destLen == NULL || (destData == NULL && *destLen != 0) || 1005 (tag == NULL && tagLen != 0)) 1006 TEE_Panic(0); 1007 if (op->info.operationClass != TEE_OPERATION_AE) 1008 TEE_Panic(0); 1009 if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0) 1010 TEE_Panic(0); 1011 1012 /* 1013 * Check that required destLen is big enough before starting to feed 1014 * data to the algorithm. Errors during feeding of data are fatal as we 1015 * can't restore sync with this API. 1016 */ 1017 req_dlen = op->buffer_offs + srcLen; 1018 if (*destLen < req_dlen) { 1019 *destLen = req_dlen; 1020 return TEE_ERROR_SHORT_BUFFER; 1021 } 1022 1023 tmp_dlen = *destLen - acc_dlen; 1024 tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen, 1025 dst, &tmp_dlen); 1026 dst += tmp_dlen; 1027 acc_dlen += tmp_dlen; 1028 1029 tmp_dlen = *destLen - acc_dlen; 1030 res = 1031 utee_authenc_dec_final(op->state, op->buffer, op->buffer_offs, dst, 1032 &tmp_dlen, tag, tagLen); 1033 if (res != TEE_SUCCESS && res != TEE_ERROR_MAC_INVALID) 1034 TEE_Panic(res); 1035 /* Supplied tagLen should match what we initiated with */ 1036 if (tagLen != op->ae_tag_len) 1037 res = TEE_ERROR_MAC_INVALID; 1038 1039 acc_dlen += tmp_dlen; 1040 1041 *destLen = acc_dlen; 1042 op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED; 1043 1044 return res; 1045 } 1046 1047 /* Cryptographic Operations API - Asymmetric Functions */ 1048 1049 TEE_Result TEE_AsymmetricEncrypt(TEE_OperationHandle op, 1050 const TEE_Attribute *params, 1051 uint32_t paramCount, const void *srcData, 1052 uint32_t srcLen, void *destData, 1053 uint32_t *destLen) 1054 { 1055 TEE_Result res; 1056 1057 if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) || 1058 destLen == NULL || (destData == NULL && *destLen != 0)) 1059 TEE_Panic(0); 1060 if (paramCount != 0 && params == NULL) 1061 TEE_Panic(0); 1062 if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_CIPHER) 1063 TEE_Panic(0); 1064 if (op->info.mode != TEE_MODE_ENCRYPT) 1065 TEE_Panic(0); 1066 1067 res = utee_asymm_operate(op->state, params, paramCount, srcData, srcLen, 1068 destData, destLen); 1069 if (res != TEE_SUCCESS && 1070 res != TEE_ERROR_SHORT_BUFFER && 1071 res != TEE_ERROR_BAD_PARAMETERS) 1072 TEE_Panic(res); 1073 return res; 1074 } 1075 1076 TEE_Result TEE_AsymmetricDecrypt(TEE_OperationHandle op, 1077 const TEE_Attribute *params, 1078 uint32_t paramCount, const void *srcData, 1079 uint32_t srcLen, void *destData, 1080 uint32_t *destLen) 1081 { 1082 TEE_Result res; 1083 1084 if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) || 1085 destLen == NULL || (destData == NULL && *destLen != 0)) 1086 TEE_Panic(0); 1087 if (paramCount != 0 && params == NULL) 1088 TEE_Panic(0); 1089 if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_CIPHER) 1090 TEE_Panic(0); 1091 if (op->info.mode != TEE_MODE_DECRYPT) 1092 TEE_Panic(0); 1093 1094 res = utee_asymm_operate(op->state, params, paramCount, srcData, srcLen, 1095 destData, destLen); 1096 if (res != TEE_SUCCESS && 1097 res != TEE_ERROR_SHORT_BUFFER && 1098 res != TEE_ERROR_BAD_PARAMETERS) 1099 TEE_Panic(res); 1100 return res; 1101 } 1102 1103 TEE_Result TEE_AsymmetricSignDigest(TEE_OperationHandle op, 1104 const TEE_Attribute *params, 1105 uint32_t paramCount, const void *digest, 1106 uint32_t digestLen, void *signature, 1107 uint32_t *signatureLen) 1108 { 1109 TEE_Result res; 1110 1111 if (op == TEE_HANDLE_NULL || (digest == NULL && digestLen != 0) || 1112 signature == NULL || signatureLen == NULL) 1113 TEE_Panic(0); 1114 if (paramCount != 0 && params == NULL) 1115 TEE_Panic(0); 1116 if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_SIGNATURE) 1117 TEE_Panic(0); 1118 if (op->info.mode != TEE_MODE_SIGN) 1119 TEE_Panic(0); 1120 1121 res = 1122 utee_asymm_operate(op->state, params, paramCount, digest, digestLen, 1123 signature, signatureLen); 1124 if (res != TEE_SUCCESS && res != TEE_ERROR_SHORT_BUFFER) 1125 TEE_Panic(res); 1126 return res; 1127 } 1128 1129 TEE_Result TEE_AsymmetricVerifyDigest(TEE_OperationHandle op, 1130 const TEE_Attribute *params, 1131 uint32_t paramCount, const void *digest, 1132 uint32_t digestLen, const void *signature, 1133 uint32_t signatureLen) 1134 { 1135 TEE_Result res; 1136 1137 if (op == TEE_HANDLE_NULL || (digest == NULL && digestLen != 0) || 1138 (signature == NULL && signatureLen != 0)) 1139 TEE_Panic(0); 1140 if (paramCount != 0 && params == NULL) 1141 TEE_Panic(0); 1142 if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_SIGNATURE) 1143 TEE_Panic(0); 1144 if (op->info.mode != TEE_MODE_VERIFY) 1145 TEE_Panic(0); 1146 1147 res = 1148 utee_asymm_verify(op->state, params, paramCount, digest, digestLen, 1149 signature, signatureLen); 1150 if (res != TEE_SUCCESS && res != TEE_ERROR_SIGNATURE_INVALID) 1151 TEE_Panic(res); 1152 return res; 1153 } 1154 1155 /* Cryptographic Operations API - Key Derivation Functions */ 1156 1157 void TEE_DeriveKey(TEE_OperationHandle operation, 1158 const TEE_Attribute *params, uint32_t paramCount, 1159 TEE_ObjectHandle derivedKey) 1160 { 1161 TEE_Result res; 1162 TEE_ObjectInfo key_info; 1163 1164 if (operation == TEE_HANDLE_NULL || derivedKey == 0) 1165 TEE_Panic(0); 1166 if (paramCount != 0 && params == NULL) 1167 TEE_Panic(0); 1168 if (TEE_ALG_GET_CLASS(operation->info.algorithm) != 1169 TEE_OPERATION_KEY_DERIVATION) 1170 TEE_Panic(0); 1171 1172 if (operation->info.operationClass != TEE_OPERATION_KEY_DERIVATION) 1173 TEE_Panic(0); 1174 if (operation->info.mode != TEE_MODE_DERIVE) 1175 TEE_Panic(0); 1176 if ((operation->info.handleState & TEE_HANDLE_FLAG_KEY_SET) == 0) 1177 TEE_Panic(0); 1178 1179 res = utee_cryp_obj_get_info((uint32_t) derivedKey, &key_info); 1180 if (res != TEE_SUCCESS) 1181 TEE_Panic(0); 1182 1183 if (key_info.objectType != TEE_TYPE_GENERIC_SECRET) 1184 TEE_Panic(0); 1185 if ((key_info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1186 TEE_Panic(0); 1187 1188 res = utee_cryp_derive_key(operation->state, params, paramCount, 1189 (uint32_t) derivedKey); 1190 if (res != TEE_SUCCESS) 1191 TEE_Panic(res); 1192 } 1193 1194 /* Cryptographic Operations API - Random Number Generation Functions */ 1195 1196 void TEE_GenerateRandom(void *randomBuffer, uint32_t randomBufferLen) 1197 { 1198 TEE_Result res; 1199 1200 res = utee_cryp_random_number_generate(randomBuffer, randomBufferLen); 1201 if (res != TEE_SUCCESS) 1202 TEE_Panic(res); 1203 } 1204