xref: /optee_os/lib/libutee/tee_api_operations.c (revision 9b52c538efda68d9550c19e54d44169b89604a45)
1 /*
2  * Copyright (c) 2014, STMicroelectronics International N.V.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <stdlib.h>
28 #include <string.h>
29 #include <string_ext.h>
30 
31 #include <tee_api.h>
32 #include <tee_api_defines_extensions.h>
33 #include <tee_internal_api_extensions.h>
34 #include <utee_syscalls.h>
35 #include <utee_defines.h>
36 #include <util.h>
37 
38 struct __TEE_OperationHandle {
39 	TEE_OperationInfo info;
40 	TEE_ObjectHandle key1;
41 	TEE_ObjectHandle key2;
42 	uint8_t *buffer;	/* buffer to collect complete blocks */
43 	bool buffer_two_blocks;	/* True if two blocks need to be buffered */
44 	size_t block_size;	/* Block size of cipher */
45 	size_t buffer_offs;	/* Offset in buffer */
46 	uint32_t state;		/* Handle to state in TEE Core */
47 	uint32_t ae_tag_len;	/*
48 				 * tag_len in bytes for AE operation else unused
49 				 */
50 };
51 
52 /* Cryptographic Operations API - Generic Operation Functions */
53 
54 TEE_Result TEE_AllocateOperation(TEE_OperationHandle *operation,
55 				 uint32_t algorithm, uint32_t mode,
56 				 uint32_t maxKeySize)
57 {
58 	TEE_Result res;
59 	TEE_OperationHandle op = TEE_HANDLE_NULL;
60 	uint32_t handle_state = 0;
61 	size_t block_size = 1;
62 	uint32_t req_key_usage;
63 	bool with_private_key = false;
64 	bool buffer_two_blocks = false;
65 
66 	if (!operation)
67 		TEE_Panic(0);
68 
69 	if (algorithm == TEE_ALG_AES_XTS)
70 		handle_state = TEE_HANDLE_FLAG_EXPECT_TWO_KEYS;
71 
72 	/* Check algorithm max key size */
73 	switch (algorithm) {
74 	case TEE_ALG_DSA_SHA1:
75 		if (maxKeySize < 512)
76 			return TEE_ERROR_NOT_SUPPORTED;
77 		if (maxKeySize > 1024)
78 			return TEE_ERROR_NOT_SUPPORTED;
79 		if (maxKeySize % 64 != 0)
80 			return TEE_ERROR_NOT_SUPPORTED;
81 		break;
82 
83 	case TEE_ALG_DSA_SHA224:
84 		if (maxKeySize != 2048)
85 			return TEE_ERROR_NOT_SUPPORTED;
86 		break;
87 
88 	case TEE_ALG_DSA_SHA256:
89 		if (maxKeySize != 2048 && maxKeySize != 3072)
90 			return TEE_ERROR_NOT_SUPPORTED;
91 		break;
92 
93 	case TEE_ALG_ECDSA_P192:
94 	case TEE_ALG_ECDH_P192:
95 		if (maxKeySize != 192)
96 			return TEE_ERROR_NOT_SUPPORTED;
97 		break;
98 
99 	case TEE_ALG_ECDSA_P224:
100 	case TEE_ALG_ECDH_P224:
101 		if (maxKeySize != 224)
102 			return TEE_ERROR_NOT_SUPPORTED;
103 		break;
104 
105 	case TEE_ALG_ECDSA_P256:
106 	case TEE_ALG_ECDH_P256:
107 		if (maxKeySize != 256)
108 			return TEE_ERROR_NOT_SUPPORTED;
109 		break;
110 
111 	case TEE_ALG_ECDSA_P384:
112 	case TEE_ALG_ECDH_P384:
113 		if (maxKeySize != 384)
114 			return TEE_ERROR_NOT_SUPPORTED;
115 		break;
116 
117 	case TEE_ALG_ECDSA_P521:
118 	case TEE_ALG_ECDH_P521:
119 		if (maxKeySize != 521)
120 			return TEE_ERROR_NOT_SUPPORTED;
121 		break;
122 
123 	default:
124 		break;
125 	}
126 
127 	/* Check algorithm mode */
128 	switch (algorithm) {
129 	case TEE_ALG_AES_CTS:
130 	case TEE_ALG_AES_XTS:
131 		buffer_two_blocks = true;
132 	 /*FALLTHROUGH*/ case TEE_ALG_AES_ECB_NOPAD:
133 	case TEE_ALG_AES_CBC_NOPAD:
134 	case TEE_ALG_AES_CTR:
135 	case TEE_ALG_AES_CCM:
136 	case TEE_ALG_AES_GCM:
137 	case TEE_ALG_DES_ECB_NOPAD:
138 	case TEE_ALG_DES_CBC_NOPAD:
139 	case TEE_ALG_DES3_ECB_NOPAD:
140 	case TEE_ALG_DES3_CBC_NOPAD:
141 		if (TEE_ALG_GET_MAIN_ALG(algorithm) == TEE_MAIN_ALGO_AES)
142 			block_size = TEE_AES_BLOCK_SIZE;
143 		else
144 			block_size = TEE_DES_BLOCK_SIZE;
145 
146 		if (mode == TEE_MODE_ENCRYPT)
147 			req_key_usage = TEE_USAGE_ENCRYPT;
148 		else if (mode == TEE_MODE_DECRYPT)
149 			req_key_usage = TEE_USAGE_DECRYPT;
150 		else
151 			return TEE_ERROR_NOT_SUPPORTED;
152 		break;
153 
154 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
155 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
156 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
157 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
158 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
159 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
160 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
161 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
162 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
163 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
164 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
165 	case TEE_ALG_DSA_SHA1:
166 	case TEE_ALG_DSA_SHA224:
167 	case TEE_ALG_DSA_SHA256:
168 	case TEE_ALG_ECDSA_P192:
169 	case TEE_ALG_ECDSA_P224:
170 	case TEE_ALG_ECDSA_P256:
171 	case TEE_ALG_ECDSA_P384:
172 	case TEE_ALG_ECDSA_P521:
173 		if (mode == TEE_MODE_SIGN) {
174 			with_private_key = true;
175 			req_key_usage = TEE_USAGE_SIGN;
176 		} else if (mode == TEE_MODE_VERIFY) {
177 			req_key_usage = TEE_USAGE_VERIFY;
178 		} else {
179 			return TEE_ERROR_NOT_SUPPORTED;
180 		}
181 		break;
182 
183 	case TEE_ALG_RSAES_PKCS1_V1_5:
184 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
185 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
186 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
187 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
188 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
189 		if (mode == TEE_MODE_ENCRYPT) {
190 			req_key_usage = TEE_USAGE_ENCRYPT;
191 		} else if (mode == TEE_MODE_DECRYPT) {
192 			with_private_key = true;
193 			req_key_usage = TEE_USAGE_DECRYPT;
194 		} else {
195 			return TEE_ERROR_NOT_SUPPORTED;
196 		}
197 		break;
198 
199 	case TEE_ALG_RSA_NOPAD:
200 		if (mode == TEE_MODE_ENCRYPT) {
201 			req_key_usage = TEE_USAGE_ENCRYPT | TEE_USAGE_VERIFY;
202 		} else if (mode == TEE_MODE_DECRYPT) {
203 			with_private_key = true;
204 			req_key_usage = TEE_USAGE_DECRYPT | TEE_USAGE_SIGN;
205 		} else {
206 			return TEE_ERROR_NOT_SUPPORTED;
207 		}
208 		break;
209 
210 	case TEE_ALG_DH_DERIVE_SHARED_SECRET:
211 	case TEE_ALG_ECDH_P192:
212 	case TEE_ALG_ECDH_P224:
213 	case TEE_ALG_ECDH_P256:
214 	case TEE_ALG_ECDH_P384:
215 	case TEE_ALG_ECDH_P521:
216 	case TEE_ALG_HKDF_MD5_DERIVE_KEY:
217 	case TEE_ALG_HKDF_SHA1_DERIVE_KEY:
218 	case TEE_ALG_HKDF_SHA224_DERIVE_KEY:
219 	case TEE_ALG_HKDF_SHA256_DERIVE_KEY:
220 	case TEE_ALG_HKDF_SHA384_DERIVE_KEY:
221 	case TEE_ALG_HKDF_SHA512_DERIVE_KEY:
222 	case TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY:
223 	case TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY:
224 	case TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY:
225 	case TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY:
226 	case TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY:
227 	case TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEY:
228 		if (mode != TEE_MODE_DERIVE)
229 			return TEE_ERROR_NOT_SUPPORTED;
230 		with_private_key = true;
231 		req_key_usage = TEE_USAGE_DERIVE;
232 		break;
233 
234 	case TEE_ALG_MD5:
235 	case TEE_ALG_SHA1:
236 	case TEE_ALG_SHA224:
237 	case TEE_ALG_SHA256:
238 	case TEE_ALG_SHA384:
239 	case TEE_ALG_SHA512:
240 		if (mode != TEE_MODE_DIGEST)
241 			return TEE_ERROR_NOT_SUPPORTED;
242 		handle_state |= TEE_HANDLE_FLAG_KEY_SET;
243 		req_key_usage = 0;
244 		break;
245 
246 	case TEE_ALG_DES_CBC_MAC_NOPAD:
247 	case TEE_ALG_AES_CBC_MAC_NOPAD:
248 	case TEE_ALG_AES_CBC_MAC_PKCS5:
249 	case TEE_ALG_AES_CMAC:
250 	case TEE_ALG_DES_CBC_MAC_PKCS5:
251 	case TEE_ALG_DES3_CBC_MAC_NOPAD:
252 	case TEE_ALG_DES3_CBC_MAC_PKCS5:
253 	case TEE_ALG_HMAC_MD5:
254 	case TEE_ALG_HMAC_SHA1:
255 	case TEE_ALG_HMAC_SHA224:
256 	case TEE_ALG_HMAC_SHA256:
257 	case TEE_ALG_HMAC_SHA384:
258 	case TEE_ALG_HMAC_SHA512:
259 		if (mode != TEE_MODE_MAC)
260 			return TEE_ERROR_NOT_SUPPORTED;
261 		req_key_usage = TEE_USAGE_MAC;
262 		break;
263 
264 	default:
265 		return TEE_ERROR_NOT_SUPPORTED;
266 	}
267 
268 	op = TEE_Malloc(sizeof(*op), 0);
269 	if (!op)
270 		return TEE_ERROR_OUT_OF_MEMORY;
271 
272 	op->info.algorithm = algorithm;
273 	op->info.operationClass = TEE_ALG_GET_CLASS(algorithm);
274 	op->info.mode = mode;
275 	op->info.maxKeySize = maxKeySize;
276 	op->info.requiredKeyUsage = req_key_usage;
277 	op->info.handleState = handle_state;
278 
279 	if (block_size > 1) {
280 		size_t buffer_size = block_size;
281 
282 		if (buffer_two_blocks)
283 			buffer_size *= 2;
284 
285 		op->buffer = TEE_Malloc(buffer_size,
286 					TEE_USER_MEM_HINT_NO_FILL_ZERO);
287 		if (op->buffer == NULL) {
288 			res = TEE_ERROR_OUT_OF_MEMORY;
289 			goto err0;
290 		}
291 	}
292 	op->block_size = block_size;
293 	op->buffer_two_blocks = buffer_two_blocks;
294 
295 	if (TEE_ALG_GET_CLASS(algorithm) != TEE_OPERATION_DIGEST) {
296 		uint32_t mks = maxKeySize;
297 		TEE_ObjectType key_type = TEE_ALG_GET_KEY_TYPE(algorithm,
298 						       with_private_key);
299 
300 		/*
301 		 * If two keys are expected the max key size is the sum of
302 		 * the size of both keys.
303 		 */
304 		if (op->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS)
305 			mks /= 2;
306 
307 		res = TEE_AllocateTransientObject(key_type, mks, &op->key1);
308 		if (res != TEE_SUCCESS)
309 			goto err1;
310 
311 		if ((op->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) !=
312 		    0) {
313 			res = TEE_AllocateTransientObject(key_type, mks,
314 							  &op->key2);
315 			if (res != TEE_SUCCESS)
316 				goto err2;
317 		}
318 	}
319 
320 	res = utee_cryp_state_alloc(algorithm, mode, (uint32_t) op->key1,
321 				    (uint32_t) op->key2, &op->state);
322 	if (res != TEE_SUCCESS) {
323 		if ((op->info.handleState &
324 		     TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) != 0)
325 			goto err2;
326 		goto err1;
327 	}
328 
329 	/* For multi-stage operation do an "init". */
330 	TEE_ResetOperation(op);
331 	*operation = op;
332 	goto out;
333 
334 err2:
335 	TEE_FreeTransientObject(op->key2);
336 err1:
337 	TEE_FreeTransientObject(op->key1);
338 err0:
339 	TEE_FreeOperation(op);
340 
341 	if (res != TEE_SUCCESS &&
342 	    res != TEE_ERROR_OUT_OF_MEMORY &&
343 	    res != TEE_ERROR_NOT_SUPPORTED)
344 		TEE_Panic(0);
345 out:
346 	return res;
347 }
348 
349 void TEE_FreeOperation(TEE_OperationHandle operation)
350 {
351 	if (operation != TEE_HANDLE_NULL) {
352 		/*
353 		 * Note that keys should not be freed here, since they are
354 		 * claimed by the operation they will be freed by
355 		 * utee_cryp_state_free().
356 		 */
357 		utee_cryp_state_free(operation->state);
358 		TEE_Free(operation->buffer);
359 		TEE_Free(operation);
360 	}
361 }
362 
363 void TEE_GetOperationInfo(TEE_OperationHandle operation,
364 			  TEE_OperationInfo *operationInfo)
365 {
366 	if (operation == TEE_HANDLE_NULL)
367 		TEE_Panic(0);
368 
369 	if (operationInfo == NULL)
370 		TEE_Panic(0);
371 
372 	*operationInfo = operation->info;
373 }
374 
375 void TEE_ResetOperation(TEE_OperationHandle operation)
376 {
377 	TEE_Result res;
378 
379 	if (operation == TEE_HANDLE_NULL)
380 		TEE_Panic(0);
381 	if (operation->info.operationClass == TEE_OPERATION_DIGEST) {
382 		res = utee_hash_init(operation->state, NULL, 0);
383 		if (res != TEE_SUCCESS)
384 			TEE_Panic(res);
385 	}
386 	operation->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
387 }
388 
389 TEE_Result TEE_SetOperationKey(TEE_OperationHandle operation,
390 			       TEE_ObjectHandle key)
391 {
392 	TEE_Result res;
393 	uint32_t key_size = 0;
394 
395 	if (operation == TEE_HANDLE_NULL)
396 		TEE_Panic(0);
397 
398 	/* No key for digests */
399 	if (operation->info.operationClass == TEE_OPERATION_DIGEST)
400 		TEE_Panic(0);
401 
402 	/* Two keys expected */
403 	if ((operation->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) !=
404 	    0)
405 		TEE_Panic(0);
406 
407 	if (key != TEE_HANDLE_NULL) {
408 		TEE_ObjectInfo key_info;
409 
410 		res = TEE_GetObjectInfo1(key, &key_info);
411 		if (res != TEE_SUCCESS)
412 			goto err;
413 
414 		/* Supplied key has to meet required usage */
415 		if ((key_info.objectUsage & operation->info.requiredKeyUsage) !=
416 		    operation->info.requiredKeyUsage) {
417 			TEE_Panic(0);
418 		}
419 
420 		if (operation->info.maxKeySize < key_info.keySize)
421 			TEE_Panic(0);
422 
423 		key_size = key_info.keySize;
424 	}
425 
426 	TEE_ResetTransientObject(operation->key1);
427 	operation->info.handleState &= ~TEE_HANDLE_FLAG_KEY_SET;
428 
429 	if (key != TEE_HANDLE_NULL) {
430 		res = TEE_CopyObjectAttributes1(operation->key1, key);
431 		if (res != TEE_SUCCESS)
432 			goto err;
433 
434 		operation->info.handleState |= TEE_HANDLE_FLAG_KEY_SET;
435 	}
436 
437 	operation->info.keySize = key_size;
438 
439 	goto out;
440 
441 err:
442 	if (res == TEE_ERROR_CORRUPT_OBJECT ||
443 	    res == TEE_ERROR_STORAGE_NOT_AVAILABLE)
444 		return res;
445 	TEE_Panic(0);
446 out:
447 	return TEE_SUCCESS;
448 }
449 
450 TEE_Result TEE_SetOperationKey2(TEE_OperationHandle operation,
451 				TEE_ObjectHandle key1, TEE_ObjectHandle key2)
452 {
453 	TEE_Result res;
454 	uint32_t key_size = 0;
455 
456 	if (operation == TEE_HANDLE_NULL)
457 		TEE_Panic(0);
458 
459 	/* Two keys not expected */
460 	if ((operation->info.handleState & TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) ==
461 	    0)
462 		TEE_Panic(0);
463 
464 	/* Either both keys are NULL or both are not NULL */
465 	if ((key1 == TEE_HANDLE_NULL || key2 == TEE_HANDLE_NULL) &&
466 	    key1 != key2)
467 		TEE_Panic(0);
468 
469 	if (key1 != TEE_HANDLE_NULL) {
470 		TEE_ObjectInfo key_info1;
471 		TEE_ObjectInfo key_info2;
472 
473 		res = TEE_GetObjectInfo1(key1, &key_info1);
474 		if (res != TEE_SUCCESS)
475 			goto err;
476 
477 		/* Supplied key has to meet required usage */
478 		if ((key_info1.objectUsage & operation->info.
479 		     requiredKeyUsage) != operation->info.requiredKeyUsage) {
480 			TEE_Panic(0);
481 		}
482 
483 		res = TEE_GetObjectInfo1(key2, &key_info2);
484 		if (res != TEE_SUCCESS) {
485 			if (res == TEE_ERROR_CORRUPT_OBJECT)
486 				res = TEE_ERROR_CORRUPT_OBJECT_2;
487 			goto err;
488 		}
489 
490 		/* Supplied key has to meet required usage */
491 		if ((key_info2.objectUsage & operation->info.
492 		     requiredKeyUsage) != operation->info.requiredKeyUsage) {
493 			TEE_Panic(0);
494 		}
495 
496 		/*
497 		 * AES-XTS (the only multi key algorithm supported, requires the
498 		 * keys to be of equal size.
499 		 */
500 		if (operation->info.algorithm == TEE_ALG_AES_XTS &&
501 		    key_info1.keySize != key_info2.keySize)
502 			TEE_Panic(0);
503 
504 		if (operation->info.maxKeySize < key_info1.keySize)
505 			TEE_Panic(0);
506 
507 		/*
508 		 * Odd that only the size of one key should be reported while
509 		 * size of two key are used when allocating the operation.
510 		 */
511 		key_size = key_info1.keySize;
512 	}
513 
514 	TEE_ResetTransientObject(operation->key1);
515 	TEE_ResetTransientObject(operation->key2);
516 	operation->info.handleState &= ~TEE_HANDLE_FLAG_KEY_SET;
517 
518 	if (key1 != TEE_HANDLE_NULL) {
519 		res = TEE_CopyObjectAttributes1(operation->key1, key1);
520 		if (res != TEE_SUCCESS)
521 			goto err;
522 
523 		res = TEE_CopyObjectAttributes1(operation->key2, key2);
524 		if (res != TEE_SUCCESS) {
525 			if (res == TEE_ERROR_CORRUPT_OBJECT)
526 				res = TEE_ERROR_CORRUPT_OBJECT_2;
527 			goto err;
528 		}
529 
530 		operation->info.handleState |= TEE_HANDLE_FLAG_KEY_SET;
531 	}
532 
533 	operation->info.keySize = key_size;
534 
535 	goto out;
536 
537 err:
538 	if (res == TEE_ERROR_CORRUPT_OBJECT ||
539 	    res == TEE_ERROR_CORRUPT_OBJECT_2 ||
540 	    res == TEE_ERROR_STORAGE_NOT_AVAILABLE ||
541 	    res == TEE_ERROR_STORAGE_NOT_AVAILABLE_2)
542 		return res;
543 	TEE_Panic(0);
544 out:
545 	return TEE_SUCCESS;
546 }
547 
548 void TEE_CopyOperation(TEE_OperationHandle dst_op, TEE_OperationHandle src_op)
549 {
550 	TEE_Result res;
551 
552 	if (dst_op == TEE_HANDLE_NULL || src_op == TEE_HANDLE_NULL)
553 		TEE_Panic(0);
554 	if (dst_op->info.algorithm != src_op->info.algorithm)
555 		TEE_Panic(0);
556 	if (src_op->info.operationClass != TEE_OPERATION_DIGEST) {
557 		TEE_ObjectHandle key1 = TEE_HANDLE_NULL;
558 		TEE_ObjectHandle key2 = TEE_HANDLE_NULL;
559 
560 		if (src_op->info.handleState & TEE_HANDLE_FLAG_KEY_SET) {
561 			key1 = src_op->key1;
562 			key2 = src_op->key2;
563 		}
564 
565 		if ((src_op->info.handleState &
566 		     TEE_HANDLE_FLAG_EXPECT_TWO_KEYS) == 0) {
567 			TEE_SetOperationKey(dst_op, key1);
568 		} else {
569 			TEE_SetOperationKey2(dst_op, key1, key2);
570 		}
571 	}
572 	dst_op->info.handleState = src_op->info.handleState;
573 	dst_op->info.keySize = src_op->info.keySize;
574 
575 	if (dst_op->buffer_two_blocks != src_op->buffer_two_blocks ||
576 	    dst_op->block_size != src_op->block_size)
577 		TEE_Panic(0);
578 
579 	if (dst_op->buffer != NULL) {
580 		if (src_op->buffer == NULL)
581 			TEE_Panic(0);
582 
583 		memcpy(dst_op->buffer, src_op->buffer, src_op->buffer_offs);
584 		dst_op->buffer_offs = src_op->buffer_offs;
585 	} else if (src_op->buffer != NULL) {
586 		TEE_Panic(0);
587 	}
588 
589 	res = utee_cryp_state_copy(dst_op->state, src_op->state);
590 	if (res != TEE_SUCCESS)
591 		TEE_Panic(res);
592 }
593 
594 /* Cryptographic Operations API - Message Digest Functions */
595 
596 void TEE_DigestUpdate(TEE_OperationHandle operation,
597 		      void *chunk, uint32_t chunkSize)
598 {
599 	TEE_Result res = TEE_ERROR_GENERIC;
600 
601 	if (operation == TEE_HANDLE_NULL ||
602 	    operation->info.operationClass != TEE_OPERATION_DIGEST)
603 		TEE_Panic(0);
604 
605 	res = utee_hash_update(operation->state, chunk, chunkSize);
606 	if (res != TEE_SUCCESS)
607 		TEE_Panic(res);
608 }
609 
610 TEE_Result TEE_DigestDoFinal(TEE_OperationHandle operation, const void *chunk,
611 			     uint32_t chunkLen, void *hash, uint32_t *hashLen)
612 {
613 	if ((operation == TEE_HANDLE_NULL) || (!chunk && chunkLen) ||
614 	    !hash || !hashLen ||
615 	    (operation->info.operationClass != TEE_OPERATION_DIGEST))
616 		TEE_Panic(0);
617 
618 	return utee_hash_final(operation->state, chunk, chunkLen, hash,
619 			       hashLen);
620 }
621 
622 /* Cryptographic Operations API - Symmetric Cipher Functions */
623 
624 void TEE_CipherInit(TEE_OperationHandle operation, const void *IV, uint32_t IVLen)
625 {
626 	TEE_Result res;
627 
628 	if (operation == TEE_HANDLE_NULL)
629 		TEE_Panic(0);
630 	if (operation->info.operationClass != TEE_OPERATION_CIPHER)
631 		TEE_Panic(0);
632 	res = utee_cipher_init(operation->state, IV, IVLen);
633 	if (res != TEE_SUCCESS)
634 		TEE_Panic(res);
635 	operation->buffer_offs = 0;
636 	operation->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED;
637 }
638 
639 static TEE_Result tee_buffer_update(
640 		TEE_OperationHandle op,
641 		TEE_Result(*update_func) (uint32_t state, const void *src,
642 					  size_t slen, void *dst, uint32_t *dlen),
643 		const void *src_data, size_t src_len,
644 		void *dest_data, uint32_t *dest_len)
645 {
646 	TEE_Result res;
647 	const uint8_t *src = src_data;
648 	size_t slen = src_len;
649 	uint8_t *dst = dest_data;
650 	size_t dlen = *dest_len;
651 	size_t acc_dlen = 0;
652 	uint32_t tmp_dlen;
653 	size_t l;
654 	size_t buffer_size;
655 	size_t buffer_left;
656 
657 	if (op->buffer_two_blocks) {
658 		buffer_size = op->block_size * 2;
659 		buffer_left = 1;
660 	} else {
661 		buffer_size = op->block_size;
662 		buffer_left = 0;
663 	}
664 
665 	if (op->buffer_offs > 0) {
666 		/* Fill up complete block */
667 		if (op->buffer_offs < op->block_size)
668 			l = MIN(slen, op->block_size - op->buffer_offs);
669 		else
670 			l = MIN(slen, buffer_size - op->buffer_offs);
671 		memcpy(op->buffer + op->buffer_offs, src, l);
672 		op->buffer_offs += l;
673 		src += l;
674 		slen -= l;
675 		if ((op->buffer_offs % op->block_size) != 0)
676 			goto out;	/* Nothing left to do */
677 	}
678 
679 	/* If we can feed from buffer */
680 	if ((op->buffer_offs > 0) &&
681 	    ((op->buffer_offs + slen) >= (buffer_size + buffer_left))) {
682 		l = ROUNDUP(op->buffer_offs + slen - buffer_size,
683 				op->block_size);
684 		l = MIN(op->buffer_offs, l);
685 		tmp_dlen = dlen;
686 		res = update_func(op->state, op->buffer, l, dst, &tmp_dlen);
687 		if (res != TEE_SUCCESS)
688 			TEE_Panic(res);
689 		dst += tmp_dlen;
690 		dlen -= tmp_dlen;
691 		acc_dlen += tmp_dlen;
692 		op->buffer_offs -= l;
693 		if (op->buffer_offs > 0) {
694 			/*
695 			 * Slen is small enough to be contained in rest buffer.
696 			 */
697 			memcpy(op->buffer, op->buffer + l, buffer_size - l);
698 			memcpy(op->buffer + op->buffer_offs, src, slen);
699 			op->buffer_offs += slen;
700 			goto out;	/* Nothing left to do */
701 		}
702 	}
703 
704 	if (slen >= (buffer_size + buffer_left)) {
705 		/* Buffer is empty, feed as much as possible from src */
706 		if (TEE_ALIGNMENT_IS_OK(src, uint32_t)) {
707 			l = ROUNDUP(slen - buffer_size + 1, op->block_size);
708 
709 			tmp_dlen = dlen;
710 			res = update_func(op->state, src, l, dst, &tmp_dlen);
711 			if (res != TEE_SUCCESS)
712 				TEE_Panic(res);
713 			src += l;
714 			slen -= l;
715 			dst += tmp_dlen;
716 			dlen -= tmp_dlen;
717 			acc_dlen += tmp_dlen;
718 		} else {
719 			/*
720 			 * Supplied data isn't well aligned, we're forced to
721 			 * feed through the buffer.
722 			 */
723 			while (slen >= op->block_size) {
724 				memcpy(op->buffer, src, op->block_size);
725 
726 				tmp_dlen = dlen;
727 				res =
728 				    update_func(op->state, op->buffer,
729 						op->block_size, dst, &tmp_dlen);
730 				if (res != TEE_SUCCESS)
731 					TEE_Panic(res);
732 				src += op->block_size;
733 				slen -= op->block_size;
734 				dst += tmp_dlen;
735 				dlen -= tmp_dlen;
736 				acc_dlen += tmp_dlen;
737 			}
738 		}
739 	}
740 
741 	/* Slen is small enough to be contained in buffer. */
742 	memcpy(op->buffer + op->buffer_offs, src, slen);
743 	op->buffer_offs += slen;
744 
745 out:
746 	*dest_len = acc_dlen;
747 	return TEE_SUCCESS;
748 }
749 
750 TEE_Result TEE_CipherUpdate(TEE_OperationHandle op, const void *srcData,
751 			    uint32_t srcLen, void *destData, uint32_t *destLen)
752 {
753 	size_t req_dlen;
754 
755 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
756 	    destLen == NULL || (destData == NULL && *destLen != 0))
757 		TEE_Panic(0);
758 	if (op->info.operationClass != TEE_OPERATION_CIPHER)
759 		TEE_Panic(0);
760 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
761 		TEE_Panic(0);
762 
763 	/* Calculate required dlen */
764 	req_dlen = ((op->buffer_offs + srcLen) / op->block_size) *
765 	    op->block_size;
766 	if (op->buffer_two_blocks) {
767 		if (req_dlen > op->block_size * 2)
768 			req_dlen -= op->block_size * 2;
769 		else
770 			req_dlen = 0;
771 	}
772 	/*
773 	 * Check that required destLen is big enough before starting to feed
774 	 * data to the algorithm. Errors during feeding of data are fatal as we
775 	 * can't restore sync with this API.
776 	 */
777 	if (*destLen < req_dlen) {
778 		*destLen = req_dlen;
779 		return TEE_ERROR_SHORT_BUFFER;
780 	}
781 
782 	tee_buffer_update(op, utee_cipher_update, srcData, srcLen, destData,
783 			  destLen);
784 
785 	return TEE_SUCCESS;
786 }
787 
788 TEE_Result TEE_CipherDoFinal(TEE_OperationHandle op,
789 			     const void *srcData, uint32_t srcLen, void *destData,
790 			     uint32_t *destLen)
791 {
792 	TEE_Result res;
793 	uint8_t *dst = destData;
794 	size_t acc_dlen = 0;
795 	uint32_t tmp_dlen;
796 	size_t req_dlen;
797 
798 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
799 	    destLen == NULL || (destData == NULL && *destLen != 0))
800 		TEE_Panic(0);
801 	if (op->info.operationClass != TEE_OPERATION_CIPHER)
802 		TEE_Panic(0);
803 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
804 		TEE_Panic(0);
805 
806 	/*
807 	 * Check that the final block doesn't require padding for those
808 	 * algorithms that requires client to supply padding.
809 	 */
810 	if (op->info.algorithm == TEE_ALG_AES_ECB_NOPAD ||
811 	    op->info.algorithm == TEE_ALG_AES_CBC_NOPAD ||
812 	    op->info.algorithm == TEE_ALG_DES_ECB_NOPAD ||
813 	    op->info.algorithm == TEE_ALG_DES_CBC_NOPAD ||
814 	    op->info.algorithm == TEE_ALG_DES3_ECB_NOPAD ||
815 	    op->info.algorithm == TEE_ALG_DES3_CBC_NOPAD) {
816 		if (((op->buffer_offs + srcLen) % op->block_size) != 0)
817 			return TEE_ERROR_BAD_PARAMETERS;
818 	}
819 
820 	/*
821 	 * Check that required destLen is big enough before starting to feed
822 	 * data to the algorithm. Errors during feeding of data are fatal as we
823 	 * can't restore sync with this API.
824 	 */
825 	req_dlen = op->buffer_offs + srcLen;
826 	if (*destLen < req_dlen) {
827 		*destLen = req_dlen;
828 		return TEE_ERROR_SHORT_BUFFER;
829 	}
830 
831 	tmp_dlen = *destLen - acc_dlen;
832 	tee_buffer_update(op, utee_cipher_update, srcData, srcLen, dst,
833 			  &tmp_dlen);
834 	dst += tmp_dlen;
835 	acc_dlen += tmp_dlen;
836 
837 	tmp_dlen = *destLen - acc_dlen;
838 	res = utee_cipher_final(op->state, op->buffer, op->buffer_offs,
839 				dst, &tmp_dlen);
840 	if (res != TEE_SUCCESS)
841 		TEE_Panic(res);
842 	acc_dlen += tmp_dlen;
843 
844 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
845 	*destLen = acc_dlen;
846 	return TEE_SUCCESS;
847 }
848 
849 /* Cryptographic Operations API - MAC Functions */
850 
851 void TEE_MACInit(TEE_OperationHandle operation, const void *IV, uint32_t IVLen)
852 {
853 	TEE_Result res;
854 
855 	if (operation == TEE_HANDLE_NULL)
856 		TEE_Panic(0);
857 	if (IV == NULL && IVLen != 0)
858 		TEE_Panic(0);
859 	if (operation->info.operationClass != TEE_OPERATION_MAC)
860 		TEE_Panic(0);
861 	res = utee_hash_init(operation->state, IV, IVLen);
862 	if (res != TEE_SUCCESS)
863 		TEE_Panic(res);
864 	operation->buffer_offs = 0;
865 	operation->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED;
866 }
867 
868 void TEE_MACUpdate(TEE_OperationHandle op, const void *chunk, uint32_t chunkSize)
869 {
870 	TEE_Result res;
871 
872 	if (op == TEE_HANDLE_NULL || (chunk == NULL && chunkSize != 0))
873 		TEE_Panic(0);
874 	if (op->info.operationClass != TEE_OPERATION_MAC)
875 		TEE_Panic(0);
876 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
877 		TEE_Panic(0);
878 
879 	res = utee_hash_update(op->state, chunk, chunkSize);
880 	if (res != TEE_SUCCESS)
881 		TEE_Panic(res);
882 }
883 
884 TEE_Result TEE_MACComputeFinal(TEE_OperationHandle op,
885 			       const void *message, uint32_t messageLen,
886 			       void *mac, uint32_t *macLen)
887 {
888 	TEE_Result res;
889 
890 	if (op == TEE_HANDLE_NULL || (message == NULL && messageLen != 0) ||
891 	    mac == NULL || macLen == NULL)
892 		TEE_Panic(0);
893 	if (op->info.operationClass != TEE_OPERATION_MAC)
894 		TEE_Panic(0);
895 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
896 		TEE_Panic(0);
897 
898 	res = utee_hash_final(op->state, message, messageLen, mac, macLen);
899 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
900 	return res;
901 }
902 
903 TEE_Result TEE_MACCompareFinal(TEE_OperationHandle operation,
904 			       const void *message, uint32_t messageLen,
905 			       const void *mac, uint32_t macLen)
906 {
907 	TEE_Result res;
908 	uint8_t computed_mac[TEE_MAX_HASH_SIZE];
909 	uint32_t computed_mac_size = TEE_MAX_HASH_SIZE;
910 
911 	res = TEE_MACComputeFinal(operation, message, messageLen, computed_mac,
912 				  &computed_mac_size);
913 	if (res != TEE_SUCCESS)
914 		return res;
915 	if (computed_mac_size != macLen)
916 		return TEE_ERROR_MAC_INVALID;
917 	if (buf_compare_ct(mac, computed_mac, computed_mac_size) != 0)
918 		return TEE_ERROR_MAC_INVALID;
919 	return TEE_SUCCESS;
920 }
921 
922 /* Cryptographic Operations API - Authenticated Encryption Functions */
923 
924 TEE_Result TEE_AEInit(TEE_OperationHandle op, const void *nonce,
925 		      uint32_t nonceLen, uint32_t tagLen, uint32_t AADLen,
926 		      uint32_t payloadLen)
927 {
928 	TEE_Result res;
929 
930 	if (op == TEE_HANDLE_NULL || nonce == NULL)
931 		TEE_Panic(0);
932 	if (op->info.operationClass != TEE_OPERATION_AE)
933 		TEE_Panic(0);
934 
935 	/*
936 	 * AES-CCM tag len is specified by AES-CCM spec and handled in TEE Core
937 	 * in the implementation. But AES-GCM spec doesn't specify the tag len
938 	 * according to the same principle so we have to check here instead to
939 	 * be GP compliant.
940 	 */
941 	if (op->info.algorithm == TEE_ALG_AES_GCM) {
942 		/*
943 		 * From GP spec: For AES-GCM, can be 128, 120, 112, 104, or 96
944 		 */
945 		if (tagLen < 96 || tagLen > 128 || (tagLen % 8 != 0))
946 			return TEE_ERROR_NOT_SUPPORTED;
947 	}
948 
949 	res = utee_authenc_init(op->state, nonce, nonceLen, tagLen / 8, AADLen,
950 				payloadLen);
951 	if (res != TEE_SUCCESS) {
952 		if (res != TEE_ERROR_NOT_SUPPORTED)
953 			TEE_Panic(res);
954 		return res;
955 	}
956 	op->ae_tag_len = tagLen / 8;
957 
958 	op->info.handleState |= TEE_HANDLE_FLAG_INITIALIZED;
959 	return TEE_SUCCESS;
960 }
961 
962 void TEE_AEUpdateAAD(TEE_OperationHandle op, const void *AADdata,
963 		     uint32_t AADdataLen)
964 {
965 	TEE_Result res;
966 
967 	if (op == TEE_HANDLE_NULL || (AADdata == NULL && AADdataLen != 0))
968 		TEE_Panic(0);
969 	if (op->info.operationClass != TEE_OPERATION_AE)
970 		TEE_Panic(0);
971 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
972 		TEE_Panic(0);
973 
974 	res = utee_authenc_update_aad(op->state, AADdata, AADdataLen);
975 	if (res != TEE_SUCCESS)
976 		TEE_Panic(res);
977 }
978 
979 TEE_Result TEE_AEUpdate(TEE_OperationHandle op, const void *srcData,
980 			uint32_t srcLen, void *destData, uint32_t *destLen)
981 {
982 	size_t req_dlen;
983 
984 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
985 	    destLen == NULL || (destData == NULL && *destLen != 0))
986 		TEE_Panic(0);
987 	if (op->info.operationClass != TEE_OPERATION_AE)
988 		TEE_Panic(0);
989 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
990 		TEE_Panic(0);
991 
992 	/*
993 	 * Check that required destLen is big enough before starting to feed
994 	 * data to the algorithm. Errors during feeding of data are fatal as we
995 	 * can't restore sync with this API.
996 	 */
997 	req_dlen = ROUNDDOWN(op->buffer_offs + srcLen, op->block_size);
998 	if (*destLen < req_dlen) {
999 		*destLen = req_dlen;
1000 		return TEE_ERROR_SHORT_BUFFER;
1001 	}
1002 
1003 	tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen,
1004 			  destData, destLen);
1005 
1006 	return TEE_SUCCESS;
1007 }
1008 
1009 TEE_Result TEE_AEEncryptFinal(TEE_OperationHandle op,
1010 			      const void *srcData, uint32_t srcLen,
1011 			      void *destData, uint32_t *destLen, void *tag,
1012 			      uint32_t *tagLen)
1013 {
1014 	TEE_Result res;
1015 	uint8_t *dst = destData;
1016 	size_t acc_dlen = 0;
1017 	uint32_t tmp_dlen;
1018 	size_t req_dlen;
1019 
1020 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
1021 	    destLen == NULL || (destData == NULL && *destLen != 0) ||
1022 	    tag == NULL || tagLen == NULL)
1023 		TEE_Panic(0);
1024 	if (op->info.operationClass != TEE_OPERATION_AE)
1025 		TEE_Panic(0);
1026 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1027 		TEE_Panic(0);
1028 
1029 	/*
1030 	 * Check that required destLen is big enough before starting to feed
1031 	 * data to the algorithm. Errors during feeding of data are fatal as we
1032 	 * can't restore sync with this API.
1033 	 */
1034 	req_dlen = op->buffer_offs + srcLen;
1035 	if (*destLen < req_dlen) {
1036 		*destLen = req_dlen;
1037 		return TEE_ERROR_SHORT_BUFFER;
1038 	}
1039 
1040 	/*
1041 	 * Need to check this before update_payload since sync would be lost if
1042 	 * we return short buffer after that.
1043 	 */
1044 	if (*tagLen < op->ae_tag_len) {
1045 		*tagLen = op->ae_tag_len;
1046 		return TEE_ERROR_SHORT_BUFFER;
1047 	}
1048 
1049 	tmp_dlen = *destLen - acc_dlen;
1050 	tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen,
1051 			  dst, &tmp_dlen);
1052 	dst += tmp_dlen;
1053 	acc_dlen += tmp_dlen;
1054 
1055 	tmp_dlen = *destLen - acc_dlen;
1056 	res =
1057 	    utee_authenc_enc_final(op->state, op->buffer, op->buffer_offs, dst,
1058 				   &tmp_dlen, tag, tagLen);
1059 	if (res != TEE_SUCCESS)
1060 		TEE_Panic(res);
1061 	acc_dlen += tmp_dlen;
1062 
1063 	*destLen = acc_dlen;
1064 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
1065 
1066 	return res;
1067 }
1068 
1069 TEE_Result TEE_AEDecryptFinal(TEE_OperationHandle op,
1070 			      const void *srcData, uint32_t srcLen,
1071 			      void *destData, uint32_t *destLen, const void *tag,
1072 			      uint32_t tagLen)
1073 {
1074 	TEE_Result res;
1075 	uint8_t *dst = destData;
1076 	size_t acc_dlen = 0;
1077 	uint32_t tmp_dlen;
1078 	size_t req_dlen;
1079 
1080 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
1081 	    destLen == NULL || (destData == NULL && *destLen != 0) ||
1082 	    (tag == NULL && tagLen != 0))
1083 		TEE_Panic(0);
1084 	if (op->info.operationClass != TEE_OPERATION_AE)
1085 		TEE_Panic(0);
1086 	if ((op->info.handleState & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1087 		TEE_Panic(0);
1088 
1089 	/*
1090 	 * Check that required destLen is big enough before starting to feed
1091 	 * data to the algorithm. Errors during feeding of data are fatal as we
1092 	 * can't restore sync with this API.
1093 	 */
1094 	req_dlen = op->buffer_offs + srcLen;
1095 	if (*destLen < req_dlen) {
1096 		*destLen = req_dlen;
1097 		return TEE_ERROR_SHORT_BUFFER;
1098 	}
1099 
1100 	tmp_dlen = *destLen - acc_dlen;
1101 	tee_buffer_update(op, utee_authenc_update_payload, srcData, srcLen,
1102 			  dst, &tmp_dlen);
1103 	dst += tmp_dlen;
1104 	acc_dlen += tmp_dlen;
1105 
1106 	tmp_dlen = *destLen - acc_dlen;
1107 	res =
1108 	    utee_authenc_dec_final(op->state, op->buffer, op->buffer_offs, dst,
1109 				   &tmp_dlen, tag, tagLen);
1110 	if (res != TEE_SUCCESS && res != TEE_ERROR_MAC_INVALID)
1111 		TEE_Panic(res);
1112 	/* Supplied tagLen should match what we initiated with */
1113 	if (tagLen != op->ae_tag_len)
1114 		res = TEE_ERROR_MAC_INVALID;
1115 
1116 	acc_dlen += tmp_dlen;
1117 
1118 	*destLen = acc_dlen;
1119 	op->info.handleState &= ~TEE_HANDLE_FLAG_INITIALIZED;
1120 
1121 	return res;
1122 }
1123 
1124 /* Cryptographic Operations API - Asymmetric Functions */
1125 
1126 TEE_Result TEE_AsymmetricEncrypt(TEE_OperationHandle op,
1127 				 const TEE_Attribute *params,
1128 				 uint32_t paramCount, const void *srcData,
1129 				 uint32_t srcLen, void *destData,
1130 				 uint32_t *destLen)
1131 {
1132 	TEE_Result res;
1133 
1134 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
1135 	    destLen == NULL || (destData == NULL && *destLen != 0))
1136 		TEE_Panic(0);
1137 	if (paramCount != 0 && params == NULL)
1138 		TEE_Panic(0);
1139 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_CIPHER)
1140 		TEE_Panic(0);
1141 	if (op->info.mode != TEE_MODE_ENCRYPT)
1142 		TEE_Panic(0);
1143 
1144 	res = utee_asymm_operate(op->state, params, paramCount, srcData, srcLen,
1145 				 destData, destLen);
1146 	if (res != TEE_SUCCESS &&
1147 	    res != TEE_ERROR_SHORT_BUFFER &&
1148 	    res != TEE_ERROR_BAD_PARAMETERS)
1149 		TEE_Panic(res);
1150 	return res;
1151 }
1152 
1153 TEE_Result TEE_AsymmetricDecrypt(TEE_OperationHandle op,
1154 				 const TEE_Attribute *params,
1155 				 uint32_t paramCount, const void *srcData,
1156 				 uint32_t srcLen, void *destData,
1157 				 uint32_t *destLen)
1158 {
1159 	TEE_Result res;
1160 
1161 	if (op == TEE_HANDLE_NULL || (srcData == NULL && srcLen != 0) ||
1162 	    destLen == NULL || (destData == NULL && *destLen != 0))
1163 		TEE_Panic(0);
1164 	if (paramCount != 0 && params == NULL)
1165 		TEE_Panic(0);
1166 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_CIPHER)
1167 		TEE_Panic(0);
1168 	if (op->info.mode != TEE_MODE_DECRYPT)
1169 		TEE_Panic(0);
1170 
1171 	res = utee_asymm_operate(op->state, params, paramCount, srcData, srcLen,
1172 				 destData, destLen);
1173 	if (res != TEE_SUCCESS &&
1174 	    res != TEE_ERROR_SHORT_BUFFER &&
1175 	    res != TEE_ERROR_BAD_PARAMETERS)
1176 		TEE_Panic(res);
1177 	return res;
1178 }
1179 
1180 TEE_Result TEE_AsymmetricSignDigest(TEE_OperationHandle op,
1181 				    const TEE_Attribute *params,
1182 				    uint32_t paramCount, const void *digest,
1183 				    uint32_t digestLen, void *signature,
1184 				    uint32_t *signatureLen)
1185 {
1186 	TEE_Result res;
1187 
1188 	if (op == TEE_HANDLE_NULL || (digest == NULL && digestLen != 0) ||
1189 	    signature == NULL || signatureLen == NULL)
1190 		TEE_Panic(0);
1191 	if (paramCount != 0 && params == NULL)
1192 		TEE_Panic(0);
1193 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_SIGNATURE)
1194 		TEE_Panic(0);
1195 	if (op->info.mode != TEE_MODE_SIGN)
1196 		TEE_Panic(0);
1197 
1198 	res =
1199 	    utee_asymm_operate(op->state, params, paramCount, digest, digestLen,
1200 			       signature, signatureLen);
1201 	if (res != TEE_SUCCESS && res != TEE_ERROR_SHORT_BUFFER)
1202 		TEE_Panic(res);
1203 	return res;
1204 }
1205 
1206 TEE_Result TEE_AsymmetricVerifyDigest(TEE_OperationHandle op,
1207 				      const TEE_Attribute *params,
1208 				      uint32_t paramCount, const void *digest,
1209 				      uint32_t digestLen, const void *signature,
1210 				      uint32_t signatureLen)
1211 {
1212 	TEE_Result res;
1213 
1214 	if (op == TEE_HANDLE_NULL || (digest == NULL && digestLen != 0) ||
1215 	    (signature == NULL && signatureLen != 0))
1216 		TEE_Panic(0);
1217 	if (paramCount != 0 && params == NULL)
1218 		TEE_Panic(0);
1219 	if (op->info.operationClass != TEE_OPERATION_ASYMMETRIC_SIGNATURE)
1220 		TEE_Panic(0);
1221 	if (op->info.mode != TEE_MODE_VERIFY)
1222 		TEE_Panic(0);
1223 
1224 	res =
1225 	    utee_asymm_verify(op->state, params, paramCount, digest, digestLen,
1226 			      signature, signatureLen);
1227 	if (res != TEE_SUCCESS && res != TEE_ERROR_SIGNATURE_INVALID)
1228 		TEE_Panic(res);
1229 	return res;
1230 }
1231 
1232 /* Cryptographic Operations API - Key Derivation Functions */
1233 
1234 void TEE_DeriveKey(TEE_OperationHandle operation,
1235 		   const TEE_Attribute *params, uint32_t paramCount,
1236 		   TEE_ObjectHandle derivedKey)
1237 {
1238 	TEE_Result res;
1239 	TEE_ObjectInfo key_info;
1240 
1241 	if (operation == TEE_HANDLE_NULL || derivedKey == 0)
1242 		TEE_Panic(0);
1243 	if (paramCount != 0 && params == NULL)
1244 		TEE_Panic(0);
1245 	if (TEE_ALG_GET_CLASS(operation->info.algorithm) !=
1246 			TEE_OPERATION_KEY_DERIVATION)
1247 		TEE_Panic(0);
1248 
1249 	if (operation->info.operationClass != TEE_OPERATION_KEY_DERIVATION)
1250 		TEE_Panic(0);
1251 	if (operation->info.mode != TEE_MODE_DERIVE)
1252 		TEE_Panic(0);
1253 	if ((operation->info.handleState & TEE_HANDLE_FLAG_KEY_SET) == 0)
1254 		TEE_Panic(0);
1255 
1256 	res = utee_cryp_obj_get_info((uint32_t) derivedKey, &key_info);
1257 	if (res != TEE_SUCCESS)
1258 		TEE_Panic(0);
1259 
1260 	if (key_info.objectType != TEE_TYPE_GENERIC_SECRET)
1261 		TEE_Panic(0);
1262 	if ((key_info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1263 		TEE_Panic(0);
1264 
1265 	res = utee_cryp_derive_key(operation->state, params, paramCount,
1266 				   (uint32_t) derivedKey);
1267 	if (res != TEE_SUCCESS)
1268 		TEE_Panic(res);
1269 }
1270 
1271 /* Cryptographic Operations API - Random Number Generation Functions */
1272 
1273 void TEE_GenerateRandom(void *randomBuffer, uint32_t randomBufferLen)
1274 {
1275 	TEE_Result res;
1276 
1277 	res = utee_cryp_random_number_generate(randomBuffer, randomBufferLen);
1278 	if (res != TEE_SUCCESS)
1279 		TEE_Panic(res);
1280 }
1281