xref: /optee_os/lib/libmbedtls/mbedtls/library/rsa.c (revision a1d5c81f8834a9d2c6f4372cce2e59e70e709121)
1 // SPDX-License-Identifier: Apache-2.0
2 /*
3  *  The RSA public-key cryptosystem
4  *
5  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 
22 /*
23  *  The following sources were referenced in the design of this implementation
24  *  of the RSA algorithm:
25  *
26  *  [1] A method for obtaining digital signatures and public-key cryptosystems
27  *      R Rivest, A Shamir, and L Adleman
28  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
29  *
30  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
31  *      Menezes, van Oorschot and Vanstone
32  *
33  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
34  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
35  *      Stefan Mangard
36  *      https://arxiv.org/abs/1702.08719v2
37  *
38  */
39 
40 #if !defined(MBEDTLS_CONFIG_FILE)
41 #include "mbedtls/config.h"
42 #else
43 #include MBEDTLS_CONFIG_FILE
44 #endif
45 
46 #if defined(MBEDTLS_RSA_C)
47 
48 #include "mbedtls/rsa.h"
49 #include "mbedtls/rsa_internal.h"
50 #include "mbedtls/oid.h"
51 #include "mbedtls/platform_util.h"
52 #include "mbedtls/error.h"
53 
54 #include <string.h>
55 
56 #if defined(MBEDTLS_PKCS1_V21)
57 #include "mbedtls/md.h"
58 #endif
59 
60 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__)
61 #include <stdlib.h>
62 #endif
63 
64 #if defined(MBEDTLS_PLATFORM_C)
65 #include "mbedtls/platform.h"
66 #else
67 #include <stdio.h>
68 #define mbedtls_printf printf
69 #define mbedtls_calloc calloc
70 #define mbedtls_free   free
71 #endif
72 
73 #if !defined(MBEDTLS_RSA_ALT)
74 
75 /* Parameter validation macros */
76 #define RSA_VALIDATE_RET( cond )                                       \
77     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
78 #define RSA_VALIDATE( cond )                                           \
79     MBEDTLS_INTERNAL_VALIDATE( cond )
80 
81 #if defined(MBEDTLS_PKCS1_V15)
82 /* constant-time buffer comparison */
83 static inline int mbedtls_safer_memcmp( const void *a, const void *b, size_t n )
84 {
85     size_t i;
86     const unsigned char *A = (const unsigned char *) a;
87     const unsigned char *B = (const unsigned char *) b;
88     unsigned char diff = 0;
89 
90     for( i = 0; i < n; i++ )
91         diff |= A[i] ^ B[i];
92 
93     return( diff );
94 }
95 #endif /* MBEDTLS_PKCS1_V15 */
96 
97 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
98                         const mbedtls_mpi *N,
99                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
100                         const mbedtls_mpi *D, const mbedtls_mpi *E )
101 {
102     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
103     RSA_VALIDATE_RET( ctx != NULL );
104 
105     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
106         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
107         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
108         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
109         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
110     {
111         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
112     }
113 
114     if( N != NULL )
115         ctx->len = mbedtls_mpi_size( &ctx->N );
116 
117     return( 0 );
118 }
119 
120 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
121                             unsigned char const *N, size_t N_len,
122                             unsigned char const *P, size_t P_len,
123                             unsigned char const *Q, size_t Q_len,
124                             unsigned char const *D, size_t D_len,
125                             unsigned char const *E, size_t E_len )
126 {
127     int ret = 0;
128     RSA_VALIDATE_RET( ctx != NULL );
129 
130     if( N != NULL )
131     {
132         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
133         ctx->len = mbedtls_mpi_size( &ctx->N );
134     }
135 
136     if( P != NULL )
137         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
138 
139     if( Q != NULL )
140         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
141 
142     if( D != NULL )
143         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
144 
145     if( E != NULL )
146         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
147 
148 cleanup:
149 
150     if( ret != 0 )
151         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
152 
153     return( 0 );
154 }
155 
156 /*
157  * Checks whether the context fields are set in such a way
158  * that the RSA primitives will be able to execute without error.
159  * It does *not* make guarantees for consistency of the parameters.
160  */
161 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
162                               int blinding_needed )
163 {
164 #if !defined(MBEDTLS_RSA_NO_CRT)
165     /* blinding_needed is only used for NO_CRT to decide whether
166      * P,Q need to be present or not. */
167     ((void) blinding_needed);
168 #endif
169 
170     if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
171         ctx->len > MBEDTLS_MPI_MAX_SIZE )
172     {
173         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
174     }
175 
176     /*
177      * 1. Modular exponentiation needs positive, odd moduli.
178      */
179 
180     /* Modular exponentiation wrt. N is always used for
181      * RSA public key operations. */
182     if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
183         mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0  )
184     {
185         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
186     }
187 
188 #if !defined(MBEDTLS_RSA_NO_CRT)
189     /* Modular exponentiation for P and Q is only
190      * used for private key operations and if CRT
191      * is used. */
192     if( is_priv &&
193         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
194           mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
195           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
196           mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0  ) )
197     {
198         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
199     }
200 #endif /* !MBEDTLS_RSA_NO_CRT */
201 
202     /*
203      * 2. Exponents must be positive
204      */
205 
206     /* Always need E for public key operations */
207     if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
208         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
209 
210 #if defined(MBEDTLS_RSA_NO_CRT)
211     /* For private key operations, use D or DP & DQ
212      * as (unblinded) exponents. */
213     if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
214         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
215 #else
216     if( is_priv &&
217         ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
218           mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0  ) )
219     {
220         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
221     }
222 #endif /* MBEDTLS_RSA_NO_CRT */
223 
224     /* Blinding shouldn't make exponents negative either,
225      * so check that P, Q >= 1 if that hasn't yet been
226      * done as part of 1. */
227 #if defined(MBEDTLS_RSA_NO_CRT)
228     if( is_priv && blinding_needed &&
229         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
230           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
231     {
232         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
233     }
234 #endif
235 
236     /* It wouldn't lead to an error if it wasn't satisfied,
237      * but check for QP >= 1 nonetheless. */
238 #if !defined(MBEDTLS_RSA_NO_CRT)
239     if( is_priv &&
240         mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
241     {
242         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
243     }
244 #endif
245 
246     return( 0 );
247 }
248 
249 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
250 {
251     int ret = 0;
252     int have_N, have_P, have_Q, have_D, have_E;
253 #if !defined(MBEDTLS_RSA_NO_CRT)
254     int have_DP, have_DQ, have_QP;
255 #endif
256     int n_missing, pq_missing, d_missing, is_pub, is_priv;
257 
258     RSA_VALIDATE_RET( ctx != NULL );
259 
260     have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
261     have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
262     have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
263     have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
264     have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
265 
266 #if !defined(MBEDTLS_RSA_NO_CRT)
267     have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
268     have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
269     have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
270 #endif
271 
272     /*
273      * Check whether provided parameters are enough
274      * to deduce all others. The following incomplete
275      * parameter sets for private keys are supported:
276      *
277      * (1) P, Q missing.
278      * (2) D and potentially N missing.
279      *
280      */
281 
282     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
283     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
284     d_missing  =              have_P &&  have_Q && !have_D && have_E;
285     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
286 
287     /* These three alternatives are mutually exclusive */
288     is_priv = n_missing || pq_missing || d_missing;
289 
290     if( !is_priv && !is_pub )
291         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
292 
293     /*
294      * Step 1: Deduce N if P, Q are provided.
295      */
296 
297     if( !have_N && have_P && have_Q )
298     {
299         if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
300                                          &ctx->Q ) ) != 0 )
301         {
302             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
303         }
304 
305         ctx->len = mbedtls_mpi_size( &ctx->N );
306     }
307 
308     /*
309      * Step 2: Deduce and verify all remaining core parameters.
310      */
311 
312     if( pq_missing )
313     {
314         ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
315                                          &ctx->P, &ctx->Q );
316         if( ret != 0 )
317             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
318 
319     }
320     else if( d_missing )
321     {
322         if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
323                                                          &ctx->Q,
324                                                          &ctx->E,
325                                                          &ctx->D ) ) != 0 )
326         {
327             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
328         }
329     }
330 
331     /*
332      * Step 3: Deduce all additional parameters specific
333      *         to our current RSA implementation.
334      */
335 
336 #if !defined(MBEDTLS_RSA_NO_CRT)
337     if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
338     {
339         ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
340                                       &ctx->DP, &ctx->DQ, &ctx->QP );
341         if( ret != 0 )
342             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
343     }
344 #endif /* MBEDTLS_RSA_NO_CRT */
345 
346     /*
347      * Step 3: Basic sanity checks
348      */
349 
350     return( rsa_check_context( ctx, is_priv, 1 ) );
351 }
352 
353 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
354                             unsigned char *N, size_t N_len,
355                             unsigned char *P, size_t P_len,
356                             unsigned char *Q, size_t Q_len,
357                             unsigned char *D, size_t D_len,
358                             unsigned char *E, size_t E_len )
359 {
360     int ret = 0;
361     int is_priv;
362     RSA_VALIDATE_RET( ctx != NULL );
363 
364     /* Check if key is private or public */
365     is_priv =
366         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
367         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
368         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
369         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
370         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
371 
372     if( !is_priv )
373     {
374         /* If we're trying to export private parameters for a public key,
375          * something must be wrong. */
376         if( P != NULL || Q != NULL || D != NULL )
377             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
378 
379     }
380 
381     if( N != NULL )
382         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
383 
384     if( P != NULL )
385         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
386 
387     if( Q != NULL )
388         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
389 
390     if( D != NULL )
391         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
392 
393     if( E != NULL )
394         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
395 
396 cleanup:
397 
398     return( ret );
399 }
400 
401 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
402                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
403                         mbedtls_mpi *D, mbedtls_mpi *E )
404 {
405     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
406     int is_priv;
407     RSA_VALIDATE_RET( ctx != NULL );
408 
409     /* Check if key is private or public */
410     is_priv =
411         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
412         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
413         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
414         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
415         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
416 
417     if( !is_priv )
418     {
419         /* If we're trying to export private parameters for a public key,
420          * something must be wrong. */
421         if( P != NULL || Q != NULL || D != NULL )
422             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
423 
424     }
425 
426     /* Export all requested core parameters. */
427 
428     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
429         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
430         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
431         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
432         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
433     {
434         return( ret );
435     }
436 
437     return( 0 );
438 }
439 
440 /*
441  * Export CRT parameters
442  * This must also be implemented if CRT is not used, for being able to
443  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
444  * can be used in this case.
445  */
446 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
447                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
448 {
449     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
450     int is_priv;
451     RSA_VALIDATE_RET( ctx != NULL );
452 
453     /* Check if key is private or public */
454     is_priv =
455         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
456         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
457         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
458         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
459         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
460 
461     if( !is_priv )
462         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
463 
464 #if !defined(MBEDTLS_RSA_NO_CRT)
465     /* Export all requested blinding parameters. */
466     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
467         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
468         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
469     {
470         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
471     }
472 #else
473     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
474                                         DP, DQ, QP ) ) != 0 )
475     {
476         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
477     }
478 #endif
479 
480     return( 0 );
481 }
482 
483 /*
484  * Initialize an RSA context
485  */
486 void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
487                int padding,
488                int hash_id )
489 {
490     RSA_VALIDATE( ctx != NULL );
491     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
492                   padding == MBEDTLS_RSA_PKCS_V21 );
493 
494     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
495 
496     mbedtls_rsa_set_padding( ctx, padding, hash_id );
497 
498 #if defined(MBEDTLS_THREADING_C)
499     mbedtls_mutex_init( &ctx->mutex );
500 #endif
501 }
502 
503 /*
504  * Set padding for an existing RSA context
505  */
506 void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
507                               int hash_id )
508 {
509     RSA_VALIDATE( ctx != NULL );
510     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
511                   padding == MBEDTLS_RSA_PKCS_V21 );
512 
513     ctx->padding = padding;
514     ctx->hash_id = hash_id;
515 }
516 
517 /*
518  * Get length in bytes of RSA modulus
519  */
520 
521 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
522 {
523     return( ctx->len );
524 }
525 
526 
527 #if defined(MBEDTLS_GENPRIME)
528 
529 /*
530  * Generate an RSA keypair
531  *
532  * This generation method follows the RSA key pair generation procedure of
533  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
534  */
535 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
536                  int (*f_rng)(void *, unsigned char *, size_t),
537                  void *p_rng,
538                  unsigned int nbits, int exponent )
539 {
540     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
541     mbedtls_mpi H, G, L;
542     int prime_quality = 0;
543     RSA_VALIDATE_RET( ctx != NULL );
544     RSA_VALIDATE_RET( f_rng != NULL );
545 
546     if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
547         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
548 
549     /*
550      * If the modulus is 1024 bit long or shorter, then the security strength of
551      * the RSA algorithm is less than or equal to 80 bits and therefore an error
552      * rate of 2^-80 is sufficient.
553      */
554     if( nbits > 1024 )
555         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
556 
557     mbedtls_mpi_init( &H );
558     mbedtls_mpi_init( &G );
559     mbedtls_mpi_init( &L );
560 
561     /*
562      * find primes P and Q with Q < P so that:
563      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
564      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
565      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
566      */
567     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
568 
569     do
570     {
571         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
572                                                 prime_quality, f_rng, p_rng ) );
573 
574         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
575                                                 prime_quality, f_rng, p_rng ) );
576 
577         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
578         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
579         if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
580             continue;
581 
582         /* not required by any standards, but some users rely on the fact that P > Q */
583         if( H.s < 0 )
584             mbedtls_mpi_swap( &ctx->P, &ctx->Q );
585 
586         /* Temporarily replace P,Q by P-1, Q-1 */
587         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
588         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
589         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
590 
591         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
592         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
593         if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
594             continue;
595 
596         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
597         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
598         MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
599         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
600 
601         if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
602             continue;
603 
604         break;
605     }
606     while( 1 );
607 
608     /* Restore P,Q */
609     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
610     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
611 
612     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
613 
614     ctx->len = mbedtls_mpi_size( &ctx->N );
615 
616 #if !defined(MBEDTLS_RSA_NO_CRT)
617     /*
618      * DP = D mod (P - 1)
619      * DQ = D mod (Q - 1)
620      * QP = Q^-1 mod P
621      */
622     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
623                                              &ctx->DP, &ctx->DQ, &ctx->QP ) );
624 #endif /* MBEDTLS_RSA_NO_CRT */
625 
626     /* Double-check */
627     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
628 
629 cleanup:
630 
631     mbedtls_mpi_free( &H );
632     mbedtls_mpi_free( &G );
633     mbedtls_mpi_free( &L );
634 
635     if( ret != 0 )
636     {
637         mbedtls_rsa_free( ctx );
638         return( MBEDTLS_ERR_RSA_KEY_GEN_FAILED + ret );
639     }
640 
641     return( 0 );
642 }
643 
644 #endif /* MBEDTLS_GENPRIME */
645 
646 /*
647  * Check a public RSA key
648  */
649 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
650 {
651     RSA_VALIDATE_RET( ctx != NULL );
652 
653     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
654         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
655 
656     if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
657     {
658         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
659     }
660 
661     if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
662         mbedtls_mpi_bitlen( &ctx->E )     < 2  ||
663         mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
664     {
665         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
666     }
667 
668     return( 0 );
669 }
670 
671 /*
672  * Check for the consistency of all fields in an RSA private key context
673  */
674 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
675 {
676     RSA_VALIDATE_RET( ctx != NULL );
677 
678     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
679         rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
680     {
681         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
682     }
683 
684     if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
685                                      &ctx->D, &ctx->E, NULL, NULL ) != 0 )
686     {
687         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
688     }
689 
690 #if !defined(MBEDTLS_RSA_NO_CRT)
691     else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
692                                        &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
693     {
694         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
695     }
696 #endif
697 
698     return( 0 );
699 }
700 
701 /*
702  * Check if contexts holding a public and private key match
703  */
704 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
705                                 const mbedtls_rsa_context *prv )
706 {
707     RSA_VALIDATE_RET( pub != NULL );
708     RSA_VALIDATE_RET( prv != NULL );
709 
710     if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
711         mbedtls_rsa_check_privkey( prv ) != 0 )
712     {
713         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
714     }
715 
716     if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
717         mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
718     {
719         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
720     }
721 
722     return( 0 );
723 }
724 
725 /*
726  * Do an RSA public key operation
727  */
728 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
729                 const unsigned char *input,
730                 unsigned char *output )
731 {
732     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
733     size_t olen;
734     mbedtls_mpi T;
735     RSA_VALIDATE_RET( ctx != NULL );
736     RSA_VALIDATE_RET( input != NULL );
737     RSA_VALIDATE_RET( output != NULL );
738 
739     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
740         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
741 
742     mbedtls_mpi_init( &T );
743 
744 #if defined(MBEDTLS_THREADING_C)
745     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
746         return( ret );
747 #endif
748 
749     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
750 
751     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
752     {
753         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
754         goto cleanup;
755     }
756 
757     olen = ctx->len;
758     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
759     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
760 
761 cleanup:
762 #if defined(MBEDTLS_THREADING_C)
763     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
764         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
765 #endif
766 
767     mbedtls_mpi_free( &T );
768 
769     if( ret != 0 )
770         return( MBEDTLS_ERR_RSA_PUBLIC_FAILED + ret );
771 
772     return( 0 );
773 }
774 
775 /*
776  * Generate or update blinding values, see section 10 of:
777  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
778  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
779  *  Berlin Heidelberg, 1996. p. 104-113.
780  */
781 static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
782                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
783 {
784     int ret, count = 0;
785 
786     if( ctx->Vf.p != NULL )
787     {
788         /* We already have blinding values, just update them by squaring */
789         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
790         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
791         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
792         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
793 
794         goto cleanup;
795     }
796 
797     /* Unblinding value: Vf = random number, invertible mod N */
798     do {
799         if( count++ > 10 )
800             return( MBEDTLS_ERR_RSA_RNG_FAILED );
801 
802         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
803         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &ctx->Vi, &ctx->Vf, &ctx->N ) );
804     } while( mbedtls_mpi_cmp_int( &ctx->Vi, 1 ) != 0 );
805 
806     /* Blinding value: Vi =  Vf^(-e) mod N */
807     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) );
808     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
809 
810 
811 cleanup:
812     return( ret );
813 }
814 
815 /*
816  * Exponent blinding supposed to prevent side-channel attacks using multiple
817  * traces of measurements to recover the RSA key. The more collisions are there,
818  * the more bits of the key can be recovered. See [3].
819  *
820  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
821  * observations on avarage.
822  *
823  * For example with 28 byte blinding to achieve 2 collisions the adversary has
824  * to make 2^112 observations on avarage.
825  *
826  * (With the currently (as of 2017 April) known best algorithms breaking 2048
827  * bit RSA requires approximately as much time as trying out 2^112 random keys.
828  * Thus in this sense with 28 byte blinding the security is not reduced by
829  * side-channel attacks like the one in [3])
830  *
831  * This countermeasure does not help if the key recovery is possible with a
832  * single trace.
833  */
834 #define RSA_EXPONENT_BLINDING 28
835 
836 /*
837  * Do an RSA private key operation
838  */
839 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
840                  int (*f_rng)(void *, unsigned char *, size_t),
841                  void *p_rng,
842                  const unsigned char *input,
843                  unsigned char *output )
844 {
845     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
846     size_t olen;
847 
848     /* Temporary holding the result */
849     mbedtls_mpi T;
850 
851     /* Temporaries holding P-1, Q-1 and the
852      * exponent blinding factor, respectively. */
853     mbedtls_mpi P1, Q1, R;
854 
855 #if !defined(MBEDTLS_RSA_NO_CRT)
856     /* Temporaries holding the results mod p resp. mod q. */
857     mbedtls_mpi TP, TQ;
858 
859     /* Temporaries holding the blinded exponents for
860      * the mod p resp. mod q computation (if used). */
861     mbedtls_mpi DP_blind, DQ_blind;
862 
863     /* Pointers to actual exponents to be used - either the unblinded
864      * or the blinded ones, depending on the presence of a PRNG. */
865     mbedtls_mpi *DP = &ctx->DP;
866     mbedtls_mpi *DQ = &ctx->DQ;
867 #else
868     /* Temporary holding the blinded exponent (if used). */
869     mbedtls_mpi D_blind;
870 
871     /* Pointer to actual exponent to be used - either the unblinded
872      * or the blinded one, depending on the presence of a PRNG. */
873     mbedtls_mpi *D = &ctx->D;
874 #endif /* MBEDTLS_RSA_NO_CRT */
875 
876     /* Temporaries holding the initial input and the double
877      * checked result; should be the same in the end. */
878     mbedtls_mpi I, C;
879 
880     RSA_VALIDATE_RET( ctx != NULL );
881     RSA_VALIDATE_RET( input  != NULL );
882     RSA_VALIDATE_RET( output != NULL );
883 
884     if( rsa_check_context( ctx, 1             /* private key checks */,
885                                 f_rng != NULL /* blinding y/n       */ ) != 0 )
886     {
887         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
888     }
889 
890 #if defined(MBEDTLS_THREADING_C)
891     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
892         return( ret );
893 #endif
894 
895     /* MPI Initialization */
896     mbedtls_mpi_init( &T );
897 
898     mbedtls_mpi_init( &P1 );
899     mbedtls_mpi_init( &Q1 );
900     mbedtls_mpi_init( &R );
901 
902     if( f_rng != NULL )
903     {
904 #if defined(MBEDTLS_RSA_NO_CRT)
905         mbedtls_mpi_init( &D_blind );
906 #else
907         mbedtls_mpi_init( &DP_blind );
908         mbedtls_mpi_init( &DQ_blind );
909 #endif
910     }
911 
912 #if !defined(MBEDTLS_RSA_NO_CRT)
913     mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
914 #endif
915 
916     mbedtls_mpi_init( &I );
917     mbedtls_mpi_init( &C );
918 
919     /* End of MPI initialization */
920 
921     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
922     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
923     {
924         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
925         goto cleanup;
926     }
927 
928     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
929 
930     if( f_rng != NULL )
931     {
932         /*
933          * Blinding
934          * T = T * Vi mod N
935          */
936         MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
937         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
938         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
939 
940         /*
941          * Exponent blinding
942          */
943         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
944         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
945 
946 #if defined(MBEDTLS_RSA_NO_CRT)
947         /*
948          * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
949          */
950         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
951                          f_rng, p_rng ) );
952         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
953         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
954         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
955 
956         D = &D_blind;
957 #else
958         /*
959          * DP_blind = ( P - 1 ) * R + DP
960          */
961         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
962                          f_rng, p_rng ) );
963         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
964         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
965                     &ctx->DP ) );
966 
967         DP = &DP_blind;
968 
969         /*
970          * DQ_blind = ( Q - 1 ) * R + DQ
971          */
972         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
973                          f_rng, p_rng ) );
974         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
975         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
976                     &ctx->DQ ) );
977 
978         DQ = &DQ_blind;
979 #endif /* MBEDTLS_RSA_NO_CRT */
980     }
981 
982 #if defined(MBEDTLS_RSA_NO_CRT)
983     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
984 #else
985     /*
986      * Faster decryption using the CRT
987      *
988      * TP = input ^ dP mod P
989      * TQ = input ^ dQ mod Q
990      */
991 
992     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
993     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
994 
995     /*
996      * T = (TP - TQ) * (Q^-1 mod P) mod P
997      */
998     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
999     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1000     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1001 
1002     /*
1003      * T = TQ + T * Q
1004      */
1005     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1006     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1007 #endif /* MBEDTLS_RSA_NO_CRT */
1008 
1009     if( f_rng != NULL )
1010     {
1011         /*
1012          * Unblind
1013          * T = T * Vf mod N
1014          */
1015         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1016         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1017     }
1018 
1019     /* Verify the result to prevent glitching attacks. */
1020     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1021                                           &ctx->N, &ctx->RN ) );
1022     if( mbedtls_mpi_cmp_mpi( &C, &I ) != 0 )
1023     {
1024         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1025         goto cleanup;
1026     }
1027 
1028     olen = ctx->len;
1029     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1030 
1031 cleanup:
1032 #if defined(MBEDTLS_THREADING_C)
1033     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1034         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1035 #endif
1036 
1037     mbedtls_mpi_free( &P1 );
1038     mbedtls_mpi_free( &Q1 );
1039     mbedtls_mpi_free( &R );
1040 
1041     if( f_rng != NULL )
1042     {
1043 #if defined(MBEDTLS_RSA_NO_CRT)
1044         mbedtls_mpi_free( &D_blind );
1045 #else
1046         mbedtls_mpi_free( &DP_blind );
1047         mbedtls_mpi_free( &DQ_blind );
1048 #endif
1049     }
1050 
1051     mbedtls_mpi_free( &T );
1052 
1053 #if !defined(MBEDTLS_RSA_NO_CRT)
1054     mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1055 #endif
1056 
1057     mbedtls_mpi_free( &C );
1058     mbedtls_mpi_free( &I );
1059 
1060     if( ret != 0 )
1061         return( MBEDTLS_ERR_RSA_PRIVATE_FAILED + ret );
1062 
1063     return( 0 );
1064 }
1065 
1066 #if defined(MBEDTLS_PKCS1_V21)
1067 /**
1068  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1069  *
1070  * \param dst       buffer to mask
1071  * \param dlen      length of destination buffer
1072  * \param src       source of the mask generation
1073  * \param slen      length of the source buffer
1074  * \param md_ctx    message digest context to use
1075  */
1076 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1077                       size_t slen, mbedtls_md_context_t *md_ctx )
1078 {
1079     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1080     unsigned char counter[4];
1081     unsigned char *p;
1082     unsigned int hlen;
1083     size_t i, use_len;
1084     int ret = 0;
1085 
1086     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1087     memset( counter, 0, 4 );
1088 
1089     hlen = mbedtls_md_get_size( md_ctx->md_info );
1090 
1091     /* Generate and apply dbMask */
1092     p = dst;
1093 
1094     while( dlen > 0 )
1095     {
1096         use_len = hlen;
1097         if( dlen < hlen )
1098             use_len = dlen;
1099 
1100         if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1101             goto exit;
1102         if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1103             goto exit;
1104         if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1105             goto exit;
1106         if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1107             goto exit;
1108 
1109         for( i = 0; i < use_len; ++i )
1110             *p++ ^= mask[i];
1111 
1112         counter[3]++;
1113 
1114         dlen -= use_len;
1115     }
1116 
1117 exit:
1118     mbedtls_platform_zeroize( mask, sizeof( mask ) );
1119 
1120     return( ret );
1121 }
1122 #endif /* MBEDTLS_PKCS1_V21 */
1123 
1124 #if defined(MBEDTLS_PKCS1_V21)
1125 /*
1126  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1127  */
1128 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1129                             int (*f_rng)(void *, unsigned char *, size_t),
1130                             void *p_rng,
1131                             int mode,
1132                             const unsigned char *label, size_t label_len,
1133                             size_t ilen,
1134                             const unsigned char *input,
1135                             unsigned char *output )
1136 {
1137     size_t olen;
1138     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1139     unsigned char *p = output;
1140     unsigned int hlen;
1141     const mbedtls_md_info_t *md_info;
1142     mbedtls_md_context_t md_ctx;
1143 
1144     RSA_VALIDATE_RET( ctx != NULL );
1145     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1146                       mode == MBEDTLS_RSA_PUBLIC );
1147     RSA_VALIDATE_RET( output != NULL );
1148     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1149     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1150 
1151     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1152         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1153 
1154     if( f_rng == NULL )
1155         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1156 
1157     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1158     if( md_info == NULL )
1159         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1160 
1161     olen = ctx->len;
1162     hlen = mbedtls_md_get_size( md_info );
1163 
1164     /* first comparison checks for overflow */
1165     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1166         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1167 
1168     memset( output, 0, olen );
1169 
1170     *p++ = 0;
1171 
1172     /* Generate a random octet string seed */
1173     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1174         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1175 
1176     p += hlen;
1177 
1178     /* Construct DB */
1179     if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1180         return( ret );
1181     p += hlen;
1182     p += olen - 2 * hlen - 2 - ilen;
1183     *p++ = 1;
1184     if( ilen != 0 )
1185         memcpy( p, input, ilen );
1186 
1187     mbedtls_md_init( &md_ctx );
1188     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1189         goto exit;
1190 
1191     /* maskedDB: Apply dbMask to DB */
1192     if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1193                           &md_ctx ) ) != 0 )
1194         goto exit;
1195 
1196     /* maskedSeed: Apply seedMask to seed */
1197     if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1198                           &md_ctx ) ) != 0 )
1199         goto exit;
1200 
1201 exit:
1202     mbedtls_md_free( &md_ctx );
1203 
1204     if( ret != 0 )
1205         return( ret );
1206 
1207     return( ( mode == MBEDTLS_RSA_PUBLIC )
1208             ? mbedtls_rsa_public(  ctx, output, output )
1209             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1210 }
1211 #endif /* MBEDTLS_PKCS1_V21 */
1212 
1213 #if defined(MBEDTLS_PKCS1_V15)
1214 /*
1215  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1216  */
1217 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1218                                  int (*f_rng)(void *, unsigned char *, size_t),
1219                                  void *p_rng,
1220                                  int mode, size_t ilen,
1221                                  const unsigned char *input,
1222                                  unsigned char *output )
1223 {
1224     size_t nb_pad, olen;
1225     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1226     unsigned char *p = output;
1227 
1228     RSA_VALIDATE_RET( ctx != NULL );
1229     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1230                       mode == MBEDTLS_RSA_PUBLIC );
1231     RSA_VALIDATE_RET( output != NULL );
1232     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1233 
1234     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1235         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1236 
1237     olen = ctx->len;
1238 
1239     /* first comparison checks for overflow */
1240     if( ilen + 11 < ilen || olen < ilen + 11 )
1241         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1242 
1243     nb_pad = olen - 3 - ilen;
1244 
1245     *p++ = 0;
1246     if( mode == MBEDTLS_RSA_PUBLIC )
1247     {
1248         if( f_rng == NULL )
1249             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1250 
1251         *p++ = MBEDTLS_RSA_CRYPT;
1252 
1253         while( nb_pad-- > 0 )
1254         {
1255             int rng_dl = 100;
1256 
1257             do {
1258                 ret = f_rng( p_rng, p, 1 );
1259             } while( *p == 0 && --rng_dl && ret == 0 );
1260 
1261             /* Check if RNG failed to generate data */
1262             if( rng_dl == 0 || ret != 0 )
1263                 return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1264 
1265             p++;
1266         }
1267     }
1268     else
1269     {
1270         *p++ = MBEDTLS_RSA_SIGN;
1271 
1272         while( nb_pad-- > 0 )
1273             *p++ = 0xFF;
1274     }
1275 
1276     *p++ = 0;
1277     if( ilen != 0 )
1278         memcpy( p, input, ilen );
1279 
1280     return( ( mode == MBEDTLS_RSA_PUBLIC )
1281             ? mbedtls_rsa_public(  ctx, output, output )
1282             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1283 }
1284 #endif /* MBEDTLS_PKCS1_V15 */
1285 
1286 /*
1287  * Add the message padding, then do an RSA operation
1288  */
1289 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1290                        int (*f_rng)(void *, unsigned char *, size_t),
1291                        void *p_rng,
1292                        int mode, size_t ilen,
1293                        const unsigned char *input,
1294                        unsigned char *output )
1295 {
1296     RSA_VALIDATE_RET( ctx != NULL );
1297     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1298                       mode == MBEDTLS_RSA_PUBLIC );
1299     RSA_VALIDATE_RET( output != NULL );
1300     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1301 
1302     switch( ctx->padding )
1303     {
1304 #if defined(MBEDTLS_PKCS1_V15)
1305         case MBEDTLS_RSA_PKCS_V15:
1306             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
1307                                                 input, output );
1308 #endif
1309 
1310 #if defined(MBEDTLS_PKCS1_V21)
1311         case MBEDTLS_RSA_PKCS_V21:
1312             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1313                                            ilen, input, output );
1314 #endif
1315 
1316         default:
1317             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1318     }
1319 }
1320 
1321 #if defined(MBEDTLS_PKCS1_V21)
1322 /*
1323  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1324  */
1325 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1326                             int (*f_rng)(void *, unsigned char *, size_t),
1327                             void *p_rng,
1328                             int mode,
1329                             const unsigned char *label, size_t label_len,
1330                             size_t *olen,
1331                             const unsigned char *input,
1332                             unsigned char *output,
1333                             size_t output_max_len )
1334 {
1335     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1336     size_t ilen, i, pad_len;
1337     unsigned char *p, bad, pad_done;
1338     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1339     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1340     unsigned int hlen;
1341     const mbedtls_md_info_t *md_info;
1342     mbedtls_md_context_t md_ctx;
1343 
1344     RSA_VALIDATE_RET( ctx != NULL );
1345     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1346                       mode == MBEDTLS_RSA_PUBLIC );
1347     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1348     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1349     RSA_VALIDATE_RET( input != NULL );
1350     RSA_VALIDATE_RET( olen != NULL );
1351 
1352     /*
1353      * Parameters sanity checks
1354      */
1355     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1356         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1357 
1358     ilen = ctx->len;
1359 
1360     if( ilen < 16 || ilen > sizeof( buf ) )
1361         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1362 
1363     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1364     if( md_info == NULL )
1365         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1366 
1367     hlen = mbedtls_md_get_size( md_info );
1368 
1369     // checking for integer underflow
1370     if( 2 * hlen + 2 > ilen )
1371         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1372 
1373     /*
1374      * RSA operation
1375      */
1376     if( ctx->P.n == 0 )
1377         ret = ( mode == MBEDTLS_RSA_PUBLIC )
1378               ? mbedtls_rsa_public(  ctx, input, buf )
1379               : mbedtls_rsa_private( ctx, NULL, NULL, input, buf );
1380     else
1381         ret = ( mode == MBEDTLS_RSA_PUBLIC )
1382               ? mbedtls_rsa_public(  ctx, input, buf )
1383               : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1384 
1385     if( ret != 0 )
1386         goto cleanup;
1387 
1388     /*
1389      * Unmask data and generate lHash
1390      */
1391     mbedtls_md_init( &md_ctx );
1392     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1393     {
1394         mbedtls_md_free( &md_ctx );
1395         goto cleanup;
1396     }
1397 
1398     /* seed: Apply seedMask to maskedSeed */
1399     if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1400                           &md_ctx ) ) != 0 ||
1401     /* DB: Apply dbMask to maskedDB */
1402         ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1403                           &md_ctx ) ) != 0 )
1404     {
1405         mbedtls_md_free( &md_ctx );
1406         goto cleanup;
1407     }
1408 
1409     mbedtls_md_free( &md_ctx );
1410 
1411     /* Generate lHash */
1412     if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1413         goto cleanup;
1414 
1415     /*
1416      * Check contents, in "constant-time"
1417      */
1418     p = buf;
1419     bad = 0;
1420 
1421     bad |= *p++; /* First byte must be 0 */
1422 
1423     p += hlen; /* Skip seed */
1424 
1425     /* Check lHash */
1426     for( i = 0; i < hlen; i++ )
1427         bad |= lhash[i] ^ *p++;
1428 
1429     /* Get zero-padding len, but always read till end of buffer
1430      * (minus one, for the 01 byte) */
1431     pad_len = 0;
1432     pad_done = 0;
1433     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1434     {
1435         pad_done |= p[i];
1436         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1437     }
1438 
1439     p += pad_len;
1440     bad |= *p++ ^ 0x01;
1441 
1442     /*
1443      * The only information "leaked" is whether the padding was correct or not
1444      * (eg, no data is copied if it was not correct). This meets the
1445      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1446      * the different error conditions.
1447      */
1448     if( bad != 0 )
1449     {
1450         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1451         goto cleanup;
1452     }
1453 
1454     if( ilen - ( p - buf ) > output_max_len )
1455     {
1456         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1457         goto cleanup;
1458     }
1459 
1460     *olen = ilen - (p - buf);
1461     if( *olen != 0 )
1462         memcpy( output, p, *olen );
1463     ret = 0;
1464 
1465 cleanup:
1466     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1467     mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1468 
1469     return( ret );
1470 }
1471 #endif /* MBEDTLS_PKCS1_V21 */
1472 
1473 #if defined(MBEDTLS_PKCS1_V15)
1474 /** Turn zero-or-nonzero into zero-or-all-bits-one, without branches.
1475  *
1476  * \param value     The value to analyze.
1477  * \return          Zero if \p value is zero, otherwise all-bits-one.
1478  */
1479 static unsigned all_or_nothing_int( unsigned value )
1480 {
1481     /* MSVC has a warning about unary minus on unsigned, but this is
1482      * well-defined and precisely what we want to do here */
1483 #if defined(_MSC_VER)
1484 #pragma warning( push )
1485 #pragma warning( disable : 4146 )
1486 #endif
1487     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
1488 #if defined(_MSC_VER)
1489 #pragma warning( pop )
1490 #endif
1491 }
1492 
1493 /** Check whether a size is out of bounds, without branches.
1494  *
1495  * This is equivalent to `size > max`, but is likely to be compiled to
1496  * to code using bitwise operation rather than a branch.
1497  *
1498  * \param size      Size to check.
1499  * \param max       Maximum desired value for \p size.
1500  * \return          \c 0 if `size <= max`.
1501  * \return          \c 1 if `size > max`.
1502  */
1503 static unsigned size_greater_than( size_t size, size_t max )
1504 {
1505     /* Return the sign bit (1 for negative) of (max - size). */
1506     return( ( max - size ) >> ( sizeof( size_t ) * 8 - 1 ) );
1507 }
1508 
1509 /** Choose between two integer values, without branches.
1510  *
1511  * This is equivalent to `cond ? if1 : if0`, but is likely to be compiled
1512  * to code using bitwise operation rather than a branch.
1513  *
1514  * \param cond      Condition to test.
1515  * \param if1       Value to use if \p cond is nonzero.
1516  * \param if0       Value to use if \p cond is zero.
1517  * \return          \c if1 if \p cond is nonzero, otherwise \c if0.
1518  */
1519 static unsigned if_int( unsigned cond, unsigned if1, unsigned if0 )
1520 {
1521     unsigned mask = all_or_nothing_int( cond );
1522     return( ( mask & if1 ) | (~mask & if0 ) );
1523 }
1524 
1525 /** Shift some data towards the left inside a buffer without leaking
1526  * the length of the data through side channels.
1527  *
1528  * `mem_move_to_left(start, total, offset)` is functionally equivalent to
1529  * ```
1530  * memmove(start, start + offset, total - offset);
1531  * memset(start + offset, 0, total - offset);
1532  * ```
1533  * but it strives to use a memory access pattern (and thus total timing)
1534  * that does not depend on \p offset. This timing independence comes at
1535  * the expense of performance.
1536  *
1537  * \param start     Pointer to the start of the buffer.
1538  * \param total     Total size of the buffer.
1539  * \param offset    Offset from which to copy \p total - \p offset bytes.
1540  */
1541 static void mem_move_to_left( void *start,
1542                               size_t total,
1543                               size_t offset )
1544 {
1545     volatile unsigned char *buf = start;
1546     size_t i, n;
1547     if( total == 0 )
1548         return;
1549     for( i = 0; i < total; i++ )
1550     {
1551         unsigned no_op = size_greater_than( total - offset, i );
1552         /* The first `total - offset` passes are a no-op. The last
1553          * `offset` passes shift the data one byte to the left and
1554          * zero out the last byte. */
1555         for( n = 0; n < total - 1; n++ )
1556         {
1557             unsigned char current = buf[n];
1558             unsigned char next = buf[n+1];
1559             buf[n] = if_int( no_op, current, next );
1560         }
1561         buf[total-1] = if_int( no_op, buf[total-1], 0 );
1562     }
1563 }
1564 
1565 /*
1566  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1567  */
1568 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1569                                  int (*f_rng)(void *, unsigned char *, size_t),
1570                                  void *p_rng,
1571                                  int mode, size_t *olen,
1572                                  const unsigned char *input,
1573                                  unsigned char *output,
1574                                  size_t output_max_len )
1575 {
1576     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1577     size_t ilen, i, plaintext_max_size;
1578     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1579     /* The following variables take sensitive values: their value must
1580      * not leak into the observable behavior of the function other than
1581      * the designated outputs (output, olen, return value). Otherwise
1582      * this would open the execution of the function to
1583      * side-channel-based variants of the Bleichenbacher padding oracle
1584      * attack. Potential side channels include overall timing, memory
1585      * access patterns (especially visible to an adversary who has access
1586      * to a shared memory cache), and branches (especially visible to
1587      * an adversary who has access to a shared code cache or to a shared
1588      * branch predictor). */
1589     size_t pad_count = 0;
1590     unsigned bad = 0;
1591     unsigned char pad_done = 0;
1592     size_t plaintext_size = 0;
1593     unsigned output_too_large;
1594 
1595     RSA_VALIDATE_RET( ctx != NULL );
1596     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1597                       mode == MBEDTLS_RSA_PUBLIC );
1598     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1599     RSA_VALIDATE_RET( input != NULL );
1600     RSA_VALIDATE_RET( olen != NULL );
1601 
1602     ilen = ctx->len;
1603     plaintext_max_size = ( output_max_len > ilen - 11 ?
1604                            ilen - 11 :
1605                            output_max_len );
1606 
1607     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1608         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1609 
1610     if( ilen < 16 || ilen > sizeof( buf ) )
1611         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1612 
1613     ret = ( mode == MBEDTLS_RSA_PUBLIC )
1614           ? mbedtls_rsa_public(  ctx, input, buf )
1615           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1616 
1617     if( ret != 0 )
1618         goto cleanup;
1619 
1620     /* Check and get padding length in constant time and constant
1621      * memory trace. The first byte must be 0. */
1622     bad |= buf[0];
1623 
1624     if( mode == MBEDTLS_RSA_PRIVATE )
1625     {
1626         /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
1627          * where PS must be at least 8 nonzero bytes. */
1628         bad |= buf[1] ^ MBEDTLS_RSA_CRYPT;
1629 
1630         /* Read the whole buffer. Set pad_done to nonzero if we find
1631          * the 0x00 byte and remember the padding length in pad_count. */
1632         for( i = 2; i < ilen; i++ )
1633         {
1634             pad_done  |= ((buf[i] | (unsigned char)-buf[i]) >> 7) ^ 1;
1635             pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1636         }
1637     }
1638     else
1639     {
1640         /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
1641          * where PS must be at least 8 bytes with the value 0xFF. */
1642         bad |= buf[1] ^ MBEDTLS_RSA_SIGN;
1643 
1644         /* Read the whole buffer. Set pad_done to nonzero if we find
1645          * the 0x00 byte and remember the padding length in pad_count.
1646          * If there's a non-0xff byte in the padding, the padding is bad. */
1647         for( i = 2; i < ilen; i++ )
1648         {
1649             pad_done |= if_int( buf[i], 0, 1 );
1650             pad_count += if_int( pad_done, 0, 1 );
1651             bad |= if_int( pad_done, 0, buf[i] ^ 0xFF );
1652         }
1653     }
1654 
1655     /* If pad_done is still zero, there's no data, only unfinished padding. */
1656     bad |= if_int( pad_done, 0, 1 );
1657 
1658     /* There must be at least 8 bytes of padding. */
1659     bad |= size_greater_than( 8, pad_count );
1660 
1661     /* If the padding is valid, set plaintext_size to the number of
1662      * remaining bytes after stripping the padding. If the padding
1663      * is invalid, avoid leaking this fact through the size of the
1664      * output: use the maximum message size that fits in the output
1665      * buffer. Do it without branches to avoid leaking the padding
1666      * validity through timing. RSA keys are small enough that all the
1667      * size_t values involved fit in unsigned int. */
1668     plaintext_size = if_int( bad,
1669                              (unsigned) plaintext_max_size,
1670                              (unsigned) ( ilen - pad_count - 3 ) );
1671 
1672     /* Set output_too_large to 0 if the plaintext fits in the output
1673      * buffer and to 1 otherwise. */
1674     output_too_large = size_greater_than( plaintext_size,
1675                                           plaintext_max_size );
1676 
1677     /* Set ret without branches to avoid timing attacks. Return:
1678      * - INVALID_PADDING if the padding is bad (bad != 0).
1679      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
1680      *   plaintext does not fit in the output buffer.
1681      * - 0 if the padding is correct. */
1682     ret = - (int) if_int( bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
1683                   if_int( output_too_large, - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
1684                           0 ) );
1685 
1686     /* If the padding is bad or the plaintext is too large, zero the
1687      * data that we're about to copy to the output buffer.
1688      * We need to copy the same amount of data
1689      * from the same buffer whether the padding is good or not to
1690      * avoid leaking the padding validity through overall timing or
1691      * through memory or cache access patterns. */
1692     bad = all_or_nothing_int( bad | output_too_large );
1693     for( i = 11; i < ilen; i++ )
1694         buf[i] &= ~bad;
1695 
1696     /* If the plaintext is too large, truncate it to the buffer size.
1697      * Copy anyway to avoid revealing the length through timing, because
1698      * revealing the length is as bad as revealing the padding validity
1699      * for a Bleichenbacher attack. */
1700     plaintext_size = if_int( output_too_large,
1701                              (unsigned) plaintext_max_size,
1702                              (unsigned) plaintext_size );
1703 
1704     /* Move the plaintext to the leftmost position where it can start in
1705      * the working buffer, i.e. make it start plaintext_max_size from
1706      * the end of the buffer. Do this with a memory access trace that
1707      * does not depend on the plaintext size. After this move, the
1708      * starting location of the plaintext is no longer sensitive
1709      * information. */
1710     mem_move_to_left( buf + ilen - plaintext_max_size,
1711                       plaintext_max_size,
1712                       plaintext_max_size - plaintext_size );
1713 
1714     /* Finally copy the decrypted plaintext plus trailing zeros into the output
1715      * buffer. If output_max_len is 0, then output may be an invalid pointer
1716      * and the result of memcpy() would be undefined; prevent undefined
1717      * behavior making sure to depend only on output_max_len (the size of the
1718      * user-provided output buffer), which is independent from plaintext
1719      * length, validity of padding, success of the decryption, and other
1720      * secrets. */
1721     if( output_max_len != 0 )
1722         memcpy( output, buf + ilen - plaintext_max_size, plaintext_max_size );
1723 
1724     /* Report the amount of data we copied to the output buffer. In case
1725      * of errors (bad padding or output too large), the value of *olen
1726      * when this function returns is not specified. Making it equivalent
1727      * to the good case limits the risks of leaking the padding validity. */
1728     *olen = plaintext_size;
1729 
1730 cleanup:
1731     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1732 
1733     return( ret );
1734 }
1735 #endif /* MBEDTLS_PKCS1_V15 */
1736 
1737 /*
1738  * Do an RSA operation, then remove the message padding
1739  */
1740 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1741                        int (*f_rng)(void *, unsigned char *, size_t),
1742                        void *p_rng,
1743                        int mode, size_t *olen,
1744                        const unsigned char *input,
1745                        unsigned char *output,
1746                        size_t output_max_len)
1747 {
1748     RSA_VALIDATE_RET( ctx != NULL );
1749     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1750                       mode == MBEDTLS_RSA_PUBLIC );
1751     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1752     RSA_VALIDATE_RET( input != NULL );
1753     RSA_VALIDATE_RET( olen != NULL );
1754 
1755     switch( ctx->padding )
1756     {
1757 #if defined(MBEDTLS_PKCS1_V15)
1758         case MBEDTLS_RSA_PKCS_V15:
1759             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
1760                                                 input, output, output_max_len );
1761 #endif
1762 
1763 #if defined(MBEDTLS_PKCS1_V21)
1764         case MBEDTLS_RSA_PKCS_V21:
1765             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1766                                            olen, input, output,
1767                                            output_max_len );
1768 #endif
1769 
1770         default:
1771             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1772     }
1773 }
1774 
1775 #if defined(MBEDTLS_PKCS1_V21)
1776 /*
1777  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1778  */
1779 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1780                          int (*f_rng)(void *, unsigned char *, size_t),
1781                          void *p_rng,
1782                          int mode,
1783                          mbedtls_md_type_t md_alg,
1784                          unsigned int hashlen,
1785                          const unsigned char *hash,
1786                          unsigned char *sig )
1787 {
1788     size_t olen;
1789     unsigned char *p = sig;
1790     unsigned char salt[MBEDTLS_MD_MAX_SIZE];
1791     size_t slen, min_slen, hlen, offset = 0;
1792     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1793     size_t msb;
1794     const mbedtls_md_info_t *md_info;
1795     mbedtls_md_context_t md_ctx;
1796     RSA_VALIDATE_RET( ctx != NULL );
1797     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1798                       mode == MBEDTLS_RSA_PUBLIC );
1799     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1800                         hashlen == 0 ) ||
1801                       hash != NULL );
1802     RSA_VALIDATE_RET( sig != NULL );
1803 
1804     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1805         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1806 
1807     if( f_rng == NULL )
1808         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1809 
1810     olen = ctx->len;
1811 
1812     if( md_alg != MBEDTLS_MD_NONE )
1813     {
1814         /* Gather length of hash to sign */
1815         md_info = mbedtls_md_info_from_type( md_alg );
1816         if( md_info == NULL )
1817             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1818 
1819         hashlen = mbedtls_md_get_size( md_info );
1820     }
1821 
1822     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1823     if( md_info == NULL )
1824         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1825 
1826     hlen = mbedtls_md_get_size( md_info );
1827 
1828     /* Calculate the largest possible salt length. Normally this is the hash
1829      * length, which is the maximum length the salt can have. If there is not
1830      * enough room, use the maximum salt length that fits. The constraint is
1831      * that the hash length plus the salt length plus 2 bytes must be at most
1832      * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1833      * (PKCS#1 v2.2) §9.1.1 step 3. */
1834     min_slen = hlen - 2;
1835     if( olen < hlen + min_slen + 2 )
1836         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1837     else if( olen >= hlen + hlen + 2 )
1838         slen = hlen;
1839     else
1840         slen = olen - hlen - 2;
1841 
1842     memset( sig, 0, olen );
1843 
1844     /* Generate salt of length slen */
1845     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1846         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1847 
1848     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1849     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1850     p += olen - hlen - slen - 2;
1851     *p++ = 0x01;
1852     memcpy( p, salt, slen );
1853     p += slen;
1854 
1855     mbedtls_md_init( &md_ctx );
1856     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1857         goto exit;
1858 
1859     /* Generate H = Hash( M' ) */
1860     if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1861         goto exit;
1862     if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1863         goto exit;
1864     if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1865         goto exit;
1866     if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1867         goto exit;
1868     if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1869         goto exit;
1870 
1871     /* Compensate for boundary condition when applying mask */
1872     if( msb % 8 == 0 )
1873         offset = 1;
1874 
1875     /* maskedDB: Apply dbMask to DB */
1876     if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1877                           &md_ctx ) ) != 0 )
1878         goto exit;
1879 
1880     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1881     sig[0] &= 0xFF >> ( olen * 8 - msb );
1882 
1883     p += hlen;
1884     *p++ = 0xBC;
1885 
1886     mbedtls_platform_zeroize( salt, sizeof( salt ) );
1887 
1888 exit:
1889     mbedtls_md_free( &md_ctx );
1890 
1891     if( ret != 0 )
1892         return( ret );
1893 
1894     if( ctx->P.n == 0)
1895         return( ( mode == MBEDTLS_RSA_PUBLIC )
1896                 ? mbedtls_rsa_public(  ctx, sig, sig )
1897                 : mbedtls_rsa_private( ctx, NULL, NULL, sig, sig ) );
1898     else
1899         return( ( mode == MBEDTLS_RSA_PUBLIC )
1900                 ? mbedtls_rsa_public(  ctx, sig, sig )
1901                 : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
1902 }
1903 #endif /* MBEDTLS_PKCS1_V21 */
1904 
1905 #if defined(MBEDTLS_PKCS1_V15)
1906 /*
1907  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1908  */
1909 
1910 /* Construct a PKCS v1.5 encoding of a hashed message
1911  *
1912  * This is used both for signature generation and verification.
1913  *
1914  * Parameters:
1915  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
1916  *            MBEDTLS_MD_NONE if raw data is signed.
1917  * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
1918  * - hash:    Buffer containing the hashed message or the raw data.
1919  * - dst_len: Length of the encoded message.
1920  * - dst:     Buffer to hold the encoded message.
1921  *
1922  * Assumptions:
1923  * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
1924  * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
1925  * - dst points to a buffer of size at least dst_len.
1926  *
1927  */
1928 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1929                                         unsigned int hashlen,
1930                                         const unsigned char *hash,
1931                                         size_t dst_len,
1932                                         unsigned char *dst )
1933 {
1934     size_t oid_size  = 0;
1935     size_t nb_pad    = dst_len;
1936     unsigned char *p = dst;
1937     const char *oid  = NULL;
1938 
1939     /* Are we signing hashed or raw data? */
1940     if( md_alg != MBEDTLS_MD_NONE )
1941     {
1942         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
1943         if( md_info == NULL )
1944             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1945 
1946         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
1947             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1948 
1949         hashlen = mbedtls_md_get_size( md_info );
1950 
1951         /* Double-check that 8 + hashlen + oid_size can be used as a
1952          * 1-byte ASN.1 length encoding and that there's no overflow. */
1953         if( 8 + hashlen + oid_size  >= 0x80         ||
1954             10 + hashlen            <  hashlen      ||
1955             10 + hashlen + oid_size <  10 + hashlen )
1956             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1957 
1958         /*
1959          * Static bounds check:
1960          * - Need 10 bytes for five tag-length pairs.
1961          *   (Insist on 1-byte length encodings to protect against variants of
1962          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1963          * - Need hashlen bytes for hash
1964          * - Need oid_size bytes for hash alg OID.
1965          */
1966         if( nb_pad < 10 + hashlen + oid_size )
1967             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1968         nb_pad -= 10 + hashlen + oid_size;
1969     }
1970     else
1971     {
1972         if( nb_pad < hashlen )
1973             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1974 
1975         nb_pad -= hashlen;
1976     }
1977 
1978     /* Need space for signature header and padding delimiter (3 bytes),
1979      * and 8 bytes for the minimal padding */
1980     if( nb_pad < 3 + 8 )
1981         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1982     nb_pad -= 3;
1983 
1984     /* Now nb_pad is the amount of memory to be filled
1985      * with padding, and at least 8 bytes long. */
1986 
1987     /* Write signature header and padding */
1988     *p++ = 0;
1989     *p++ = MBEDTLS_RSA_SIGN;
1990     memset( p, 0xFF, nb_pad );
1991     p += nb_pad;
1992     *p++ = 0;
1993 
1994     /* Are we signing raw data? */
1995     if( md_alg == MBEDTLS_MD_NONE )
1996     {
1997         memcpy( p, hash, hashlen );
1998         return( 0 );
1999     }
2000 
2001     /* Signing hashed data, add corresponding ASN.1 structure
2002      *
2003      * DigestInfo ::= SEQUENCE {
2004      *   digestAlgorithm DigestAlgorithmIdentifier,
2005      *   digest Digest }
2006      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
2007      * Digest ::= OCTET STRING
2008      *
2009      * Schematic:
2010      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
2011      *                                 TAG-NULL + LEN [ NULL ] ]
2012      *                 TAG-OCTET + LEN [ HASH ] ]
2013      */
2014     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2015     *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
2016     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2017     *p++ = (unsigned char)( 0x04 + oid_size );
2018     *p++ = MBEDTLS_ASN1_OID;
2019     *p++ = (unsigned char) oid_size;
2020     memcpy( p, oid, oid_size );
2021     p += oid_size;
2022     *p++ = MBEDTLS_ASN1_NULL;
2023     *p++ = 0x00;
2024     *p++ = MBEDTLS_ASN1_OCTET_STRING;
2025     *p++ = (unsigned char) hashlen;
2026     memcpy( p, hash, hashlen );
2027     p += hashlen;
2028 
2029     /* Just a sanity-check, should be automatic
2030      * after the initial bounds check. */
2031     if( p != dst + dst_len )
2032     {
2033         mbedtls_platform_zeroize( dst, dst_len );
2034         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2035     }
2036 
2037     return( 0 );
2038 }
2039 
2040 /*
2041  * Do an RSA operation to sign the message digest
2042  */
2043 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
2044                                int (*f_rng)(void *, unsigned char *, size_t),
2045                                void *p_rng,
2046                                int mode,
2047                                mbedtls_md_type_t md_alg,
2048                                unsigned int hashlen,
2049                                const unsigned char *hash,
2050                                unsigned char *sig )
2051 {
2052     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2053     unsigned char *sig_try = NULL, *verif = NULL;
2054 
2055     RSA_VALIDATE_RET( ctx != NULL );
2056     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2057                       mode == MBEDTLS_RSA_PUBLIC );
2058     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2059                         hashlen == 0 ) ||
2060                       hash != NULL );
2061     RSA_VALIDATE_RET( sig != NULL );
2062 
2063     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2064         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2065 
2066     /*
2067      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
2068      */
2069 
2070     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
2071                                              ctx->len, sig ) ) != 0 )
2072         return( ret );
2073 
2074     /*
2075      * Call respective RSA primitive
2076      */
2077 
2078     if( mode == MBEDTLS_RSA_PUBLIC )
2079     {
2080         /* Skip verification on a public key operation */
2081         return( mbedtls_rsa_public( ctx, sig, sig ) );
2082     }
2083 
2084     /* Private key operation
2085      *
2086      * In order to prevent Lenstra's attack, make the signature in a
2087      * temporary buffer and check it before returning it.
2088      */
2089 
2090     sig_try = mbedtls_calloc( 1, ctx->len );
2091     if( sig_try == NULL )
2092         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2093 
2094     verif = mbedtls_calloc( 1, ctx->len );
2095     if( verif == NULL )
2096     {
2097         mbedtls_free( sig_try );
2098         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2099     }
2100 
2101     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
2102     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
2103 
2104     if( mbedtls_safer_memcmp( verif, sig, ctx->len ) != 0 )
2105     {
2106         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
2107         goto cleanup;
2108     }
2109 
2110     memcpy( sig, sig_try, ctx->len );
2111 
2112 cleanup:
2113     mbedtls_free( sig_try );
2114     mbedtls_free( verif );
2115 
2116     return( ret );
2117 }
2118 #endif /* MBEDTLS_PKCS1_V15 */
2119 
2120 /*
2121  * Do an RSA operation to sign the message digest
2122  */
2123 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
2124                     int (*f_rng)(void *, unsigned char *, size_t),
2125                     void *p_rng,
2126                     int mode,
2127                     mbedtls_md_type_t md_alg,
2128                     unsigned int hashlen,
2129                     const unsigned char *hash,
2130                     unsigned char *sig )
2131 {
2132     RSA_VALIDATE_RET( ctx != NULL );
2133     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2134                       mode == MBEDTLS_RSA_PUBLIC );
2135     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2136                         hashlen == 0 ) ||
2137                       hash != NULL );
2138     RSA_VALIDATE_RET( sig != NULL );
2139 
2140     switch( ctx->padding )
2141     {
2142 #if defined(MBEDTLS_PKCS1_V15)
2143         case MBEDTLS_RSA_PKCS_V15:
2144             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
2145                                               hashlen, hash, sig );
2146 #endif
2147 
2148 #if defined(MBEDTLS_PKCS1_V21)
2149         case MBEDTLS_RSA_PKCS_V21:
2150             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
2151                                         hashlen, hash, sig );
2152 #endif
2153 
2154         default:
2155             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2156     }
2157 }
2158 
2159 #if defined(MBEDTLS_PKCS1_V21)
2160 /*
2161  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2162  */
2163 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
2164                                int (*f_rng)(void *, unsigned char *, size_t),
2165                                void *p_rng,
2166                                int mode,
2167                                mbedtls_md_type_t md_alg,
2168                                unsigned int hashlen,
2169                                const unsigned char *hash,
2170                                mbedtls_md_type_t mgf1_hash_id,
2171                                int expected_salt_len,
2172                                const unsigned char *sig )
2173 {
2174     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2175     size_t siglen;
2176     unsigned char *p;
2177     unsigned char *hash_start;
2178     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2179     unsigned char zeros[8];
2180     unsigned int hlen;
2181     size_t observed_salt_len, msb;
2182     const mbedtls_md_info_t *md_info;
2183     mbedtls_md_context_t md_ctx;
2184     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2185 
2186     RSA_VALIDATE_RET( ctx != NULL );
2187     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2188                       mode == MBEDTLS_RSA_PUBLIC );
2189     RSA_VALIDATE_RET( sig != NULL );
2190     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2191                         hashlen == 0 ) ||
2192                       hash != NULL );
2193 
2194     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
2195         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2196 
2197     siglen = ctx->len;
2198 
2199     if( siglen < 16 || siglen > sizeof( buf ) )
2200         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2201 
2202     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2203           ? mbedtls_rsa_public(  ctx, sig, buf )
2204           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
2205 
2206     if( ret != 0 )
2207         return( ret );
2208 
2209     p = buf;
2210 
2211     if( buf[siglen - 1] != 0xBC )
2212         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2213 
2214     if( md_alg != MBEDTLS_MD_NONE )
2215     {
2216         /* Gather length of hash to sign */
2217         md_info = mbedtls_md_info_from_type( md_alg );
2218         if( md_info == NULL )
2219             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2220 
2221         hashlen = mbedtls_md_get_size( md_info );
2222     }
2223 
2224     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2225     if( md_info == NULL )
2226         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2227 
2228     hlen = mbedtls_md_get_size( md_info );
2229 
2230     memset( zeros, 0, 8 );
2231 
2232     /*
2233      * Note: EMSA-PSS verification is over the length of N - 1 bits
2234      */
2235     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2236 
2237     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2238         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2239 
2240     /* Compensate for boundary condition when applying mask */
2241     if( msb % 8 == 0 )
2242     {
2243         p++;
2244         siglen -= 1;
2245     }
2246 
2247     if( siglen < hlen + 2 )
2248         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2249     hash_start = p + siglen - hlen - 1;
2250 
2251     mbedtls_md_init( &md_ctx );
2252     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2253         goto exit;
2254 
2255     ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2256     if( ret != 0 )
2257         goto exit;
2258 
2259     buf[0] &= 0xFF >> ( siglen * 8 - msb );
2260 
2261     while( p < hash_start - 1 && *p == 0 )
2262         p++;
2263 
2264     if( *p++ != 0x01 )
2265     {
2266         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2267         goto exit;
2268     }
2269 
2270     observed_salt_len = hash_start - p;
2271 
2272     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2273         observed_salt_len != (size_t) expected_salt_len )
2274     {
2275         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2276         goto exit;
2277     }
2278 
2279     /*
2280      * Generate H = Hash( M' )
2281      */
2282     ret = mbedtls_md_starts( &md_ctx );
2283     if ( ret != 0 )
2284         goto exit;
2285     ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2286     if ( ret != 0 )
2287         goto exit;
2288     ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2289     if ( ret != 0 )
2290         goto exit;
2291     ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2292     if ( ret != 0 )
2293         goto exit;
2294     ret = mbedtls_md_finish( &md_ctx, result );
2295     if ( ret != 0 )
2296         goto exit;
2297 
2298     if( memcmp( hash_start, result, hlen ) != 0 )
2299     {
2300         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2301         goto exit;
2302     }
2303 
2304 exit:
2305     mbedtls_md_free( &md_ctx );
2306 
2307     return( ret );
2308 }
2309 
2310 /*
2311  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2312  */
2313 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2314                            int (*f_rng)(void *, unsigned char *, size_t),
2315                            void *p_rng,
2316                            int mode,
2317                            mbedtls_md_type_t md_alg,
2318                            unsigned int hashlen,
2319                            const unsigned char *hash,
2320                            const unsigned char *sig )
2321 {
2322     mbedtls_md_type_t mgf1_hash_id;
2323     RSA_VALIDATE_RET( ctx != NULL );
2324     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2325                       mode == MBEDTLS_RSA_PUBLIC );
2326     RSA_VALIDATE_RET( sig != NULL );
2327     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2328                         hashlen == 0 ) ||
2329                       hash != NULL );
2330 
2331     mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2332                              ? (mbedtls_md_type_t) ctx->hash_id
2333                              : md_alg;
2334 
2335     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
2336                                        md_alg, hashlen, hash,
2337                                        mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
2338                                        sig ) );
2339 
2340 }
2341 #endif /* MBEDTLS_PKCS1_V21 */
2342 
2343 #if defined(MBEDTLS_PKCS1_V15)
2344 /*
2345  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2346  */
2347 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2348                                  int (*f_rng)(void *, unsigned char *, size_t),
2349                                  void *p_rng,
2350                                  int mode,
2351                                  mbedtls_md_type_t md_alg,
2352                                  unsigned int hashlen,
2353                                  const unsigned char *hash,
2354                                  const unsigned char *sig )
2355 {
2356     int ret = 0;
2357     size_t sig_len;
2358     unsigned char *encoded = NULL, *encoded_expected = NULL;
2359 
2360     RSA_VALIDATE_RET( ctx != NULL );
2361     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2362                       mode == MBEDTLS_RSA_PUBLIC );
2363     RSA_VALIDATE_RET( sig != NULL );
2364     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2365                         hashlen == 0 ) ||
2366                       hash != NULL );
2367 
2368     sig_len = ctx->len;
2369 
2370     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2371         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2372 
2373     /*
2374      * Prepare expected PKCS1 v1.5 encoding of hash.
2375      */
2376 
2377     if( ( encoded          = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2378         ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2379     {
2380         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2381         goto cleanup;
2382     }
2383 
2384     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2385                                              encoded_expected ) ) != 0 )
2386         goto cleanup;
2387 
2388     /*
2389      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2390      */
2391 
2392     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2393           ? mbedtls_rsa_public(  ctx, sig, encoded )
2394           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, encoded );
2395     if( ret != 0 )
2396         goto cleanup;
2397 
2398     /*
2399      * Compare
2400      */
2401 
2402     if( ( ret = mbedtls_safer_memcmp( encoded, encoded_expected,
2403                                       sig_len ) ) != 0 )
2404     {
2405         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2406         goto cleanup;
2407     }
2408 
2409 cleanup:
2410 
2411     if( encoded != NULL )
2412     {
2413         mbedtls_platform_zeroize( encoded, sig_len );
2414         mbedtls_free( encoded );
2415     }
2416 
2417     if( encoded_expected != NULL )
2418     {
2419         mbedtls_platform_zeroize( encoded_expected, sig_len );
2420         mbedtls_free( encoded_expected );
2421     }
2422 
2423     return( ret );
2424 }
2425 #endif /* MBEDTLS_PKCS1_V15 */
2426 
2427 /*
2428  * Do an RSA operation and check the message digest
2429  */
2430 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2431                       int (*f_rng)(void *, unsigned char *, size_t),
2432                       void *p_rng,
2433                       int mode,
2434                       mbedtls_md_type_t md_alg,
2435                       unsigned int hashlen,
2436                       const unsigned char *hash,
2437                       const unsigned char *sig )
2438 {
2439     RSA_VALIDATE_RET( ctx != NULL );
2440     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2441                       mode == MBEDTLS_RSA_PUBLIC );
2442     RSA_VALIDATE_RET( sig != NULL );
2443     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2444                         hashlen == 0 ) ||
2445                       hash != NULL );
2446 
2447     switch( ctx->padding )
2448     {
2449 #if defined(MBEDTLS_PKCS1_V15)
2450         case MBEDTLS_RSA_PKCS_V15:
2451             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
2452                                                 hashlen, hash, sig );
2453 #endif
2454 
2455 #if defined(MBEDTLS_PKCS1_V21)
2456         case MBEDTLS_RSA_PKCS_V21:
2457             return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
2458                                           hashlen, hash, sig );
2459 #endif
2460 
2461         default:
2462             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2463     }
2464 }
2465 
2466 /*
2467  * Copy the components of an RSA key
2468  */
2469 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2470 {
2471     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2472     RSA_VALIDATE_RET( dst != NULL );
2473     RSA_VALIDATE_RET( src != NULL );
2474 
2475     dst->ver = src->ver;
2476     dst->len = src->len;
2477 
2478     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2479     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2480 
2481     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2482     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2483     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2484 
2485 #if !defined(MBEDTLS_RSA_NO_CRT)
2486     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2487     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2488     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2489     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2490     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2491 #endif
2492 
2493     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2494 
2495     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2496     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2497 
2498     dst->padding = src->padding;
2499     dst->hash_id = src->hash_id;
2500 
2501 cleanup:
2502     if( ret != 0 )
2503         mbedtls_rsa_free( dst );
2504 
2505     return( ret );
2506 }
2507 
2508 /*
2509  * Free the components of an RSA key
2510  */
2511 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2512 {
2513     if( ctx == NULL )
2514         return;
2515 
2516     mbedtls_mpi_free( &ctx->Vi );
2517     mbedtls_mpi_free( &ctx->Vf );
2518     mbedtls_mpi_free( &ctx->RN );
2519     mbedtls_mpi_free( &ctx->D  );
2520     mbedtls_mpi_free( &ctx->Q  );
2521     mbedtls_mpi_free( &ctx->P  );
2522     mbedtls_mpi_free( &ctx->E  );
2523     mbedtls_mpi_free( &ctx->N  );
2524 
2525 #if !defined(MBEDTLS_RSA_NO_CRT)
2526     mbedtls_mpi_free( &ctx->RQ );
2527     mbedtls_mpi_free( &ctx->RP );
2528     mbedtls_mpi_free( &ctx->QP );
2529     mbedtls_mpi_free( &ctx->DQ );
2530     mbedtls_mpi_free( &ctx->DP );
2531 #endif /* MBEDTLS_RSA_NO_CRT */
2532 
2533 #if defined(MBEDTLS_THREADING_C)
2534     mbedtls_mutex_free( &ctx->mutex );
2535 #endif
2536 }
2537 
2538 #endif /* !MBEDTLS_RSA_ALT */
2539 
2540 #if defined(MBEDTLS_SELF_TEST)
2541 
2542 #include "mbedtls/sha1.h"
2543 
2544 /*
2545  * Example RSA-1024 keypair, for test purposes
2546  */
2547 #define KEY_LEN 128
2548 
2549 #define RSA_N   "9292758453063D803DD603D5E777D788" \
2550                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2551                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2552                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2553                 "93A89813FBF3C4F8066D2D800F7C38A8" \
2554                 "1AE31942917403FF4946B0A83D3D3E05" \
2555                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2556                 "5E94BB77B07507233A0BC7BAC8F90F79"
2557 
2558 #define RSA_E   "10001"
2559 
2560 #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2561                 "66CA472BC44D253102F8B4A9D3BFA750" \
2562                 "91386C0077937FE33FA3252D28855837" \
2563                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2564                 "DF79C5CE07EE72C7F123142198164234" \
2565                 "CABB724CF78B8173B9F880FC86322407" \
2566                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2567                 "071513A1E85B5DFA031F21ECAE91A34D"
2568 
2569 #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2570                 "2C01CAD19EA484A87EA4377637E75500" \
2571                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2572                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2573 
2574 #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2575                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2576                 "910E4168387E3C30AA1E00C339A79508" \
2577                 "8452DD96A9A5EA5D9DCA68DA636032AF"
2578 
2579 #define PT_LEN  24
2580 #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2581                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2582 
2583 #if defined(MBEDTLS_PKCS1_V15)
2584 static int myrand( void *rng_state, unsigned char *output, size_t len )
2585 {
2586 #if !defined(__OpenBSD__)
2587     size_t i;
2588 
2589     if( rng_state != NULL )
2590         rng_state  = NULL;
2591 
2592     for( i = 0; i < len; ++i )
2593         output[i] = rand();
2594 #else
2595     if( rng_state != NULL )
2596         rng_state = NULL;
2597 
2598     arc4random_buf( output, len );
2599 #endif /* !OpenBSD */
2600 
2601     return( 0 );
2602 }
2603 #endif /* MBEDTLS_PKCS1_V15 */
2604 
2605 /*
2606  * Checkup routine
2607  */
2608 int mbedtls_rsa_self_test( int verbose )
2609 {
2610     int ret = 0;
2611 #if defined(MBEDTLS_PKCS1_V15)
2612     size_t len;
2613     mbedtls_rsa_context rsa;
2614     unsigned char rsa_plaintext[PT_LEN];
2615     unsigned char rsa_decrypted[PT_LEN];
2616     unsigned char rsa_ciphertext[KEY_LEN];
2617 #if defined(MBEDTLS_SHA1_C)
2618     unsigned char sha1sum[20];
2619 #endif
2620 
2621     mbedtls_mpi K;
2622 
2623     mbedtls_mpi_init( &K );
2624     mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
2625 
2626     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
2627     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2628     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
2629     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2630     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
2631     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2632     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
2633     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2634     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
2635     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2636 
2637     MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2638 
2639     if( verbose != 0 )
2640         mbedtls_printf( "  RSA key validation: " );
2641 
2642     if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
2643         mbedtls_rsa_check_privkey( &rsa ) != 0 )
2644     {
2645         if( verbose != 0 )
2646             mbedtls_printf( "failed\n" );
2647 
2648         ret = 1;
2649         goto cleanup;
2650     }
2651 
2652     if( verbose != 0 )
2653         mbedtls_printf( "passed\n  PKCS#1 encryption : " );
2654 
2655     memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2656 
2657     if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
2658                                    PT_LEN, rsa_plaintext,
2659                                    rsa_ciphertext ) != 0 )
2660     {
2661         if( verbose != 0 )
2662             mbedtls_printf( "failed\n" );
2663 
2664         ret = 1;
2665         goto cleanup;
2666     }
2667 
2668     if( verbose != 0 )
2669         mbedtls_printf( "passed\n  PKCS#1 decryption : " );
2670 
2671     if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
2672                                    &len, rsa_ciphertext, rsa_decrypted,
2673                                    sizeof(rsa_decrypted) ) != 0 )
2674     {
2675         if( verbose != 0 )
2676             mbedtls_printf( "failed\n" );
2677 
2678         ret = 1;
2679         goto cleanup;
2680     }
2681 
2682     if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2683     {
2684         if( verbose != 0 )
2685             mbedtls_printf( "failed\n" );
2686 
2687         ret = 1;
2688         goto cleanup;
2689     }
2690 
2691     if( verbose != 0 )
2692         mbedtls_printf( "passed\n" );
2693 
2694 #if defined(MBEDTLS_SHA1_C)
2695     if( verbose != 0 )
2696         mbedtls_printf( "  PKCS#1 data sign  : " );
2697 
2698     if( mbedtls_sha1_ret( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2699     {
2700         if( verbose != 0 )
2701             mbedtls_printf( "failed\n" );
2702 
2703         return( 1 );
2704     }
2705 
2706     if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2707                                 MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
2708                                 sha1sum, rsa_ciphertext ) != 0 )
2709     {
2710         if( verbose != 0 )
2711             mbedtls_printf( "failed\n" );
2712 
2713         ret = 1;
2714         goto cleanup;
2715     }
2716 
2717     if( verbose != 0 )
2718         mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
2719 
2720     if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL,
2721                                   MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
2722                                   sha1sum, rsa_ciphertext ) != 0 )
2723     {
2724         if( verbose != 0 )
2725             mbedtls_printf( "failed\n" );
2726 
2727         ret = 1;
2728         goto cleanup;
2729     }
2730 
2731     if( verbose != 0 )
2732         mbedtls_printf( "passed\n" );
2733 #endif /* MBEDTLS_SHA1_C */
2734 
2735     if( verbose != 0 )
2736         mbedtls_printf( "\n" );
2737 
2738 cleanup:
2739     mbedtls_mpi_free( &K );
2740     mbedtls_rsa_free( &rsa );
2741 #else /* MBEDTLS_PKCS1_V15 */
2742     ((void) verbose);
2743 #endif /* MBEDTLS_PKCS1_V15 */
2744     return( ret );
2745 }
2746 
2747 #endif /* MBEDTLS_SELF_TEST */
2748 
2749 #endif /* MBEDTLS_RSA_C */
2750