1 /* 2 * PSA crypto layer on top of Mbed TLS crypto 3 */ 4 /* 5 * Copyright The Mbed TLS Contributors 6 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later 7 */ 8 9 #include "common.h" 10 11 #if defined(MBEDTLS_PSA_CRYPTO_C) 12 13 #include "psa/crypto.h" 14 15 #include "psa_crypto_core.h" 16 #include "psa_crypto_driver_wrappers_no_static.h" 17 #include "psa_crypto_slot_management.h" 18 #include "psa_crypto_storage.h" 19 #if defined(MBEDTLS_PSA_CRYPTO_SE_C) 20 #include "psa_crypto_se.h" 21 #endif 22 23 #include <stdlib.h> 24 #include <string.h> 25 #include "mbedtls/platform.h" 26 #if defined(MBEDTLS_THREADING_C) 27 #include "mbedtls/threading.h" 28 #endif 29 30 31 32 /* Make sure we have distinct ranges of key identifiers for distinct 33 * purposes. */ 34 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MIN < PSA_KEY_ID_USER_MAX, 35 "Empty user key ID range"); 36 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN < PSA_KEY_ID_VENDOR_MAX, 37 "Empty vendor key ID range"); 38 MBEDTLS_STATIC_ASSERT(MBEDTLS_PSA_KEY_ID_BUILTIN_MIN <= MBEDTLS_PSA_KEY_ID_BUILTIN_MAX, 39 "Empty builtin key ID range"); 40 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MIN <= PSA_KEY_ID_VOLATILE_MAX, 41 "Empty volatile key ID range"); 42 43 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MAX < PSA_KEY_ID_VENDOR_MIN || 44 PSA_KEY_ID_VENDOR_MAX < PSA_KEY_ID_USER_MIN, 45 "Overlap between user key IDs and vendor key IDs"); 46 47 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= MBEDTLS_PSA_KEY_ID_BUILTIN_MIN && 48 MBEDTLS_PSA_KEY_ID_BUILTIN_MAX <= PSA_KEY_ID_VENDOR_MAX, 49 "Builtin key identifiers are not in the vendor range"); 50 51 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= PSA_KEY_ID_VOLATILE_MIN && 52 PSA_KEY_ID_VOLATILE_MAX <= PSA_KEY_ID_VENDOR_MAX, 53 "Volatile key identifiers are not in the vendor range"); 54 55 MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MAX < MBEDTLS_PSA_KEY_ID_BUILTIN_MIN || 56 MBEDTLS_PSA_KEY_ID_BUILTIN_MAX < PSA_KEY_ID_VOLATILE_MIN, 57 "Overlap between builtin key IDs and volatile key IDs"); 58 59 60 61 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 62 63 /* Dynamic key store. 64 * 65 * The key store consists of multiple slices. 66 * 67 * The volatile keys are stored in variable-sized tables called slices. 68 * Slices are allocated on demand and deallocated when possible. 69 * The size of slices increases exponentially, so the average overhead 70 * (number of slots that are allocated but not used) is roughly 71 * proportional to the number of keys (with a factor that grows 72 * when the key store is fragmented). 73 * 74 * One slice is dedicated to the cache of persistent and built-in keys. 75 * For simplicity, they are separated from volatile keys. This cache 76 * slice has a fixed size and has the slice index KEY_SLOT_CACHE_SLICE_INDEX, 77 * located after the slices for volatile keys. 78 */ 79 80 /* Size of the last slice containing the cache of persistent and built-in keys. */ 81 #define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT 82 83 /* Volatile keys are stored in slices 0 through 84 * (KEY_SLOT_VOLATILE_SLICE_COUNT - 1) inclusive. 85 * Each slice is twice the size of the previous slice. 86 * Volatile key identifiers encode the slice number as follows: 87 * bits 30..31: 0b10 (mandated by the PSA Crypto specification). 88 * bits 25..29: slice index (0...KEY_SLOT_VOLATILE_SLICE_COUNT-1) 89 * bits 0..24: slot index in slice 90 */ 91 #define KEY_ID_SLOT_INDEX_WIDTH 25u 92 #define KEY_ID_SLICE_INDEX_WIDTH 5u 93 94 #define KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH 16u 95 #define KEY_SLOT_VOLATILE_SLICE_COUNT 22u 96 #define KEY_SLICE_COUNT (KEY_SLOT_VOLATILE_SLICE_COUNT + 1u) 97 #define KEY_SLOT_CACHE_SLICE_INDEX KEY_SLOT_VOLATILE_SLICE_COUNT 98 99 100 /* Check that the length of the largest slice (calculated as 101 * KEY_SLICE_LENGTH_MAX below) does not overflow size_t. We use 102 * an indirect method in case the calculation of KEY_SLICE_LENGTH_MAX 103 * itself overflows uintmax_t: if (BASE_LENGTH << c) 104 * overflows size_t then BASE_LENGTH > SIZE_MAX >> c. 105 */ 106 #if (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH > \ 107 SIZE_MAX >> (KEY_SLOT_VOLATILE_SLICE_COUNT - 1)) 108 #error "Maximum slice length overflows size_t" 109 #endif 110 111 #if KEY_ID_SLICE_INDEX_WIDTH + KEY_ID_SLOT_INDEX_WIDTH > 30 112 #error "Not enough room in volatile key IDs for slice index and slot index" 113 #endif 114 #if KEY_SLOT_VOLATILE_SLICE_COUNT > (1 << KEY_ID_SLICE_INDEX_WIDTH) 115 #error "Too many slices to fit the slice index in a volatile key ID" 116 #endif 117 #define KEY_SLICE_LENGTH_MAX \ 118 (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << (KEY_SLOT_VOLATILE_SLICE_COUNT - 1)) 119 #if KEY_SLICE_LENGTH_MAX > 1 << KEY_ID_SLOT_INDEX_WIDTH 120 #error "Not enough room in volatile key IDs for a slot index in the largest slice" 121 #endif 122 #if KEY_ID_SLICE_INDEX_WIDTH > 8 123 #error "Slice index does not fit in uint8_t for psa_key_slot_t::slice_index" 124 #endif 125 126 127 /* Calculate the volatile key id to use for a given slot. 128 * This function assumes valid parameter values. */ 129 static psa_key_id_t volatile_key_id_of_index(size_t slice_idx, 130 size_t slot_idx) 131 { 132 /* We assert above that the slice and slot indexes fit in separate 133 * bit-fields inside psa_key_id_t, which is a 32-bit type per the 134 * PSA Cryptography specification. */ 135 return (psa_key_id_t) (0x40000000u | 136 (slice_idx << KEY_ID_SLOT_INDEX_WIDTH) | 137 slot_idx); 138 } 139 140 /* Calculate the slice containing the given volatile key. 141 * This function assumes valid parameter values. */ 142 static size_t slice_index_of_volatile_key_id(psa_key_id_t key_id) 143 { 144 size_t mask = (1LU << KEY_ID_SLICE_INDEX_WIDTH) - 1; 145 return (key_id >> KEY_ID_SLOT_INDEX_WIDTH) & mask; 146 } 147 148 /* Calculate the index of the slot containing the given volatile key. 149 * This function assumes valid parameter values. */ 150 static size_t slot_index_of_volatile_key_id(psa_key_id_t key_id) 151 { 152 return key_id & ((1LU << KEY_ID_SLOT_INDEX_WIDTH) - 1); 153 } 154 155 /* In global_data.first_free_slot_index, use this special value to 156 * indicate that the slice is full. */ 157 #define FREE_SLOT_INDEX_NONE ((size_t) -1) 158 159 #if defined(MBEDTLS_TEST_HOOKS) 160 size_t psa_key_slot_volatile_slice_count(void) 161 { 162 return KEY_SLOT_VOLATILE_SLICE_COUNT; 163 } 164 #endif 165 166 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 167 168 /* Static key store. 169 * 170 * All the keys (volatile or persistent) are in a single slice. 171 * We only use slices as a concept to allow some differences between 172 * static and dynamic key store management to be buried in auxiliary 173 * functions. 174 */ 175 176 #define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT 177 #define KEY_SLICE_COUNT 1u 178 #define KEY_SLOT_CACHE_SLICE_INDEX 0 179 180 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 181 182 183 typedef struct { 184 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 185 psa_key_slot_t *key_slices[KEY_SLICE_COUNT]; 186 size_t first_free_slot_index[KEY_SLOT_VOLATILE_SLICE_COUNT]; 187 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 188 psa_key_slot_t key_slots[MBEDTLS_PSA_KEY_SLOT_COUNT]; 189 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 190 uint8_t key_slots_initialized; 191 } psa_global_data_t; 192 193 static psa_global_data_t global_data; 194 195 static uint8_t psa_get_key_slots_initialized(void) 196 { 197 uint8_t initialized; 198 199 #if defined(MBEDTLS_THREADING_C) 200 mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex); 201 #endif /* defined(MBEDTLS_THREADING_C) */ 202 203 initialized = global_data.key_slots_initialized; 204 205 #if defined(MBEDTLS_THREADING_C) 206 mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex); 207 #endif /* defined(MBEDTLS_THREADING_C) */ 208 209 return initialized; 210 } 211 212 213 214 /** The length of the given slice in the key slot table. 215 * 216 * \param slice_idx The slice number. It must satisfy 217 * 0 <= slice_idx < KEY_SLICE_COUNT. 218 * 219 * \return The number of elements in the given slice. 220 */ 221 static inline size_t key_slice_length(size_t slice_idx); 222 223 /** Get a pointer to the slot where the given volatile key is located. 224 * 225 * \param key_id The key identifier. It must be a valid volatile key 226 * identifier. 227 * \return A pointer to the only slot that the given key 228 * can be in. Note that the slot may be empty or 229 * contain a different key. 230 */ 231 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id); 232 233 /** Get a pointer to an entry in the persistent key cache. 234 * 235 * \param slot_idx The index in the table. It must satisfy 236 * 0 <= slot_idx < PERSISTENT_KEY_CACHE_COUNT. 237 * \return A pointer to the slot containing the given 238 * persistent key cache entry. 239 */ 240 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx); 241 242 /** Get a pointer to a slot given by slice and index. 243 * 244 * \param slice_idx The slice number. It must satisfy 245 * 0 <= slice_idx < KEY_SLICE_COUNT. 246 * \param slot_idx An index in the given slice. It must satisfy 247 * 0 <= slot_idx < key_slice_length(slice_idx). 248 * 249 * \return A pointer to the given slot. 250 */ 251 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx); 252 253 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 254 255 #if defined(MBEDTLS_TEST_HOOKS) 256 size_t (*mbedtls_test_hook_psa_volatile_key_slice_length)(size_t slice_idx) = NULL; 257 #endif 258 259 static inline size_t key_slice_length(size_t slice_idx) 260 { 261 if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) { 262 return PERSISTENT_KEY_CACHE_COUNT; 263 } else { 264 #if defined(MBEDTLS_TEST_HOOKS) 265 if (mbedtls_test_hook_psa_volatile_key_slice_length != NULL) { 266 return mbedtls_test_hook_psa_volatile_key_slice_length(slice_idx); 267 } 268 #endif 269 return KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << slice_idx; 270 } 271 } 272 273 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id) 274 { 275 size_t slice_idx = slice_index_of_volatile_key_id(key_id); 276 if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) { 277 return NULL; 278 } 279 size_t slot_idx = slot_index_of_volatile_key_id(key_id); 280 if (slot_idx >= key_slice_length(slice_idx)) { 281 return NULL; 282 } 283 psa_key_slot_t *slice = global_data.key_slices[slice_idx]; 284 if (slice == NULL) { 285 return NULL; 286 } 287 return &slice[slot_idx]; 288 } 289 290 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx) 291 { 292 return &global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX][slot_idx]; 293 } 294 295 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx) 296 { 297 return &global_data.key_slices[slice_idx][slot_idx]; 298 } 299 300 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 301 302 static inline size_t key_slice_length(size_t slice_idx) 303 { 304 (void) slice_idx; 305 return ARRAY_LENGTH(global_data.key_slots); 306 } 307 308 static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id) 309 { 310 MBEDTLS_STATIC_ASSERT(ARRAY_LENGTH(global_data.key_slots) <= 311 PSA_KEY_ID_VOLATILE_MAX - PSA_KEY_ID_VOLATILE_MIN + 1, 312 "The key slot array is larger than the volatile key ID range"); 313 return &global_data.key_slots[key_id - PSA_KEY_ID_VOLATILE_MIN]; 314 } 315 316 static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx) 317 { 318 return &global_data.key_slots[slot_idx]; 319 } 320 321 static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx) 322 { 323 (void) slice_idx; 324 return &global_data.key_slots[slot_idx]; 325 } 326 327 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 328 329 330 331 int psa_is_valid_key_id(mbedtls_svc_key_id_t key, int vendor_ok) 332 { 333 psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key); 334 335 if ((PSA_KEY_ID_USER_MIN <= key_id) && 336 (key_id <= PSA_KEY_ID_USER_MAX)) { 337 return 1; 338 } 339 340 if (vendor_ok && 341 (PSA_KEY_ID_VENDOR_MIN <= key_id) && 342 (key_id <= PSA_KEY_ID_VENDOR_MAX)) { 343 return 1; 344 } 345 346 return 0; 347 } 348 349 /** Get the description in memory of a key given its identifier and lock it. 350 * 351 * The descriptions of volatile keys and loaded persistent keys are 352 * stored in key slots. This function returns a pointer to the key slot 353 * containing the description of a key given its identifier. 354 * 355 * The function searches the key slots containing the description of the key 356 * with \p key identifier. The function does only read accesses to the key 357 * slots. The function does not load any persistent key thus does not access 358 * any storage. 359 * 360 * For volatile key identifiers, only one key slot is queried as a volatile 361 * key with identifier key_id can only be stored in slot of index 362 * ( key_id - #PSA_KEY_ID_VOLATILE_MIN ). 363 * 364 * On success, the function locks the key slot. It is the responsibility of 365 * the caller to unlock the key slot when it does not access it anymore. 366 * 367 * If multi-threading is enabled, the caller must hold the 368 * global key slot mutex. 369 * 370 * \param key Key identifier to query. 371 * \param[out] p_slot On success, `*p_slot` contains a pointer to the 372 * key slot containing the description of the key 373 * identified by \p key. 374 * 375 * \retval #PSA_SUCCESS 376 * The pointer to the key slot containing the description of the key 377 * identified by \p key was returned. 378 * \retval #PSA_ERROR_INVALID_HANDLE 379 * \p key is not a valid key identifier. 380 * \retval #PSA_ERROR_DOES_NOT_EXIST 381 * There is no key with key identifier \p key in the key slots. 382 */ 383 static psa_status_t psa_get_and_lock_key_slot_in_memory( 384 mbedtls_svc_key_id_t key, psa_key_slot_t **p_slot) 385 { 386 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; 387 psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key); 388 size_t slot_idx; 389 psa_key_slot_t *slot = NULL; 390 391 if (psa_key_id_is_volatile(key_id)) { 392 slot = get_volatile_key_slot(key_id); 393 394 /* Check if both the PSA key identifier key_id and the owner 395 * identifier of key match those of the key slot. */ 396 if (slot != NULL && 397 slot->state == PSA_SLOT_FULL && 398 mbedtls_svc_key_id_equal(key, slot->attr.id)) { 399 status = PSA_SUCCESS; 400 } else { 401 status = PSA_ERROR_DOES_NOT_EXIST; 402 } 403 } else { 404 if (!psa_is_valid_key_id(key, 1)) { 405 return PSA_ERROR_INVALID_HANDLE; 406 } 407 408 for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) { 409 slot = get_persistent_key_slot(slot_idx); 410 /* Only consider slots which are in a full state. */ 411 if ((slot->state == PSA_SLOT_FULL) && 412 (mbedtls_svc_key_id_equal(key, slot->attr.id))) { 413 break; 414 } 415 } 416 status = (slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT) ? 417 PSA_SUCCESS : PSA_ERROR_DOES_NOT_EXIST; 418 } 419 420 if (status == PSA_SUCCESS) { 421 status = psa_register_read(slot); 422 if (status == PSA_SUCCESS) { 423 *p_slot = slot; 424 } 425 } 426 427 return status; 428 } 429 430 psa_status_t psa_initialize_key_slots(void) 431 { 432 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 433 global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] = 434 mbedtls_calloc(PERSISTENT_KEY_CACHE_COUNT, 435 sizeof(*global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX])); 436 if (global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] == NULL) { 437 return PSA_ERROR_INSUFFICIENT_MEMORY; 438 } 439 #else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 440 /* Nothing to do: program startup and psa_wipe_all_key_slots() both 441 * guarantee that the key slots are initialized to all-zero, which 442 * means that all the key slots are in a valid, empty state. The global 443 * data mutex is already held when calling this function, so no need to 444 * lock it here, to set the flag. */ 445 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 446 447 global_data.key_slots_initialized = 1; 448 return PSA_SUCCESS; 449 } 450 451 void psa_wipe_all_key_slots(void) 452 { 453 for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) { 454 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 455 if (global_data.key_slices[slice_idx] == NULL) { 456 continue; 457 } 458 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 459 for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) { 460 psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx); 461 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 462 /* When MBEDTLS_PSA_KEY_STORE_DYNAMIC is disabled, calling 463 * psa_wipe_key_slot() on an unused slot is useless, but it 464 * happens to work (because we flip the state to PENDING_DELETION). 465 * 466 * When MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled, 467 * psa_wipe_key_slot() needs to have a valid slice_index 468 * field, but that value might not be correct in a 469 * free slot, so we must not call it. 470 * 471 * Bypass the call to psa_wipe_key_slot() if the slot is empty, 472 * but only if MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled, to save 473 * a few bytes of code size otherwise. 474 */ 475 if (slot->state == PSA_SLOT_EMPTY) { 476 continue; 477 } 478 #endif 479 slot->var.occupied.registered_readers = 1; 480 slot->state = PSA_SLOT_PENDING_DELETION; 481 (void) psa_wipe_key_slot(slot); 482 } 483 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 484 mbedtls_free(global_data.key_slices[slice_idx]); 485 global_data.key_slices[slice_idx] = NULL; 486 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 487 } 488 489 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 490 for (size_t slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) { 491 global_data.first_free_slot_index[slice_idx] = 0; 492 } 493 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 494 495 /* The global data mutex is already held when calling this function. */ 496 global_data.key_slots_initialized = 0; 497 } 498 499 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 500 501 static psa_status_t psa_allocate_volatile_key_slot(psa_key_id_t *key_id, 502 psa_key_slot_t **p_slot) 503 { 504 size_t slice_idx; 505 for (slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) { 506 if (global_data.first_free_slot_index[slice_idx] != FREE_SLOT_INDEX_NONE) { 507 break; 508 } 509 } 510 if (slice_idx == KEY_SLOT_VOLATILE_SLICE_COUNT) { 511 return PSA_ERROR_INSUFFICIENT_MEMORY; 512 } 513 514 if (global_data.key_slices[slice_idx] == NULL) { 515 global_data.key_slices[slice_idx] = 516 mbedtls_calloc(key_slice_length(slice_idx), 517 sizeof(psa_key_slot_t)); 518 if (global_data.key_slices[slice_idx] == NULL) { 519 return PSA_ERROR_INSUFFICIENT_MEMORY; 520 } 521 } 522 psa_key_slot_t *slice = global_data.key_slices[slice_idx]; 523 524 size_t slot_idx = global_data.first_free_slot_index[slice_idx]; 525 *key_id = volatile_key_id_of_index(slice_idx, slot_idx); 526 527 psa_key_slot_t *slot = &slice[slot_idx]; 528 size_t next_free = slot_idx + 1 + slot->var.free.next_free_relative_to_next; 529 if (next_free >= key_slice_length(slice_idx)) { 530 next_free = FREE_SLOT_INDEX_NONE; 531 } 532 global_data.first_free_slot_index[slice_idx] = next_free; 533 /* The .next_free field is not meaningful when the slot is not free, 534 * so give it the same content as freshly initialized memory. */ 535 slot->var.free.next_free_relative_to_next = 0; 536 537 psa_status_t status = psa_key_slot_state_transition(slot, 538 PSA_SLOT_EMPTY, 539 PSA_SLOT_FILLING); 540 if (status != PSA_SUCCESS) { 541 /* The only reason for failure is if the slot state was not empty. 542 * This indicates that something has gone horribly wrong. 543 * In this case, we leave the slot out of the free list, and stop 544 * modifying it. This minimizes any further corruption. The slot 545 * is a memory leak, but that's a lesser evil. */ 546 return status; 547 } 548 549 *p_slot = slot; 550 /* We assert at compile time that the slice index fits in uint8_t. */ 551 slot->slice_index = (uint8_t) slice_idx; 552 return PSA_SUCCESS; 553 } 554 555 psa_status_t psa_free_key_slot(size_t slice_idx, 556 psa_key_slot_t *slot) 557 { 558 559 if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) { 560 /* This is a cache entry. We don't maintain a free list, so 561 * there's nothing to do. */ 562 return PSA_SUCCESS; 563 } 564 if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) { 565 return PSA_ERROR_CORRUPTION_DETECTED; 566 } 567 568 psa_key_slot_t *slice = global_data.key_slices[slice_idx]; 569 psa_key_slot_t *slice_end = slice + key_slice_length(slice_idx); 570 if (slot < slice || slot >= slice_end) { 571 /* The slot isn't actually in the slice! We can't detect that 572 * condition for sure, because the pointer comparison itself is 573 * undefined behavior in that case. That same condition makes the 574 * subtraction to calculate the slot index also UB. 575 * Give up now to avoid causing further corruption. 576 */ 577 return PSA_ERROR_CORRUPTION_DETECTED; 578 } 579 size_t slot_idx = slot - slice; 580 581 size_t next_free = global_data.first_free_slot_index[slice_idx]; 582 if (next_free >= key_slice_length(slice_idx)) { 583 /* The slot was full. The newly freed slot thus becomes the 584 * end of the free list. */ 585 next_free = key_slice_length(slice_idx); 586 } 587 global_data.first_free_slot_index[slice_idx] = slot_idx; 588 slot->var.free.next_free_relative_to_next = 589 (int32_t) next_free - (int32_t) slot_idx - 1; 590 591 return PSA_SUCCESS; 592 } 593 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 594 595 psa_status_t psa_reserve_free_key_slot(psa_key_id_t *volatile_key_id, 596 psa_key_slot_t **p_slot) 597 { 598 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; 599 size_t slot_idx; 600 psa_key_slot_t *selected_slot, *unused_persistent_key_slot; 601 602 if (!psa_get_key_slots_initialized()) { 603 status = PSA_ERROR_BAD_STATE; 604 goto error; 605 } 606 607 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 608 if (volatile_key_id != NULL) { 609 return psa_allocate_volatile_key_slot(volatile_key_id, p_slot); 610 } 611 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 612 613 /* With a dynamic key store, allocate an entry in the cache slice, 614 * applicable only to non-volatile keys that get cached in RAM. 615 * With a static key store, allocate an entry in the sole slice, 616 * applicable to all keys. */ 617 selected_slot = unused_persistent_key_slot = NULL; 618 for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) { 619 psa_key_slot_t *slot = get_key_slot(KEY_SLOT_CACHE_SLICE_INDEX, slot_idx); 620 if (slot->state == PSA_SLOT_EMPTY) { 621 selected_slot = slot; 622 break; 623 } 624 625 if ((unused_persistent_key_slot == NULL) && 626 (slot->state == PSA_SLOT_FULL) && 627 (!psa_key_slot_has_readers(slot)) && 628 (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime))) { 629 unused_persistent_key_slot = slot; 630 } 631 } 632 633 /* 634 * If there is no unused key slot and there is at least one unlocked key 635 * slot containing the description of a persistent key, recycle the first 636 * such key slot we encountered. If we later need to operate on the 637 * persistent key we are evicting now, we will reload its description from 638 * storage. 639 */ 640 if ((selected_slot == NULL) && 641 (unused_persistent_key_slot != NULL)) { 642 selected_slot = unused_persistent_key_slot; 643 psa_register_read(selected_slot); 644 status = psa_wipe_key_slot(selected_slot); 645 if (status != PSA_SUCCESS) { 646 goto error; 647 } 648 } 649 650 if (selected_slot != NULL) { 651 status = psa_key_slot_state_transition(selected_slot, PSA_SLOT_EMPTY, 652 PSA_SLOT_FILLING); 653 if (status != PSA_SUCCESS) { 654 goto error; 655 } 656 657 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 658 selected_slot->slice_index = KEY_SLOT_CACHE_SLICE_INDEX; 659 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 660 661 #if !defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 662 if (volatile_key_id != NULL) { 663 /* Refresh slot_idx, for when the slot is not the original 664 * selected_slot but rather unused_persistent_key_slot. */ 665 slot_idx = selected_slot - global_data.key_slots; 666 *volatile_key_id = PSA_KEY_ID_VOLATILE_MIN + slot_idx; 667 } 668 #endif 669 *p_slot = selected_slot; 670 671 return PSA_SUCCESS; 672 } 673 status = PSA_ERROR_INSUFFICIENT_MEMORY; 674 675 error: 676 *p_slot = NULL; 677 678 return status; 679 } 680 681 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) 682 static psa_status_t psa_load_persistent_key_into_slot(psa_key_slot_t *slot) 683 { 684 psa_status_t status = PSA_SUCCESS; 685 uint8_t *key_data = NULL; 686 size_t key_data_length = 0; 687 688 status = psa_load_persistent_key(&slot->attr, 689 &key_data, &key_data_length); 690 if (status != PSA_SUCCESS) { 691 goto exit; 692 } 693 694 #if defined(MBEDTLS_PSA_CRYPTO_SE_C) 695 /* Special handling is required for loading keys associated with a 696 * dynamically registered SE interface. */ 697 const psa_drv_se_t *drv; 698 psa_drv_se_context_t *drv_context; 699 if (psa_get_se_driver(slot->attr.lifetime, &drv, &drv_context)) { 700 psa_se_key_data_storage_t *data; 701 702 if (key_data_length != sizeof(*data)) { 703 status = PSA_ERROR_DATA_INVALID; 704 goto exit; 705 } 706 data = (psa_se_key_data_storage_t *) key_data; 707 status = psa_copy_key_material_into_slot( 708 slot, data->slot_number, sizeof(data->slot_number)); 709 goto exit; 710 } 711 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */ 712 713 status = psa_copy_key_material_into_slot(slot, key_data, key_data_length); 714 if (status != PSA_SUCCESS) { 715 goto exit; 716 } 717 718 exit: 719 psa_free_persistent_key_data(key_data, key_data_length); 720 return status; 721 } 722 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C */ 723 724 #if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) 725 726 static psa_status_t psa_load_builtin_key_into_slot(psa_key_slot_t *slot) 727 { 728 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; 729 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; 730 psa_key_lifetime_t lifetime = PSA_KEY_LIFETIME_VOLATILE; 731 psa_drv_slot_number_t slot_number = 0; 732 size_t key_buffer_size = 0; 733 size_t key_buffer_length = 0; 734 735 if (!psa_key_id_is_builtin( 736 MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id))) { 737 return PSA_ERROR_DOES_NOT_EXIST; 738 } 739 740 /* Check the platform function to see whether this key actually exists */ 741 status = mbedtls_psa_platform_get_builtin_key( 742 slot->attr.id, &lifetime, &slot_number); 743 if (status != PSA_SUCCESS) { 744 return status; 745 } 746 747 /* Set required key attributes to ensure get_builtin_key can retrieve the 748 * full attributes. */ 749 psa_set_key_id(&attributes, slot->attr.id); 750 psa_set_key_lifetime(&attributes, lifetime); 751 752 /* Get the full key attributes from the driver in order to be able to 753 * calculate the required buffer size. */ 754 status = psa_driver_wrapper_get_builtin_key( 755 slot_number, &attributes, 756 NULL, 0, NULL); 757 if (status != PSA_ERROR_BUFFER_TOO_SMALL) { 758 /* Builtin keys cannot be defined by the attributes alone */ 759 if (status == PSA_SUCCESS) { 760 status = PSA_ERROR_CORRUPTION_DETECTED; 761 } 762 return status; 763 } 764 765 /* If the key should exist according to the platform, then ask the driver 766 * what its expected size is. */ 767 status = psa_driver_wrapper_get_key_buffer_size(&attributes, 768 &key_buffer_size); 769 if (status != PSA_SUCCESS) { 770 return status; 771 } 772 773 /* Allocate a buffer of the required size and load the builtin key directly 774 * into the (now properly sized) slot buffer. */ 775 status = psa_allocate_buffer_to_slot(slot, key_buffer_size); 776 if (status != PSA_SUCCESS) { 777 return status; 778 } 779 780 status = psa_driver_wrapper_get_builtin_key( 781 slot_number, &attributes, 782 slot->key.data, slot->key.bytes, &key_buffer_length); 783 if (status != PSA_SUCCESS) { 784 goto exit; 785 } 786 787 /* Copy actual key length and core attributes into the slot on success */ 788 slot->key.bytes = key_buffer_length; 789 slot->attr = attributes; 790 exit: 791 if (status != PSA_SUCCESS) { 792 psa_remove_key_data_from_memory(slot); 793 } 794 return status; 795 } 796 #endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ 797 798 psa_status_t psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key, 799 psa_key_slot_t **p_slot) 800 { 801 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; 802 803 *p_slot = NULL; 804 if (!psa_get_key_slots_initialized()) { 805 return PSA_ERROR_BAD_STATE; 806 } 807 808 #if defined(MBEDTLS_THREADING_C) 809 /* We need to set status as success, otherwise CORRUPTION_DETECTED 810 * would be returned if the lock fails. */ 811 status = PSA_SUCCESS; 812 /* If the key is persistent and not loaded, we cannot unlock the mutex 813 * between checking if the key is loaded and setting the slot as FULL, 814 * as otherwise another thread may load and then destroy the key 815 * in the meantime. */ 816 PSA_THREADING_CHK_RET(mbedtls_mutex_lock( 817 &mbedtls_threading_key_slot_mutex)); 818 #endif 819 /* 820 * On success, the pointer to the slot is passed directly to the caller 821 * thus no need to unlock the key slot here. 822 */ 823 status = psa_get_and_lock_key_slot_in_memory(key, p_slot); 824 if (status != PSA_ERROR_DOES_NOT_EXIST) { 825 #if defined(MBEDTLS_THREADING_C) 826 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 827 &mbedtls_threading_key_slot_mutex)); 828 #endif 829 return status; 830 } 831 832 /* Loading keys from storage requires support for such a mechanism */ 833 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \ 834 defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) 835 836 status = psa_reserve_free_key_slot(NULL, p_slot); 837 if (status != PSA_SUCCESS) { 838 #if defined(MBEDTLS_THREADING_C) 839 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 840 &mbedtls_threading_key_slot_mutex)); 841 #endif 842 return status; 843 } 844 845 (*p_slot)->attr.id = key; 846 (*p_slot)->attr.lifetime = PSA_KEY_LIFETIME_PERSISTENT; 847 848 status = PSA_ERROR_DOES_NOT_EXIST; 849 #if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) 850 /* Load keys in the 'builtin' range through their own interface */ 851 status = psa_load_builtin_key_into_slot(*p_slot); 852 #endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ 853 854 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) 855 if (status == PSA_ERROR_DOES_NOT_EXIST) { 856 status = psa_load_persistent_key_into_slot(*p_slot); 857 } 858 #endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */ 859 860 if (status != PSA_SUCCESS) { 861 psa_wipe_key_slot(*p_slot); 862 863 /* If the key does not exist, we need to return 864 * PSA_ERROR_INVALID_HANDLE. */ 865 if (status == PSA_ERROR_DOES_NOT_EXIST) { 866 status = PSA_ERROR_INVALID_HANDLE; 867 } 868 } else { 869 /* Add implicit usage flags. */ 870 psa_extend_key_usage_flags(&(*p_slot)->attr.policy.usage); 871 872 psa_key_slot_state_transition((*p_slot), PSA_SLOT_FILLING, 873 PSA_SLOT_FULL); 874 status = psa_register_read(*p_slot); 875 } 876 877 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ 878 status = PSA_ERROR_INVALID_HANDLE; 879 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ 880 881 if (status != PSA_SUCCESS) { 882 *p_slot = NULL; 883 } 884 #if defined(MBEDTLS_THREADING_C) 885 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 886 &mbedtls_threading_key_slot_mutex)); 887 #endif 888 return status; 889 } 890 891 psa_status_t psa_unregister_read(psa_key_slot_t *slot) 892 { 893 if (slot == NULL) { 894 return PSA_SUCCESS; 895 } 896 if ((slot->state != PSA_SLOT_FULL) && 897 (slot->state != PSA_SLOT_PENDING_DELETION)) { 898 return PSA_ERROR_CORRUPTION_DETECTED; 899 } 900 901 /* If we are the last reader and the slot is marked for deletion, 902 * we must wipe the slot here. */ 903 if ((slot->state == PSA_SLOT_PENDING_DELETION) && 904 (slot->var.occupied.registered_readers == 1)) { 905 return psa_wipe_key_slot(slot); 906 } 907 908 if (psa_key_slot_has_readers(slot)) { 909 slot->var.occupied.registered_readers--; 910 return PSA_SUCCESS; 911 } 912 913 /* 914 * As the return error code may not be handled in case of multiple errors, 915 * do our best to report if there are no registered readers. Assert with 916 * MBEDTLS_TEST_HOOK_TEST_ASSERT that there are registered readers: 917 * if the MBEDTLS_TEST_HOOKS configuration option is enabled and 918 * the function is called as part of the execution of a test suite, the 919 * execution of the test suite is stopped in error if the assertion fails. 920 */ 921 MBEDTLS_TEST_HOOK_TEST_ASSERT(psa_key_slot_has_readers(slot)); 922 return PSA_ERROR_CORRUPTION_DETECTED; 923 } 924 925 psa_status_t psa_unregister_read_under_mutex(psa_key_slot_t *slot) 926 { 927 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; 928 #if defined(MBEDTLS_THREADING_C) 929 /* We need to set status as success, otherwise CORRUPTION_DETECTED 930 * would be returned if the lock fails. */ 931 status = PSA_SUCCESS; 932 PSA_THREADING_CHK_RET(mbedtls_mutex_lock( 933 &mbedtls_threading_key_slot_mutex)); 934 #endif 935 status = psa_unregister_read(slot); 936 #if defined(MBEDTLS_THREADING_C) 937 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 938 &mbedtls_threading_key_slot_mutex)); 939 #endif 940 return status; 941 } 942 943 psa_status_t psa_validate_key_location(psa_key_lifetime_t lifetime, 944 psa_se_drv_table_entry_t **p_drv) 945 { 946 if (psa_key_lifetime_is_external(lifetime)) { 947 #if defined(MBEDTLS_PSA_CRYPTO_SE_C) 948 /* Check whether a driver is registered against this lifetime */ 949 psa_se_drv_table_entry_t *driver = psa_get_se_driver_entry(lifetime); 950 if (driver != NULL) { 951 if (p_drv != NULL) { 952 *p_drv = driver; 953 } 954 return PSA_SUCCESS; 955 } 956 #else /* MBEDTLS_PSA_CRYPTO_SE_C */ 957 (void) p_drv; 958 #endif /* MBEDTLS_PSA_CRYPTO_SE_C */ 959 960 /* Key location for external keys gets checked by the wrapper */ 961 return PSA_SUCCESS; 962 } else { 963 /* Local/internal keys are always valid */ 964 return PSA_SUCCESS; 965 } 966 } 967 968 psa_status_t psa_validate_key_persistence(psa_key_lifetime_t lifetime) 969 { 970 if (PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)) { 971 /* Volatile keys are always supported */ 972 return PSA_SUCCESS; 973 } else { 974 /* Persistent keys require storage support */ 975 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) 976 if (PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)) { 977 return PSA_ERROR_INVALID_ARGUMENT; 978 } else { 979 return PSA_SUCCESS; 980 } 981 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C */ 982 return PSA_ERROR_NOT_SUPPORTED; 983 #endif /* !MBEDTLS_PSA_CRYPTO_STORAGE_C */ 984 } 985 } 986 987 psa_status_t psa_open_key(mbedtls_svc_key_id_t key, psa_key_handle_t *handle) 988 { 989 #if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \ 990 defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) 991 psa_status_t status; 992 psa_key_slot_t *slot; 993 994 status = psa_get_and_lock_key_slot(key, &slot); 995 if (status != PSA_SUCCESS) { 996 *handle = PSA_KEY_HANDLE_INIT; 997 if (status == PSA_ERROR_INVALID_HANDLE) { 998 status = PSA_ERROR_DOES_NOT_EXIST; 999 } 1000 1001 return status; 1002 } 1003 1004 *handle = key; 1005 1006 return psa_unregister_read_under_mutex(slot); 1007 1008 #else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ 1009 (void) key; 1010 *handle = PSA_KEY_HANDLE_INIT; 1011 return PSA_ERROR_NOT_SUPPORTED; 1012 #endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ 1013 } 1014 1015 psa_status_t psa_close_key(psa_key_handle_t handle) 1016 { 1017 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; 1018 psa_key_slot_t *slot; 1019 1020 if (psa_key_handle_is_null(handle)) { 1021 return PSA_SUCCESS; 1022 } 1023 1024 #if defined(MBEDTLS_THREADING_C) 1025 /* We need to set status as success, otherwise CORRUPTION_DETECTED 1026 * would be returned if the lock fails. */ 1027 status = PSA_SUCCESS; 1028 PSA_THREADING_CHK_RET(mbedtls_mutex_lock( 1029 &mbedtls_threading_key_slot_mutex)); 1030 #endif 1031 status = psa_get_and_lock_key_slot_in_memory(handle, &slot); 1032 if (status != PSA_SUCCESS) { 1033 if (status == PSA_ERROR_DOES_NOT_EXIST) { 1034 status = PSA_ERROR_INVALID_HANDLE; 1035 } 1036 #if defined(MBEDTLS_THREADING_C) 1037 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 1038 &mbedtls_threading_key_slot_mutex)); 1039 #endif 1040 return status; 1041 } 1042 1043 if (slot->var.occupied.registered_readers == 1) { 1044 status = psa_wipe_key_slot(slot); 1045 } else { 1046 status = psa_unregister_read(slot); 1047 } 1048 #if defined(MBEDTLS_THREADING_C) 1049 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 1050 &mbedtls_threading_key_slot_mutex)); 1051 #endif 1052 1053 return status; 1054 } 1055 1056 psa_status_t psa_purge_key(mbedtls_svc_key_id_t key) 1057 { 1058 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; 1059 psa_key_slot_t *slot; 1060 1061 #if defined(MBEDTLS_THREADING_C) 1062 /* We need to set status as success, otherwise CORRUPTION_DETECTED 1063 * would be returned if the lock fails. */ 1064 status = PSA_SUCCESS; 1065 PSA_THREADING_CHK_RET(mbedtls_mutex_lock( 1066 &mbedtls_threading_key_slot_mutex)); 1067 #endif 1068 status = psa_get_and_lock_key_slot_in_memory(key, &slot); 1069 if (status != PSA_SUCCESS) { 1070 #if defined(MBEDTLS_THREADING_C) 1071 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 1072 &mbedtls_threading_key_slot_mutex)); 1073 #endif 1074 return status; 1075 } 1076 1077 if ((!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) && 1078 (slot->var.occupied.registered_readers == 1)) { 1079 status = psa_wipe_key_slot(slot); 1080 } else { 1081 status = psa_unregister_read(slot); 1082 } 1083 #if defined(MBEDTLS_THREADING_C) 1084 PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( 1085 &mbedtls_threading_key_slot_mutex)); 1086 #endif 1087 1088 return status; 1089 } 1090 1091 void mbedtls_psa_get_stats(mbedtls_psa_stats_t *stats) 1092 { 1093 memset(stats, 0, sizeof(*stats)); 1094 1095 for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) { 1096 #if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) 1097 if (global_data.key_slices[slice_idx] == NULL) { 1098 continue; 1099 } 1100 #endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ 1101 for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) { 1102 const psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx); 1103 if (slot->state == PSA_SLOT_EMPTY) { 1104 ++stats->empty_slots; 1105 continue; 1106 } 1107 if (psa_key_slot_has_readers(slot)) { 1108 ++stats->locked_slots; 1109 } 1110 if (PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) { 1111 ++stats->volatile_slots; 1112 } else { 1113 psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id); 1114 ++stats->persistent_slots; 1115 if (id > stats->max_open_internal_key_id) { 1116 stats->max_open_internal_key_id = id; 1117 } 1118 } 1119 if (PSA_KEY_LIFETIME_GET_LOCATION(slot->attr.lifetime) != 1120 PSA_KEY_LOCATION_LOCAL_STORAGE) { 1121 psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id); 1122 ++stats->external_slots; 1123 if (id > stats->max_open_external_key_id) { 1124 stats->max_open_external_key_id = id; 1125 } 1126 } 1127 } 1128 } 1129 } 1130 1131 #endif /* MBEDTLS_PSA_CRYPTO_C */ 1132