xref: /optee_os/lib/libmbedtls/mbedtls/library/ecp_curves.c (revision c6672fdcd95b9a895eb5b4191f8ba3483a34a442)
1 // SPDX-License-Identifier: Apache-2.0
2 /*
3  *  Elliptic curves over GF(p): curve-specific data and functions
4  *
5  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 
22 #if !defined(MBEDTLS_CONFIG_FILE)
23 #include "mbedtls/config.h"
24 #else
25 #include MBEDTLS_CONFIG_FILE
26 #endif
27 
28 #if defined(MBEDTLS_ECP_C)
29 
30 #include "mbedtls/ecp.h"
31 
32 #include <string.h>
33 
34 #if !defined(MBEDTLS_ECP_ALT)
35 
36 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
37     !defined(inline) && !defined(__cplusplus)
38 #define inline __inline
39 #endif
40 
41 /*
42  * Conversion macros for embedded constants:
43  * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
44  */
45 #if defined(MBEDTLS_HAVE_INT32)
46 
47 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
48     ( (mbedtls_mpi_uint) a <<  0 ) |                          \
49     ( (mbedtls_mpi_uint) b <<  8 ) |                          \
50     ( (mbedtls_mpi_uint) c << 16 ) |                          \
51     ( (mbedtls_mpi_uint) d << 24 )
52 
53 #define BYTES_TO_T_UINT_2( a, b )                   \
54     BYTES_TO_T_UINT_4( a, b, 0, 0 )
55 
56 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
57     BYTES_TO_T_UINT_4( a, b, c, d ),                \
58     BYTES_TO_T_UINT_4( e, f, g, h )
59 
60 #else /* 64-bits */
61 
62 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
63     ( (mbedtls_mpi_uint) a <<  0 ) |                          \
64     ( (mbedtls_mpi_uint) b <<  8 ) |                          \
65     ( (mbedtls_mpi_uint) c << 16 ) |                          \
66     ( (mbedtls_mpi_uint) d << 24 ) |                          \
67     ( (mbedtls_mpi_uint) e << 32 ) |                          \
68     ( (mbedtls_mpi_uint) f << 40 ) |                          \
69     ( (mbedtls_mpi_uint) g << 48 ) |                          \
70     ( (mbedtls_mpi_uint) h << 56 )
71 
72 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
73     BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
74 
75 #define BYTES_TO_T_UINT_2( a, b )                   \
76     BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
77 
78 #endif /* bits in mbedtls_mpi_uint */
79 
80 /*
81  * Note: the constants are in little-endian order
82  * to be directly usable in MPIs
83  */
84 
85 /*
86  * Domain parameters for secp192r1
87  */
88 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
89 static const mbedtls_mpi_uint secp192r1_p[] = {
90     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
91     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
92     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
93 };
94 static const mbedtls_mpi_uint secp192r1_b[] = {
95     BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
96     BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
97     BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
98 };
99 static const mbedtls_mpi_uint secp192r1_gx[] = {
100     BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
101     BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
102     BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
103 };
104 static const mbedtls_mpi_uint secp192r1_gy[] = {
105     BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
106     BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
107     BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
108 };
109 static const mbedtls_mpi_uint secp192r1_n[] = {
110     BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
111     BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
112     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
113 };
114 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
115 
116 /*
117  * Domain parameters for secp224r1
118  */
119 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
120 static const mbedtls_mpi_uint secp224r1_p[] = {
121     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
122     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
123     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
124     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
125 };
126 static const mbedtls_mpi_uint secp224r1_b[] = {
127     BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
128     BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
129     BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
130     BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
131 };
132 static const mbedtls_mpi_uint secp224r1_gx[] = {
133     BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
134     BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
135     BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
136     BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
137 };
138 static const mbedtls_mpi_uint secp224r1_gy[] = {
139     BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
140     BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
141     BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
142     BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
143 };
144 static const mbedtls_mpi_uint secp224r1_n[] = {
145     BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
146     BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
147     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
148     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
149 };
150 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
151 
152 /*
153  * Domain parameters for secp256r1
154  */
155 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
156 static const mbedtls_mpi_uint secp256r1_p[] = {
157     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
158     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
159     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
160     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
161 };
162 static const mbedtls_mpi_uint secp256r1_b[] = {
163     BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
164     BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
165     BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
166     BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
167 };
168 static const mbedtls_mpi_uint secp256r1_gx[] = {
169     BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
170     BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
171     BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
172     BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
173 };
174 static const mbedtls_mpi_uint secp256r1_gy[] = {
175     BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
176     BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
177     BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
178     BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
179 };
180 static const mbedtls_mpi_uint secp256r1_n[] = {
181     BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
182     BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
183     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
184     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
185 };
186 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
187 
188 /*
189  * Domain parameters for secp384r1
190  */
191 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
192 static const mbedtls_mpi_uint secp384r1_p[] = {
193     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
194     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
195     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
196     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
197     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
198     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
199 };
200 static const mbedtls_mpi_uint secp384r1_b[] = {
201     BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
202     BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
203     BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
204     BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
205     BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
206     BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
207 };
208 static const mbedtls_mpi_uint secp384r1_gx[] = {
209     BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
210     BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
211     BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
212     BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
213     BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
214     BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
215 };
216 static const mbedtls_mpi_uint secp384r1_gy[] = {
217     BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
218     BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
219     BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
220     BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
221     BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
222     BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
223 };
224 static const mbedtls_mpi_uint secp384r1_n[] = {
225     BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
226     BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
227     BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
228     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
229     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
230     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231 };
232 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
233 
234 /*
235  * Domain parameters for secp521r1
236  */
237 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
238 static const mbedtls_mpi_uint secp521r1_p[] = {
239     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
240     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
241     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
242     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
243     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
244     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
245     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
246     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
247     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
248 };
249 static const mbedtls_mpi_uint secp521r1_b[] = {
250     BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
251     BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
252     BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
253     BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
254     BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
255     BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
256     BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
257     BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
258     BYTES_TO_T_UINT_2( 0x51, 0x00 ),
259 };
260 static const mbedtls_mpi_uint secp521r1_gx[] = {
261     BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
262     BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
263     BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
264     BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
265     BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
266     BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
267     BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
268     BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
269     BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
270 };
271 static const mbedtls_mpi_uint secp521r1_gy[] = {
272     BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
273     BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
274     BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
275     BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
276     BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
277     BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
278     BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
279     BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
280     BYTES_TO_T_UINT_2( 0x18, 0x01 ),
281 };
282 static const mbedtls_mpi_uint secp521r1_n[] = {
283     BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
284     BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
285     BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
286     BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
287     BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
288     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
289     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
290     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
291     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
292 };
293 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
294 
295 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
296 static const mbedtls_mpi_uint secp192k1_p[] = {
297     BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
298     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
299     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
300 };
301 static const mbedtls_mpi_uint secp192k1_a[] = {
302     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
303 };
304 static const mbedtls_mpi_uint secp192k1_b[] = {
305     BYTES_TO_T_UINT_2( 0x03, 0x00 ),
306 };
307 static const mbedtls_mpi_uint secp192k1_gx[] = {
308     BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
309     BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
310     BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
311 };
312 static const mbedtls_mpi_uint secp192k1_gy[] = {
313     BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
314     BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
315     BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
316 };
317 static const mbedtls_mpi_uint secp192k1_n[] = {
318     BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
319     BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
320     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
321 };
322 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
323 
324 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
325 static const mbedtls_mpi_uint secp224k1_p[] = {
326     BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
327     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
328     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
329     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
330 };
331 static const mbedtls_mpi_uint secp224k1_a[] = {
332     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
333 };
334 static const mbedtls_mpi_uint secp224k1_b[] = {
335     BYTES_TO_T_UINT_2( 0x05, 0x00 ),
336 };
337 static const mbedtls_mpi_uint secp224k1_gx[] = {
338     BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
339     BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
340     BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
341     BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
342 };
343 static const mbedtls_mpi_uint secp224k1_gy[] = {
344     BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
345     BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
346     BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
347     BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
348 };
349 static const mbedtls_mpi_uint secp224k1_n[] = {
350     BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
351     BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
352     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
353     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
354 };
355 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
356 
357 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
358 static const mbedtls_mpi_uint secp256k1_p[] = {
359     BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
360     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
361     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
362     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
363 };
364 static const mbedtls_mpi_uint secp256k1_a[] = {
365     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
366 };
367 static const mbedtls_mpi_uint secp256k1_b[] = {
368     BYTES_TO_T_UINT_2( 0x07, 0x00 ),
369 };
370 static const mbedtls_mpi_uint secp256k1_gx[] = {
371     BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
372     BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
373     BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
374     BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
375 };
376 static const mbedtls_mpi_uint secp256k1_gy[] = {
377     BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
378     BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
379     BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
380     BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
381 };
382 static const mbedtls_mpi_uint secp256k1_n[] = {
383     BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
384     BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
385     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
386     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
387 };
388 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
389 
390 /*
391  * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
392  */
393 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
394 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
395     BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
396     BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
397     BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
398     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
399 };
400 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
401     BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
402     BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
403     BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
404     BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
405 };
406 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
407     BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
408     BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
409     BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
410     BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
411 };
412 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
413     BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
414     BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
415     BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
416     BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
417 };
418 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
419     BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
420     BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
421     BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
422     BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
423 };
424 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
425     BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
426     BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
427     BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
428     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
429 };
430 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
431 
432 /*
433  * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
434  */
435 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
436 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
437     BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
438     BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
439     BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
440     BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
441     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
442     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
443 };
444 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
445     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
446     BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
447     BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
448     BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
449     BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
450     BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
451 };
452 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
453     BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
454     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
455     BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
456     BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
457     BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
458     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
459 };
460 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
461     BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
462     BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
463     BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
464     BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
465     BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
466     BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
467 };
468 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
469     BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
470     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
471     BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
472     BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
473     BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
474     BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
475 };
476 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
477     BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
478     BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
479     BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
480     BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
481     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
482     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
483 };
484 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
485 
486 /*
487  * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
488  */
489 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
490 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
491     BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
492     BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
493     BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
494     BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
495     BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
496     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
497     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
498     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
499 };
500 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
501     BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
502     BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
503     BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
504     BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
505     BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
506     BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
507     BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
508     BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
509 };
510 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
511     BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
512     BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
513     BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
514     BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
515     BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
516     BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
517     BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
518     BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
519 };
520 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
521     BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
522     BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
523     BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
524     BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
525     BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
526     BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
527     BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
528     BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
529 };
530 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
531     BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
532     BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
533     BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
534     BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
535     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
536     BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
537     BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
538     BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
539 };
540 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
541     BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
542     BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
543     BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
544     BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
545     BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
546     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
547     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
548     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
549 };
550 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
551 
552 /*
553  * Create an MPI from embedded constants
554  * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
555  */
556 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
557 {
558     X->s = 1;
559     X->n = len / sizeof( mbedtls_mpi_uint );
560     X->p = (mbedtls_mpi_uint *) p;
561 }
562 
563 /*
564  * Set an MPI to static value 1
565  */
566 static inline void ecp_mpi_set1( mbedtls_mpi *X )
567 {
568     static mbedtls_mpi_uint one[] = { 1 };
569     X->s = 1;
570     X->n = 1;
571     X->p = one;
572 }
573 
574 /*
575  * Make group available from embedded constants
576  */
577 static int ecp_group_load( mbedtls_ecp_group *grp,
578                            const mbedtls_mpi_uint *p,  size_t plen,
579                            const mbedtls_mpi_uint *a,  size_t alen,
580                            const mbedtls_mpi_uint *b,  size_t blen,
581                            const mbedtls_mpi_uint *gx, size_t gxlen,
582                            const mbedtls_mpi_uint *gy, size_t gylen,
583                            const mbedtls_mpi_uint *n,  size_t nlen)
584 {
585     ecp_mpi_load( &grp->P, p, plen );
586     if( a != NULL )
587         ecp_mpi_load( &grp->A, a, alen );
588     ecp_mpi_load( &grp->B, b, blen );
589     ecp_mpi_load( &grp->N, n, nlen );
590 
591     ecp_mpi_load( &grp->G.X, gx, gxlen );
592     ecp_mpi_load( &grp->G.Y, gy, gylen );
593     ecp_mpi_set1( &grp->G.Z );
594 
595     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
596     grp->nbits = mbedtls_mpi_bitlen( &grp->N );
597 
598     grp->h = 1;
599 
600     return( 0 );
601 }
602 
603 #if defined(MBEDTLS_ECP_NIST_OPTIM)
604 /* Forward declarations */
605 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
606 static int ecp_mod_p192( mbedtls_mpi * );
607 #endif
608 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
609 static int ecp_mod_p224( mbedtls_mpi * );
610 #endif
611 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
612 static int ecp_mod_p256( mbedtls_mpi * );
613 #endif
614 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
615 static int ecp_mod_p384( mbedtls_mpi * );
616 #endif
617 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
618 static int ecp_mod_p521( mbedtls_mpi * );
619 #endif
620 
621 #define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
622 #else
623 #define NIST_MODP( P )
624 #endif /* MBEDTLS_ECP_NIST_OPTIM */
625 
626 /* Additional forward declarations */
627 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
628 static int ecp_mod_p255( mbedtls_mpi * );
629 #endif
630 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
631 static int ecp_mod_p192k1( mbedtls_mpi * );
632 #endif
633 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
634 static int ecp_mod_p224k1( mbedtls_mpi * );
635 #endif
636 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
637 static int ecp_mod_p256k1( mbedtls_mpi * );
638 #endif
639 
640 #define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
641                             G ## _p,  sizeof( G ## _p  ),   \
642                             G ## _a,  sizeof( G ## _a  ),   \
643                             G ## _b,  sizeof( G ## _b  ),   \
644                             G ## _gx, sizeof( G ## _gx ),   \
645                             G ## _gy, sizeof( G ## _gy ),   \
646                             G ## _n,  sizeof( G ## _n  ) )
647 
648 #define LOAD_GROUP( G )     ecp_group_load( grp,            \
649                             G ## _p,  sizeof( G ## _p  ),   \
650                             NULL,     0,                    \
651                             G ## _b,  sizeof( G ## _b  ),   \
652                             G ## _gx, sizeof( G ## _gx ),   \
653                             G ## _gy, sizeof( G ## _gy ),   \
654                             G ## _n,  sizeof( G ## _n  ) )
655 
656 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
657 /*
658  * Specialized function for creating the Curve25519 group
659  */
660 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
661 {
662     int ret;
663 
664     /* Actually ( A + 2 ) / 4 */
665     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
666 
667     /* P = 2^255 - 19 */
668     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
669     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
670     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
671     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
672 
673     /* Y intentionaly not set, since we use x/z coordinates.
674      * This is used as a marker to identify Montgomery curves! */
675     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
676     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
677     mbedtls_mpi_free( &grp->G.Y );
678 
679     /* Actually, the required msb for private keys */
680     grp->nbits = 254;
681 
682 cleanup:
683     if( ret != 0 )
684         mbedtls_ecp_group_free( grp );
685 
686     return( ret );
687 }
688 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
689 
690 /*
691  * Set a group using well-known domain parameters
692  */
693 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
694 {
695     mbedtls_ecp_group_free( grp );
696 
697     grp->id = id;
698 
699     switch( id )
700     {
701 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
702         case MBEDTLS_ECP_DP_SECP192R1:
703             NIST_MODP( p192 );
704             return( LOAD_GROUP( secp192r1 ) );
705 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
706 
707 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
708         case MBEDTLS_ECP_DP_SECP224R1:
709             NIST_MODP( p224 );
710             return( LOAD_GROUP( secp224r1 ) );
711 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
712 
713 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
714         case MBEDTLS_ECP_DP_SECP256R1:
715             NIST_MODP( p256 );
716             return( LOAD_GROUP( secp256r1 ) );
717 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
718 
719 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
720         case MBEDTLS_ECP_DP_SECP384R1:
721             NIST_MODP( p384 );
722             return( LOAD_GROUP( secp384r1 ) );
723 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
724 
725 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
726         case MBEDTLS_ECP_DP_SECP521R1:
727             NIST_MODP( p521 );
728             return( LOAD_GROUP( secp521r1 ) );
729 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
730 
731 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
732         case MBEDTLS_ECP_DP_SECP192K1:
733             grp->modp = ecp_mod_p192k1;
734             return( LOAD_GROUP_A( secp192k1 ) );
735 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
736 
737 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
738         case MBEDTLS_ECP_DP_SECP224K1:
739             grp->modp = ecp_mod_p224k1;
740             return( LOAD_GROUP_A( secp224k1 ) );
741 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
742 
743 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
744         case MBEDTLS_ECP_DP_SECP256K1:
745             grp->modp = ecp_mod_p256k1;
746             return( LOAD_GROUP_A( secp256k1 ) );
747 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
748 
749 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
750         case MBEDTLS_ECP_DP_BP256R1:
751             return( LOAD_GROUP_A( brainpoolP256r1 ) );
752 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
753 
754 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
755         case MBEDTLS_ECP_DP_BP384R1:
756             return( LOAD_GROUP_A( brainpoolP384r1 ) );
757 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
758 
759 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
760         case MBEDTLS_ECP_DP_BP512R1:
761             return( LOAD_GROUP_A( brainpoolP512r1 ) );
762 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
763 
764 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
765         case MBEDTLS_ECP_DP_CURVE25519:
766             grp->modp = ecp_mod_p255;
767             return( ecp_use_curve25519( grp ) );
768 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
769 
770         default:
771             mbedtls_ecp_group_free( grp );
772             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
773     }
774 }
775 
776 #if defined(MBEDTLS_ECP_NIST_OPTIM)
777 /*
778  * Fast reduction modulo the primes used by the NIST curves.
779  *
780  * These functions are critical for speed, but not needed for correct
781  * operations. So, we make the choice to heavily rely on the internals of our
782  * bignum library, which creates a tight coupling between these functions and
783  * our MPI implementation.  However, the coupling between the ECP module and
784  * MPI remains loose, since these functions can be deactivated at will.
785  */
786 
787 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
788 /*
789  * Compared to the way things are presented in FIPS 186-3 D.2,
790  * we proceed in columns, from right (least significant chunk) to left,
791  * adding chunks to N in place, and keeping a carry for the next chunk.
792  * This avoids moving things around in memory, and uselessly adding zeros,
793  * compared to the more straightforward, line-oriented approach.
794  *
795  * For this prime we need to handle data in chunks of 64 bits.
796  * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
797  * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
798  */
799 
800 /* Add 64-bit chunks (dst += src) and update carry */
801 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
802 {
803     unsigned char i;
804     mbedtls_mpi_uint c = 0;
805     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
806     {
807         *dst += c;      c  = ( *dst < c );
808         *dst += *src;   c += ( *dst < *src );
809     }
810     *carry += c;
811 }
812 
813 /* Add carry to a 64-bit chunk and update carry */
814 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
815 {
816     unsigned char i;
817     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
818     {
819         *dst += *carry;
820         *carry  = ( *dst < *carry );
821     }
822 }
823 
824 #define WIDTH       8 / sizeof( mbedtls_mpi_uint )
825 #define A( i )      N->p + i * WIDTH
826 #define ADD( i )    add64( p, A( i ), &c )
827 #define NEXT        p += WIDTH; carry64( p, &c )
828 #define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
829 
830 /*
831  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
832  */
833 static int ecp_mod_p192( mbedtls_mpi *N )
834 {
835     int ret;
836     mbedtls_mpi_uint c = 0;
837     mbedtls_mpi_uint *p, *end;
838 
839     /* Make sure we have enough blocks so that A(5) is legal */
840     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
841 
842     p = N->p;
843     end = p + N->n;
844 
845     ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
846     ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
847     ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
848 
849 cleanup:
850     return( ret );
851 }
852 
853 #undef WIDTH
854 #undef A
855 #undef ADD
856 #undef NEXT
857 #undef LAST
858 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
859 
860 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
861     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
862     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
863 /*
864  * The reader is advised to first understand ecp_mod_p192() since the same
865  * general structure is used here, but with additional complications:
866  * (1) chunks of 32 bits, and (2) subtractions.
867  */
868 
869 /*
870  * For these primes, we need to handle data in chunks of 32 bits.
871  * This makes it more complicated if we use 64 bits limbs in MPI,
872  * which prevents us from using a uniform access method as for p192.
873  *
874  * So, we define a mini abstraction layer to access 32 bit chunks,
875  * load them in 'cur' for work, and store them back from 'cur' when done.
876  *
877  * While at it, also define the size of N in terms of 32-bit chunks.
878  */
879 #define LOAD32      cur = A( i );
880 
881 #if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
882 
883 #define MAX32       N->n
884 #define A( j )      N->p[j]
885 #define STORE32     N->p[i] = cur;
886 
887 #else                               /* 64-bit */
888 
889 #define MAX32       N->n * 2
890 #define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
891 #define STORE32                                   \
892     if( i % 2 ) {                                 \
893         N->p[i/2] &= 0x00000000FFFFFFFF;          \
894         N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
895     } else {                                      \
896         N->p[i/2] &= 0xFFFFFFFF00000000;          \
897         N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
898     }
899 
900 #endif /* sizeof( mbedtls_mpi_uint ) */
901 
902 /*
903  * Helpers for addition and subtraction of chunks, with signed carry.
904  */
905 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
906 {
907     *dst += src;
908     *carry += ( *dst < src );
909 }
910 
911 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
912 {
913     *carry -= ( *dst < src );
914     *dst -= src;
915 }
916 
917 #define ADD( j )    add32( &cur, A( j ), &c );
918 #define SUB( j )    sub32( &cur, A( j ), &c );
919 
920 /*
921  * Helpers for the main 'loop'
922  * (see fix_negative for the motivation of C)
923  */
924 #define INIT( b )                                           \
925     int ret;                                                \
926     signed char c = 0, cc;                                  \
927     uint32_t cur;                                           \
928     size_t i = 0, bits = b;                                 \
929     mbedtls_mpi C;                                                  \
930     mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ];               \
931                                                             \
932     C.s = 1;                                                \
933     C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
934     C.p = Cp;                                               \
935     memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                \
936                                                             \
937     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
938     LOAD32;
939 
940 #define NEXT                    \
941     STORE32; i++; LOAD32;       \
942     cc = c; c = 0;              \
943     if( cc < 0 )                \
944         sub32( &cur, -cc, &c ); \
945     else                        \
946         add32( &cur, cc, &c );  \
947 
948 #define LAST                                    \
949     STORE32; i++;                               \
950     cur = c > 0 ? c : 0; STORE32;               \
951     cur = 0; while( ++i < MAX32 ) { STORE32; }  \
952     if( c < 0 ) fix_negative( N, c, &C, bits );
953 
954 /*
955  * If the result is negative, we get it in the form
956  * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
957  */
958 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
959 {
960     int ret;
961 
962     /* C = - c * 2^(bits + 32) */
963 #if !defined(MBEDTLS_HAVE_INT64)
964     ((void) bits);
965 #else
966     if( bits == 224 )
967         C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
968     else
969 #endif
970         C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
971 
972     /* N = - ( C - N ) */
973     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
974     N->s = -1;
975 
976 cleanup:
977 
978     return( ret );
979 }
980 
981 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
982 /*
983  * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
984  */
985 static int ecp_mod_p224( mbedtls_mpi *N )
986 {
987     INIT( 224 );
988 
989     SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
990     SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
991     SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
992     SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
993     SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
994     SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
995     SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
996 
997 cleanup:
998     return( ret );
999 }
1000 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1001 
1002 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1003 /*
1004  * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1005  */
1006 static int ecp_mod_p256( mbedtls_mpi *N )
1007 {
1008     INIT( 256 );
1009 
1010     ADD(  8 ); ADD(  9 );
1011     SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1012 
1013     ADD(  9 ); ADD( 10 );
1014     SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1015 
1016     ADD( 10 ); ADD( 11 );
1017     SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1018 
1019     ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1020     SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1021 
1022     ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1023     SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1024 
1025     ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1026     SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1027 
1028     ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1029     SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1030 
1031     ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1032     SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1033 
1034 cleanup:
1035     return( ret );
1036 }
1037 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1038 
1039 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1040 /*
1041  * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1042  */
1043 static int ecp_mod_p384( mbedtls_mpi *N )
1044 {
1045     INIT( 384 );
1046 
1047     ADD( 12 ); ADD( 21 ); ADD( 20 );
1048     SUB( 23 );                                              NEXT; // A0
1049 
1050     ADD( 13 ); ADD( 22 ); ADD( 23 );
1051     SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1052 
1053     ADD( 14 ); ADD( 23 );
1054     SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1055 
1056     ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1057     SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1058 
1059     ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1060     SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1061 
1062     ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1063     SUB( 16 );                                              NEXT; // A5
1064 
1065     ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1066     SUB( 17 );                                              NEXT; // A6
1067 
1068     ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1069     SUB( 18 );                                              NEXT; // A7
1070 
1071     ADD( 20 ); ADD( 17 ); ADD( 16 );
1072     SUB( 19 );                                              NEXT; // A8
1073 
1074     ADD( 21 ); ADD( 18 ); ADD( 17 );
1075     SUB( 20 );                                              NEXT; // A9
1076 
1077     ADD( 22 ); ADD( 19 ); ADD( 18 );
1078     SUB( 21 );                                              NEXT; // A10
1079 
1080     ADD( 23 ); ADD( 20 ); ADD( 19 );
1081     SUB( 22 );                                              LAST; // A11
1082 
1083 cleanup:
1084     return( ret );
1085 }
1086 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1087 
1088 #undef A
1089 #undef LOAD32
1090 #undef STORE32
1091 #undef MAX32
1092 #undef INIT
1093 #undef NEXT
1094 #undef LAST
1095 
1096 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1097           MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1098           MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1099 
1100 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1101 /*
1102  * Here we have an actual Mersenne prime, so things are more straightforward.
1103  * However, chunks are aligned on a 'weird' boundary (521 bits).
1104  */
1105 
1106 /* Size of p521 in terms of mbedtls_mpi_uint */
1107 #define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1108 
1109 /* Bits to keep in the most significant mbedtls_mpi_uint */
1110 #define P521_MASK       0x01FF
1111 
1112 /*
1113  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1114  * Write N as A1 + 2^521 A0, return A0 + A1
1115  */
1116 static int ecp_mod_p521( mbedtls_mpi *N )
1117 {
1118     int ret;
1119     size_t i;
1120     mbedtls_mpi M;
1121     mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1122     /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1123      * we need to hold bits 513 to 1056, which is 34 limbs, that is
1124      * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1125 
1126     if( N->n < P521_WIDTH )
1127         return( 0 );
1128 
1129     /* M = A1 */
1130     M.s = 1;
1131     M.n = N->n - ( P521_WIDTH - 1 );
1132     if( M.n > P521_WIDTH + 1 )
1133         M.n = P521_WIDTH + 1;
1134     M.p = Mp;
1135     memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1136     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1137 
1138     /* N = A0 */
1139     N->p[P521_WIDTH - 1] &= P521_MASK;
1140     for( i = P521_WIDTH; i < N->n; i++ )
1141         N->p[i] = 0;
1142 
1143     /* N = A0 + A1 */
1144     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1145 
1146 cleanup:
1147     return( ret );
1148 }
1149 
1150 #undef P521_WIDTH
1151 #undef P521_MASK
1152 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1153 
1154 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1155 
1156 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1157 
1158 /* Size of p255 in terms of mbedtls_mpi_uint */
1159 #define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1160 
1161 /*
1162  * Fast quasi-reduction modulo p255 = 2^255 - 19
1163  * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1164  */
1165 static int ecp_mod_p255( mbedtls_mpi *N )
1166 {
1167     int ret;
1168     size_t i;
1169     mbedtls_mpi M;
1170     mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1171 
1172     if( N->n < P255_WIDTH )
1173         return( 0 );
1174 
1175     /* M = A1 */
1176     M.s = 1;
1177     M.n = N->n - ( P255_WIDTH - 1 );
1178     if( M.n > P255_WIDTH + 1 )
1179         M.n = P255_WIDTH + 1;
1180     M.p = Mp;
1181     memset( Mp, 0, sizeof Mp );
1182     memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1183     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1184     M.n++; /* Make room for multiplication by 19 */
1185 
1186     /* N = A0 */
1187     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1188     for( i = P255_WIDTH; i < N->n; i++ )
1189         N->p[i] = 0;
1190 
1191     /* N = A0 + 19 * A1 */
1192     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1193     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1194 
1195 cleanup:
1196     return( ret );
1197 }
1198 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1199 
1200 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
1201     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
1202     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1203 /*
1204  * Fast quasi-reduction modulo P = 2^s - R,
1205  * with R about 33 bits, used by the Koblitz curves.
1206  *
1207  * Write N as A0 + 2^224 A1, return A0 + R * A1.
1208  * Actually do two passes, since R is big.
1209  */
1210 #define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1211 #define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
1212 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1213                                    size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1214 {
1215     int ret;
1216     size_t i;
1217     mbedtls_mpi M, R;
1218     mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1219 
1220     if( N->n < p_limbs )
1221         return( 0 );
1222 
1223     /* Init R */
1224     R.s = 1;
1225     R.p = Rp;
1226     R.n = P_KOBLITZ_R;
1227 
1228     /* Common setup for M */
1229     M.s = 1;
1230     M.p = Mp;
1231 
1232     /* M = A1 */
1233     M.n = N->n - ( p_limbs - adjust );
1234     if( M.n > p_limbs + adjust )
1235         M.n = p_limbs + adjust;
1236     memset( Mp, 0, sizeof Mp );
1237     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1238     if( shift != 0 )
1239         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1240     M.n += R.n; /* Make room for multiplication by R */
1241 
1242     /* N = A0 */
1243     if( mask != 0 )
1244         N->p[p_limbs - 1] &= mask;
1245     for( i = p_limbs; i < N->n; i++ )
1246         N->p[i] = 0;
1247 
1248     /* N = A0 + R * A1 */
1249     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1250     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1251 
1252     /* Second pass */
1253 
1254     /* M = A1 */
1255     M.n = N->n - ( p_limbs - adjust );
1256     if( M.n > p_limbs + adjust )
1257         M.n = p_limbs + adjust;
1258     memset( Mp, 0, sizeof Mp );
1259     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1260     if( shift != 0 )
1261         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1262     M.n += R.n; /* Make room for multiplication by R */
1263 
1264     /* N = A0 */
1265     if( mask != 0 )
1266         N->p[p_limbs - 1] &= mask;
1267     for( i = p_limbs; i < N->n; i++ )
1268         N->p[i] = 0;
1269 
1270     /* N = A0 + R * A1 */
1271     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1272     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1273 
1274 cleanup:
1275     return( ret );
1276 }
1277 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1278           MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1279           MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1280 
1281 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1282 /*
1283  * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1284  * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1285  */
1286 static int ecp_mod_p192k1( mbedtls_mpi *N )
1287 {
1288     static mbedtls_mpi_uint Rp[] = {
1289         BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1290 
1291     return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1292 }
1293 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1294 
1295 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1296 /*
1297  * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1298  * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1299  */
1300 static int ecp_mod_p224k1( mbedtls_mpi *N )
1301 {
1302     static mbedtls_mpi_uint Rp[] = {
1303         BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1304 
1305 #if defined(MBEDTLS_HAVE_INT64)
1306     return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1307 #else
1308     return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1309 #endif
1310 }
1311 
1312 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1313 
1314 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1315 /*
1316  * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1317  * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1318  */
1319 static int ecp_mod_p256k1( mbedtls_mpi *N )
1320 {
1321     static mbedtls_mpi_uint Rp[] = {
1322         BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1323     return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1324 }
1325 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1326 
1327 #endif /* !MBEDTLS_ECP_ALT */
1328 
1329 #endif /* MBEDTLS_ECP_C */
1330