xref: /optee_os/lib/libmbedtls/mbedtls/library/ecp_curves.c (revision 9fc2442cc66c279cb962c90c4375746fc9b28bb9)
1 // SPDX-License-Identifier: Apache-2.0
2 /*
3  *  Elliptic curves over GF(p): curve-specific data and functions
4  *
5  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 
22 #if !defined(MBEDTLS_CONFIG_FILE)
23 #include "mbedtls/config.h"
24 #else
25 #include MBEDTLS_CONFIG_FILE
26 #endif
27 
28 #if defined(MBEDTLS_ECP_C)
29 
30 #include "mbedtls/ecp.h"
31 #include "mbedtls/platform_util.h"
32 #include "mbedtls/error.h"
33 
34 #include <string.h>
35 
36 #if !defined(MBEDTLS_ECP_ALT)
37 
38 /* Parameter validation macros based on platform_util.h */
39 #define ECP_VALIDATE_RET( cond )    \
40     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
41 #define ECP_VALIDATE( cond )        \
42     MBEDTLS_INTERNAL_VALIDATE( cond )
43 
44 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
45     !defined(inline) && !defined(__cplusplus)
46 #define inline __inline
47 #endif
48 
49 /*
50  * Conversion macros for embedded constants:
51  * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
52  */
53 #if defined(MBEDTLS_HAVE_INT32)
54 
55 #define BYTES_TO_T_UINT_4( a, b, c, d )                       \
56     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
57     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
58     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
59     ( (mbedtls_mpi_uint) (d) << 24 )
60 
61 #define BYTES_TO_T_UINT_2( a, b )                   \
62     BYTES_TO_T_UINT_4( a, b, 0, 0 )
63 
64 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
65     BYTES_TO_T_UINT_4( a, b, c, d ),                \
66     BYTES_TO_T_UINT_4( e, f, g, h )
67 
68 #else /* 64-bits */
69 
70 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
71     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
72     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
73     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
74     ( (mbedtls_mpi_uint) (d) << 24 ) |                        \
75     ( (mbedtls_mpi_uint) (e) << 32 ) |                        \
76     ( (mbedtls_mpi_uint) (f) << 40 ) |                        \
77     ( (mbedtls_mpi_uint) (g) << 48 ) |                        \
78     ( (mbedtls_mpi_uint) (h) << 56 )
79 
80 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
81     BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
82 
83 #define BYTES_TO_T_UINT_2( a, b )                   \
84     BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
85 
86 #endif /* bits in mbedtls_mpi_uint */
87 
88 /*
89  * Note: the constants are in little-endian order
90  * to be directly usable in MPIs
91  */
92 
93 /*
94  * Domain parameters for secp192r1
95  */
96 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
97 static const mbedtls_mpi_uint secp192r1_p[] = {
98     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
99     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
100     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
101 };
102 static const mbedtls_mpi_uint secp192r1_b[] = {
103     BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
104     BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
105     BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
106 };
107 static const mbedtls_mpi_uint secp192r1_gx[] = {
108     BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
109     BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
110     BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
111 };
112 static const mbedtls_mpi_uint secp192r1_gy[] = {
113     BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
114     BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
115     BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
116 };
117 static const mbedtls_mpi_uint secp192r1_n[] = {
118     BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
119     BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
120     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
121 };
122 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
123 
124 /*
125  * Domain parameters for secp224r1
126  */
127 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
128 static const mbedtls_mpi_uint secp224r1_p[] = {
129     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
130     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
131     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
132     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
133 };
134 static const mbedtls_mpi_uint secp224r1_b[] = {
135     BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
136     BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
137     BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
138     BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
139 };
140 static const mbedtls_mpi_uint secp224r1_gx[] = {
141     BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
142     BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
143     BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
144     BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
145 };
146 static const mbedtls_mpi_uint secp224r1_gy[] = {
147     BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
148     BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
149     BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
150     BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
151 };
152 static const mbedtls_mpi_uint secp224r1_n[] = {
153     BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
154     BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
155     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
156     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
157 };
158 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
159 
160 /*
161  * Domain parameters for secp256r1
162  */
163 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
164 static const mbedtls_mpi_uint secp256r1_p[] = {
165     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
166     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
167     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
168     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
169 };
170 static const mbedtls_mpi_uint secp256r1_b[] = {
171     BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
172     BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
173     BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
174     BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
175 };
176 static const mbedtls_mpi_uint secp256r1_gx[] = {
177     BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
178     BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
179     BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
180     BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
181 };
182 static const mbedtls_mpi_uint secp256r1_gy[] = {
183     BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
184     BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
185     BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
186     BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
187 };
188 static const mbedtls_mpi_uint secp256r1_n[] = {
189     BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
190     BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
191     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
192     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
193 };
194 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
195 
196 /*
197  * Domain parameters for secp384r1
198  */
199 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
200 static const mbedtls_mpi_uint secp384r1_p[] = {
201     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
202     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
203     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
204     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
205     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
206     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
207 };
208 static const mbedtls_mpi_uint secp384r1_b[] = {
209     BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
210     BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
211     BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
212     BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
213     BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
214     BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
215 };
216 static const mbedtls_mpi_uint secp384r1_gx[] = {
217     BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
218     BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
219     BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
220     BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
221     BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
222     BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
223 };
224 static const mbedtls_mpi_uint secp384r1_gy[] = {
225     BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
226     BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
227     BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
228     BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
229     BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
230     BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
231 };
232 static const mbedtls_mpi_uint secp384r1_n[] = {
233     BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
234     BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
235     BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
236     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
237     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
239 };
240 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
241 
242 /*
243  * Domain parameters for secp521r1
244  */
245 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
246 static const mbedtls_mpi_uint secp521r1_p[] = {
247     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
248     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
250     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
251     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
252     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
253     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
254     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
255     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
256 };
257 static const mbedtls_mpi_uint secp521r1_b[] = {
258     BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
259     BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
260     BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
261     BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
262     BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
263     BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
264     BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
265     BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
266     BYTES_TO_T_UINT_2( 0x51, 0x00 ),
267 };
268 static const mbedtls_mpi_uint secp521r1_gx[] = {
269     BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
270     BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
271     BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
272     BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
273     BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
274     BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
275     BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
276     BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
277     BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
278 };
279 static const mbedtls_mpi_uint secp521r1_gy[] = {
280     BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
281     BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
282     BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
283     BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
284     BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
285     BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
286     BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
287     BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
288     BYTES_TO_T_UINT_2( 0x18, 0x01 ),
289 };
290 static const mbedtls_mpi_uint secp521r1_n[] = {
291     BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
292     BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
293     BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
294     BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
295     BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
296     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
297     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
298     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
299     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
300 };
301 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
302 
303 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
304 static const mbedtls_mpi_uint secp192k1_p[] = {
305     BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
306     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
307     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
308 };
309 static const mbedtls_mpi_uint secp192k1_a[] = {
310     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
311 };
312 static const mbedtls_mpi_uint secp192k1_b[] = {
313     BYTES_TO_T_UINT_2( 0x03, 0x00 ),
314 };
315 static const mbedtls_mpi_uint secp192k1_gx[] = {
316     BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
317     BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
318     BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
319 };
320 static const mbedtls_mpi_uint secp192k1_gy[] = {
321     BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
322     BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
323     BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
324 };
325 static const mbedtls_mpi_uint secp192k1_n[] = {
326     BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
327     BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
328     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
329 };
330 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
331 
332 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
333 static const mbedtls_mpi_uint secp224k1_p[] = {
334     BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
335     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
336     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
337     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
338 };
339 static const mbedtls_mpi_uint secp224k1_a[] = {
340     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
341 };
342 static const mbedtls_mpi_uint secp224k1_b[] = {
343     BYTES_TO_T_UINT_2( 0x05, 0x00 ),
344 };
345 static const mbedtls_mpi_uint secp224k1_gx[] = {
346     BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
347     BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
348     BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
349     BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
350 };
351 static const mbedtls_mpi_uint secp224k1_gy[] = {
352     BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
353     BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
354     BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
355     BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
356 };
357 static const mbedtls_mpi_uint secp224k1_n[] = {
358     BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
359     BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
360     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
361     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
362 };
363 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
364 
365 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
366 static const mbedtls_mpi_uint secp256k1_p[] = {
367     BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
368     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
369     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
370     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
371 };
372 static const mbedtls_mpi_uint secp256k1_a[] = {
373     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
374 };
375 static const mbedtls_mpi_uint secp256k1_b[] = {
376     BYTES_TO_T_UINT_2( 0x07, 0x00 ),
377 };
378 static const mbedtls_mpi_uint secp256k1_gx[] = {
379     BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
380     BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
381     BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
382     BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
383 };
384 static const mbedtls_mpi_uint secp256k1_gy[] = {
385     BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
386     BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
387     BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
388     BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
389 };
390 static const mbedtls_mpi_uint secp256k1_n[] = {
391     BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
392     BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
393     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
394     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
395 };
396 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
397 
398 /*
399  * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
400  */
401 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
402 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
403     BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
404     BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
405     BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
406     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
407 };
408 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
409     BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
410     BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
411     BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
412     BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
413 };
414 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
415     BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
416     BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
417     BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
418     BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
419 };
420 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
421     BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
422     BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
423     BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
424     BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
425 };
426 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
427     BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
428     BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
429     BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
430     BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
431 };
432 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
433     BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
434     BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
435     BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
436     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
437 };
438 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
439 
440 /*
441  * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
442  */
443 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
444 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
445     BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
446     BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
447     BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
448     BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
449     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
450     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
451 };
452 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
453     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
454     BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
455     BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
456     BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
457     BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
458     BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
459 };
460 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
461     BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
462     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
463     BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
464     BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
465     BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
466     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
467 };
468 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
469     BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
470     BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
471     BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
472     BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
473     BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
474     BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
475 };
476 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
477     BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
478     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
479     BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
480     BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
481     BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
482     BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
483 };
484 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
485     BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
486     BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
487     BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
488     BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
489     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
490     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
491 };
492 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
493 
494 /*
495  * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
496  */
497 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
498 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
499     BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
500     BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
501     BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
502     BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
503     BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
504     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
505     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
506     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
507 };
508 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
509     BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
510     BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
511     BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
512     BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
513     BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
514     BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
515     BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
516     BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
517 };
518 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
519     BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
520     BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
521     BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
522     BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
523     BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
524     BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
525     BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
526     BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
527 };
528 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
529     BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
530     BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
531     BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
532     BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
533     BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
534     BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
535     BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
536     BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
537 };
538 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
539     BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
540     BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
541     BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
542     BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
543     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
544     BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
545     BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
546     BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
547 };
548 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
549     BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
550     BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
551     BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
552     BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
553     BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
554     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
555     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
556     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
557 };
558 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
559 
560 /*
561  * Domain parameters for SM2 (GM/T 0003 Part 5)
562  */
563 #if defined(MBEDTLS_ECP_DP_SM2_ENABLED)
564 static const mbedtls_mpi_uint sm2_p[] = {
565     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
566     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
567     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
568     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
569 };
570 static const mbedtls_mpi_uint sm2_a[] = {
571     BYTES_TO_T_UINT_8( 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
572     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
573     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
574     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
575 };
576 static const mbedtls_mpi_uint sm2_b[] = {
577     BYTES_TO_T_UINT_8( 0x93, 0x0E, 0x94, 0x4D, 0x41, 0xBD, 0xBC, 0xDD ),
578     BYTES_TO_T_UINT_8( 0x92, 0x8F, 0xAB, 0x15, 0xF5, 0x89, 0x97, 0xF3 ),
579     BYTES_TO_T_UINT_8( 0xA7, 0x09, 0x65, 0xCF, 0x4B, 0x9E, 0x5A, 0x4D ),
580     BYTES_TO_T_UINT_8( 0x34, 0x5E, 0x9F, 0x9D, 0x9E, 0xFA, 0xE9, 0x28 ),
581 };
582 static const mbedtls_mpi_uint sm2_gx[] = {
583     BYTES_TO_T_UINT_8( 0xC7, 0x74, 0x4C, 0x33, 0x89, 0x45, 0x5A, 0x71 ),
584     BYTES_TO_T_UINT_8( 0xE1, 0x0B, 0x66, 0xF2, 0xBF, 0x0B, 0xE3, 0x8F ),
585     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0x39, 0x6A, 0x46, 0x04, 0x99, 0x5F ),
586     BYTES_TO_T_UINT_8( 0x19, 0x81, 0x19, 0x1F, 0x2C, 0xAE, 0xC4, 0x32 ),
587 };
588 static const mbedtls_mpi_uint sm2_gy[] = {
589     BYTES_TO_T_UINT_8( 0xA0, 0xF0, 0x39, 0x21, 0xE5, 0x32, 0xDF, 0x02 ),
590     BYTES_TO_T_UINT_8( 0x40, 0x47, 0x2A, 0xC6, 0x7C, 0x87, 0xA9, 0xD0 ),
591     BYTES_TO_T_UINT_8( 0x53, 0x21, 0x69, 0x6B, 0xE3, 0xCE, 0xBD, 0x59 ),
592     BYTES_TO_T_UINT_8( 0x9C, 0x77, 0xF6, 0xF4, 0xA2, 0x36, 0x37, 0xBC ),
593 };
594 static const mbedtls_mpi_uint sm2_n[] = {
595     BYTES_TO_T_UINT_8( 0x23, 0x41, 0xD5, 0x39, 0x09, 0xF4, 0xBB, 0x53 ),
596     BYTES_TO_T_UINT_8( 0x2B, 0x05, 0xC6, 0x21, 0x6B, 0xDF, 0x03, 0x72 ),
597     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
598     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
599 };
600 #endif /* MBEDTLS_ECP_DP_SM2_ENABLED */
601 /*
602  * Create an MPI from embedded constants
603  * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
604  */
605 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
606 {
607     X->s = 1;
608     X->n = len / sizeof( mbedtls_mpi_uint );
609     X->p = (mbedtls_mpi_uint *) p;
610 }
611 
612 /*
613  * Set an MPI to static value 1
614  */
615 static inline void ecp_mpi_set1( mbedtls_mpi *X )
616 {
617     static mbedtls_mpi_uint one[] = { 1 };
618     X->s = 1;
619     X->n = 1;
620     X->p = one;
621 }
622 
623 /*
624  * Make group available from embedded constants
625  */
626 static int ecp_group_load( mbedtls_ecp_group *grp,
627                            const mbedtls_mpi_uint *p,  size_t plen,
628                            const mbedtls_mpi_uint *a,  size_t alen,
629                            const mbedtls_mpi_uint *b,  size_t blen,
630                            const mbedtls_mpi_uint *gx, size_t gxlen,
631                            const mbedtls_mpi_uint *gy, size_t gylen,
632                            const mbedtls_mpi_uint *n,  size_t nlen)
633 {
634     ecp_mpi_load( &grp->P, p, plen );
635     if( a != NULL )
636         ecp_mpi_load( &grp->A, a, alen );
637     ecp_mpi_load( &grp->B, b, blen );
638     ecp_mpi_load( &grp->N, n, nlen );
639 
640     ecp_mpi_load( &grp->G.X, gx, gxlen );
641     ecp_mpi_load( &grp->G.Y, gy, gylen );
642     ecp_mpi_set1( &grp->G.Z );
643 
644     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
645     grp->nbits = mbedtls_mpi_bitlen( &grp->N );
646 
647     grp->h = 1;
648 
649     return( 0 );
650 }
651 
652 #if defined(MBEDTLS_ECP_NIST_OPTIM)
653 /* Forward declarations */
654 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
655 static int ecp_mod_p192( mbedtls_mpi * );
656 #endif
657 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
658 static int ecp_mod_p224( mbedtls_mpi * );
659 #endif
660 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
661 static int ecp_mod_p256( mbedtls_mpi * );
662 #endif
663 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
664 static int ecp_mod_p384( mbedtls_mpi * );
665 #endif
666 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
667 static int ecp_mod_p521( mbedtls_mpi * );
668 #endif
669 
670 #define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
671 #else
672 #define NIST_MODP( P )
673 #endif /* MBEDTLS_ECP_NIST_OPTIM */
674 
675 /* Additional forward declarations */
676 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
677 static int ecp_mod_p255( mbedtls_mpi * );
678 #endif
679 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
680 static int ecp_mod_p448( mbedtls_mpi * );
681 #endif
682 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
683 static int ecp_mod_p192k1( mbedtls_mpi * );
684 #endif
685 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
686 static int ecp_mod_p224k1( mbedtls_mpi * );
687 #endif
688 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
689 static int ecp_mod_p256k1( mbedtls_mpi * );
690 #endif
691 
692 #define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
693                             G ## _p,  sizeof( G ## _p  ),   \
694                             G ## _a,  sizeof( G ## _a  ),   \
695                             G ## _b,  sizeof( G ## _b  ),   \
696                             G ## _gx, sizeof( G ## _gx ),   \
697                             G ## _gy, sizeof( G ## _gy ),   \
698                             G ## _n,  sizeof( G ## _n  ) )
699 
700 #define LOAD_GROUP( G )     ecp_group_load( grp,            \
701                             G ## _p,  sizeof( G ## _p  ),   \
702                             NULL,     0,                    \
703                             G ## _b,  sizeof( G ## _b  ),   \
704                             G ## _gx, sizeof( G ## _gx ),   \
705                             G ## _gy, sizeof( G ## _gy ),   \
706                             G ## _n,  sizeof( G ## _n  ) )
707 
708 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
709 /*
710  * Specialized function for creating the Curve25519 group
711  */
712 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
713 {
714     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
715 
716     /* Actually ( A + 2 ) / 4 */
717     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
718 
719     /* P = 2^255 - 19 */
720     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
721     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
722     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
723     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
724 
725     /* N = 2^252 + 27742317777372353535851937790883648493 */
726     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
727                                               "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
728     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
729 
730     /* Y intentionally not set, since we use x/z coordinates.
731      * This is used as a marker to identify Montgomery curves! */
732     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
733     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
734     mbedtls_mpi_free( &grp->G.Y );
735 
736     /* Actually, the required msb for private keys */
737     grp->nbits = 254;
738 
739 cleanup:
740     if( ret != 0 )
741         mbedtls_ecp_group_free( grp );
742 
743     return( ret );
744 }
745 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
746 
747 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
748 /*
749  * Specialized function for creating the Curve448 group
750  */
751 static int ecp_use_curve448( mbedtls_ecp_group *grp )
752 {
753     mbedtls_mpi Ns;
754     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
755 
756     mbedtls_mpi_init( &Ns );
757 
758     /* Actually ( A + 2 ) / 4 */
759     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
760 
761     /* P = 2^448 - 2^224 - 1 */
762     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
763     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
764     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
765     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
766     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
767     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
768 
769     /* Y intentionally not set, since we use x/z coordinates.
770      * This is used as a marker to identify Montgomery curves! */
771     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
772     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
773     mbedtls_mpi_free( &grp->G.Y );
774 
775     /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
776     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
777     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
778                                               "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
779     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
780 
781     /* Actually, the required msb for private keys */
782     grp->nbits = 447;
783 
784 cleanup:
785     mbedtls_mpi_free( &Ns );
786     if( ret != 0 )
787         mbedtls_ecp_group_free( grp );
788 
789     return( ret );
790 }
791 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
792 
793 /*
794  * Set a group using well-known domain parameters
795  */
796 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
797 {
798     ECP_VALIDATE_RET( grp != NULL );
799     mbedtls_ecp_group_free( grp );
800 
801     grp->id = id;
802 
803     switch( id )
804     {
805 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
806         case MBEDTLS_ECP_DP_SECP192R1:
807             NIST_MODP( p192 );
808             return( LOAD_GROUP( secp192r1 ) );
809 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
810 
811 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
812         case MBEDTLS_ECP_DP_SECP224R1:
813             NIST_MODP( p224 );
814             return( LOAD_GROUP( secp224r1 ) );
815 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
816 
817 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
818         case MBEDTLS_ECP_DP_SECP256R1:
819             NIST_MODP( p256 );
820             return( LOAD_GROUP( secp256r1 ) );
821 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
822 
823 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
824         case MBEDTLS_ECP_DP_SECP384R1:
825             NIST_MODP( p384 );
826             return( LOAD_GROUP( secp384r1 ) );
827 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
828 
829 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
830         case MBEDTLS_ECP_DP_SECP521R1:
831             NIST_MODP( p521 );
832             return( LOAD_GROUP( secp521r1 ) );
833 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
834 
835 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
836         case MBEDTLS_ECP_DP_SECP192K1:
837             grp->modp = ecp_mod_p192k1;
838             return( LOAD_GROUP_A( secp192k1 ) );
839 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
840 
841 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
842         case MBEDTLS_ECP_DP_SECP224K1:
843             grp->modp = ecp_mod_p224k1;
844             return( LOAD_GROUP_A( secp224k1 ) );
845 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
846 
847 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
848         case MBEDTLS_ECP_DP_SECP256K1:
849             grp->modp = ecp_mod_p256k1;
850             return( LOAD_GROUP_A( secp256k1 ) );
851 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
852 
853 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
854         case MBEDTLS_ECP_DP_BP256R1:
855             return( LOAD_GROUP_A( brainpoolP256r1 ) );
856 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
857 
858 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
859         case MBEDTLS_ECP_DP_BP384R1:
860             return( LOAD_GROUP_A( brainpoolP384r1 ) );
861 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
862 
863 #if defined(MBEDTLS_ECP_DP_SM2_ENABLED)
864         case MBEDTLS_ECP_DP_SM2:
865             return( LOAD_GROUP_A( sm2 ) );
866 #endif /* MBEDTLS_ECP_DP_SM2_ENABLED */
867 
868 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
869         case MBEDTLS_ECP_DP_BP512R1:
870             return( LOAD_GROUP_A( brainpoolP512r1 ) );
871 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
872 
873 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
874         case MBEDTLS_ECP_DP_CURVE25519:
875             grp->modp = ecp_mod_p255;
876             return( ecp_use_curve25519( grp ) );
877 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
878 
879 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
880         case MBEDTLS_ECP_DP_CURVE448:
881             grp->modp = ecp_mod_p448;
882             return( ecp_use_curve448( grp ) );
883 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
884 
885         default:
886             grp->id = MBEDTLS_ECP_DP_NONE;
887             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
888     }
889 }
890 
891 #if defined(MBEDTLS_ECP_NIST_OPTIM)
892 /*
893  * Fast reduction modulo the primes used by the NIST curves.
894  *
895  * These functions are critical for speed, but not needed for correct
896  * operations. So, we make the choice to heavily rely on the internals of our
897  * bignum library, which creates a tight coupling between these functions and
898  * our MPI implementation.  However, the coupling between the ECP module and
899  * MPI remains loose, since these functions can be deactivated at will.
900  */
901 
902 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
903 /*
904  * Compared to the way things are presented in FIPS 186-3 D.2,
905  * we proceed in columns, from right (least significant chunk) to left,
906  * adding chunks to N in place, and keeping a carry for the next chunk.
907  * This avoids moving things around in memory, and uselessly adding zeros,
908  * compared to the more straightforward, line-oriented approach.
909  *
910  * For this prime we need to handle data in chunks of 64 bits.
911  * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
912  * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
913  */
914 
915 /* Add 64-bit chunks (dst += src) and update carry */
916 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
917 {
918     unsigned char i;
919     mbedtls_mpi_uint c = 0;
920     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
921     {
922         *dst += c;      c  = ( *dst < c );
923         *dst += *src;   c += ( *dst < *src );
924     }
925     *carry += c;
926 }
927 
928 /* Add carry to a 64-bit chunk and update carry */
929 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
930 {
931     unsigned char i;
932     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
933     {
934         *dst += *carry;
935         *carry  = ( *dst < *carry );
936     }
937 }
938 
939 #define WIDTH       8 / sizeof( mbedtls_mpi_uint )
940 #define A( i )      N->p + (i) * WIDTH
941 #define ADD( i )    add64( p, A( i ), &c )
942 #define NEXT        p += WIDTH; carry64( p, &c )
943 #define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
944 
945 /*
946  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
947  */
948 static int ecp_mod_p192( mbedtls_mpi *N )
949 {
950     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
951     mbedtls_mpi_uint c = 0;
952     mbedtls_mpi_uint *p, *end;
953 
954     /* Make sure we have enough blocks so that A(5) is legal */
955     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
956 
957     p = N->p;
958     end = p + N->n;
959 
960     ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
961     ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
962     ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
963 
964 cleanup:
965     return( ret );
966 }
967 
968 #undef WIDTH
969 #undef A
970 #undef ADD
971 #undef NEXT
972 #undef LAST
973 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
974 
975 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
976     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
977     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
978 /*
979  * The reader is advised to first understand ecp_mod_p192() since the same
980  * general structure is used here, but with additional complications:
981  * (1) chunks of 32 bits, and (2) subtractions.
982  */
983 
984 /*
985  * For these primes, we need to handle data in chunks of 32 bits.
986  * This makes it more complicated if we use 64 bits limbs in MPI,
987  * which prevents us from using a uniform access method as for p192.
988  *
989  * So, we define a mini abstraction layer to access 32 bit chunks,
990  * load them in 'cur' for work, and store them back from 'cur' when done.
991  *
992  * While at it, also define the size of N in terms of 32-bit chunks.
993  */
994 #define LOAD32      cur = A( i );
995 
996 #if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
997 
998 #define MAX32       N->n
999 #define A( j )      N->p[j]
1000 #define STORE32     N->p[i] = cur;
1001 
1002 #else                               /* 64-bit */
1003 
1004 #define MAX32       N->n * 2
1005 #define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \
1006                          (uint32_t)( N->p[(j)/2] )
1007 #define STORE32                                   \
1008     if( i % 2 ) {                                 \
1009         N->p[i/2] &= 0x00000000FFFFFFFF;          \
1010         N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
1011     } else {                                      \
1012         N->p[i/2] &= 0xFFFFFFFF00000000;          \
1013         N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
1014     }
1015 
1016 #endif /* sizeof( mbedtls_mpi_uint ) */
1017 
1018 /*
1019  * Helpers for addition and subtraction of chunks, with signed carry.
1020  */
1021 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
1022 {
1023     *dst += src;
1024     *carry += ( *dst < src );
1025 }
1026 
1027 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
1028 {
1029     *carry -= ( *dst < src );
1030     *dst -= src;
1031 }
1032 
1033 #define ADD( j )    add32( &cur, A( j ), &c );
1034 #define SUB( j )    sub32( &cur, A( j ), &c );
1035 
1036 /*
1037  * Helpers for the main 'loop'
1038  * (see fix_negative for the motivation of C)
1039  */
1040 #define INIT( b )                                                       \
1041     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;                                                            \
1042     signed char c = 0, cc;                                              \
1043     uint32_t cur;                                                       \
1044     size_t i = 0, bits = (b);                                           \
1045     mbedtls_mpi C;                                                      \
1046     mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ];     \
1047                                                                         \
1048     C.s = 1;                                                            \
1049     C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
1050     C.p = Cp;                                                           \
1051     memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                  \
1052                                                                         \
1053     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 /                 \
1054                                        sizeof( mbedtls_mpi_uint ) ) );  \
1055     LOAD32;
1056 
1057 #define NEXT                    \
1058     STORE32; i++; LOAD32;       \
1059     cc = c; c = 0;              \
1060     if( cc < 0 )                \
1061         sub32( &cur, -cc, &c ); \
1062     else                        \
1063         add32( &cur, cc, &c );  \
1064 
1065 #define LAST                                    \
1066     STORE32; i++;                               \
1067     cur = c > 0 ? c : 0; STORE32;               \
1068     cur = 0; while( ++i < MAX32 ) { STORE32; }  \
1069     if( c < 0 ) fix_negative( N, c, &C, bits );
1070 
1071 /*
1072  * If the result is negative, we get it in the form
1073  * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1074  */
1075 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
1076 {
1077     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1078 
1079     /* C = - c * 2^(bits + 32) */
1080 #if !defined(MBEDTLS_HAVE_INT64)
1081     ((void) bits);
1082 #else
1083     if( bits == 224 )
1084         C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
1085     else
1086 #endif
1087         C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
1088 
1089     /* N = - ( C - N ) */
1090     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
1091     N->s = -1;
1092 
1093 cleanup:
1094 
1095     return( ret );
1096 }
1097 
1098 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
1099 /*
1100  * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1101  */
1102 static int ecp_mod_p224( mbedtls_mpi *N )
1103 {
1104     INIT( 224 );
1105 
1106     SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
1107     SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
1108     SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
1109     SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
1110     SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
1111     SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
1112     SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
1113 
1114 cleanup:
1115     return( ret );
1116 }
1117 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1118 
1119 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1120 /*
1121  * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1122  */
1123 static int ecp_mod_p256( mbedtls_mpi *N )
1124 {
1125     INIT( 256 );
1126 
1127     ADD(  8 ); ADD(  9 );
1128     SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1129 
1130     ADD(  9 ); ADD( 10 );
1131     SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1132 
1133     ADD( 10 ); ADD( 11 );
1134     SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1135 
1136     ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1137     SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1138 
1139     ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1140     SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1141 
1142     ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1143     SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1144 
1145     ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1146     SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1147 
1148     ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1149     SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1150 
1151 cleanup:
1152     return( ret );
1153 }
1154 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1155 
1156 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1157 /*
1158  * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1159  */
1160 static int ecp_mod_p384( mbedtls_mpi *N )
1161 {
1162     INIT( 384 );
1163 
1164     ADD( 12 ); ADD( 21 ); ADD( 20 );
1165     SUB( 23 );                                              NEXT; // A0
1166 
1167     ADD( 13 ); ADD( 22 ); ADD( 23 );
1168     SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1169 
1170     ADD( 14 ); ADD( 23 );
1171     SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1172 
1173     ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1174     SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1175 
1176     ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1177     SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1178 
1179     ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1180     SUB( 16 );                                              NEXT; // A5
1181 
1182     ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1183     SUB( 17 );                                              NEXT; // A6
1184 
1185     ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1186     SUB( 18 );                                              NEXT; // A7
1187 
1188     ADD( 20 ); ADD( 17 ); ADD( 16 );
1189     SUB( 19 );                                              NEXT; // A8
1190 
1191     ADD( 21 ); ADD( 18 ); ADD( 17 );
1192     SUB( 20 );                                              NEXT; // A9
1193 
1194     ADD( 22 ); ADD( 19 ); ADD( 18 );
1195     SUB( 21 );                                              NEXT; // A10
1196 
1197     ADD( 23 ); ADD( 20 ); ADD( 19 );
1198     SUB( 22 );                                              LAST; // A11
1199 
1200 cleanup:
1201     return( ret );
1202 }
1203 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1204 
1205 #undef A
1206 #undef LOAD32
1207 #undef STORE32
1208 #undef MAX32
1209 #undef INIT
1210 #undef NEXT
1211 #undef LAST
1212 
1213 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1214           MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1215           MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1216 
1217 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1218 /*
1219  * Here we have an actual Mersenne prime, so things are more straightforward.
1220  * However, chunks are aligned on a 'weird' boundary (521 bits).
1221  */
1222 
1223 /* Size of p521 in terms of mbedtls_mpi_uint */
1224 #define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1225 
1226 /* Bits to keep in the most significant mbedtls_mpi_uint */
1227 #define P521_MASK       0x01FF
1228 
1229 /*
1230  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1231  * Write N as A1 + 2^521 A0, return A0 + A1
1232  */
1233 static int ecp_mod_p521( mbedtls_mpi *N )
1234 {
1235     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1236     size_t i;
1237     mbedtls_mpi M;
1238     mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1239     /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1240      * we need to hold bits 513 to 1056, which is 34 limbs, that is
1241      * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1242 
1243     if( N->n < P521_WIDTH )
1244         return( 0 );
1245 
1246     /* M = A1 */
1247     M.s = 1;
1248     M.n = N->n - ( P521_WIDTH - 1 );
1249     if( M.n > P521_WIDTH + 1 )
1250         M.n = P521_WIDTH + 1;
1251     M.p = Mp;
1252     memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1253     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1254 
1255     /* N = A0 */
1256     N->p[P521_WIDTH - 1] &= P521_MASK;
1257     for( i = P521_WIDTH; i < N->n; i++ )
1258         N->p[i] = 0;
1259 
1260     /* N = A0 + A1 */
1261     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1262 
1263 cleanup:
1264     return( ret );
1265 }
1266 
1267 #undef P521_WIDTH
1268 #undef P521_MASK
1269 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1270 
1271 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1272 
1273 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1274 
1275 /* Size of p255 in terms of mbedtls_mpi_uint */
1276 #define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1277 
1278 /*
1279  * Fast quasi-reduction modulo p255 = 2^255 - 19
1280  * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1281  */
1282 static int ecp_mod_p255( mbedtls_mpi *N )
1283 {
1284     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1285     size_t i;
1286     mbedtls_mpi M;
1287     mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1288 
1289     if( N->n < P255_WIDTH )
1290         return( 0 );
1291 
1292     /* M = A1 */
1293     M.s = 1;
1294     M.n = N->n - ( P255_WIDTH - 1 );
1295     if( M.n > P255_WIDTH + 1 )
1296         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1297     M.p = Mp;
1298     memset( Mp, 0, sizeof Mp );
1299     memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1300     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1301     M.n++; /* Make room for multiplication by 19 */
1302 
1303     /* N = A0 */
1304     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1305     for( i = P255_WIDTH; i < N->n; i++ )
1306         N->p[i] = 0;
1307 
1308     /* N = A0 + 19 * A1 */
1309     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1310     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1311 
1312 cleanup:
1313     return( ret );
1314 }
1315 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1316 
1317 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
1318 
1319 /* Size of p448 in terms of mbedtls_mpi_uint */
1320 #define P448_WIDTH      ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
1321 
1322 /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
1323 #define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
1324 #define P224_WIDTH_MIN   ( 28 / sizeof( mbedtls_mpi_uint ) )
1325 #define P224_WIDTH_MAX   DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
1326 #define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
1327 
1328 /*
1329  * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
1330  * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
1331  * A0 + A1 + B1 + (B0 + B1) * 2^224.  This is different to the reference
1332  * implementation of Curve448, which uses its own special 56-bit limbs rather
1333  * than a generic bignum library.  We could squeeze some extra speed out on
1334  * 32-bit machines by splitting N up into 32-bit limbs and doing the
1335  * arithmetic using the limbs directly as we do for the NIST primes above,
1336  * but for 64-bit targets it should use half the number of operations if we do
1337  * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
1338  */
1339 static int ecp_mod_p448( mbedtls_mpi *N )
1340 {
1341     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1342     size_t i;
1343     mbedtls_mpi M, Q;
1344     mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
1345 
1346     if( N->n <= P448_WIDTH )
1347         return( 0 );
1348 
1349     /* M = A1 */
1350     M.s = 1;
1351     M.n = N->n - ( P448_WIDTH );
1352     if( M.n > P448_WIDTH )
1353         /* Shouldn't be called with N larger than 2^896! */
1354         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1355     M.p = Mp;
1356     memset( Mp, 0, sizeof( Mp ) );
1357     memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
1358 
1359     /* N = A0 */
1360     for( i = P448_WIDTH; i < N->n; i++ )
1361         N->p[i] = 0;
1362 
1363     /* N += A1 */
1364     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1365 
1366     /* Q = B1, N += B1 */
1367     Q = M;
1368     Q.p = Qp;
1369     memcpy( Qp, Mp, sizeof( Qp ) );
1370     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
1371     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
1372 
1373     /* M = (B0 + B1) * 2^224, N += M */
1374     if( sizeof( mbedtls_mpi_uint ) > 4 )
1375         Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
1376     for( i = P224_WIDTH_MAX; i < M.n; ++i )
1377         Mp[i] = 0;
1378     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
1379     M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
1380     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
1381     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1382 
1383 cleanup:
1384     return( ret );
1385 }
1386 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
1387 
1388 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
1389     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
1390     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1391 /*
1392  * Fast quasi-reduction modulo P = 2^s - R,
1393  * with R about 33 bits, used by the Koblitz curves.
1394  *
1395  * Write N as A0 + 2^224 A1, return A0 + R * A1.
1396  * Actually do two passes, since R is big.
1397  */
1398 #define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1399 #define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
1400 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1401                                    size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1402 {
1403     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1404     size_t i;
1405     mbedtls_mpi M, R;
1406     mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1407 
1408     if( N->n < p_limbs )
1409         return( 0 );
1410 
1411     /* Init R */
1412     R.s = 1;
1413     R.p = Rp;
1414     R.n = P_KOBLITZ_R;
1415 
1416     /* Common setup for M */
1417     M.s = 1;
1418     M.p = Mp;
1419 
1420     /* M = A1 */
1421     M.n = N->n - ( p_limbs - adjust );
1422     if( M.n > p_limbs + adjust )
1423         M.n = p_limbs + adjust;
1424     memset( Mp, 0, sizeof Mp );
1425     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1426     if( shift != 0 )
1427         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1428     M.n += R.n; /* Make room for multiplication by R */
1429 
1430     /* N = A0 */
1431     if( mask != 0 )
1432         N->p[p_limbs - 1] &= mask;
1433     for( i = p_limbs; i < N->n; i++ )
1434         N->p[i] = 0;
1435 
1436     /* N = A0 + R * A1 */
1437     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1438     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1439 
1440     /* Second pass */
1441 
1442     /* M = A1 */
1443     M.n = N->n - ( p_limbs - adjust );
1444     if( M.n > p_limbs + adjust )
1445         M.n = p_limbs + adjust;
1446     memset( Mp, 0, sizeof Mp );
1447     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1448     if( shift != 0 )
1449         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1450     M.n += R.n; /* Make room for multiplication by R */
1451 
1452     /* N = A0 */
1453     if( mask != 0 )
1454         N->p[p_limbs - 1] &= mask;
1455     for( i = p_limbs; i < N->n; i++ )
1456         N->p[i] = 0;
1457 
1458     /* N = A0 + R * A1 */
1459     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1460     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1461 
1462 cleanup:
1463     return( ret );
1464 }
1465 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1466           MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1467           MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1468 
1469 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1470 /*
1471  * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1472  * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1473  */
1474 static int ecp_mod_p192k1( mbedtls_mpi *N )
1475 {
1476     static mbedtls_mpi_uint Rp[] = {
1477         BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1478 
1479     return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1480 }
1481 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1482 
1483 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1484 /*
1485  * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1486  * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1487  */
1488 static int ecp_mod_p224k1( mbedtls_mpi *N )
1489 {
1490     static mbedtls_mpi_uint Rp[] = {
1491         BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1492 
1493 #if defined(MBEDTLS_HAVE_INT64)
1494     return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1495 #else
1496     return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1497 #endif
1498 }
1499 
1500 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1501 
1502 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1503 /*
1504  * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1505  * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1506  */
1507 static int ecp_mod_p256k1( mbedtls_mpi *N )
1508 {
1509     static mbedtls_mpi_uint Rp[] = {
1510         BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1511     return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1512 }
1513 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1514 
1515 #endif /* !MBEDTLS_ECP_ALT */
1516 
1517 #endif /* MBEDTLS_ECP_C */
1518