xref: /optee_os/lib/libmbedtls/mbedtls/library/ecp.c (revision b0563631928755fe864b97785160fb3088e9efdc)
1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  */
7 
8 /*
9  * References:
10  *
11  * SEC1 https://www.secg.org/sec1-v2.pdf
12  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14  * RFC 4492 for the related TLS structures and constants
15  * - https://www.rfc-editor.org/rfc/rfc4492
16  * RFC 7748 for the Curve448 and Curve25519 curve definitions
17  * - https://www.rfc-editor.org/rfc/rfc7748
18  *
19  * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20  *
21  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
23  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25  *
26  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
28  *     ePrint Archive, 2004, vol. 2004, p. 342.
29  *     <http://eprint.iacr.org/2004/342.pdf>
30  */
31 
32 #include "common.h"
33 
34 /**
35  * \brief Function level alternative implementation.
36  *
37  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38  * replace certain functions in this module. The alternative implementations are
39  * typically hardware accelerators and need to activate the hardware before the
40  * computation starts and deactivate it after it finishes. The
41  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42  * this purpose.
43  *
44  * To preserve the correct functionality the following conditions must hold:
45  *
46  * - The alternative implementation must be activated by
47  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
48  *   called.
49  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50  *   implementation is activated.
51  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52  *   implementation is activated.
53  * - Public functions must not return while the alternative implementation is
54  *   activated.
55  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57  *   \endcode ensures that the alternative implementation supports the current
58  *   group.
59  */
60 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
61 #endif
62 
63 #if defined(MBEDTLS_ECP_LIGHT)
64 
65 #include "mbedtls/ecp.h"
66 #include "mbedtls/threading.h"
67 #include "mbedtls/platform_util.h"
68 #include "mbedtls/error.h"
69 
70 #include "bn_mul.h"
71 #include "ecp_invasive.h"
72 
73 #include <string.h>
74 
75 #if !defined(MBEDTLS_ECP_ALT)
76 
77 #include "mbedtls/platform.h"
78 
79 #include "ecp_internal_alt.h"
80 
81 #if defined(MBEDTLS_SELF_TEST)
82 /*
83  * Counts of point addition and doubling, and field multiplications.
84  * Used to test resistance of point multiplication to simple timing attacks.
85  */
86 #if defined(MBEDTLS_ECP_C)
87 static unsigned long add_count, dbl_count;
88 #endif /* MBEDTLS_ECP_C */
89 static unsigned long mul_count;
90 #endif
91 
92 #if defined(MBEDTLS_ECP_RESTARTABLE)
93 /*
94  * Maximum number of "basic operations" to be done in a row.
95  *
96  * Default value 0 means that ECC operations will not yield.
97  * Note that regardless of the value of ecp_max_ops, always at
98  * least one step is performed before yielding.
99  *
100  * Setting ecp_max_ops=1 can be suitable for testing purposes
101  * as it will interrupt computation at all possible points.
102  */
103 static unsigned ecp_max_ops = 0;
104 
105 /*
106  * Set ecp_max_ops
107  */
108 void mbedtls_ecp_set_max_ops(unsigned max_ops)
109 {
110     ecp_max_ops = max_ops;
111 }
112 
113 /*
114  * Check if restart is enabled
115  */
116 int mbedtls_ecp_restart_is_enabled(void)
117 {
118     return ecp_max_ops != 0;
119 }
120 
121 /*
122  * Restart sub-context for ecp_mul_comb()
123  */
124 struct mbedtls_ecp_restart_mul {
125     mbedtls_ecp_point R;    /* current intermediate result                  */
126     size_t i;               /* current index in various loops, 0 outside    */
127     mbedtls_ecp_point *T;   /* table for precomputed points                 */
128     unsigned char T_size;   /* number of points in table T                  */
129     enum {                  /* what were we doing last time we returned?    */
130         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
131         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
132         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
133         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
134         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
135         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
136         ecp_rsm_final_norm,     /* do the final normalization               */
137     } state;
138 };
139 
140 /*
141  * Init restart_mul sub-context
142  */
143 static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144 {
145     mbedtls_ecp_point_init(&ctx->R);
146     ctx->i = 0;
147     ctx->T = NULL;
148     ctx->T_size = 0;
149     ctx->state = ecp_rsm_init;
150 }
151 
152 /*
153  * Free the components of a restart_mul sub-context
154  */
155 static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156 {
157     unsigned char i;
158 
159     if (ctx == NULL) {
160         return;
161     }
162 
163     mbedtls_ecp_point_free(&ctx->R);
164 
165     if (ctx->T != NULL) {
166         for (i = 0; i < ctx->T_size; i++) {
167             mbedtls_ecp_point_free(ctx->T + i);
168         }
169         mbedtls_free(ctx->T);
170     }
171 
172     ecp_restart_rsm_init(ctx);
173 }
174 
175 /*
176  * Restart context for ecp_muladd()
177  */
178 struct mbedtls_ecp_restart_muladd {
179     mbedtls_ecp_point mP;       /* mP value                             */
180     mbedtls_ecp_point R;        /* R intermediate result                */
181     enum {                      /* what should we do next?              */
182         ecp_rsma_mul1 = 0,      /* first multiplication                 */
183         ecp_rsma_mul2,          /* second multiplication                */
184         ecp_rsma_add,           /* addition                             */
185         ecp_rsma_norm,          /* normalization                        */
186     } state;
187 };
188 
189 /*
190  * Init restart_muladd sub-context
191  */
192 static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193 {
194     mbedtls_ecp_point_init(&ctx->mP);
195     mbedtls_ecp_point_init(&ctx->R);
196     ctx->state = ecp_rsma_mul1;
197 }
198 
199 /*
200  * Free the components of a restart_muladd sub-context
201  */
202 static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203 {
204     if (ctx == NULL) {
205         return;
206     }
207 
208     mbedtls_ecp_point_free(&ctx->mP);
209     mbedtls_ecp_point_free(&ctx->R);
210 
211     ecp_restart_ma_init(ctx);
212 }
213 
214 /*
215  * Initialize a restart context
216  */
217 void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218 {
219     ctx->ops_done = 0;
220     ctx->depth = 0;
221     ctx->rsm = NULL;
222     ctx->ma = NULL;
223 }
224 
225 /*
226  * Free the components of a restart context
227  */
228 void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229 {
230     if (ctx == NULL) {
231         return;
232     }
233 
234     ecp_restart_rsm_free(ctx->rsm);
235     mbedtls_free(ctx->rsm);
236 
237     ecp_restart_ma_free(ctx->ma);
238     mbedtls_free(ctx->ma);
239 
240     mbedtls_ecp_restart_init(ctx);
241 }
242 
243 /*
244  * Check if we can do the next step
245  */
246 int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247                              mbedtls_ecp_restart_ctx *rs_ctx,
248                              unsigned ops)
249 {
250     if (rs_ctx != NULL && ecp_max_ops != 0) {
251         /* scale depending on curve size: the chosen reference is 256-bit,
252          * and multiplication is quadratic. Round to the closest integer. */
253         if (grp->pbits >= 512) {
254             ops *= 4;
255         } else if (grp->pbits >= 384) {
256             ops *= 2;
257         }
258 
259         /* Avoid infinite loops: always allow first step.
260          * Because of that, however, it's not generally true
261          * that ops_done <= ecp_max_ops, so the check
262          * ops_done > ecp_max_ops below is mandatory. */
263         if ((rs_ctx->ops_done != 0) &&
264             (rs_ctx->ops_done > ecp_max_ops ||
265              ops > ecp_max_ops - rs_ctx->ops_done)) {
266             return MBEDTLS_ERR_ECP_IN_PROGRESS;
267         }
268 
269         /* update running count */
270         rs_ctx->ops_done += ops;
271     }
272 
273     return 0;
274 }
275 
276 /* Call this when entering a function that needs its own sub-context */
277 #define ECP_RS_ENTER(SUB)   do {                                      \
278         /* reset ops count for this call if top-level */                    \
279         if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
280         rs_ctx->ops_done = 0;                                           \
281                                                                         \
282         /* set up our own sub-context if needed */                          \
283         if (mbedtls_ecp_restart_is_enabled() &&                             \
284             rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
285         {                                                                   \
286             rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
287             if (rs_ctx->SUB == NULL)                                       \
288             return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
289                                                                       \
290             ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
291         }                                                                   \
292 } while (0)
293 
294 /* Call this when leaving a function that needs its own sub-context */
295 #define ECP_RS_LEAVE(SUB)   do {                                      \
296         /* clear our sub-context when not in progress (done or error) */    \
297         if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
298             ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
299         {                                                                   \
300             ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
301             mbedtls_free(rs_ctx->SUB);                                    \
302             rs_ctx->SUB = NULL;                                             \
303         }                                                                   \
304                                                                         \
305         if (rs_ctx != NULL)                                                \
306         rs_ctx->depth--;                                                \
307 } while (0)
308 
309 #else /* MBEDTLS_ECP_RESTARTABLE */
310 
311 #define ECP_RS_ENTER(sub)     (void) rs_ctx;
312 #define ECP_RS_LEAVE(sub)     (void) rs_ctx;
313 
314 #endif /* MBEDTLS_ECP_RESTARTABLE */
315 
316 #if defined(MBEDTLS_ECP_C)
317 static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318 {
319     while (size--) {
320         mbedtls_mpi_init(arr++);
321     }
322 }
323 
324 static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325 {
326     while (size--) {
327         mbedtls_mpi_free(arr++);
328     }
329 }
330 #endif /* MBEDTLS_ECP_C */
331 
332 /*
333  * List of supported curves:
334  *  - internal ID
335  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336  *  - size in bits
337  *  - readable name
338  *
339  * Curves are listed in order: largest curves first, and for a given size,
340  * fastest curves first.
341  *
342  * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343  */
344 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345 {
346 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
348 #endif
349 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
351 #endif
352 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
354 #endif
355 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
357 #endif
358 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
360 #endif
361 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
363 #endif
364 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
366 #endif
367 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
369 #endif
370 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
372 #endif
373 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
375 #endif
376 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
378 #endif
379 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
381 #endif
382 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
384 #endif
385 #if defined(MBEDTLS_ECP_DP_SM2_ENABLED)
386     /* https://tools.ietf.org/id/draft-yang-tls-tls13-sm-suites-05.html */
387     { MBEDTLS_ECP_DP_SM2,          41,     256,    "sm2"               },
388 #endif
389     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
390 };
391 
392 #define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
393     sizeof(ecp_supported_curves[0])
394 
395 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
396 
397 /*
398  * List of supported curves and associated info
399  */
400 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
401 {
402     return ecp_supported_curves;
403 }
404 
405 /*
406  * List of supported curves, group ID only
407  */
408 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
409 {
410     static int init_done = 0;
411 
412     if (!init_done) {
413         size_t i = 0;
414         const mbedtls_ecp_curve_info *curve_info;
415 
416         for (curve_info = mbedtls_ecp_curve_list();
417              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
418              curve_info++) {
419             ecp_supported_grp_id[i++] = curve_info->grp_id;
420         }
421         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
422 
423         init_done = 1;
424     }
425 
426     return ecp_supported_grp_id;
427 }
428 
429 /*
430  * Get the curve info for the internal identifier
431  */
432 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
433 {
434     const mbedtls_ecp_curve_info *curve_info;
435 
436     for (curve_info = mbedtls_ecp_curve_list();
437          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
438          curve_info++) {
439         if (curve_info->grp_id == grp_id) {
440             return curve_info;
441         }
442     }
443 
444     return NULL;
445 }
446 
447 /*
448  * Get the curve info from the TLS identifier
449  */
450 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
451 {
452     const mbedtls_ecp_curve_info *curve_info;
453 
454     for (curve_info = mbedtls_ecp_curve_list();
455          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
456          curve_info++) {
457         if (curve_info->tls_id == tls_id) {
458             return curve_info;
459         }
460     }
461 
462     return NULL;
463 }
464 
465 /*
466  * Get the curve info from the name
467  */
468 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
469 {
470     const mbedtls_ecp_curve_info *curve_info;
471 
472     if (name == NULL) {
473         return NULL;
474     }
475 
476     for (curve_info = mbedtls_ecp_curve_list();
477          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
478          curve_info++) {
479         if (strcmp(curve_info->name, name) == 0) {
480             return curve_info;
481         }
482     }
483 
484     return NULL;
485 }
486 
487 /*
488  * Get the type of a curve
489  */
490 mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
491 {
492     if (grp->G.X.p == NULL) {
493         return MBEDTLS_ECP_TYPE_NONE;
494     }
495 
496     if (grp->G.Y.p == NULL) {
497         return MBEDTLS_ECP_TYPE_MONTGOMERY;
498     } else {
499         return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
500     }
501 }
502 
503 /*
504  * Initialize (the components of) a point
505  */
506 void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
507 {
508     mbedtls_mpi_init(&pt->X);
509     mbedtls_mpi_init(&pt->Y);
510     mbedtls_mpi_init(&pt->Z);
511 }
512 
513 /*
514  * Initialize (the components of) a group
515  */
516 void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
517 {
518     grp->id = MBEDTLS_ECP_DP_NONE;
519     mbedtls_mpi_init(&grp->P);
520     mbedtls_mpi_init(&grp->A);
521     mbedtls_mpi_init(&grp->B);
522     mbedtls_ecp_point_init(&grp->G);
523     mbedtls_mpi_init(&grp->N);
524     grp->pbits = 0;
525     grp->nbits = 0;
526     grp->h = 0;
527     grp->modp = NULL;
528     grp->t_pre = NULL;
529     grp->t_post = NULL;
530     grp->t_data = NULL;
531     grp->T = NULL;
532     grp->T_size = 0;
533 }
534 
535 /*
536  * Initialize (the components of) a key pair
537  */
538 void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
539 {
540     mbedtls_ecp_group_init(&key->grp);
541     mbedtls_mpi_init(&key->d);
542     mbedtls_ecp_point_init(&key->Q);
543 }
544 
545 /*
546  * Unallocate (the components of) a point
547  */
548 void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
549 {
550     if (pt == NULL) {
551         return;
552     }
553 
554     mbedtls_mpi_free(&(pt->X));
555     mbedtls_mpi_free(&(pt->Y));
556     mbedtls_mpi_free(&(pt->Z));
557 }
558 
559 /*
560  * Check that the comb table (grp->T) is static initialized.
561  */
562 static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
563 {
564 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
565     return grp->T != NULL && grp->T_size == 0;
566 #else
567     (void) grp;
568     return 0;
569 #endif
570 }
571 
572 /*
573  * Unallocate (the components of) a group
574  */
575 void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
576 {
577     size_t i;
578 
579     if (grp == NULL) {
580         return;
581     }
582 
583     if (grp->h != 1) {
584         mbedtls_mpi_free(&grp->A);
585         mbedtls_mpi_free(&grp->B);
586         mbedtls_ecp_point_free(&grp->G);
587 
588 #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
589         mbedtls_mpi_free(&grp->N);
590         mbedtls_mpi_free(&grp->P);
591 #endif
592     }
593 
594     if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
595         for (i = 0; i < grp->T_size; i++) {
596             mbedtls_ecp_point_free(&grp->T[i]);
597         }
598         mbedtls_free(grp->T);
599     }
600 
601     mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
602 }
603 
604 /*
605  * Unallocate (the components of) a key pair
606  */
607 void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
608 {
609     if (key == NULL) {
610         return;
611     }
612 
613     mbedtls_ecp_group_free(&key->grp);
614     mbedtls_mpi_free(&key->d);
615     mbedtls_ecp_point_free(&key->Q);
616 }
617 
618 /*
619  * Copy the contents of a point
620  */
621 int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
622 {
623     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
624     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
625     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
626     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
627 
628 cleanup:
629     return ret;
630 }
631 
632 /*
633  * Copy the contents of a group object
634  */
635 int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
636 {
637     return mbedtls_ecp_group_load(dst, src->id);
638 }
639 
640 /*
641  * Set point to zero
642  */
643 int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
644 {
645     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
646     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
647     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
648     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
649 
650 cleanup:
651     return ret;
652 }
653 
654 /*
655  * Tell if a point is zero
656  */
657 int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
658 {
659     return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
660 }
661 
662 /*
663  * Compare two points lazily
664  */
665 int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
666                           const mbedtls_ecp_point *Q)
667 {
668     if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
669         mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
670         mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
671         return 0;
672     }
673 
674     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
675 }
676 
677 /*
678  * Import a non-zero point from ASCII strings
679  */
680 int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
681                                   const char *x, const char *y)
682 {
683     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
684     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
685     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
686     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
687 
688 cleanup:
689     return ret;
690 }
691 
692 /*
693  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
694  */
695 int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
696                                    const mbedtls_ecp_point *P,
697                                    int format, size_t *olen,
698                                    unsigned char *buf, size_t buflen)
699 {
700     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
701     size_t plen;
702     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
703         format != MBEDTLS_ECP_PF_COMPRESSED) {
704         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
705     }
706 
707     plen = mbedtls_mpi_size(&grp->P);
708 
709 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
710     (void) format; /* Montgomery curves always use the same point format */
711     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
712         *olen = plen;
713         if (buflen < *olen) {
714             return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
715         }
716 
717         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
718     }
719 #endif
720 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
721     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
722         /*
723          * Common case: P == 0
724          */
725         if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
726             if (buflen < 1) {
727                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
728             }
729 
730             buf[0] = 0x00;
731             *olen = 1;
732 
733             return 0;
734         }
735 
736         if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
737             *olen = 2 * plen + 1;
738 
739             if (buflen < *olen) {
740                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
741             }
742 
743             buf[0] = 0x04;
744             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
745             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
746         } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
747             *olen = plen + 1;
748 
749             if (buflen < *olen) {
750                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
751             }
752 
753             buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
754             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
755         }
756     }
757 #endif
758 
759 cleanup:
760     return ret;
761 }
762 
763 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
764 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
765                                    const mbedtls_mpi *X,
766                                    mbedtls_mpi *Y,
767                                    int parity_bit);
768 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
769 
770 /*
771  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
772  */
773 int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
774                                   mbedtls_ecp_point *pt,
775                                   const unsigned char *buf, size_t ilen)
776 {
777     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
778     size_t plen;
779     if (ilen < 1) {
780         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
781     }
782 
783     plen = mbedtls_mpi_size(&grp->P);
784 
785 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
786     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
787         if (plen != ilen) {
788             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
789         }
790 
791         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
792         mbedtls_mpi_free(&pt->Y);
793 
794         if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
795             /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
796             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
797         }
798 
799         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
800     }
801 #endif
802 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
803     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
804         if (buf[0] == 0x00) {
805             if (ilen == 1) {
806                 return mbedtls_ecp_set_zero(pt);
807             } else {
808                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
809             }
810         }
811 
812         if (ilen < 1 + plen) {
813             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
814         }
815 
816         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
817         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
818 
819         if (buf[0] == 0x04) {
820             /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
821             if (ilen != 1 + plen * 2) {
822                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
823             }
824             return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
825         } else if (buf[0] == 0x02 || buf[0] == 0x03) {
826             /* format == MBEDTLS_ECP_PF_COMPRESSED */
827             if (ilen != 1 + plen) {
828                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
829             }
830             return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
831                                            (buf[0] & 1));
832         } else {
833             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
834         }
835     }
836 #endif
837 
838 cleanup:
839     return ret;
840 }
841 
842 /*
843  * Import a point from a TLS ECPoint record (RFC 4492)
844  *      struct {
845  *          opaque point <1..2^8-1>;
846  *      } ECPoint;
847  */
848 int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
849                                mbedtls_ecp_point *pt,
850                                const unsigned char **buf, size_t buf_len)
851 {
852     unsigned char data_len;
853     const unsigned char *buf_start;
854     /*
855      * We must have at least two bytes (1 for length, at least one for data)
856      */
857     if (buf_len < 2) {
858         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
859     }
860 
861     data_len = *(*buf)++;
862     if (data_len < 1 || data_len > buf_len - 1) {
863         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
864     }
865 
866     /*
867      * Save buffer start for read_binary and update buf
868      */
869     buf_start = *buf;
870     *buf += data_len;
871 
872     return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
873 }
874 
875 /*
876  * Export a point as a TLS ECPoint record (RFC 4492)
877  *      struct {
878  *          opaque point <1..2^8-1>;
879  *      } ECPoint;
880  */
881 int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
882                                 int format, size_t *olen,
883                                 unsigned char *buf, size_t blen)
884 {
885     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
886     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
887         format != MBEDTLS_ECP_PF_COMPRESSED) {
888         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
889     }
890 
891     /*
892      * buffer length must be at least one, for our length byte
893      */
894     if (blen < 1) {
895         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
896     }
897 
898     if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
899                                               olen, buf + 1, blen - 1)) != 0) {
900         return ret;
901     }
902 
903     /*
904      * write length to the first byte and update total length
905      */
906     buf[0] = (unsigned char) *olen;
907     ++*olen;
908 
909     return 0;
910 }
911 
912 /*
913  * Set a group from an ECParameters record (RFC 4492)
914  */
915 int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
916                                const unsigned char **buf, size_t len)
917 {
918     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
919     mbedtls_ecp_group_id grp_id;
920     if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
921         return ret;
922     }
923 
924     return mbedtls_ecp_group_load(grp, grp_id);
925 }
926 
927 /*
928  * Read a group id from an ECParameters record (RFC 4492) and convert it to
929  * mbedtls_ecp_group_id.
930  */
931 int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
932                                   const unsigned char **buf, size_t len)
933 {
934     uint16_t tls_id;
935     const mbedtls_ecp_curve_info *curve_info;
936     /*
937      * We expect at least three bytes (see below)
938      */
939     if (len < 3) {
940         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
941     }
942 
943     /*
944      * First byte is curve_type; only named_curve is handled
945      */
946     if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
947         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
948     }
949 
950     /*
951      * Next two bytes are the namedcurve value
952      */
953     tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
954     *buf += 2;
955 
956     if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
957         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
958     }
959 
960     *grp = curve_info->grp_id;
961 
962     return 0;
963 }
964 
965 /*
966  * Write the ECParameters record corresponding to a group (RFC 4492)
967  */
968 int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
969                                 unsigned char *buf, size_t blen)
970 {
971     const mbedtls_ecp_curve_info *curve_info;
972     if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
973         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
974     }
975 
976     /*
977      * We are going to write 3 bytes (see below)
978      */
979     *olen = 3;
980     if (blen < *olen) {
981         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
982     }
983 
984     /*
985      * First byte is curve_type, always named_curve
986      */
987     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
988 
989     /*
990      * Next two bytes are the namedcurve value
991      */
992     MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
993 
994     return 0;
995 }
996 
997 /*
998  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
999  * See the documentation of struct mbedtls_ecp_group.
1000  *
1001  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1002  */
1003 static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1004 {
1005     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1006 
1007     if (grp->modp == NULL) {
1008         return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1009     }
1010 
1011     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1012     if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1013         mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1014         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1015     }
1016 
1017     MBEDTLS_MPI_CHK(grp->modp(N));
1018 
1019     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1020     while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1021         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1022     }
1023 
1024     while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1025         /* we known P, N and the result are positive */
1026         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1027     }
1028 
1029 cleanup:
1030     return ret;
1031 }
1032 
1033 /*
1034  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1035  *
1036  * In order to guarantee that, we need to ensure that operands of
1037  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1038  * bring the result back to this range.
1039  *
1040  * The following macros are shortcuts for doing that.
1041  */
1042 
1043 /*
1044  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1045  */
1046 #if defined(MBEDTLS_SELF_TEST)
1047 #define INC_MUL_COUNT   mul_count++;
1048 #else
1049 #define INC_MUL_COUNT
1050 #endif
1051 
1052 #define MOD_MUL(N)                                                    \
1053     do                                                                  \
1054     {                                                                   \
1055         MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
1056         INC_MUL_COUNT                                                   \
1057     } while (0)
1058 
1059 static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1060                                       mbedtls_mpi *X,
1061                                       const mbedtls_mpi *A,
1062                                       const mbedtls_mpi *B)
1063 {
1064     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1065     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1066     MOD_MUL(*X);
1067 cleanup:
1068     return ret;
1069 }
1070 
1071 /*
1072  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1073  * N->s < 0 is a very fast test, which fails only if N is 0
1074  */
1075 #define MOD_SUB(N)                                                          \
1076     do {                                                                      \
1077         while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
1078         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
1079     } while (0)
1080 
1081 MBEDTLS_MAYBE_UNUSED
1082 static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1083                                       mbedtls_mpi *X,
1084                                       const mbedtls_mpi *A,
1085                                       const mbedtls_mpi *B)
1086 {
1087     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1088     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1089     MOD_SUB(X);
1090 cleanup:
1091     return ret;
1092 }
1093 
1094 /*
1095  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1096  * We known P, N and the result are positive, so sub_abs is correct, and
1097  * a bit faster.
1098  */
1099 #define MOD_ADD(N)                                                   \
1100     while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
1101     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1102 
1103 static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1104                                       mbedtls_mpi *X,
1105                                       const mbedtls_mpi *A,
1106                                       const mbedtls_mpi *B)
1107 {
1108     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1109     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1110     MOD_ADD(X);
1111 cleanup:
1112     return ret;
1113 }
1114 
1115 MBEDTLS_MAYBE_UNUSED
1116 static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1117                                           mbedtls_mpi *X,
1118                                           const mbedtls_mpi *A,
1119                                           mbedtls_mpi_uint c)
1120 {
1121     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1122 
1123     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1124     MOD_ADD(X);
1125 cleanup:
1126     return ret;
1127 }
1128 
1129 MBEDTLS_MAYBE_UNUSED
1130 static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1131                                           mbedtls_mpi *X,
1132                                           const mbedtls_mpi *A,
1133                                           mbedtls_mpi_uint c)
1134 {
1135     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1136 
1137     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1138     MOD_SUB(X);
1139 cleanup:
1140     return ret;
1141 }
1142 
1143 #define MPI_ECP_SUB_INT(X, A, c)             \
1144     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1145 
1146 MBEDTLS_MAYBE_UNUSED
1147 static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1148                                           mbedtls_mpi *X,
1149                                           size_t count)
1150 {
1151     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1152     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1153     MOD_ADD(X);
1154 cleanup:
1155     return ret;
1156 }
1157 
1158 /*
1159  * Macro wrappers around ECP modular arithmetic
1160  *
1161  * Currently, these wrappers are defined via the bignum module.
1162  */
1163 
1164 #define MPI_ECP_ADD(X, A, B)                                                  \
1165     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1166 
1167 #define MPI_ECP_SUB(X, A, B)                                                  \
1168     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1169 
1170 #define MPI_ECP_MUL(X, A, B)                                                  \
1171     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1172 
1173 #define MPI_ECP_SQR(X, A)                                                     \
1174     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1175 
1176 #define MPI_ECP_MUL_INT(X, A, c)                                              \
1177     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1178 
1179 #define MPI_ECP_INV(dst, src)                                                 \
1180     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1181 
1182 #define MPI_ECP_MOV(X, A)                                                     \
1183     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1184 
1185 #define MPI_ECP_SHIFT_L(X, count)                                             \
1186     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1187 
1188 #define MPI_ECP_LSET(X, c)                                                    \
1189     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1190 
1191 #define MPI_ECP_CMP_INT(X, c)                                                 \
1192     mbedtls_mpi_cmp_int(X, c)
1193 
1194 #define MPI_ECP_CMP(X, Y)                                                     \
1195     mbedtls_mpi_cmp_mpi(X, Y)
1196 
1197 /* Needs f_rng, p_rng to be defined. */
1198 #define MPI_ECP_RAND(X)                                                       \
1199     MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1200 
1201 /* Conditional negation
1202  * Needs grp and a temporary MPI tmp to be defined. */
1203 #define MPI_ECP_COND_NEG(X, cond)                                        \
1204     do                                                                     \
1205     {                                                                      \
1206         unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
1207         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
1208         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
1209                                                      nonzero & cond)); \
1210     } while (0)
1211 
1212 #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1213 
1214 #define MPI_ECP_VALID(X)                      \
1215     ((X)->p != NULL)
1216 
1217 #define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
1218     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1219 
1220 #define MPI_ECP_COND_SWAP(X, Y, cond)       \
1221     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1222 
1223 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1224 
1225 /*
1226  * Computes the right-hand side of the Short Weierstrass equation
1227  * RHS = X^3 + A X + B
1228  */
1229 static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1230                       mbedtls_mpi *rhs,
1231                       const mbedtls_mpi *X)
1232 {
1233     int ret;
1234 
1235     /* Compute X^3 + A X + B as X (X^2 + A) + B */
1236     MPI_ECP_SQR(rhs, X);
1237 
1238     /* Special case for A = -3 */
1239     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1240         MPI_ECP_SUB_INT(rhs, rhs, 3);
1241     } else {
1242         MPI_ECP_ADD(rhs, rhs, &grp->A);
1243     }
1244 
1245     MPI_ECP_MUL(rhs, rhs, X);
1246     MPI_ECP_ADD(rhs, rhs, &grp->B);
1247 
1248 cleanup:
1249     return ret;
1250 }
1251 
1252 /*
1253  * Derive Y from X and a parity bit
1254  */
1255 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1256                                    const mbedtls_mpi *X,
1257                                    mbedtls_mpi *Y,
1258                                    int parity_bit)
1259 {
1260     /* w = y^2 = x^3 + ax + b
1261      * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
1262      *
1263      * Note: this method for extracting square root does not validate that w
1264      * was indeed a square so this function will return garbage in Y if X
1265      * does not correspond to a point on the curve.
1266      */
1267 
1268     /* Check prerequisite p = 3 mod 4 */
1269     if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1270         mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1271         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1272     }
1273 
1274     int ret;
1275     mbedtls_mpi exp;
1276     mbedtls_mpi_init(&exp);
1277 
1278     /* use Y to store intermediate result, actually w above */
1279     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1280 
1281     /* w = y^2 */ /* Y contains y^2 intermediate result */
1282     /* exp = ((p+1)/4) */
1283     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1284     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1285     /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
1286     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1287 
1288     /* check parity bit match or else invert Y */
1289     /* This quick inversion implementation is valid because Y != 0 for all
1290      * Short Weierstrass curves supported by mbedtls, as each supported curve
1291      * has an order that is a large prime, so each supported curve does not
1292      * have any point of order 2, and a point with Y == 0 would be of order 2 */
1293     if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1294         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1295     }
1296 
1297 cleanup:
1298 
1299     mbedtls_mpi_free(&exp);
1300     return ret;
1301 }
1302 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1303 
1304 #if defined(MBEDTLS_ECP_C)
1305 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1306 /*
1307  * For curves in short Weierstrass form, we do all the internal operations in
1308  * Jacobian coordinates.
1309  *
1310  * For multiplication, we'll use a comb method with countermeasures against
1311  * SPA, hence timing attacks.
1312  */
1313 
1314 /*
1315  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1316  * Cost: 1N := 1I + 3M + 1S
1317  */
1318 static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1319 {
1320     if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1321         return 0;
1322     }
1323 
1324 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1325     if (mbedtls_internal_ecp_grp_capable(grp)) {
1326         return mbedtls_internal_ecp_normalize_jac(grp, pt);
1327     }
1328 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1329 
1330 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1331     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1332 #else
1333     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1334     mbedtls_mpi T;
1335     mbedtls_mpi_init(&T);
1336 
1337     MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
1338     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
1339     MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
1340     MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
1341     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
1342 
1343     MPI_ECP_LSET(&pt->Z, 1);
1344 
1345 cleanup:
1346 
1347     mbedtls_mpi_free(&T);
1348 
1349     return ret;
1350 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1351 }
1352 
1353 /*
1354  * Normalize jacobian coordinates of an array of (pointers to) points,
1355  * using Montgomery's trick to perform only one inversion mod P.
1356  * (See for example Cohen's "A Course in Computational Algebraic Number
1357  * Theory", Algorithm 10.3.4.)
1358  *
1359  * Warning: fails (returning an error) if one of the points is zero!
1360  * This should never happen, see choice of w in ecp_mul_comb().
1361  *
1362  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1363  */
1364 static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1365                                   mbedtls_ecp_point *T[], size_t T_size)
1366 {
1367     if (T_size < 2) {
1368         return ecp_normalize_jac(grp, *T);
1369     }
1370 
1371 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1372     if (mbedtls_internal_ecp_grp_capable(grp)) {
1373         return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1374     }
1375 #endif
1376 
1377 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1378     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1379 #else
1380     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1381     size_t i;
1382     mbedtls_mpi *c, t;
1383 
1384     if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1385         return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1386     }
1387 
1388     mbedtls_mpi_init(&t);
1389 
1390     mpi_init_many(c, T_size);
1391     /*
1392      * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
1393      */
1394     MPI_ECP_MOV(&c[0], &T[0]->Z);
1395     for (i = 1; i < T_size; i++) {
1396         MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1397     }
1398 
1399     /*
1400      * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1401      */
1402     MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1403 
1404     for (i = T_size - 1;; i--) {
1405         /* At the start of iteration i (note that i decrements), we have
1406          * - c[j] = Z_0 * .... * Z_j        for j  < i,
1407          * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
1408          *
1409          * This is maintained via
1410          * - c[i-1] <- c[i] * Z_i
1411          *
1412          * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1413          * to do the actual normalization. For i==0, we already have
1414          * c[0] = 1 / Z_0.
1415          */
1416 
1417         if (i > 0) {
1418             /* Compute 1/Z_i and establish invariant for the next iteration. */
1419             MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
1420             MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1421         } else {
1422             MPI_ECP_MOV(&t, &c[0]);
1423         }
1424 
1425         /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1426         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1427         MPI_ECP_SQR(&t,       &t);
1428         MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1429         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1430 
1431         /*
1432          * Post-precessing: reclaim some memory by shrinking coordinates
1433          * - not storing Z (always 1)
1434          * - shrinking other coordinates, but still keeping the same number of
1435          *   limbs as P, as otherwise it will too likely be regrown too fast.
1436          */
1437         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1438         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1439 
1440         MPI_ECP_LSET(&T[i]->Z, 1);
1441 
1442         if (i == 0) {
1443             break;
1444         }
1445     }
1446 
1447 cleanup:
1448 
1449     mbedtls_mpi_free(&t);
1450     mpi_free_many(c, T_size);
1451     mbedtls_free(c);
1452 
1453     return ret;
1454 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1455 }
1456 
1457 /*
1458  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1459  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1460  */
1461 static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1462                                mbedtls_ecp_point *Q,
1463                                unsigned char inv)
1464 {
1465     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1466     mbedtls_mpi tmp;
1467     mbedtls_mpi_init(&tmp);
1468 
1469     MPI_ECP_COND_NEG(&Q->Y, inv);
1470 
1471 cleanup:
1472     mbedtls_mpi_free(&tmp);
1473     return ret;
1474 }
1475 
1476 /*
1477  * Point doubling R = 2 P, Jacobian coordinates
1478  *
1479  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1480  *
1481  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1482  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1483  *
1484  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1485  *
1486  * Cost: 1D := 3M + 4S          (A ==  0)
1487  *             4M + 4S          (A == -3)
1488  *             3M + 6S + 1a     otherwise
1489  */
1490 static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1491                           const mbedtls_ecp_point *P,
1492                           mbedtls_mpi tmp[4])
1493 {
1494 #if defined(MBEDTLS_SELF_TEST)
1495     dbl_count++;
1496 #endif
1497 
1498 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1499     if (mbedtls_internal_ecp_grp_capable(grp)) {
1500         return mbedtls_internal_ecp_double_jac(grp, R, P);
1501     }
1502 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1503 
1504 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1505     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1506 #else
1507     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1508 
1509     /* Special case for A = -3 */
1510     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1511         /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1512         MPI_ECP_SQR(&tmp[1],  &P->Z);
1513         MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
1514         MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
1515         MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
1516         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
1517     } else {
1518         /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1519         MPI_ECP_SQR(&tmp[1],  &P->X);
1520         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
1521 
1522         /* Optimize away for "koblitz" curves with A = 0 */
1523         if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1524             /* M += A.Z^4 */
1525             MPI_ECP_SQR(&tmp[1],  &P->Z);
1526             MPI_ECP_SQR(&tmp[2],  &tmp[1]);
1527             MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
1528             MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
1529         }
1530     }
1531 
1532     /* tmp[1] <- S = 4.X.Y^2 */
1533     MPI_ECP_SQR(&tmp[2],  &P->Y);
1534     MPI_ECP_SHIFT_L(&tmp[2],  1);
1535     MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
1536     MPI_ECP_SHIFT_L(&tmp[1],  1);
1537 
1538     /* tmp[3] <- U = 8.Y^4 */
1539     MPI_ECP_SQR(&tmp[3],  &tmp[2]);
1540     MPI_ECP_SHIFT_L(&tmp[3],  1);
1541 
1542     /* tmp[2] <- T = M^2 - 2.S */
1543     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1544     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1545     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1546 
1547     /* tmp[1] <- S = M(S - T) - U */
1548     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
1549     MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
1550     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
1551 
1552     /* tmp[3] <- U = 2.Y.Z */
1553     MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
1554     MPI_ECP_SHIFT_L(&tmp[3],  1);
1555 
1556     /* Store results */
1557     MPI_ECP_MOV(&R->X, &tmp[2]);
1558     MPI_ECP_MOV(&R->Y, &tmp[1]);
1559     MPI_ECP_MOV(&R->Z, &tmp[3]);
1560 
1561 cleanup:
1562 
1563     return ret;
1564 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1565 }
1566 
1567 /*
1568  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1569  *
1570  * The coordinates of Q must be normalized (= affine),
1571  * but those of P don't need to. R is not normalized.
1572  *
1573  * P,Q,R may alias, but only at the level of EC points: they must be either
1574  * equal as pointers, or disjoint (including the coordinate data buffers).
1575  * Fine-grained aliasing at the level of coordinates is not supported.
1576  *
1577  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1578  * None of these cases can happen as intermediate step in ecp_mul_comb():
1579  * - at each step, P, Q and R are multiples of the base point, the factor
1580  *   being less than its order, so none of them is zero;
1581  * - Q is an odd multiple of the base point, P an even multiple,
1582  *   due to the choice of precomputed points in the modified comb method.
1583  * So branches for these cases do not leak secret information.
1584  *
1585  * Cost: 1A := 8M + 3S
1586  */
1587 static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1588                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1589                          mbedtls_mpi tmp[4])
1590 {
1591 #if defined(MBEDTLS_SELF_TEST)
1592     add_count++;
1593 #endif
1594 
1595 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1596     if (mbedtls_internal_ecp_grp_capable(grp)) {
1597         return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1598     }
1599 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1600 
1601 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1602     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1603 #else
1604     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1605 
1606     /* NOTE: Aliasing between input and output is allowed, so one has to make
1607      *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1608      *       longer read from. */
1609     mbedtls_mpi * const X = &R->X;
1610     mbedtls_mpi * const Y = &R->Y;
1611     mbedtls_mpi * const Z = &R->Z;
1612 
1613     if (!MPI_ECP_VALID(&Q->Z)) {
1614         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1615     }
1616 
1617     /*
1618      * Trivial cases: P == 0 or Q == 0 (case 1)
1619      */
1620     if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1621         return mbedtls_ecp_copy(R, Q);
1622     }
1623 
1624     if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1625         return mbedtls_ecp_copy(R, P);
1626     }
1627 
1628     /*
1629      * Make sure Q coordinates are normalized
1630      */
1631     if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1632         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1633     }
1634 
1635     MPI_ECP_SQR(&tmp[0], &P->Z);
1636     MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1637     MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1638     MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1639     MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1640     MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1641 
1642     /* Special cases (2) and (3) */
1643     if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1644         if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1645             ret = ecp_double_jac(grp, R, P, tmp);
1646             goto cleanup;
1647         } else {
1648             ret = mbedtls_ecp_set_zero(R);
1649             goto cleanup;
1650         }
1651     }
1652 
1653     /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1654     MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
1655     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1656     MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
1657     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
1658 
1659     MPI_ECP_MOV(&tmp[0], &tmp[2]);
1660     MPI_ECP_SHIFT_L(&tmp[0], 1);
1661 
1662     /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1663     MPI_ECP_SQR(X,        &tmp[1]);
1664     MPI_ECP_SUB(X,        X,        &tmp[0]);
1665     MPI_ECP_SUB(X,        X,        &tmp[3]);
1666     MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
1667     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
1668     MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
1669     /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1670     MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
1671 
1672 cleanup:
1673 
1674     return ret;
1675 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1676 }
1677 
1678 /*
1679  * Randomize jacobian coordinates:
1680  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1681  * This is sort of the reverse operation of ecp_normalize_jac().
1682  *
1683  * This countermeasure was first suggested in [2].
1684  */
1685 static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1686                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1687 {
1688 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1689     if (mbedtls_internal_ecp_grp_capable(grp)) {
1690         return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1691     }
1692 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1693 
1694 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1695     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1696 #else
1697     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1698     mbedtls_mpi l;
1699 
1700     mbedtls_mpi_init(&l);
1701 
1702     /* Generate l such that 1 < l < p */
1703     MPI_ECP_RAND(&l);
1704 
1705     /* Z' = l * Z */
1706     MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
1707 
1708     /* Y' = l * Y */
1709     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1710 
1711     /* X' = l^2 * X */
1712     MPI_ECP_SQR(&l,       &l);
1713     MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
1714 
1715     /* Y'' = l^2 * Y' = l^3 * Y */
1716     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1717 
1718 cleanup:
1719     mbedtls_mpi_free(&l);
1720 
1721     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1722         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1723     }
1724     return ret;
1725 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1726 }
1727 
1728 /*
1729  * Check and define parameters used by the comb method (see below for details)
1730  */
1731 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1732 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1733 #endif
1734 
1735 /* d = ceil( n / w ) */
1736 #define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
1737 
1738 /* number of precomputed points */
1739 #define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1740 
1741 /*
1742  * Compute the representation of m that will be used with our comb method.
1743  *
1744  * The basic comb method is described in GECC 3.44 for example. We use a
1745  * modified version that provides resistance to SPA by avoiding zero
1746  * digits in the representation as in [3]. We modify the method further by
1747  * requiring that all K_i be odd, which has the small cost that our
1748  * representation uses one more K_i, due to carries, but saves on the size of
1749  * the precomputed table.
1750  *
1751  * Summary of the comb method and its modifications:
1752  *
1753  * - The goal is to compute m*P for some w*d-bit integer m.
1754  *
1755  * - The basic comb method splits m into the w-bit integers
1756  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1757  *   index has residue i modulo d, and computes m * P as
1758  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1759  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1760  *
1761  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1762  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1763  *   thereby successively converting it into a form where all summands
1764  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1765  *
1766  * - More generally, even if x[i+1] != 0, we can first transform the sum as
1767  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1768  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1769  *   Performing and iterating this procedure for those x[i] that are even
1770  *   (keeping track of carry), we can transform the original sum into one of the form
1771  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1772  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1773  *   which is why we are only computing half of it in the first place in
1774  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1775  *
1776  * - For the sake of compactness, only the seven low-order bits of x[i]
1777  *   are used to represent its absolute value (K_i in the paper), and the msb
1778  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1779  *   if s_i == -1;
1780  *
1781  * Calling conventions:
1782  * - x is an array of size d + 1
1783  * - w is the size, ie number of teeth, of the comb, and must be between
1784  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1785  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1786  *   (the result will be incorrect if these assumptions are not satisfied)
1787  */
1788 static void ecp_comb_recode_core(unsigned char x[], size_t d,
1789                                  unsigned char w, const mbedtls_mpi *m)
1790 {
1791     size_t i, j;
1792     unsigned char c, cc, adjust;
1793 
1794     memset(x, 0, d+1);
1795 
1796     /* First get the classical comb values (except for x_d = 0) */
1797     for (i = 0; i < d; i++) {
1798         for (j = 0; j < w; j++) {
1799             x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1800         }
1801     }
1802 
1803     /* Now make sure x_1 .. x_d are odd */
1804     c = 0;
1805     for (i = 1; i <= d; i++) {
1806         /* Add carry and update it */
1807         cc   = x[i] & c;
1808         x[i] = x[i] ^ c;
1809         c = cc;
1810 
1811         /* Adjust if needed, avoiding branches */
1812         adjust = 1 - (x[i] & 0x01);
1813         c   |= x[i] & (x[i-1] * adjust);
1814         x[i] = x[i] ^ (x[i-1] * adjust);
1815         x[i-1] |= adjust << 7;
1816     }
1817 }
1818 
1819 /*
1820  * Precompute points for the adapted comb method
1821  *
1822  * Assumption: T must be able to hold 2^{w - 1} elements.
1823  *
1824  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1825  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1826  *
1827  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1828  *
1829  * Note: Even comb values (those where P would be omitted from the
1830  *       sum defining T[i] above) are not needed in our adaption
1831  *       the comb method. See ecp_comb_recode_core().
1832  *
1833  * This function currently works in four steps:
1834  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1835  * (2) [norm_dbl] Normalization of coordinates of these T[i]
1836  * (3) [add]      Computation of all T[i]
1837  * (4) [norm_add] Normalization of all T[i]
1838  *
1839  * Step 1 can be interrupted but not the others; together with the final
1840  * coordinate normalization they are the largest steps done at once, depending
1841  * on the window size. Here are operation counts for P-256:
1842  *
1843  * step     (2)     (3)     (4)
1844  * w = 5    142     165     208
1845  * w = 4    136      77     160
1846  * w = 3    130      33     136
1847  * w = 2    124      11     124
1848  *
1849  * So if ECC operations are blocking for too long even with a low max_ops
1850  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1851  * to minimize maximum blocking time.
1852  */
1853 static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1854                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1855                                unsigned char w, size_t d,
1856                                mbedtls_ecp_restart_ctx *rs_ctx)
1857 {
1858     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1859     unsigned char i;
1860     size_t j = 0;
1861     const unsigned char T_size = 1U << (w - 1);
1862     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1863 
1864     mbedtls_mpi tmp[4];
1865 
1866     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1867 
1868 #if defined(MBEDTLS_ECP_RESTARTABLE)
1869     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1870         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1871             goto dbl;
1872         }
1873         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1874             goto norm_dbl;
1875         }
1876         if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1877             goto add;
1878         }
1879         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1880             goto norm_add;
1881         }
1882     }
1883 #else
1884     (void) rs_ctx;
1885 #endif
1886 
1887 #if defined(MBEDTLS_ECP_RESTARTABLE)
1888     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1889         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1890 
1891         /* initial state for the loop */
1892         rs_ctx->rsm->i = 0;
1893     }
1894 
1895 dbl:
1896 #endif
1897     /*
1898      * Set T[0] = P and
1899      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1900      */
1901     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1902 
1903 #if defined(MBEDTLS_ECP_RESTARTABLE)
1904     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1905         j = rs_ctx->rsm->i;
1906     } else
1907 #endif
1908     j = 0;
1909 
1910     for (; j < d * (w - 1); j++) {
1911         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1912 
1913         i = 1U << (j / d);
1914         cur = T + i;
1915 
1916         if (j % d == 0) {
1917             MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1918         }
1919 
1920         MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1921     }
1922 
1923 #if defined(MBEDTLS_ECP_RESTARTABLE)
1924     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1925         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1926     }
1927 
1928 norm_dbl:
1929 #endif
1930     /*
1931      * Normalize current elements in T to allow them to be used in
1932      * ecp_add_mixed() below, which requires one normalized input.
1933      *
1934      * As T has holes, use an auxiliary array of pointers to elements in T.
1935      *
1936      */
1937     j = 0;
1938     for (i = 1; i < T_size; i <<= 1) {
1939         TT[j++] = T + i;
1940     }
1941 
1942     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1943 
1944     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1945 
1946 #if defined(MBEDTLS_ECP_RESTARTABLE)
1947     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1948         rs_ctx->rsm->state = ecp_rsm_pre_add;
1949     }
1950 
1951 add:
1952 #endif
1953     /*
1954      * Compute the remaining ones using the minimal number of additions
1955      * Be careful to update T[2^l] only after using it!
1956      */
1957     MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1958 
1959     for (i = 1; i < T_size; i <<= 1) {
1960         j = i;
1961         while (j--) {
1962             MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1963         }
1964     }
1965 
1966 #if defined(MBEDTLS_ECP_RESTARTABLE)
1967     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1968         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1969     }
1970 
1971 norm_add:
1972 #endif
1973     /*
1974      * Normalize final elements in T. Even though there are no holes now, we
1975      * still need the auxiliary array for homogeneity with the previous
1976      * call. Also, skip T[0] which is already normalised, being a copy of P.
1977      */
1978     for (j = 0; j + 1 < T_size; j++) {
1979         TT[j] = T + j + 1;
1980     }
1981 
1982     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1983 
1984     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1985 
1986     /* Free Z coordinate (=1 after normalization) to save RAM.
1987      * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1988      * since from this point onwards, they are only accessed indirectly
1989      * via the getter function ecp_select_comb() which does set the
1990      * target's Z coordinate to 1. */
1991     for (i = 0; i < T_size; i++) {
1992         mbedtls_mpi_free(&T[i].Z);
1993     }
1994 
1995 cleanup:
1996 
1997     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1998 
1999 #if defined(MBEDTLS_ECP_RESTARTABLE)
2000     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2001         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2002         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
2003             rs_ctx->rsm->i = j;
2004         }
2005     }
2006 #endif
2007 
2008     return ret;
2009 }
2010 
2011 /*
2012  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2013  *
2014  * See ecp_comb_recode_core() for background
2015  */
2016 static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2017                            const mbedtls_ecp_point T[], unsigned char T_size,
2018                            unsigned char i)
2019 {
2020     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2021     unsigned char ii, j;
2022 
2023     /* Ignore the "sign" bit and scale down */
2024     ii =  (i & 0x7Fu) >> 1;
2025 
2026     /* Read the whole table to thwart cache-based timing attacks */
2027     for (j = 0; j < T_size; j++) {
2028         MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2029         MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2030     }
2031 
2032     /* Safely invert result if i is "negative" */
2033     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2034 
2035     MPI_ECP_LSET(&R->Z, 1);
2036 
2037 cleanup:
2038     return ret;
2039 }
2040 
2041 /*
2042  * Core multiplication algorithm for the (modified) comb method.
2043  * This part is actually common with the basic comb method (GECC 3.44)
2044  *
2045  * Cost: d A + d D + 1 R
2046  */
2047 static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2048                              const mbedtls_ecp_point T[], unsigned char T_size,
2049                              const unsigned char x[], size_t d,
2050                              int (*f_rng)(void *, unsigned char *, size_t),
2051                              void *p_rng,
2052                              mbedtls_ecp_restart_ctx *rs_ctx)
2053 {
2054     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2055     mbedtls_ecp_point Txi;
2056     mbedtls_mpi tmp[4];
2057     size_t i;
2058 
2059     mbedtls_ecp_point_init(&Txi);
2060     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2061 
2062 #if !defined(MBEDTLS_ECP_RESTARTABLE)
2063     (void) rs_ctx;
2064 #endif
2065 
2066 #if defined(MBEDTLS_ECP_RESTARTABLE)
2067     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2068         rs_ctx->rsm->state != ecp_rsm_comb_core) {
2069         rs_ctx->rsm->i = 0;
2070         rs_ctx->rsm->state = ecp_rsm_comb_core;
2071     }
2072 
2073     /* new 'if' instead of nested for the sake of the 'else' branch */
2074     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2075         /* restore current index (R already pointing to rs_ctx->rsm->R) */
2076         i = rs_ctx->rsm->i;
2077     } else
2078 #endif
2079     {
2080         /* Start with a non-zero point and randomize its coordinates */
2081         i = d;
2082         MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2083         if (f_rng != 0) {
2084             MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2085         }
2086     }
2087 
2088     while (i != 0) {
2089         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2090         --i;
2091 
2092         MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2093         MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2094         MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2095     }
2096 
2097 cleanup:
2098 
2099     mbedtls_ecp_point_free(&Txi);
2100     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2101 
2102 #if defined(MBEDTLS_ECP_RESTARTABLE)
2103     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2104         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2105         rs_ctx->rsm->i = i;
2106         /* no need to save R, already pointing to rs_ctx->rsm->R */
2107     }
2108 #endif
2109 
2110     return ret;
2111 }
2112 
2113 /*
2114  * Recode the scalar to get constant-time comb multiplication
2115  *
2116  * As the actual scalar recoding needs an odd scalar as a starting point,
2117  * this wrapper ensures that by replacing m by N - m if necessary, and
2118  * informs the caller that the result of multiplication will be negated.
2119  *
2120  * This works because we only support large prime order for Short Weierstrass
2121  * curves, so N is always odd hence either m or N - m is.
2122  *
2123  * See ecp_comb_recode_core() for background.
2124  */
2125 static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2126                                   const mbedtls_mpi *m,
2127                                   unsigned char k[COMB_MAX_D + 1],
2128                                   size_t d,
2129                                   unsigned char w,
2130                                   unsigned char *parity_trick)
2131 {
2132     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2133     mbedtls_mpi M, mm;
2134 
2135     mbedtls_mpi_init(&M);
2136     mbedtls_mpi_init(&mm);
2137 
2138     /* N is always odd (see above), just make extra sure */
2139     if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2140         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2141     }
2142 
2143     /* do we need the parity trick? */
2144     *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2145 
2146     /* execute parity fix in constant time */
2147     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2148     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2149     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2150 
2151     /* actual scalar recoding */
2152     ecp_comb_recode_core(k, d, w, &M);
2153 
2154 cleanup:
2155     mbedtls_mpi_free(&mm);
2156     mbedtls_mpi_free(&M);
2157 
2158     return ret;
2159 }
2160 
2161 /*
2162  * Perform comb multiplication (for short Weierstrass curves)
2163  * once the auxiliary table has been pre-computed.
2164  *
2165  * Scalar recoding may use a parity trick that makes us compute -m * P,
2166  * if that is the case we'll need to recover m * P at the end.
2167  */
2168 static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2169                                       mbedtls_ecp_point *R,
2170                                       const mbedtls_mpi *m,
2171                                       const mbedtls_ecp_point *T,
2172                                       unsigned char T_size,
2173                                       unsigned char w,
2174                                       size_t d,
2175                                       int (*f_rng)(void *, unsigned char *, size_t),
2176                                       void *p_rng,
2177                                       mbedtls_ecp_restart_ctx *rs_ctx)
2178 {
2179     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2180     unsigned char parity_trick;
2181     unsigned char k[COMB_MAX_D + 1];
2182     mbedtls_ecp_point *RR = R;
2183 
2184 #if defined(MBEDTLS_ECP_RESTARTABLE)
2185     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2186         RR = &rs_ctx->rsm->R;
2187 
2188         if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2189             goto final_norm;
2190         }
2191     }
2192 #endif
2193 
2194     MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2195                                            &parity_trick));
2196     MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2197                                       f_rng, p_rng, rs_ctx));
2198     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2199 
2200 #if defined(MBEDTLS_ECP_RESTARTABLE)
2201     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2202         rs_ctx->rsm->state = ecp_rsm_final_norm;
2203     }
2204 
2205 final_norm:
2206     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2207 #endif
2208     /*
2209      * Knowledge of the jacobian coordinates may leak the last few bits of the
2210      * scalar [1], and since our MPI implementation isn't constant-flow,
2211      * inversion (used for coordinate normalization) may leak the full value
2212      * of its input via side-channels [2].
2213      *
2214      * [1] https://eprint.iacr.org/2003/191
2215      * [2] https://eprint.iacr.org/2020/055
2216      *
2217      * Avoid the leak by randomizing coordinates before we normalize them.
2218      */
2219     if (f_rng != 0) {
2220         MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2221     }
2222 
2223     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2224 
2225 #if defined(MBEDTLS_ECP_RESTARTABLE)
2226     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2227         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2228     }
2229 #endif
2230 
2231 cleanup:
2232     return ret;
2233 }
2234 
2235 /*
2236  * Pick window size based on curve size and whether we optimize for base point
2237  */
2238 static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2239                                           unsigned char p_eq_g)
2240 {
2241     unsigned char w;
2242 
2243     /*
2244      * Minimize the number of multiplications, that is minimize
2245      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2246      * (see costs of the various parts, with 1S = 1M)
2247      */
2248     w = grp->nbits >= 384 ? 5 : 4;
2249 
2250     /*
2251      * If P == G, pre-compute a bit more, since this may be re-used later.
2252      * Just adding one avoids upping the cost of the first mul too much,
2253      * and the memory cost too.
2254      */
2255     if (p_eq_g) {
2256         w++;
2257     }
2258 
2259     /*
2260      * If static comb table may not be used (!p_eq_g) or static comb table does
2261      * not exists, make sure w is within bounds.
2262      * (The last test is useful only for very small curves in the test suite.)
2263      *
2264      * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2265      * static comb table, because the size of static comb table is fixed when
2266      * it is generated.
2267      */
2268 #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2269     if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2270         w = MBEDTLS_ECP_WINDOW_SIZE;
2271     }
2272 #endif
2273     if (w >= grp->nbits) {
2274         w = 2;
2275     }
2276 
2277     return w;
2278 }
2279 
2280 /*
2281  * Multiplication using the comb method - for curves in short Weierstrass form
2282  *
2283  * This function is mainly responsible for administrative work:
2284  * - managing the restart context if enabled
2285  * - managing the table of precomputed points (passed between the below two
2286  *   functions): allocation, computation, ownership transfer, freeing.
2287  *
2288  * It delegates the actual arithmetic work to:
2289  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2290  *
2291  * See comments on ecp_comb_recode_core() regarding the computation strategy.
2292  */
2293 static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2294                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2295                         int (*f_rng)(void *, unsigned char *, size_t),
2296                         void *p_rng,
2297                         mbedtls_ecp_restart_ctx *rs_ctx)
2298 {
2299     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2300     unsigned char w, p_eq_g, i;
2301     size_t d;
2302     unsigned char T_size = 0, T_ok = 0;
2303     mbedtls_ecp_point *T = NULL;
2304 
2305     ECP_RS_ENTER(rsm);
2306 
2307     /* Is P the base point ? */
2308 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2309     p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2310               MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2311 #else
2312     p_eq_g = 0;
2313 #endif
2314 
2315     /* Pick window size and deduce related sizes */
2316     w = ecp_pick_window_size(grp, p_eq_g);
2317     T_size = 1U << (w - 1);
2318     d = (grp->nbits + w - 1) / w;
2319 
2320     /* Pre-computed table: do we have it already for the base point? */
2321     if (p_eq_g && grp->T != NULL) {
2322         /* second pointer to the same table, will be deleted on exit */
2323         T = grp->T;
2324         T_ok = 1;
2325     } else
2326 #if defined(MBEDTLS_ECP_RESTARTABLE)
2327     /* Pre-computed table: do we have one in progress? complete? */
2328     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2329         /* transfer ownership of T from rsm to local function */
2330         T = rs_ctx->rsm->T;
2331         rs_ctx->rsm->T = NULL;
2332         rs_ctx->rsm->T_size = 0;
2333 
2334         /* This effectively jumps to the call to mul_comb_after_precomp() */
2335         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2336     } else
2337 #endif
2338     /* Allocate table if we didn't have any */
2339     {
2340         T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2341         if (T == NULL) {
2342             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2343             goto cleanup;
2344         }
2345 
2346         for (i = 0; i < T_size; i++) {
2347             mbedtls_ecp_point_init(&T[i]);
2348         }
2349 
2350         T_ok = 0;
2351     }
2352 
2353     /* Compute table (or finish computing it) if not done already */
2354     if (!T_ok) {
2355         MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2356 
2357         if (p_eq_g) {
2358             /* almost transfer ownership of T to the group, but keep a copy of
2359              * the pointer to use for calling the next function more easily */
2360             grp->T = T;
2361             grp->T_size = T_size;
2362         }
2363     }
2364 
2365     /* Actual comb multiplication using precomputed points */
2366     MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2367                                                T, T_size, w, d,
2368                                                f_rng, p_rng, rs_ctx));
2369 
2370 cleanup:
2371 
2372     /* does T belong to the group? */
2373     if (T == grp->T) {
2374         T = NULL;
2375     }
2376 
2377     /* does T belong to the restart context? */
2378 #if defined(MBEDTLS_ECP_RESTARTABLE)
2379     if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2380         /* transfer ownership of T from local function to rsm */
2381         rs_ctx->rsm->T_size = T_size;
2382         rs_ctx->rsm->T = T;
2383         T = NULL;
2384     }
2385 #endif
2386 
2387     /* did T belong to us? then let's destroy it! */
2388     if (T != NULL) {
2389         for (i = 0; i < T_size; i++) {
2390             mbedtls_ecp_point_free(&T[i]);
2391         }
2392         mbedtls_free(T);
2393     }
2394 
2395     /* prevent caller from using invalid value */
2396     int should_free_R = (ret != 0);
2397 #if defined(MBEDTLS_ECP_RESTARTABLE)
2398     /* don't free R while in progress in case R == P */
2399     if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2400         should_free_R = 0;
2401     }
2402 #endif
2403     if (should_free_R) {
2404         mbedtls_ecp_point_free(R);
2405     }
2406 
2407     ECP_RS_LEAVE(rsm);
2408 
2409     return ret;
2410 }
2411 
2412 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2413 
2414 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2415 /*
2416  * For Montgomery curves, we do all the internal arithmetic in projective
2417  * coordinates. Import/export of points uses only the x coordinates, which is
2418  * internally represented as X / Z.
2419  *
2420  * For scalar multiplication, we'll use a Montgomery ladder.
2421  */
2422 
2423 /*
2424  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2425  * Cost: 1M + 1I
2426  */
2427 static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2428 {
2429 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2430     if (mbedtls_internal_ecp_grp_capable(grp)) {
2431         return mbedtls_internal_ecp_normalize_mxz(grp, P);
2432     }
2433 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2434 
2435 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2436     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2437 #else
2438     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2439     MPI_ECP_INV(&P->Z, &P->Z);
2440     MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2441     MPI_ECP_LSET(&P->Z, 1);
2442 
2443 cleanup:
2444     return ret;
2445 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2446 }
2447 
2448 /*
2449  * Randomize projective x/z coordinates:
2450  * (X, Z) -> (l X, l Z) for random l
2451  * This is sort of the reverse operation of ecp_normalize_mxz().
2452  *
2453  * This countermeasure was first suggested in [2].
2454  * Cost: 2M
2455  */
2456 static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2457                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2458 {
2459 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2460     if (mbedtls_internal_ecp_grp_capable(grp)) {
2461         return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2462     }
2463 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2464 
2465 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2466     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2467 #else
2468     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2469     mbedtls_mpi l;
2470     mbedtls_mpi_init(&l);
2471 
2472     /* Generate l such that 1 < l < p */
2473     MPI_ECP_RAND(&l);
2474 
2475     MPI_ECP_MUL(&P->X, &P->X, &l);
2476     MPI_ECP_MUL(&P->Z, &P->Z, &l);
2477 
2478 cleanup:
2479     mbedtls_mpi_free(&l);
2480 
2481     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2482         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2483     }
2484     return ret;
2485 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2486 }
2487 
2488 /*
2489  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2490  * for Montgomery curves in x/z coordinates.
2491  *
2492  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2493  * with
2494  * d =  X1
2495  * P = (X2, Z2)
2496  * Q = (X3, Z3)
2497  * R = (X4, Z4)
2498  * S = (X5, Z5)
2499  * and eliminating temporary variables tO, ..., t4.
2500  *
2501  * Cost: 5M + 4S
2502  */
2503 static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2504                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2505                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2506                               const mbedtls_mpi *d,
2507                               mbedtls_mpi T[4])
2508 {
2509 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2510     if (mbedtls_internal_ecp_grp_capable(grp)) {
2511         return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2512     }
2513 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2514 
2515 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2516     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2517 #else
2518     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2519 
2520     MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
2521     MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
2522     MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
2523     MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
2524     MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
2525     MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
2526     MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
2527     MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
2528     MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
2529     MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
2530     MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
2531     MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
2532     MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
2533     MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
2534     MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
2535     MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
2536     MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
2537     MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2538 
2539 cleanup:
2540 
2541     return ret;
2542 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2543 }
2544 
2545 /*
2546  * Multiplication with Montgomery ladder in x/z coordinates,
2547  * for curves in Montgomery form
2548  */
2549 static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2550                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2551                        int (*f_rng)(void *, unsigned char *, size_t),
2552                        void *p_rng)
2553 {
2554     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2555     size_t i;
2556     unsigned char b;
2557     mbedtls_ecp_point RP;
2558     mbedtls_mpi PX;
2559     mbedtls_mpi tmp[4];
2560     mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2561 
2562     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2563 
2564     if (f_rng == NULL) {
2565         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2566     }
2567 
2568     /* Save PX and read from P before writing to R, in case P == R */
2569     MPI_ECP_MOV(&PX, &P->X);
2570     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2571 
2572     /* Set R to zero in modified x/z coordinates */
2573     MPI_ECP_LSET(&R->X, 1);
2574     MPI_ECP_LSET(&R->Z, 0);
2575     mbedtls_mpi_free(&R->Y);
2576 
2577     /* RP.X might be slightly larger than P, so reduce it */
2578     MOD_ADD(&RP.X);
2579 
2580     /* Randomize coordinates of the starting point */
2581     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2582 
2583     /* Loop invariant: R = result so far, RP = R + P */
2584     i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2585     while (i-- > 0) {
2586         b = mbedtls_mpi_get_bit(m, i);
2587         /*
2588          *  if (b) R = 2R + P else R = 2R,
2589          * which is:
2590          *  if (b) double_add( RP, R, RP, R )
2591          *  else   double_add( R, RP, R, RP )
2592          * but using safe conditional swaps to avoid leaks
2593          */
2594         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2595         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2596         MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2597         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2598         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2599     }
2600 
2601     /*
2602      * Knowledge of the projective coordinates may leak the last few bits of the
2603      * scalar [1], and since our MPI implementation isn't constant-flow,
2604      * inversion (used for coordinate normalization) may leak the full value
2605      * of its input via side-channels [2].
2606      *
2607      * [1] https://eprint.iacr.org/2003/191
2608      * [2] https://eprint.iacr.org/2020/055
2609      *
2610      * Avoid the leak by randomizing coordinates before we normalize them.
2611      */
2612     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2613     MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2614 
2615 cleanup:
2616     mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2617 
2618     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2619     return ret;
2620 }
2621 
2622 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2623 
2624 /*
2625  * Restartable multiplication R = m * P
2626  *
2627  * This internal function can be called without an RNG in case where we know
2628  * the inputs are not sensitive.
2629  */
2630 static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2631                                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2632                                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2633                                         mbedtls_ecp_restart_ctx *rs_ctx)
2634 {
2635     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2636 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2637     char is_grp_capable = 0;
2638 #endif
2639 
2640 #if defined(MBEDTLS_ECP_RESTARTABLE)
2641     /* reset ops count for this call if top-level */
2642     if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2643         rs_ctx->ops_done = 0;
2644     }
2645 #else
2646     (void) rs_ctx;
2647 #endif
2648 
2649 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2650     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2651         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2652     }
2653 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2654 
2655     int restarting = 0;
2656 #if defined(MBEDTLS_ECP_RESTARTABLE)
2657     restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2658 #endif
2659     /* skip argument check when restarting */
2660     if (!restarting) {
2661         /* check_privkey is free */
2662         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2663 
2664         /* Common sanity checks */
2665         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2666         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2667     }
2668 
2669     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2670 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2671     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2672         MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2673     }
2674 #endif
2675 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2676     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2677         MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2678     }
2679 #endif
2680 
2681 cleanup:
2682 
2683 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2684     if (is_grp_capable) {
2685         mbedtls_internal_ecp_free(grp);
2686     }
2687 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2688 
2689 #if defined(MBEDTLS_ECP_RESTARTABLE)
2690     if (rs_ctx != NULL) {
2691         rs_ctx->depth--;
2692     }
2693 #endif
2694 
2695     return ret;
2696 }
2697 
2698 /*
2699  * Restartable multiplication R = m * P
2700  */
2701 int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2702                                 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2703                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2704                                 mbedtls_ecp_restart_ctx *rs_ctx)
2705 {
2706     if (f_rng == NULL) {
2707         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2708     }
2709 
2710     return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2711 }
2712 
2713 /*
2714  * Multiplication R = m * P
2715  */
2716 int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2717                     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2718                     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2719 {
2720     return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2721 }
2722 #endif /* MBEDTLS_ECP_C */
2723 
2724 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2725 /*
2726  * Check that an affine point is valid as a public key,
2727  * short weierstrass curves (SEC1 3.2.3.1)
2728  */
2729 static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2730 {
2731     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2732     mbedtls_mpi YY, RHS;
2733 
2734     /* pt coordinates must be normalized for our checks */
2735     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2736         mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2737         mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2738         mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2739         return MBEDTLS_ERR_ECP_INVALID_KEY;
2740     }
2741 
2742     mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2743 
2744     /*
2745      * YY = Y^2
2746      * RHS = X^3 + A X + B
2747      */
2748     MPI_ECP_SQR(&YY,  &pt->Y);
2749     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2750 
2751     if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2752         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2753     }
2754 
2755 cleanup:
2756 
2757     mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2758 
2759     return ret;
2760 }
2761 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2762 
2763 #if defined(MBEDTLS_ECP_C)
2764 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2765 /*
2766  * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2767  * NOT constant-time - ONLY for short Weierstrass!
2768  */
2769 static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2770                                      mbedtls_ecp_point *R,
2771                                      const mbedtls_mpi *m,
2772                                      const mbedtls_ecp_point *P,
2773                                      mbedtls_ecp_restart_ctx *rs_ctx)
2774 {
2775     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2776     mbedtls_mpi tmp;
2777     mbedtls_mpi_init(&tmp);
2778 
2779     if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2780         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2781         MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2782     } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2783         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2784         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2785     } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2786         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2787         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2788         MPI_ECP_NEG(&R->Y);
2789     } else {
2790         MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2791                                                      NULL, NULL, rs_ctx));
2792     }
2793 
2794 cleanup:
2795     mbedtls_mpi_free(&tmp);
2796 
2797     return ret;
2798 }
2799 
2800 /*
2801  * Restartable linear combination
2802  * NOT constant-time
2803  */
2804 int mbedtls_ecp_muladd_restartable(
2805     mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2806     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2807     const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2808     mbedtls_ecp_restart_ctx *rs_ctx)
2809 {
2810     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2811     mbedtls_ecp_point mP;
2812     mbedtls_ecp_point *pmP = &mP;
2813     mbedtls_ecp_point *pR = R;
2814     mbedtls_mpi tmp[4];
2815 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2816     char is_grp_capable = 0;
2817 #endif
2818     if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2819         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2820     }
2821 
2822     mbedtls_ecp_point_init(&mP);
2823     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2824 
2825     ECP_RS_ENTER(ma);
2826 
2827 #if defined(MBEDTLS_ECP_RESTARTABLE)
2828     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2829         /* redirect intermediate results to restart context */
2830         pmP = &rs_ctx->ma->mP;
2831         pR  = &rs_ctx->ma->R;
2832 
2833         /* jump to next operation */
2834         if (rs_ctx->ma->state == ecp_rsma_mul2) {
2835             goto mul2;
2836         }
2837         if (rs_ctx->ma->state == ecp_rsma_add) {
2838             goto add;
2839         }
2840         if (rs_ctx->ma->state == ecp_rsma_norm) {
2841             goto norm;
2842         }
2843     }
2844 #endif /* MBEDTLS_ECP_RESTARTABLE */
2845 
2846     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2847 #if defined(MBEDTLS_ECP_RESTARTABLE)
2848     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2849         rs_ctx->ma->state = ecp_rsma_mul2;
2850     }
2851 
2852 mul2:
2853 #endif
2854     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
2855 
2856 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2857     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2858         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2859     }
2860 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2861 
2862 #if defined(MBEDTLS_ECP_RESTARTABLE)
2863     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2864         rs_ctx->ma->state = ecp_rsma_add;
2865     }
2866 
2867 add:
2868 #endif
2869     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2870     MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2871 #if defined(MBEDTLS_ECP_RESTARTABLE)
2872     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2873         rs_ctx->ma->state = ecp_rsma_norm;
2874     }
2875 
2876 norm:
2877 #endif
2878     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2879     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2880 
2881 #if defined(MBEDTLS_ECP_RESTARTABLE)
2882     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2883         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2884     }
2885 #endif
2886 
2887 cleanup:
2888 
2889     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2890 
2891 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2892     if (is_grp_capable) {
2893         mbedtls_internal_ecp_free(grp);
2894     }
2895 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2896 
2897     mbedtls_ecp_point_free(&mP);
2898 
2899     ECP_RS_LEAVE(ma);
2900 
2901     return ret;
2902 }
2903 
2904 /*
2905  * Linear combination
2906  * NOT constant-time
2907  */
2908 int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2909                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2910                        const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2911 {
2912     return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2913 }
2914 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2915 #endif /* MBEDTLS_ECP_C */
2916 
2917 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2918 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2919 #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n), .use_mempool = 0 }
2920 #define ECP_MPI_INIT_ARRAY(x)   \
2921     ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2922 /*
2923  * Constants for the two points other than 0, 1, -1 (mod p) in
2924  * https://cr.yp.to/ecdh.html#validate
2925  * See ecp_check_pubkey_x25519().
2926  */
2927 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2928     MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2929     MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2930     MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2931     MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2932 };
2933 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2934     MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2935     MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2936     MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2937     MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2938 };
2939 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2940     x25519_bad_point_1);
2941 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2942     x25519_bad_point_2);
2943 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2944 
2945 /*
2946  * Check that the input point is not one of the low-order points.
2947  * This is recommended by the "May the Fourth" paper:
2948  * https://eprint.iacr.org/2017/806.pdf
2949  * Those points are never sent by an honest peer.
2950  */
2951 static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2952                                    const mbedtls_ecp_group_id grp_id)
2953 {
2954     int ret;
2955     mbedtls_mpi XmP;
2956 
2957     mbedtls_mpi_init(&XmP);
2958 
2959     /* Reduce X mod P so that we only need to check values less than P.
2960      * We know X < 2^256 so we can proceed by subtraction. */
2961     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2962     while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2963         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2964     }
2965 
2966     /* Check against the known bad values that are less than P. For Curve448
2967      * these are 0, 1 and -1. For Curve25519 we check the values less than P
2968      * from the following list: https://cr.yp.to/ecdh.html#validate */
2969     if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
2970         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2971         goto cleanup;
2972     }
2973 
2974 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2975     if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2976         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2977             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2978             goto cleanup;
2979         }
2980 
2981         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2982             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2983             goto cleanup;
2984         }
2985     }
2986 #else
2987     (void) grp_id;
2988 #endif
2989 
2990     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2991     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2992     if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2993         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2994         goto cleanup;
2995     }
2996 
2997     ret = 0;
2998 
2999 cleanup:
3000     mbedtls_mpi_free(&XmP);
3001 
3002     return ret;
3003 }
3004 
3005 /*
3006  * Check validity of a public key for Montgomery curves with x-only schemes
3007  */
3008 static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3009 {
3010     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3011     /* Allow any public value, if it's too big then we'll just reduce it mod p
3012      * (RFC 7748 sec. 5 para. 3). */
3013     if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3014         return MBEDTLS_ERR_ECP_INVALID_KEY;
3015     }
3016 
3017     /* Implicit in all standards (as they don't consider negative numbers):
3018      * X must be non-negative. This is normally ensured by the way it's
3019      * encoded for transmission, but let's be extra sure. */
3020     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3021         return MBEDTLS_ERR_ECP_INVALID_KEY;
3022     }
3023 
3024     return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3025 }
3026 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3027 
3028 /*
3029  * Check that a point is valid as a public key
3030  */
3031 int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3032                              const mbedtls_ecp_point *pt)
3033 {
3034     /* Must use affine coordinates */
3035     if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3036         return MBEDTLS_ERR_ECP_INVALID_KEY;
3037     }
3038 
3039 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3040     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3041         return ecp_check_pubkey_mx(grp, pt);
3042     }
3043 #endif
3044 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3045     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3046         return ecp_check_pubkey_sw(grp, pt);
3047     }
3048 #endif
3049     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3050 }
3051 
3052 /*
3053  * Check that an mbedtls_mpi is valid as a private key
3054  */
3055 int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3056                               const mbedtls_mpi *d)
3057 {
3058 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3059     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3060         /* see RFC 7748 sec. 5 para. 5 */
3061         if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3062             mbedtls_mpi_get_bit(d, 1) != 0 ||
3063             mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
3064             return MBEDTLS_ERR_ECP_INVALID_KEY;
3065         }
3066 
3067         /* see [Curve25519] page 5 */
3068         if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3069             return MBEDTLS_ERR_ECP_INVALID_KEY;
3070         }
3071 
3072         return 0;
3073     }
3074 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3075 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3076     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3077         /* see SEC1 3.2 */
3078         if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3079             mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3080             return MBEDTLS_ERR_ECP_INVALID_KEY;
3081         } else {
3082             return 0;
3083         }
3084     }
3085 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3086 
3087     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3088 }
3089 
3090 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3091 MBEDTLS_STATIC_TESTABLE
3092 int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3093                                mbedtls_mpi *d,
3094                                int (*f_rng)(void *, unsigned char *, size_t),
3095                                void *p_rng)
3096 {
3097     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3098     size_t n_random_bytes = high_bit / 8 + 1;
3099 
3100     /* [Curve25519] page 5 */
3101     /* Generate a (high_bit+1)-bit random number by generating just enough
3102      * random bytes, then shifting out extra bits from the top (necessary
3103      * when (high_bit+1) is not a multiple of 8). */
3104     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3105                                             f_rng, p_rng));
3106     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3107 
3108     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3109 
3110     /* Make sure the last two bits are unset for Curve448, three bits for
3111        Curve25519 */
3112     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3113     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3114     if (high_bit == 254) {
3115         MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3116     }
3117 
3118 cleanup:
3119     return ret;
3120 }
3121 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3122 
3123 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3124 static int mbedtls_ecp_gen_privkey_sw(
3125     const mbedtls_mpi *N, mbedtls_mpi *d,
3126     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3127 {
3128     int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3129     switch (ret) {
3130         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3131             return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3132         default:
3133             return ret;
3134     }
3135 }
3136 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3137 
3138 /*
3139  * Generate a private key
3140  */
3141 int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3142                             mbedtls_mpi *d,
3143                             int (*f_rng)(void *, unsigned char *, size_t),
3144                             void *p_rng)
3145 {
3146 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3147     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3148         return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3149     }
3150 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3151 
3152 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3153     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3154         return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3155     }
3156 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3157 
3158     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3159 }
3160 
3161 #if defined(MBEDTLS_ECP_C)
3162 /*
3163  * Generate a keypair with configurable base point
3164  */
3165 int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3166                                  const mbedtls_ecp_point *G,
3167                                  mbedtls_mpi *d, mbedtls_ecp_point *Q,
3168                                  int (*f_rng)(void *, unsigned char *, size_t),
3169                                  void *p_rng)
3170 {
3171     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3172     MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3173     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3174 
3175 cleanup:
3176     return ret;
3177 }
3178 
3179 /*
3180  * Generate key pair, wrapper for conventional base point
3181  */
3182 int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3183                             mbedtls_mpi *d, mbedtls_ecp_point *Q,
3184                             int (*f_rng)(void *, unsigned char *, size_t),
3185                             void *p_rng)
3186 {
3187     return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3188 }
3189 
3190 /*
3191  * Generate a keypair, prettier wrapper
3192  */
3193 int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3194                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3195 {
3196     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3197     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3198         return ret;
3199     }
3200 
3201     return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3202 }
3203 #endif /* MBEDTLS_ECP_C */
3204 
3205 int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3206                                mbedtls_ecp_keypair *key,
3207                                const mbedtls_ecp_point *Q)
3208 {
3209     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3210 
3211     if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3212         /* Group not set yet */
3213         if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3214             return ret;
3215         }
3216     } else if (key->grp.id != grp_id) {
3217         /* Group mismatch */
3218         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3219     }
3220     return mbedtls_ecp_copy(&key->Q, Q);
3221 }
3222 
3223 
3224 #define ECP_CURVE25519_KEY_SIZE 32
3225 #define ECP_CURVE448_KEY_SIZE   56
3226 /*
3227  * Read a private key.
3228  */
3229 int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3230                          const unsigned char *buf, size_t buflen)
3231 {
3232     int ret = 0;
3233 
3234     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3235         return ret;
3236     }
3237 
3238     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3239 
3240 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3241     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3242         /*
3243          * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3244          */
3245         if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3246             if (buflen != ECP_CURVE25519_KEY_SIZE) {
3247                 return MBEDTLS_ERR_ECP_INVALID_KEY;
3248             }
3249 
3250             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3251 
3252             /* Set the three least significant bits to 0 */
3253             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3254             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3255             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3256 
3257             /* Set the most significant bit to 0 */
3258             MBEDTLS_MPI_CHK(
3259                 mbedtls_mpi_set_bit(&key->d,
3260                                     ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3261                 );
3262 
3263             /* Set the second most significant bit to 1 */
3264             MBEDTLS_MPI_CHK(
3265                 mbedtls_mpi_set_bit(&key->d,
3266                                     ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3267                 );
3268         } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3269             if (buflen != ECP_CURVE448_KEY_SIZE) {
3270                 return MBEDTLS_ERR_ECP_INVALID_KEY;
3271             }
3272 
3273             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3274 
3275             /* Set the two least significant bits to 0 */
3276             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3277             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3278 
3279             /* Set the most significant bit to 1 */
3280             MBEDTLS_MPI_CHK(
3281                 mbedtls_mpi_set_bit(&key->d,
3282                                     ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3283                 );
3284         }
3285     }
3286 #endif
3287 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3288     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3289         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3290     }
3291 #endif
3292 
3293     if (ret == 0) {
3294         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3295     }
3296 
3297 cleanup:
3298 
3299     if (ret != 0) {
3300         mbedtls_mpi_free(&key->d);
3301     }
3302 
3303     return ret;
3304 }
3305 
3306 /*
3307  * Write a private key.
3308  */
3309 #if !defined MBEDTLS_DEPRECATED_REMOVED
3310 int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3311                           unsigned char *buf, size_t buflen)
3312 {
3313     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3314 
3315 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3316     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3317         if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3318             if (buflen < ECP_CURVE25519_KEY_SIZE) {
3319                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3320             }
3321 
3322         } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3323             if (buflen < ECP_CURVE448_KEY_SIZE) {
3324                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3325             }
3326         }
3327         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3328     }
3329 #endif
3330 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3331     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3332         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3333     }
3334 
3335 #endif
3336 cleanup:
3337 
3338     return ret;
3339 }
3340 #endif /* MBEDTLS_DEPRECATED_REMOVED */
3341 
3342 int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3343                               size_t *olen, unsigned char *buf, size_t buflen)
3344 {
3345     size_t len = (key->grp.nbits + 7) / 8;
3346     if (len > buflen) {
3347         /* For robustness, ensure *olen <= buflen even on error. */
3348         *olen = 0;
3349         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3350     }
3351     *olen = len;
3352 
3353     /* Private key not set */
3354     if (key->d.n == 0) {
3355         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3356     }
3357 
3358 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3359     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3360         return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3361     }
3362 #endif
3363 
3364 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3365     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3366         return mbedtls_mpi_write_binary(&key->d, buf, len);
3367     }
3368 #endif
3369 
3370     /* Private key set but no recognized curve type? This shouldn't happen. */
3371     return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3372 }
3373 
3374 /*
3375  * Write a public key.
3376  */
3377 int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3378                                  int format, size_t *olen,
3379                                  unsigned char *buf, size_t buflen)
3380 {
3381     return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3382                                           format, olen, buf, buflen);
3383 }
3384 
3385 
3386 #if defined(MBEDTLS_ECP_C)
3387 /*
3388  * Check a public-private key pair
3389  */
3390 int mbedtls_ecp_check_pub_priv(
3391     const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3392     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3393 {
3394     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3395     mbedtls_ecp_point Q;
3396     mbedtls_ecp_group grp;
3397     if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3398         pub->grp.id != prv->grp.id ||
3399         mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3400         mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3401         mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3402         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3403     }
3404 
3405     mbedtls_ecp_point_init(&Q);
3406     mbedtls_ecp_group_init(&grp);
3407 
3408     /* mbedtls_ecp_mul() needs a non-const group... */
3409     mbedtls_ecp_group_copy(&grp, &prv->grp);
3410 
3411     /* Also checks d is valid */
3412     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3413 
3414     if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3415         mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3416         mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3417         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3418         goto cleanup;
3419     }
3420 
3421 cleanup:
3422     mbedtls_ecp_point_free(&Q);
3423     mbedtls_ecp_group_free(&grp);
3424 
3425     return ret;
3426 }
3427 
3428 int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3429                                     int (*f_rng)(void *, unsigned char *, size_t),
3430                                     void *p_rng)
3431 {
3432     return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3433                            f_rng, p_rng);
3434 }
3435 #endif /* MBEDTLS_ECP_C */
3436 
3437 mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3438     const mbedtls_ecp_keypair *key)
3439 {
3440     return key->grp.id;
3441 }
3442 
3443 /*
3444  * Export generic key-pair parameters.
3445  */
3446 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3447                        mbedtls_mpi *d, mbedtls_ecp_point *Q)
3448 {
3449     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3450 
3451     if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3452         return ret;
3453     }
3454 
3455     if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3456         return ret;
3457     }
3458 
3459     if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3460         return ret;
3461     }
3462 
3463     return 0;
3464 }
3465 
3466 #if defined(MBEDTLS_SELF_TEST)
3467 
3468 #if defined(MBEDTLS_ECP_C)
3469 /*
3470  * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3471  *
3472  * This is the linear congruential generator from numerical recipes,
3473  * except we only use the low byte as the output. See
3474  * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3475  */
3476 static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3477 {
3478     static uint32_t state = 42;
3479 
3480     (void) ctx;
3481 
3482     for (size_t i = 0; i < len; i++) {
3483         state = state * 1664525u + 1013904223u;
3484         out[i] = (unsigned char) state;
3485     }
3486 
3487     return 0;
3488 }
3489 
3490 /* Adjust the exponent to be a valid private point for the specified curve.
3491  * This is sometimes necessary because we use a single set of exponents
3492  * for all curves but the validity of values depends on the curve. */
3493 static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3494                                      mbedtls_mpi *m)
3495 {
3496     int ret = 0;
3497     switch (grp->id) {
3498     /* If Curve25519 is available, then that's what we use for the
3499      * Montgomery test, so we don't need the adjustment code. */
3500 #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3501 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3502         case MBEDTLS_ECP_DP_CURVE448:
3503             /* Move highest bit from 254 to N-1. Setting bit N-1 is
3504              * necessary to enforce the highest-bit-set constraint. */
3505             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3506             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3507             /* Copy second-highest bit from 253 to N-2. This is not
3508              * necessary but improves the test variety a bit. */
3509             MBEDTLS_MPI_CHK(
3510                 mbedtls_mpi_set_bit(m, grp->nbits - 1,
3511                                     mbedtls_mpi_get_bit(m, 253)));
3512             break;
3513 #endif
3514 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3515         default:
3516             /* Non-Montgomery curves and Curve25519 need no adjustment. */
3517             (void) grp;
3518             (void) m;
3519             goto cleanup;
3520     }
3521 cleanup:
3522     return ret;
3523 }
3524 
3525 /* Calculate R = m.P for each m in exponents. Check that the number of
3526  * basic operations doesn't depend on the value of m. */
3527 static int self_test_point(int verbose,
3528                            mbedtls_ecp_group *grp,
3529                            mbedtls_ecp_point *R,
3530                            mbedtls_mpi *m,
3531                            const mbedtls_ecp_point *P,
3532                            const char *const *exponents,
3533                            size_t n_exponents)
3534 {
3535     int ret = 0;
3536     size_t i = 0;
3537     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3538     add_count = 0;
3539     dbl_count = 0;
3540     mul_count = 0;
3541 
3542     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3543     MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3544     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3545 
3546     for (i = 1; i < n_exponents; i++) {
3547         add_c_prev = add_count;
3548         dbl_c_prev = dbl_count;
3549         mul_c_prev = mul_count;
3550         add_count = 0;
3551         dbl_count = 0;
3552         mul_count = 0;
3553 
3554         MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3555         MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3556         MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3557 
3558         if (add_count != add_c_prev ||
3559             dbl_count != dbl_c_prev ||
3560             mul_count != mul_c_prev) {
3561             ret = 1;
3562             break;
3563         }
3564     }
3565 
3566 cleanup:
3567     if (verbose != 0) {
3568         if (ret != 0) {
3569             mbedtls_printf("failed (%u)\n", (unsigned int) i);
3570         } else {
3571             mbedtls_printf("passed\n");
3572         }
3573     }
3574     return ret;
3575 }
3576 #endif /* MBEDTLS_ECP_C */
3577 
3578 /*
3579  * Checkup routine
3580  */
3581 int mbedtls_ecp_self_test(int verbose)
3582 {
3583 #if defined(MBEDTLS_ECP_C)
3584     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3585     mbedtls_ecp_group grp;
3586     mbedtls_ecp_point R, P;
3587     mbedtls_mpi m;
3588 
3589 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3590     /* Exponents especially adapted for secp192k1, which has the lowest
3591      * order n of all supported curves (secp192r1 is in a slightly larger
3592      * field but the order of its base point is slightly smaller). */
3593     const char *sw_exponents[] =
3594     {
3595         "000000000000000000000000000000000000000000000001", /* one */
3596         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3597         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3598         "400000000000000000000000000000000000000000000000", /* one and zeros */
3599         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3600         "555555555555555555555555555555555555555555555555", /* 101010... */
3601     };
3602 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3603 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3604     const char *m_exponents[] =
3605     {
3606         /* Valid private values for Curve25519. In a build with Curve448
3607          * but not Curve25519, they will be adjusted in
3608          * self_test_adjust_exponent(). */
3609         "4000000000000000000000000000000000000000000000000000000000000000",
3610         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3611         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3612         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3613         "5555555555555555555555555555555555555555555555555555555555555550",
3614         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3615     };
3616 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3617 
3618     mbedtls_ecp_group_init(&grp);
3619     mbedtls_ecp_point_init(&R);
3620     mbedtls_ecp_point_init(&P);
3621     mbedtls_mpi_init(&m);
3622 
3623 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3624     /* Use secp192r1 if available, or any available curve */
3625 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3626     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3627 #else
3628     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3629 #endif
3630 
3631     if (verbose != 0) {
3632         mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
3633     }
3634     /* Do a dummy multiplication first to trigger precomputation */
3635     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3636     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3637     ret = self_test_point(verbose,
3638                           &grp, &R, &m, &grp.G,
3639                           sw_exponents,
3640                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3641     if (ret != 0) {
3642         goto cleanup;
3643     }
3644 
3645     if (verbose != 0) {
3646         mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
3647     }
3648     /* We computed P = 2G last time, use it */
3649     ret = self_test_point(verbose,
3650                           &grp, &R, &m, &P,
3651                           sw_exponents,
3652                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3653     if (ret != 0) {
3654         goto cleanup;
3655     }
3656 
3657     mbedtls_ecp_group_free(&grp);
3658     mbedtls_ecp_point_free(&R);
3659 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3660 
3661 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3662     if (verbose != 0) {
3663         mbedtls_printf("  ECP Montgomery test (constant op_count): ");
3664     }
3665 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3666     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3667 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3668     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3669 #else
3670 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3671 #endif
3672     ret = self_test_point(verbose,
3673                           &grp, &R, &m, &grp.G,
3674                           m_exponents,
3675                           sizeof(m_exponents) / sizeof(m_exponents[0]));
3676     if (ret != 0) {
3677         goto cleanup;
3678     }
3679 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3680 
3681 cleanup:
3682 
3683     if (ret < 0 && verbose != 0) {
3684         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3685     }
3686 
3687     mbedtls_ecp_group_free(&grp);
3688     mbedtls_ecp_point_free(&R);
3689     mbedtls_ecp_point_free(&P);
3690     mbedtls_mpi_free(&m);
3691 
3692     if (verbose != 0) {
3693         mbedtls_printf("\n");
3694     }
3695 
3696     return ret;
3697 #else /* MBEDTLS_ECP_C */
3698     (void) verbose;
3699     return 0;
3700 #endif /* MBEDTLS_ECP_C */
3701 }
3702 
3703 #endif /* MBEDTLS_SELF_TEST */
3704 
3705 #endif /* !MBEDTLS_ECP_ALT */
3706 
3707 #endif /* MBEDTLS_ECP_LIGHT */
3708