xref: /optee_os/lib/libmbedtls/mbedtls/library/ecp.c (revision 9f4dcefb9c7b0292a7af4b184365341f69fbfd90)
1 // SPDX-License-Identifier: Apache-2.0
2 /*
3  *  Elliptic curves over GF(p): generic functions
4  *
5  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  *  This file is part of mbed TLS (https://tls.mbed.org)
20  */
21 
22 /*
23  * References:
24  *
25  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
26  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
27  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
28  * RFC 4492 for the related TLS structures and constants
29  * RFC 7748 for the Curve448 and Curve25519 curve definitions
30  *
31  * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
32  *
33  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
34  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
35  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
36  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
37  *
38  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
39  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
40  *     ePrint Archive, 2004, vol. 2004, p. 342.
41  *     <http://eprint.iacr.org/2004/342.pdf>
42  */
43 
44 #if !defined(MBEDTLS_CONFIG_FILE)
45 #include "mbedtls/config.h"
46 #else
47 #include MBEDTLS_CONFIG_FILE
48 #endif
49 
50 /**
51  * \brief Function level alternative implementation.
52  *
53  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
54  * replace certain functions in this module. The alternative implementations are
55  * typically hardware accelerators and need to activate the hardware before the
56  * computation starts and deactivate it after it finishes. The
57  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
58  * this purpose.
59  *
60  * To preserve the correct functionality the following conditions must hold:
61  *
62  * - The alternative implementation must be activated by
63  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
64  *   called.
65  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
66  *   implementation is activated.
67  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
68  *   implementation is activated.
69  * - Public functions must not return while the alternative implementation is
70  *   activated.
71  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
72  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
73  *   \endcode ensures that the alternative implementation supports the current
74  *   group.
75  */
76 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
77 #endif
78 
79 #if defined(MBEDTLS_ECP_C)
80 
81 #include "mbedtls/ecp.h"
82 #include "mbedtls/threading.h"
83 #include "mbedtls/platform_util.h"
84 
85 #include <string.h>
86 
87 #if !defined(MBEDTLS_ECP_ALT)
88 
89 /* Parameter validation macros based on platform_util.h */
90 #define ECP_VALIDATE_RET( cond )    \
91     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
92 #define ECP_VALIDATE( cond )        \
93     MBEDTLS_INTERNAL_VALIDATE( cond )
94 
95 #if defined(MBEDTLS_PLATFORM_C)
96 #include "mbedtls/platform.h"
97 #else
98 #include <stdlib.h>
99 #include <stdio.h>
100 #define mbedtls_printf     printf
101 #define mbedtls_calloc    calloc
102 #define mbedtls_free       free
103 #endif
104 
105 #include "mbedtls/ecp_internal.h"
106 
107 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
108     !defined(inline) && !defined(__cplusplus)
109 #define inline __inline
110 #endif
111 
112 #if defined(MBEDTLS_SELF_TEST)
113 /*
114  * Counts of point addition and doubling, and field multiplications.
115  * Used to test resistance of point multiplication to simple timing attacks.
116  */
117 static unsigned long add_count, dbl_count, mul_count;
118 #endif
119 
120 #if defined(MBEDTLS_ECP_RESTARTABLE)
121 /*
122  * Maximum number of "basic operations" to be done in a row.
123  *
124  * Default value 0 means that ECC operations will not yield.
125  * Note that regardless of the value of ecp_max_ops, always at
126  * least one step is performed before yielding.
127  *
128  * Setting ecp_max_ops=1 can be suitable for testing purposes
129  * as it will interrupt computation at all possible points.
130  */
131 static unsigned ecp_max_ops = 0;
132 
133 /*
134  * Set ecp_max_ops
135  */
136 void mbedtls_ecp_set_max_ops( unsigned max_ops )
137 {
138     ecp_max_ops = max_ops;
139 }
140 
141 /*
142  * Check if restart is enabled
143  */
144 int mbedtls_ecp_restart_is_enabled( void )
145 {
146     return( ecp_max_ops != 0 );
147 }
148 
149 /*
150  * Restart sub-context for ecp_mul_comb()
151  */
152 struct mbedtls_ecp_restart_mul
153 {
154     mbedtls_ecp_point R;    /* current intermediate result                  */
155     size_t i;               /* current index in various loops, 0 outside    */
156     mbedtls_ecp_point *T;   /* table for precomputed points                 */
157     unsigned char T_size;   /* number of points in table T                  */
158     enum {                  /* what were we doing last time we returned?    */
159         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
160         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
161         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
162         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
163         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
164         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
165         ecp_rsm_final_norm,     /* do the final normalization               */
166     } state;
167 };
168 
169 /*
170  * Init restart_mul sub-context
171  */
172 static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
173 {
174     mbedtls_ecp_point_init( &ctx->R );
175     ctx->i = 0;
176     ctx->T = NULL;
177     ctx->T_size = 0;
178     ctx->state = ecp_rsm_init;
179 }
180 
181 /*
182  * Free the components of a restart_mul sub-context
183  */
184 static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
185 {
186     unsigned char i;
187 
188     if( ctx == NULL )
189         return;
190 
191     mbedtls_ecp_point_free( &ctx->R );
192 
193     if( ctx->T != NULL )
194     {
195         for( i = 0; i < ctx->T_size; i++ )
196             mbedtls_ecp_point_free( ctx->T + i );
197         mbedtls_free( ctx->T );
198     }
199 
200     ecp_restart_rsm_init( ctx );
201 }
202 
203 /*
204  * Restart context for ecp_muladd()
205  */
206 struct mbedtls_ecp_restart_muladd
207 {
208     mbedtls_ecp_point mP;       /* mP value                             */
209     mbedtls_ecp_point R;        /* R intermediate result                */
210     enum {                      /* what should we do next?              */
211         ecp_rsma_mul1 = 0,      /* first multiplication                 */
212         ecp_rsma_mul2,          /* second multiplication                */
213         ecp_rsma_add,           /* addition                             */
214         ecp_rsma_norm,          /* normalization                        */
215     } state;
216 };
217 
218 /*
219  * Init restart_muladd sub-context
220  */
221 static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
222 {
223     mbedtls_ecp_point_init( &ctx->mP );
224     mbedtls_ecp_point_init( &ctx->R );
225     ctx->state = ecp_rsma_mul1;
226 }
227 
228 /*
229  * Free the components of a restart_muladd sub-context
230  */
231 static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
232 {
233     if( ctx == NULL )
234         return;
235 
236     mbedtls_ecp_point_free( &ctx->mP );
237     mbedtls_ecp_point_free( &ctx->R );
238 
239     ecp_restart_ma_init( ctx );
240 }
241 
242 /*
243  * Initialize a restart context
244  */
245 void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
246 {
247     ECP_VALIDATE( ctx != NULL );
248     ctx->ops_done = 0;
249     ctx->depth = 0;
250     ctx->rsm = NULL;
251     ctx->ma = NULL;
252 }
253 
254 /*
255  * Free the components of a restart context
256  */
257 void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
258 {
259     if( ctx == NULL )
260         return;
261 
262     ecp_restart_rsm_free( ctx->rsm );
263     mbedtls_free( ctx->rsm );
264 
265     ecp_restart_ma_free( ctx->ma );
266     mbedtls_free( ctx->ma );
267 
268     mbedtls_ecp_restart_init( ctx );
269 }
270 
271 /*
272  * Check if we can do the next step
273  */
274 int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
275                               mbedtls_ecp_restart_ctx *rs_ctx,
276                               unsigned ops )
277 {
278     ECP_VALIDATE_RET( grp != NULL );
279 
280     if( rs_ctx != NULL && ecp_max_ops != 0 )
281     {
282         /* scale depending on curve size: the chosen reference is 256-bit,
283          * and multiplication is quadratic. Round to the closest integer. */
284         if( grp->pbits >= 512 )
285             ops *= 4;
286         else if( grp->pbits >= 384 )
287             ops *= 2;
288 
289         /* Avoid infinite loops: always allow first step.
290          * Because of that, however, it's not generally true
291          * that ops_done <= ecp_max_ops, so the check
292          * ops_done > ecp_max_ops below is mandatory. */
293         if( ( rs_ctx->ops_done != 0 ) &&
294             ( rs_ctx->ops_done > ecp_max_ops ||
295               ops > ecp_max_ops - rs_ctx->ops_done ) )
296         {
297             return( MBEDTLS_ERR_ECP_IN_PROGRESS );
298         }
299 
300         /* update running count */
301         rs_ctx->ops_done += ops;
302     }
303 
304     return( 0 );
305 }
306 
307 /* Call this when entering a function that needs its own sub-context */
308 #define ECP_RS_ENTER( SUB )   do {                                      \
309     /* reset ops count for this call if top-level */                    \
310     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )                        \
311         rs_ctx->ops_done = 0;                                           \
312                                                                         \
313     /* set up our own sub-context if needed */                          \
314     if( mbedtls_ecp_restart_is_enabled() &&                             \
315         rs_ctx != NULL && rs_ctx->SUB == NULL )                         \
316     {                                                                   \
317         rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) );      \
318         if( rs_ctx->SUB == NULL )                                       \
319             return( MBEDTLS_ERR_ECP_ALLOC_FAILED );                     \
320                                                                         \
321         ecp_restart_## SUB ##_init( rs_ctx->SUB );                      \
322     }                                                                   \
323 } while( 0 )
324 
325 /* Call this when leaving a function that needs its own sub-context */
326 #define ECP_RS_LEAVE( SUB )   do {                                      \
327     /* clear our sub-context when not in progress (done or error) */    \
328     if( rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
329         ret != MBEDTLS_ERR_ECP_IN_PROGRESS )                            \
330     {                                                                   \
331         ecp_restart_## SUB ##_free( rs_ctx->SUB );                      \
332         mbedtls_free( rs_ctx->SUB );                                    \
333         rs_ctx->SUB = NULL;                                             \
334     }                                                                   \
335                                                                         \
336     if( rs_ctx != NULL )                                                \
337         rs_ctx->depth--;                                                \
338 } while( 0 )
339 
340 #else /* MBEDTLS_ECP_RESTARTABLE */
341 
342 #define ECP_RS_ENTER( sub )     (void) rs_ctx;
343 #define ECP_RS_LEAVE( sub )     (void) rs_ctx;
344 
345 #endif /* MBEDTLS_ECP_RESTARTABLE */
346 
347 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
348     defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
349     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
350     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
351     defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
352     defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
353     defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
354     defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
355     defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
356     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
357     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
358 #define ECP_SHORTWEIERSTRASS
359 #endif
360 
361 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
362     defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
363 #define ECP_MONTGOMERY
364 #endif
365 
366 /*
367  * Curve types: internal for now, might be exposed later
368  */
369 typedef enum
370 {
371     ECP_TYPE_NONE = 0,
372     ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */
373     ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */
374 } ecp_curve_type;
375 
376 /*
377  * List of supported curves:
378  *  - internal ID
379  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
380  *  - size in bits
381  *  - readable name
382  *
383  * Curves are listed in order: largest curves first, and for a given size,
384  * fastest curves first. This provides the default order for the SSL module.
385  *
386  * Reminder: update profiles in x509_crt.c when adding a new curves!
387  */
388 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
389 {
390 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
391     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
392 #endif
393 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
394     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
395 #endif
396 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
397     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
398 #endif
399 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
400     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
401 #endif
402 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
403     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
404 #endif
405 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
406     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
407 #endif
408 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
409     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
410 #endif
411 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
412     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
413 #endif
414 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
415     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
416 #endif
417 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
418     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
419 #endif
420 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
421     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
422 #endif
423     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
424 };
425 
426 #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
427                         sizeof( ecp_supported_curves[0] )
428 
429 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
430 
431 /*
432  * List of supported curves and associated info
433  */
434 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
435 {
436     return( ecp_supported_curves );
437 }
438 
439 /*
440  * List of supported curves, group ID only
441  */
442 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
443 {
444     static int init_done = 0;
445 
446     if( ! init_done )
447     {
448         size_t i = 0;
449         const mbedtls_ecp_curve_info *curve_info;
450 
451         for( curve_info = mbedtls_ecp_curve_list();
452              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
453              curve_info++ )
454         {
455             ecp_supported_grp_id[i++] = curve_info->grp_id;
456         }
457         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
458 
459         init_done = 1;
460     }
461 
462     return( ecp_supported_grp_id );
463 }
464 
465 /*
466  * Get the curve info for the internal identifier
467  */
468 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
469 {
470     const mbedtls_ecp_curve_info *curve_info;
471 
472     for( curve_info = mbedtls_ecp_curve_list();
473          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474          curve_info++ )
475     {
476         if( curve_info->grp_id == grp_id )
477             return( curve_info );
478     }
479 
480     return( NULL );
481 }
482 
483 /*
484  * Get the curve info from the TLS identifier
485  */
486 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
487 {
488     const mbedtls_ecp_curve_info *curve_info;
489 
490     for( curve_info = mbedtls_ecp_curve_list();
491          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
492          curve_info++ )
493     {
494         if( curve_info->tls_id == tls_id )
495             return( curve_info );
496     }
497 
498     return( NULL );
499 }
500 
501 /*
502  * Get the curve info from the name
503  */
504 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
505 {
506     const mbedtls_ecp_curve_info *curve_info;
507 
508     if( name == NULL )
509         return( NULL );
510 
511     for( curve_info = mbedtls_ecp_curve_list();
512          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
513          curve_info++ )
514     {
515         if( strcmp( curve_info->name, name ) == 0 )
516             return( curve_info );
517     }
518 
519     return( NULL );
520 }
521 
522 /*
523  * Get the type of a curve
524  */
525 static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
526 {
527     if( grp->G.X.p == NULL )
528         return( ECP_TYPE_NONE );
529 
530     if( grp->G.Y.p == NULL )
531         return( ECP_TYPE_MONTGOMERY );
532     else
533         return( ECP_TYPE_SHORT_WEIERSTRASS );
534 }
535 
536 /*
537  * Initialize (the components of) a point
538  */
539 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
540 {
541     ECP_VALIDATE( pt != NULL );
542 
543     mbedtls_mpi_init( &pt->X );
544     mbedtls_mpi_init( &pt->Y );
545     mbedtls_mpi_init( &pt->Z );
546 }
547 
548 /*
549  * Initialize (the components of) a group
550  */
551 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
552 {
553     ECP_VALIDATE( grp != NULL );
554 
555     grp->id = MBEDTLS_ECP_DP_NONE;
556     mbedtls_mpi_init( &grp->P );
557     mbedtls_mpi_init( &grp->A );
558     mbedtls_mpi_init( &grp->B );
559     mbedtls_ecp_point_init( &grp->G );
560     mbedtls_mpi_init( &grp->N );
561     grp->pbits = 0;
562     grp->nbits = 0;
563     grp->h = 0;
564     grp->modp = NULL;
565     grp->t_pre = NULL;
566     grp->t_post = NULL;
567     grp->t_data = NULL;
568     grp->T = NULL;
569     grp->T_size = 0;
570 }
571 
572 /*
573  * Initialize (the components of) a key pair
574  */
575 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
576 {
577     ECP_VALIDATE( key != NULL );
578 
579     mbedtls_ecp_group_init( &key->grp );
580     mbedtls_mpi_init( &key->d );
581     mbedtls_ecp_point_init( &key->Q );
582 }
583 
584 /*
585  * Unallocate (the components of) a point
586  */
587 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
588 {
589     if( pt == NULL )
590         return;
591 
592     mbedtls_mpi_free( &( pt->X ) );
593     mbedtls_mpi_free( &( pt->Y ) );
594     mbedtls_mpi_free( &( pt->Z ) );
595 }
596 
597 /*
598  * Unallocate (the components of) a group
599  */
600 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
601 {
602     size_t i;
603 
604     if( grp == NULL )
605         return;
606 
607     if( grp->h != 1 )
608     {
609         mbedtls_mpi_free( &grp->P );
610         mbedtls_mpi_free( &grp->A );
611         mbedtls_mpi_free( &grp->B );
612         mbedtls_ecp_point_free( &grp->G );
613         mbedtls_mpi_free( &grp->N );
614     }
615 
616     if( grp->T != NULL )
617     {
618         for( i = 0; i < grp->T_size; i++ )
619             mbedtls_ecp_point_free( &grp->T[i] );
620         mbedtls_free( grp->T );
621     }
622 
623     mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
624 }
625 
626 /*
627  * Unallocate (the components of) a key pair
628  */
629 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
630 {
631     if( key == NULL )
632         return;
633 
634     mbedtls_ecp_group_free( &key->grp );
635     mbedtls_mpi_free( &key->d );
636     mbedtls_ecp_point_free( &key->Q );
637 }
638 
639 /*
640  * Copy the contents of a point
641  */
642 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
643 {
644     int ret;
645     ECP_VALIDATE_RET( P != NULL );
646     ECP_VALIDATE_RET( Q != NULL );
647 
648     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
649     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
650     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
651 
652 cleanup:
653     return( ret );
654 }
655 
656 /*
657  * Copy the contents of a group object
658  */
659 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
660 {
661     ECP_VALIDATE_RET( dst != NULL );
662     ECP_VALIDATE_RET( src != NULL );
663 
664     return( mbedtls_ecp_group_load( dst, src->id ) );
665 }
666 
667 /*
668  * Set point to zero
669  */
670 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
671 {
672     int ret;
673     ECP_VALIDATE_RET( pt != NULL );
674 
675     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
676     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
677     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
678 
679 cleanup:
680     return( ret );
681 }
682 
683 /*
684  * Tell if a point is zero
685  */
686 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
687 {
688     ECP_VALIDATE_RET( pt != NULL );
689 
690     return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
691 }
692 
693 /*
694  * Compare two points lazily
695  */
696 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
697                            const mbedtls_ecp_point *Q )
698 {
699     ECP_VALIDATE_RET( P != NULL );
700     ECP_VALIDATE_RET( Q != NULL );
701 
702     if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
703         mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
704         mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
705     {
706         return( 0 );
707     }
708 
709     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
710 }
711 
712 /*
713  * Import a non-zero point from ASCII strings
714  */
715 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
716                            const char *x, const char *y )
717 {
718     int ret;
719     ECP_VALIDATE_RET( P != NULL );
720     ECP_VALIDATE_RET( x != NULL );
721     ECP_VALIDATE_RET( y != NULL );
722 
723     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
724     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
725     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
726 
727 cleanup:
728     return( ret );
729 }
730 
731 /*
732  * Export a point into unsigned binary data (SEC1 2.3.3)
733  */
734 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
735                                     const mbedtls_ecp_point *P,
736                                     int format, size_t *olen,
737                                     unsigned char *buf, size_t buflen )
738 {
739     int ret = 0;
740     size_t plen;
741     ECP_VALIDATE_RET( grp  != NULL );
742     ECP_VALIDATE_RET( P    != NULL );
743     ECP_VALIDATE_RET( olen != NULL );
744     ECP_VALIDATE_RET( buf  != NULL );
745     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
746                       format == MBEDTLS_ECP_PF_COMPRESSED );
747 
748     /*
749      * Common case: P == 0
750      */
751     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
752     {
753         if( buflen < 1 )
754             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
755 
756         buf[0] = 0x00;
757         *olen = 1;
758 
759         return( 0 );
760     }
761 
762     plen = mbedtls_mpi_size( &grp->P );
763 
764     if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
765     {
766         *olen = 2 * plen + 1;
767 
768         if( buflen < *olen )
769             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
770 
771         buf[0] = 0x04;
772         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
773         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
774     }
775     else if( format == MBEDTLS_ECP_PF_COMPRESSED )
776     {
777         *olen = plen + 1;
778 
779         if( buflen < *olen )
780             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
781 
782         buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
783         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
784     }
785 
786 cleanup:
787     return( ret );
788 }
789 
790 /*
791  * Import a point from unsigned binary data (SEC1 2.3.4)
792  */
793 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
794                                    mbedtls_ecp_point *pt,
795                                    const unsigned char *buf, size_t ilen )
796 {
797     int ret;
798     size_t plen;
799     ECP_VALIDATE_RET( grp != NULL );
800     ECP_VALIDATE_RET( pt  != NULL );
801     ECP_VALIDATE_RET( buf != NULL );
802 
803     if( ilen < 1 )
804         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
805 
806     if( buf[0] == 0x00 )
807     {
808         if( ilen == 1 )
809             return( mbedtls_ecp_set_zero( pt ) );
810         else
811             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
812     }
813 
814     plen = mbedtls_mpi_size( &grp->P );
815 
816     if( buf[0] != 0x04 )
817         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
818 
819     if( ilen != 2 * plen + 1 )
820         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
821 
822     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
823     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
824     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
825 
826 cleanup:
827     return( ret );
828 }
829 
830 /*
831  * Import a point from a TLS ECPoint record (RFC 4492)
832  *      struct {
833  *          opaque point <1..2^8-1>;
834  *      } ECPoint;
835  */
836 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
837                                 mbedtls_ecp_point *pt,
838                                 const unsigned char **buf, size_t buf_len )
839 {
840     unsigned char data_len;
841     const unsigned char *buf_start;
842     ECP_VALIDATE_RET( grp != NULL );
843     ECP_VALIDATE_RET( pt  != NULL );
844     ECP_VALIDATE_RET( buf != NULL );
845     ECP_VALIDATE_RET( *buf != NULL );
846 
847     /*
848      * We must have at least two bytes (1 for length, at least one for data)
849      */
850     if( buf_len < 2 )
851         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
852 
853     data_len = *(*buf)++;
854     if( data_len < 1 || data_len > buf_len - 1 )
855         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
856 
857     /*
858      * Save buffer start for read_binary and update buf
859      */
860     buf_start = *buf;
861     *buf += data_len;
862 
863     return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
864 }
865 
866 /*
867  * Export a point as a TLS ECPoint record (RFC 4492)
868  *      struct {
869  *          opaque point <1..2^8-1>;
870  *      } ECPoint;
871  */
872 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
873                          int format, size_t *olen,
874                          unsigned char *buf, size_t blen )
875 {
876     int ret;
877     ECP_VALIDATE_RET( grp  != NULL );
878     ECP_VALIDATE_RET( pt   != NULL );
879     ECP_VALIDATE_RET( olen != NULL );
880     ECP_VALIDATE_RET( buf  != NULL );
881     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
882                       format == MBEDTLS_ECP_PF_COMPRESSED );
883 
884     /*
885      * buffer length must be at least one, for our length byte
886      */
887     if( blen < 1 )
888         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
889 
890     if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
891                     olen, buf + 1, blen - 1) ) != 0 )
892         return( ret );
893 
894     /*
895      * write length to the first byte and update total length
896      */
897     buf[0] = (unsigned char) *olen;
898     ++*olen;
899 
900     return( 0 );
901 }
902 
903 /*
904  * Set a group from an ECParameters record (RFC 4492)
905  */
906 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
907                                 const unsigned char **buf, size_t len )
908 {
909     int ret;
910     mbedtls_ecp_group_id grp_id;
911     ECP_VALIDATE_RET( grp  != NULL );
912     ECP_VALIDATE_RET( buf  != NULL );
913     ECP_VALIDATE_RET( *buf != NULL );
914 
915     if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
916         return( ret );
917 
918     return( mbedtls_ecp_group_load( grp, grp_id ) );
919 }
920 
921 /*
922  * Read a group id from an ECParameters record (RFC 4492) and convert it to
923  * mbedtls_ecp_group_id.
924  */
925 int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
926                                    const unsigned char **buf, size_t len )
927 {
928     uint16_t tls_id;
929     const mbedtls_ecp_curve_info *curve_info;
930     ECP_VALIDATE_RET( grp  != NULL );
931     ECP_VALIDATE_RET( buf  != NULL );
932     ECP_VALIDATE_RET( *buf != NULL );
933 
934     /*
935      * We expect at least three bytes (see below)
936      */
937     if( len < 3 )
938         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
939 
940     /*
941      * First byte is curve_type; only named_curve is handled
942      */
943     if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
944         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
945 
946     /*
947      * Next two bytes are the namedcurve value
948      */
949     tls_id = *(*buf)++;
950     tls_id <<= 8;
951     tls_id |= *(*buf)++;
952 
953     if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
954         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
955 
956     *grp = curve_info->grp_id;
957 
958     return( 0 );
959 }
960 
961 /*
962  * Write the ECParameters record corresponding to a group (RFC 4492)
963  */
964 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
965                          unsigned char *buf, size_t blen )
966 {
967     const mbedtls_ecp_curve_info *curve_info;
968     ECP_VALIDATE_RET( grp  != NULL );
969     ECP_VALIDATE_RET( buf  != NULL );
970     ECP_VALIDATE_RET( olen != NULL );
971 
972     if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
973         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
974 
975     /*
976      * We are going to write 3 bytes (see below)
977      */
978     *olen = 3;
979     if( blen < *olen )
980         return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
981 
982     /*
983      * First byte is curve_type, always named_curve
984      */
985     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
986 
987     /*
988      * Next two bytes are the namedcurve value
989      */
990     buf[0] = curve_info->tls_id >> 8;
991     buf[1] = curve_info->tls_id & 0xFF;
992 
993     return( 0 );
994 }
995 
996 /*
997  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
998  * See the documentation of struct mbedtls_ecp_group.
999  *
1000  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1001  */
1002 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
1003 {
1004     int ret;
1005 
1006     if( grp->modp == NULL )
1007         return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
1008 
1009     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1010     if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
1011         mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
1012     {
1013         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1014     }
1015 
1016     MBEDTLS_MPI_CHK( grp->modp( N ) );
1017 
1018     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1019     while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
1020         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
1021 
1022     while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
1023         /* we known P, N and the result are positive */
1024         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
1025 
1026 cleanup:
1027     return( ret );
1028 }
1029 
1030 /*
1031  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1032  *
1033  * In order to guarantee that, we need to ensure that operands of
1034  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1035  * bring the result back to this range.
1036  *
1037  * The following macros are shortcuts for doing that.
1038  */
1039 
1040 /*
1041  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1042  */
1043 #if defined(MBEDTLS_SELF_TEST)
1044 #define INC_MUL_COUNT   mul_count++;
1045 #else
1046 #define INC_MUL_COUNT
1047 #endif
1048 
1049 #define MOD_MUL( N )                                                    \
1050     do                                                                  \
1051     {                                                                   \
1052         MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) );                       \
1053         INC_MUL_COUNT                                                   \
1054     } while( 0 )
1055 
1056 /*
1057  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1058  * N->s < 0 is a very fast test, which fails only if N is 0
1059  */
1060 #define MOD_SUB( N )                                                    \
1061     while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 )           \
1062         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
1063 
1064 /*
1065  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1066  * We known P, N and the result are positive, so sub_abs is correct, and
1067  * a bit faster.
1068  */
1069 #define MOD_ADD( N )                                                    \
1070     while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 )                  \
1071         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
1072 
1073 #if defined(ECP_SHORTWEIERSTRASS)
1074 /*
1075  * For curves in short Weierstrass form, we do all the internal operations in
1076  * Jacobian coordinates.
1077  *
1078  * For multiplication, we'll use a comb method with coutermeasueres against
1079  * SPA, hence timing attacks.
1080  */
1081 
1082 /*
1083  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1084  * Cost: 1N := 1I + 3M + 1S
1085  */
1086 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1087 {
1088     int ret;
1089     mbedtls_mpi Zi, ZZi;
1090 
1091     if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
1092         return( 0 );
1093 
1094 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1095     if( mbedtls_internal_ecp_grp_capable( grp ) )
1096         return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
1097 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1098 
1099     mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1100 
1101     /*
1102      * X = X / Z^2  mod p
1103      */
1104     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
1105     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
1106     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );
1107 
1108     /*
1109      * Y = Y / Z^3  mod p
1110      */
1111     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );
1112     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );
1113 
1114     /*
1115      * Z = 1
1116      */
1117     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
1118 
1119 cleanup:
1120 
1121     mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1122 
1123     return( ret );
1124 }
1125 
1126 /*
1127  * Normalize jacobian coordinates of an array of (pointers to) points,
1128  * using Montgomery's trick to perform only one inversion mod P.
1129  * (See for example Cohen's "A Course in Computational Algebraic Number
1130  * Theory", Algorithm 10.3.4.)
1131  *
1132  * Warning: fails (returning an error) if one of the points is zero!
1133  * This should never happen, see choice of w in ecp_mul_comb().
1134  *
1135  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1136  */
1137 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
1138                                    mbedtls_ecp_point *T[], size_t T_size )
1139 {
1140     int ret;
1141     size_t i;
1142     mbedtls_mpi *c, u, Zi, ZZi;
1143 
1144     if( T_size < 2 )
1145         return( ecp_normalize_jac( grp, *T ) );
1146 
1147 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1148     if( mbedtls_internal_ecp_grp_capable( grp ) )
1149         return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
1150 #endif
1151 
1152     if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
1153         return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
1154 
1155     for( i = 0; i < T_size; i++ )
1156         mbedtls_mpi_init( &c[i] );
1157 
1158     mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1159 
1160     /*
1161      * c[i] = Z_0 * ... * Z_i
1162      */
1163     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
1164     for( i = 1; i < T_size; i++ )
1165     {
1166         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
1167         MOD_MUL( c[i] );
1168     }
1169 
1170     /*
1171      * u = 1 / (Z_0 * ... * Z_n) mod P
1172      */
1173     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
1174 
1175     for( i = T_size - 1; ; i-- )
1176     {
1177         /*
1178          * Zi = 1 / Z_i mod p
1179          * u = 1 / (Z_0 * ... * Z_i) mod P
1180          */
1181         if( i == 0 ) {
1182             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
1183         }
1184         else
1185         {
1186             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );
1187             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );
1188         }
1189 
1190         /*
1191          * proceed as in normalize()
1192          */
1193         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );
1194         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
1195         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
1196         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );
1197 
1198         /*
1199          * Post-precessing: reclaim some memory by shrinking coordinates
1200          * - not storing Z (always 1)
1201          * - shrinking other coordinates, but still keeping the same number of
1202          *   limbs as P, as otherwise it will too likely be regrown too fast.
1203          */
1204         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
1205         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
1206         mbedtls_mpi_free( &T[i]->Z );
1207 
1208         if( i == 0 )
1209             break;
1210     }
1211 
1212 cleanup:
1213 
1214     mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1215     for( i = 0; i < T_size; i++ )
1216         mbedtls_mpi_free( &c[i] );
1217     mbedtls_free( c );
1218 
1219     return( ret );
1220 }
1221 
1222 /*
1223  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1224  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1225  */
1226 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
1227                             mbedtls_ecp_point *Q,
1228                             unsigned char inv )
1229 {
1230     int ret;
1231     unsigned char nonzero;
1232     mbedtls_mpi mQY;
1233 
1234     mbedtls_mpi_init( &mQY );
1235 
1236     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
1237     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
1238     nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
1239     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
1240 
1241 cleanup:
1242     mbedtls_mpi_free( &mQY );
1243 
1244     return( ret );
1245 }
1246 
1247 /*
1248  * Point doubling R = 2 P, Jacobian coordinates
1249  *
1250  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1251  *
1252  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1253  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1254  *
1255  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1256  *
1257  * Cost: 1D := 3M + 4S          (A ==  0)
1258  *             4M + 4S          (A == -3)
1259  *             3M + 6S + 1a     otherwise
1260  */
1261 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1262                            const mbedtls_ecp_point *P )
1263 {
1264     int ret;
1265     mbedtls_mpi M, S, T, U;
1266 
1267 #if defined(MBEDTLS_SELF_TEST)
1268     dbl_count++;
1269 #endif
1270 
1271 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1272     if( mbedtls_internal_ecp_grp_capable( grp ) )
1273         return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
1274 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1275 
1276     mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
1277 
1278     /* Special case for A = -3 */
1279     if( grp->A.p == NULL )
1280     {
1281         /* M = 3(X + Z^2)(X - Z^2) */
1282         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
1283         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X,  &S      ) ); MOD_ADD( T );
1284         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X,  &S      ) ); MOD_SUB( U );
1285         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S );
1286         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1287     }
1288     else
1289     {
1290         /* M = 3.X^2 */
1291         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &P->X   ) ); MOD_MUL( S );
1292         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1293 
1294         /* Optimize away for "koblitz" curves with A = 0 */
1295         if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
1296         {
1297             /* M += A.Z^4 */
1298             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
1299             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T );
1300             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A ) ); MOD_MUL( S );
1301             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M );
1302         }
1303     }
1304 
1305     /* S = 4.X.Y^2 */
1306     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y,  &P->Y   ) ); MOD_MUL( T );
1307     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T );
1308     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &T      ) ); MOD_MUL( S );
1309     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S );
1310 
1311     /* U = 8.Y^4 */
1312     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U );
1313     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
1314 
1315     /* T = M^2 - 2.S */
1316     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T );
1317     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
1318     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
1319 
1320     /* S = M(S - T) - U */
1321     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S );
1322     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S );
1323     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S );
1324 
1325     /* U = 2.Y.Z */
1326     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y,  &P->Z   ) ); MOD_MUL( U );
1327     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
1328 
1329     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
1330     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
1331     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
1332 
1333 cleanup:
1334     mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1335 
1336     return( ret );
1337 }
1338 
1339 /*
1340  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1341  *
1342  * The coordinates of Q must be normalized (= affine),
1343  * but those of P don't need to. R is not normalized.
1344  *
1345  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1346  * None of these cases can happen as intermediate step in ecp_mul_comb():
1347  * - at each step, P, Q and R are multiples of the base point, the factor
1348  *   being less than its order, so none of them is zero;
1349  * - Q is an odd multiple of the base point, P an even multiple,
1350  *   due to the choice of precomputed points in the modified comb method.
1351  * So branches for these cases do not leak secret information.
1352  *
1353  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1354  *
1355  * Cost: 1A := 8M + 3S
1356  */
1357 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1358                           const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1359 {
1360     int ret;
1361     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1362 
1363 #if defined(MBEDTLS_SELF_TEST)
1364     add_count++;
1365 #endif
1366 
1367 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1368     if( mbedtls_internal_ecp_grp_capable( grp ) )
1369         return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
1370 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1371 
1372     /*
1373      * Trivial cases: P == 0 or Q == 0 (case 1)
1374      */
1375     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1376         return( mbedtls_ecp_copy( R, Q ) );
1377 
1378     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1379         return( mbedtls_ecp_copy( R, P ) );
1380 
1381     /*
1382      * Make sure Q coordinates are normalized
1383      */
1384     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1385         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1386 
1387     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1388     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1389 
1390     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
1391     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );
1392     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );
1393     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );
1394     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );
1395     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );
1396 
1397     /* Special cases (2) and (3) */
1398     if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1399     {
1400         if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1401         {
1402             ret = ecp_double_jac( grp, R, P );
1403             goto cleanup;
1404         }
1405         else
1406         {
1407             ret = mbedtls_ecp_set_zero( R );
1408             goto cleanup;
1409         }
1410     }
1411 
1412     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );
1413     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
1414     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
1415     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );
1416     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
1417     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
1418     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
1419     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
1420     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
1421     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
1422     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );
1423     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );
1424 
1425     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1426     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1427     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1428 
1429 cleanup:
1430 
1431     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1432     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1433 
1434     return( ret );
1435 }
1436 
1437 /*
1438  * Randomize jacobian coordinates:
1439  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1440  * This is sort of the reverse operation of ecp_normalize_jac().
1441  *
1442  * This countermeasure was first suggested in [2].
1443  */
1444 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1445                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1446 {
1447     int ret;
1448     mbedtls_mpi l, ll;
1449     size_t p_size;
1450     int count = 0;
1451 
1452 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1453     if( mbedtls_internal_ecp_grp_capable( grp ) )
1454         return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
1455 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1456 
1457     p_size = ( grp->pbits + 7 ) / 8;
1458     mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1459 
1460     /* Generate l such that 1 < l < p */
1461     do
1462     {
1463         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1464 
1465         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1466             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1467 
1468         if( count++ > 10 )
1469             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1470     }
1471     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1472 
1473     /* Z = l * Z */
1474     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );
1475 
1476     /* X = l^2 * X */
1477     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
1478     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );
1479 
1480     /* Y = l^3 * Y */
1481     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
1482     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );
1483 
1484 cleanup:
1485     mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1486 
1487     return( ret );
1488 }
1489 
1490 /*
1491  * Check and define parameters used by the comb method (see below for details)
1492  */
1493 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1494 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1495 #endif
1496 
1497 /* d = ceil( n / w ) */
1498 #define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1499 
1500 /* number of precomputed points */
1501 #define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1502 
1503 /*
1504  * Compute the representation of m that will be used with our comb method.
1505  *
1506  * The basic comb method is described in GECC 3.44 for example. We use a
1507  * modified version that provides resistance to SPA by avoiding zero
1508  * digits in the representation as in [3]. We modify the method further by
1509  * requiring that all K_i be odd, which has the small cost that our
1510  * representation uses one more K_i, due to carries, but saves on the size of
1511  * the precomputed table.
1512  *
1513  * Summary of the comb method and its modifications:
1514  *
1515  * - The goal is to compute m*P for some w*d-bit integer m.
1516  *
1517  * - The basic comb method splits m into the w-bit integers
1518  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1519  *   index has residue i modulo d, and computes m * P as
1520  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1521  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1522  *
1523  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1524  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1525  *   thereby successively converting it into a form where all summands
1526  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1527  *
1528  * - More generally, even if x[i+1] != 0, we can first transform the sum as
1529  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1530  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1531  *   Performing and iterating this procedure for those x[i] that are even
1532  *   (keeping track of carry), we can transform the original sum into one of the form
1533  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1534  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1535  *   which is why we are only computing half of it in the first place in
1536  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1537  *
1538  * - For the sake of compactness, only the seven low-order bits of x[i]
1539  *   are used to represent its absolute value (K_i in the paper), and the msb
1540  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1541  *   if s_i == -1;
1542  *
1543  * Calling conventions:
1544  * - x is an array of size d + 1
1545  * - w is the size, ie number of teeth, of the comb, and must be between
1546  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1547  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1548  *   (the result will be incorrect if these assumptions are not satisfied)
1549  */
1550 static void ecp_comb_recode_core( unsigned char x[], size_t d,
1551                                   unsigned char w, const mbedtls_mpi *m )
1552 {
1553     size_t i, j;
1554     unsigned char c, cc, adjust;
1555 
1556     memset( x, 0, d+1 );
1557 
1558     /* First get the classical comb values (except for x_d = 0) */
1559     for( i = 0; i < d; i++ )
1560         for( j = 0; j < w; j++ )
1561             x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1562 
1563     /* Now make sure x_1 .. x_d are odd */
1564     c = 0;
1565     for( i = 1; i <= d; i++ )
1566     {
1567         /* Add carry and update it */
1568         cc   = x[i] & c;
1569         x[i] = x[i] ^ c;
1570         c = cc;
1571 
1572         /* Adjust if needed, avoiding branches */
1573         adjust = 1 - ( x[i] & 0x01 );
1574         c   |= x[i] & ( x[i-1] * adjust );
1575         x[i] = x[i] ^ ( x[i-1] * adjust );
1576         x[i-1] |= adjust << 7;
1577     }
1578 }
1579 
1580 /*
1581  * Precompute points for the adapted comb method
1582  *
1583  * Assumption: T must be able to hold 2^{w - 1} elements.
1584  *
1585  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1586  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1587  *
1588  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1589  *
1590  * Note: Even comb values (those where P would be omitted from the
1591  *       sum defining T[i] above) are not needed in our adaption
1592  *       the comb method. See ecp_comb_recode_core().
1593  *
1594  * This function currently works in four steps:
1595  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1596  * (2) [norm_dbl] Normalization of coordinates of these T[i]
1597  * (3) [add]      Computation of all T[i]
1598  * (4) [norm_add] Normalization of all T[i]
1599  *
1600  * Step 1 can be interrupted but not the others; together with the final
1601  * coordinate normalization they are the largest steps done at once, depending
1602  * on the window size. Here are operation counts for P-256:
1603  *
1604  * step     (2)     (3)     (4)
1605  * w = 5    142     165     208
1606  * w = 4    136      77     160
1607  * w = 3    130      33     136
1608  * w = 2    124      11     124
1609  *
1610  * So if ECC operations are blocking for too long even with a low max_ops
1611  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1612  * to minimize maximum blocking time.
1613  */
1614 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1615                                 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1616                                 unsigned char w, size_t d,
1617                                 mbedtls_ecp_restart_ctx *rs_ctx )
1618 {
1619     int ret;
1620     unsigned char i;
1621     size_t j = 0;
1622     const unsigned char T_size = 1U << ( w - 1 );
1623     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1624 
1625 #if defined(MBEDTLS_ECP_RESTARTABLE)
1626     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1627     {
1628         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1629             goto dbl;
1630         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
1631             goto norm_dbl;
1632         if( rs_ctx->rsm->state == ecp_rsm_pre_add )
1633             goto add;
1634         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
1635             goto norm_add;
1636     }
1637 #else
1638     (void) rs_ctx;
1639 #endif
1640 
1641 #if defined(MBEDTLS_ECP_RESTARTABLE)
1642     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1643     {
1644         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1645 
1646         /* initial state for the loop */
1647         rs_ctx->rsm->i = 0;
1648     }
1649 
1650 dbl:
1651 #endif
1652     /*
1653      * Set T[0] = P and
1654      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1655      */
1656     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1657 
1658 #if defined(MBEDTLS_ECP_RESTARTABLE)
1659     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1660         j = rs_ctx->rsm->i;
1661     else
1662 #endif
1663         j = 0;
1664 
1665     for( ; j < d * ( w - 1 ); j++ )
1666     {
1667         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
1668 
1669         i = 1U << ( j / d );
1670         cur = T + i;
1671 
1672         if( j % d == 0 )
1673             MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1674 
1675         MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1676     }
1677 
1678 #if defined(MBEDTLS_ECP_RESTARTABLE)
1679     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1680         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1681 
1682 norm_dbl:
1683 #endif
1684     /*
1685      * Normalize current elements in T. As T has holes,
1686      * use an auxiliary array of pointers to elements in T.
1687      */
1688     j = 0;
1689     for( i = 1; i < T_size; i <<= 1 )
1690         TT[j++] = T + i;
1691 
1692     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1693 
1694     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1695 
1696 #if defined(MBEDTLS_ECP_RESTARTABLE)
1697     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1698         rs_ctx->rsm->state = ecp_rsm_pre_add;
1699 
1700 add:
1701 #endif
1702     /*
1703      * Compute the remaining ones using the minimal number of additions
1704      * Be careful to update T[2^l] only after using it!
1705      */
1706     MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
1707 
1708     for( i = 1; i < T_size; i <<= 1 )
1709     {
1710         j = i;
1711         while( j-- )
1712             MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1713     }
1714 
1715 #if defined(MBEDTLS_ECP_RESTARTABLE)
1716     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1717         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1718 
1719 norm_add:
1720 #endif
1721     /*
1722      * Normalize final elements in T. Even though there are no holes now, we
1723      * still need the auxiliary array for homogeneity with the previous
1724      * call. Also, skip T[0] which is already normalised, being a copy of P.
1725      */
1726     for( j = 0; j + 1 < T_size; j++ )
1727         TT[j] = T + j + 1;
1728 
1729     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1730 
1731     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1732 
1733 cleanup:
1734 #if defined(MBEDTLS_ECP_RESTARTABLE)
1735     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1736         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1737     {
1738         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1739             rs_ctx->rsm->i = j;
1740     }
1741 #endif
1742 
1743     return( ret );
1744 }
1745 
1746 /*
1747  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1748  *
1749  * See ecp_comb_recode_core() for background
1750  */
1751 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1752                             const mbedtls_ecp_point T[], unsigned char T_size,
1753                             unsigned char i )
1754 {
1755     int ret;
1756     unsigned char ii, j;
1757 
1758     /* Ignore the "sign" bit and scale down */
1759     ii =  ( i & 0x7Fu ) >> 1;
1760 
1761     /* Read the whole table to thwart cache-based timing attacks */
1762     for( j = 0; j < T_size; j++ )
1763     {
1764         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1765         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1766     }
1767 
1768     /* Safely invert result if i is "negative" */
1769     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1770 
1771 cleanup:
1772     return( ret );
1773 }
1774 
1775 /*
1776  * Core multiplication algorithm for the (modified) comb method.
1777  * This part is actually common with the basic comb method (GECC 3.44)
1778  *
1779  * Cost: d A + d D + 1 R
1780  */
1781 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1782                               const mbedtls_ecp_point T[], unsigned char T_size,
1783                               const unsigned char x[], size_t d,
1784                               int (*f_rng)(void *, unsigned char *, size_t),
1785                               void *p_rng,
1786                               mbedtls_ecp_restart_ctx *rs_ctx )
1787 {
1788     int ret;
1789     mbedtls_ecp_point Txi;
1790     size_t i;
1791 
1792     mbedtls_ecp_point_init( &Txi );
1793 
1794 #if !defined(MBEDTLS_ECP_RESTARTABLE)
1795     (void) rs_ctx;
1796 #endif
1797 
1798 #if defined(MBEDTLS_ECP_RESTARTABLE)
1799     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1800         rs_ctx->rsm->state != ecp_rsm_comb_core )
1801     {
1802         rs_ctx->rsm->i = 0;
1803         rs_ctx->rsm->state = ecp_rsm_comb_core;
1804     }
1805 
1806     /* new 'if' instead of nested for the sake of the 'else' branch */
1807     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1808     {
1809         /* restore current index (R already pointing to rs_ctx->rsm->R) */
1810         i = rs_ctx->rsm->i;
1811     }
1812     else
1813 #endif
1814     {
1815         /* Start with a non-zero point and randomize its coordinates */
1816         i = d;
1817         MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
1818         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
1819         if( f_rng != 0 )
1820             MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1821     }
1822 
1823     while( i != 0 )
1824     {
1825         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
1826         --i;
1827 
1828         MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
1829         MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
1830         MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1831     }
1832 
1833 cleanup:
1834 
1835     mbedtls_ecp_point_free( &Txi );
1836 
1837 #if defined(MBEDTLS_ECP_RESTARTABLE)
1838     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1839         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1840     {
1841         rs_ctx->rsm->i = i;
1842         /* no need to save R, already pointing to rs_ctx->rsm->R */
1843     }
1844 #endif
1845 
1846     return( ret );
1847 }
1848 
1849 /*
1850  * Recode the scalar to get constant-time comb multiplication
1851  *
1852  * As the actual scalar recoding needs an odd scalar as a starting point,
1853  * this wrapper ensures that by replacing m by N - m if necessary, and
1854  * informs the caller that the result of multiplication will be negated.
1855  *
1856  * This works because we only support large prime order for Short Weierstrass
1857  * curves, so N is always odd hence either m or N - m is.
1858  *
1859  * See ecp_comb_recode_core() for background.
1860  */
1861 static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
1862                                    const mbedtls_mpi *m,
1863                                    unsigned char k[COMB_MAX_D + 1],
1864                                    size_t d,
1865                                    unsigned char w,
1866                                    unsigned char *parity_trick )
1867 {
1868     int ret;
1869     mbedtls_mpi M, mm;
1870 
1871     mbedtls_mpi_init( &M );
1872     mbedtls_mpi_init( &mm );
1873 
1874     /* N is always odd (see above), just make extra sure */
1875     if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
1876         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1877 
1878     /* do we need the parity trick? */
1879     *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
1880 
1881     /* execute parity fix in constant time */
1882     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
1883     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
1884     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
1885 
1886     /* actual scalar recoding */
1887     ecp_comb_recode_core( k, d, w, &M );
1888 
1889 cleanup:
1890     mbedtls_mpi_free( &mm );
1891     mbedtls_mpi_free( &M );
1892 
1893     return( ret );
1894 }
1895 
1896 /*
1897  * Perform comb multiplication (for short Weierstrass curves)
1898  * once the auxiliary table has been pre-computed.
1899  *
1900  * Scalar recoding may use a parity trick that makes us compute -m * P,
1901  * if that is the case we'll need to recover m * P at the end.
1902  */
1903 static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
1904                                 mbedtls_ecp_point *R,
1905                                 const mbedtls_mpi *m,
1906                                 const mbedtls_ecp_point *T,
1907                                 unsigned char T_size,
1908                                 unsigned char w,
1909                                 size_t d,
1910                                 int (*f_rng)(void *, unsigned char *, size_t),
1911                                 void *p_rng,
1912                                 mbedtls_ecp_restart_ctx *rs_ctx )
1913 {
1914     int ret;
1915     unsigned char parity_trick;
1916     unsigned char k[COMB_MAX_D + 1];
1917     mbedtls_ecp_point *RR = R;
1918 
1919 #if defined(MBEDTLS_ECP_RESTARTABLE)
1920     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1921     {
1922         RR = &rs_ctx->rsm->R;
1923 
1924         if( rs_ctx->rsm->state == ecp_rsm_final_norm )
1925             goto final_norm;
1926     }
1927 #endif
1928 
1929     MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
1930                                             &parity_trick ) );
1931     MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
1932                                         f_rng, p_rng, rs_ctx ) );
1933     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
1934 
1935 #if defined(MBEDTLS_ECP_RESTARTABLE)
1936     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1937         rs_ctx->rsm->state = ecp_rsm_final_norm;
1938 
1939 final_norm:
1940 #endif
1941     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
1942     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
1943 
1944 #if defined(MBEDTLS_ECP_RESTARTABLE)
1945     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1946         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
1947 #endif
1948 
1949 cleanup:
1950     return( ret );
1951 }
1952 
1953 /*
1954  * Pick window size based on curve size and whether we optimize for base point
1955  */
1956 static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
1957                                            unsigned char p_eq_g )
1958 {
1959     unsigned char w;
1960 
1961     /*
1962      * Minimize the number of multiplications, that is minimize
1963      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1964      * (see costs of the various parts, with 1S = 1M)
1965      */
1966     w = grp->nbits >= 384 ? 5 : 4;
1967 
1968     /*
1969      * If P == G, pre-compute a bit more, since this may be re-used later.
1970      * Just adding one avoids upping the cost of the first mul too much,
1971      * and the memory cost too.
1972      */
1973     if( p_eq_g )
1974         w++;
1975 
1976     /*
1977      * Make sure w is within bounds.
1978      * (The last test is useful only for very small curves in the test suite.)
1979      */
1980     if( w > MBEDTLS_ECP_WINDOW_SIZE )
1981         w = MBEDTLS_ECP_WINDOW_SIZE;
1982     if( w >= grp->nbits )
1983         w = 2;
1984 
1985     return( w );
1986 }
1987 
1988 /*
1989  * Multiplication using the comb method - for curves in short Weierstrass form
1990  *
1991  * This function is mainly responsible for administrative work:
1992  * - managing the restart context if enabled
1993  * - managing the table of precomputed points (passed between the below two
1994  *   functions): allocation, computation, ownership tranfer, freeing.
1995  *
1996  * It delegates the actual arithmetic work to:
1997  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
1998  *
1999  * See comments on ecp_comb_recode_core() regarding the computation strategy.
2000  */
2001 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2002                          const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2003                          int (*f_rng)(void *, unsigned char *, size_t),
2004                          void *p_rng,
2005                          mbedtls_ecp_restart_ctx *rs_ctx )
2006 {
2007     int ret;
2008     unsigned char w, p_eq_g, i;
2009     size_t d;
2010     unsigned char T_size, T_ok;
2011     mbedtls_ecp_point *T;
2012 
2013     ECP_RS_ENTER( rsm );
2014 
2015     /* Is P the base point ? */
2016 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2017     p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
2018                mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
2019 #else
2020     p_eq_g = 0;
2021 #endif
2022 
2023     /* Pick window size and deduce related sizes */
2024     w = ecp_pick_window_size( grp, p_eq_g );
2025     T_size = 1U << ( w - 1 );
2026     d = ( grp->nbits + w - 1 ) / w;
2027 
2028     /* Pre-computed table: do we have it already for the base point? */
2029     if( p_eq_g && grp->T != NULL )
2030     {
2031         /* second pointer to the same table, will be deleted on exit */
2032         T = grp->T;
2033         T_ok = 1;
2034     }
2035     else
2036 #if defined(MBEDTLS_ECP_RESTARTABLE)
2037     /* Pre-computed table: do we have one in progress? complete? */
2038     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
2039     {
2040         /* transfer ownership of T from rsm to local function */
2041         T = rs_ctx->rsm->T;
2042         rs_ctx->rsm->T = NULL;
2043         rs_ctx->rsm->T_size = 0;
2044 
2045         /* This effectively jumps to the call to mul_comb_after_precomp() */
2046         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2047     }
2048     else
2049 #endif
2050     /* Allocate table if we didn't have any */
2051     {
2052         T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
2053         if( T == NULL )
2054         {
2055             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2056             goto cleanup;
2057         }
2058 
2059         for( i = 0; i < T_size; i++ )
2060             mbedtls_ecp_point_init( &T[i] );
2061 
2062         T_ok = 0;
2063     }
2064 
2065     /* Compute table (or finish computing it) if not done already */
2066     if( !T_ok )
2067     {
2068         MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
2069 
2070         if( p_eq_g )
2071         {
2072             /* almost transfer ownership of T to the group, but keep a copy of
2073              * the pointer to use for calling the next function more easily */
2074             grp->T = T;
2075             grp->T_size = T_size;
2076         }
2077     }
2078 
2079     /* Actual comb multiplication using precomputed points */
2080     MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
2081                                                  T, T_size, w, d,
2082                                                  f_rng, p_rng, rs_ctx ) );
2083 
2084 cleanup:
2085 
2086     /* does T belong to the group? */
2087     if( T == grp->T )
2088         T = NULL;
2089 
2090     /* does T belong to the restart context? */
2091 #if defined(MBEDTLS_ECP_RESTARTABLE)
2092     if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
2093     {
2094         /* transfer ownership of T from local function to rsm */
2095         rs_ctx->rsm->T_size = T_size;
2096         rs_ctx->rsm->T = T;
2097         T = NULL;
2098     }
2099 #endif
2100 
2101     /* did T belong to us? then let's destroy it! */
2102     if( T != NULL )
2103     {
2104         for( i = 0; i < T_size; i++ )
2105             mbedtls_ecp_point_free( &T[i] );
2106         mbedtls_free( T );
2107     }
2108 
2109     /* don't free R while in progress in case R == P */
2110 #if defined(MBEDTLS_ECP_RESTARTABLE)
2111     if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
2112 #endif
2113     /* prevent caller from using invalid value */
2114     if( ret != 0 )
2115         mbedtls_ecp_point_free( R );
2116 
2117     ECP_RS_LEAVE( rsm );
2118 
2119     return( ret );
2120 }
2121 
2122 #endif /* ECP_SHORTWEIERSTRASS */
2123 
2124 #if defined(ECP_MONTGOMERY)
2125 /*
2126  * For Montgomery curves, we do all the internal arithmetic in projective
2127  * coordinates. Import/export of points uses only the x coordinates, which is
2128  * internaly represented as X / Z.
2129  *
2130  * For scalar multiplication, we'll use a Montgomery ladder.
2131  */
2132 
2133 /*
2134  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2135  * Cost: 1M + 1I
2136  */
2137 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
2138 {
2139     int ret;
2140 
2141 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2142     if( mbedtls_internal_ecp_grp_capable( grp ) )
2143         return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
2144 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2145 
2146     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
2147     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
2148     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
2149 
2150 cleanup:
2151     return( ret );
2152 }
2153 
2154 /*
2155  * Randomize projective x/z coordinates:
2156  * (X, Z) -> (l X, l Z) for random l
2157  * This is sort of the reverse operation of ecp_normalize_mxz().
2158  *
2159  * This countermeasure was first suggested in [2].
2160  * Cost: 2M
2161  */
2162 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2163                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2164 {
2165     int ret;
2166     mbedtls_mpi l;
2167     size_t p_size;
2168     int count = 0;
2169 
2170 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2171     if( mbedtls_internal_ecp_grp_capable( grp ) )
2172         return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
2173 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2174 
2175     p_size = ( grp->pbits + 7 ) / 8;
2176     mbedtls_mpi_init( &l );
2177 
2178     /* Generate l such that 1 < l < p */
2179     do
2180     {
2181         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
2182 
2183         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
2184             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
2185 
2186         if( count++ > 10 )
2187             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
2188     }
2189     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
2190 
2191     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
2192     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
2193 
2194 cleanup:
2195     mbedtls_mpi_free( &l );
2196 
2197     return( ret );
2198 }
2199 
2200 /*
2201  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2202  * for Montgomery curves in x/z coordinates.
2203  *
2204  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2205  * with
2206  * d =  X1
2207  * P = (X2, Z2)
2208  * Q = (X3, Z3)
2209  * R = (X4, Z4)
2210  * S = (X5, Z5)
2211  * and eliminating temporary variables tO, ..., t4.
2212  *
2213  * Cost: 5M + 4S
2214  */
2215 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
2216                                mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2217                                const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2218                                const mbedtls_mpi *d )
2219 {
2220     int ret;
2221     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
2222 
2223 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2224     if( mbedtls_internal_ecp_grp_capable( grp ) )
2225         return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
2226 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2227 
2228     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
2229     mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
2230     mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
2231 
2232     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    );
2233     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );
2234     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    );
2235     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );
2236     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );
2237     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    );
2238     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    );
2239     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );
2240     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );
2241     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X );
2242     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X );
2243     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z );
2244     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z );
2245     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z );
2246     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X );
2247     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z );
2248     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z );
2249     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z );
2250 
2251 cleanup:
2252     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
2253     mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
2254     mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
2255 
2256     return( ret );
2257 }
2258 
2259 /*
2260  * Multiplication with Montgomery ladder in x/z coordinates,
2261  * for curves in Montgomery form
2262  */
2263 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2264                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2265                         int (*f_rng)(void *, unsigned char *, size_t),
2266                         void *p_rng )
2267 {
2268     int ret;
2269     size_t i;
2270     unsigned char b;
2271     mbedtls_ecp_point RP;
2272     mbedtls_mpi PX;
2273 
2274     mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
2275 
2276     /* Save PX and read from P before writing to R, in case P == R */
2277     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
2278     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
2279 
2280     /* Set R to zero in modified x/z coordinates */
2281     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
2282     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
2283     mbedtls_mpi_free( &R->Y );
2284 
2285     /* RP.X might be sligtly larger than P, so reduce it */
2286     MOD_ADD( RP.X );
2287 
2288     /* Randomize coordinates of the starting point */
2289     if( f_rng != NULL )
2290         MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
2291 
2292     /* Loop invariant: R = result so far, RP = R + P */
2293     i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
2294     while( i-- > 0 )
2295     {
2296         b = mbedtls_mpi_get_bit( m, i );
2297         /*
2298          *  if (b) R = 2R + P else R = 2R,
2299          * which is:
2300          *  if (b) double_add( RP, R, RP, R )
2301          *  else   double_add( R, RP, R, RP )
2302          * but using safe conditional swaps to avoid leaks
2303          */
2304         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2305         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2306         MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
2307         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2308         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2309     }
2310 
2311     MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
2312 
2313 cleanup:
2314     mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
2315 
2316     return( ret );
2317 }
2318 
2319 #endif /* ECP_MONTGOMERY */
2320 
2321 /*
2322  * Restartable multiplication R = m * P
2323  */
2324 int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2325              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2326              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2327              mbedtls_ecp_restart_ctx *rs_ctx )
2328 {
2329     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2330 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2331     char is_grp_capable = 0;
2332 #endif
2333     ECP_VALIDATE_RET( grp != NULL );
2334     ECP_VALIDATE_RET( R   != NULL );
2335     ECP_VALIDATE_RET( m   != NULL );
2336     ECP_VALIDATE_RET( P   != NULL );
2337 
2338 #if defined(MBEDTLS_ECP_RESTARTABLE)
2339     /* reset ops count for this call if top-level */
2340     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
2341         rs_ctx->ops_done = 0;
2342 #endif
2343 
2344 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2345     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2346         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2347 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2348 
2349 #if defined(MBEDTLS_ECP_RESTARTABLE)
2350     /* skip argument check when restarting */
2351     if( rs_ctx == NULL || rs_ctx->rsm == NULL )
2352 #endif
2353     {
2354         /* check_privkey is free */
2355         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
2356 
2357         /* Common sanity checks */
2358         MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
2359         MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2360     }
2361 
2362     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2363 #if defined(ECP_MONTGOMERY)
2364     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2365         MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
2366 #endif
2367 #if defined(ECP_SHORTWEIERSTRASS)
2368     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2369         MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2370 #endif
2371 
2372 cleanup:
2373 
2374 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2375     if( is_grp_capable )
2376         mbedtls_internal_ecp_free( grp );
2377 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2378 
2379 #if defined(MBEDTLS_ECP_RESTARTABLE)
2380     if( rs_ctx != NULL )
2381         rs_ctx->depth--;
2382 #endif
2383 
2384     return( ret );
2385 }
2386 
2387 /*
2388  * Multiplication R = m * P
2389  */
2390 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2391              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2392              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2393 {
2394     ECP_VALIDATE_RET( grp != NULL );
2395     ECP_VALIDATE_RET( R   != NULL );
2396     ECP_VALIDATE_RET( m   != NULL );
2397     ECP_VALIDATE_RET( P   != NULL );
2398     return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
2399 }
2400 
2401 #if defined(ECP_SHORTWEIERSTRASS)
2402 /*
2403  * Check that an affine point is valid as a public key,
2404  * short weierstrass curves (SEC1 3.2.3.1)
2405  */
2406 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2407 {
2408     int ret;
2409     mbedtls_mpi YY, RHS;
2410 
2411     /* pt coordinates must be normalized for our checks */
2412     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
2413         mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
2414         mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
2415         mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
2416         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2417 
2418     mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
2419 
2420     /*
2421      * YY = Y^2
2422      * RHS = X (X^2 + A) + B = X^3 + A X + B
2423      */
2424     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  );
2425     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS );
2426 
2427     /* Special case for A = -3 */
2428     if( grp->A.p == NULL )
2429     {
2430         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
2431     }
2432     else
2433     {
2434         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS );
2435     }
2436 
2437     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS );
2438     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS );
2439 
2440     if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
2441         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2442 
2443 cleanup:
2444 
2445     mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
2446 
2447     return( ret );
2448 }
2449 #endif /* ECP_SHORTWEIERSTRASS */
2450 
2451 /*
2452  * R = m * P with shortcuts for m == 1 and m == -1
2453  * NOT constant-time - ONLY for short Weierstrass!
2454  */
2455 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
2456                                       mbedtls_ecp_point *R,
2457                                       const mbedtls_mpi *m,
2458                                       const mbedtls_ecp_point *P,
2459                                       mbedtls_ecp_restart_ctx *rs_ctx )
2460 {
2461     int ret;
2462 
2463     if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
2464     {
2465         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2466     }
2467     else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
2468     {
2469         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2470         if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
2471             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
2472     }
2473     else
2474     {
2475         MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
2476                                                       NULL, NULL, rs_ctx ) );
2477     }
2478 
2479 cleanup:
2480     return( ret );
2481 }
2482 
2483 /*
2484  * Restartable linear combination
2485  * NOT constant-time
2486  */
2487 int mbedtls_ecp_muladd_restartable(
2488              mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2489              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2490              const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2491              mbedtls_ecp_restart_ctx *rs_ctx )
2492 {
2493     int ret;
2494     mbedtls_ecp_point mP;
2495     mbedtls_ecp_point *pmP = &mP;
2496     mbedtls_ecp_point *pR = R;
2497 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2498     char is_grp_capable = 0;
2499 #endif
2500     ECP_VALIDATE_RET( grp != NULL );
2501     ECP_VALIDATE_RET( R   != NULL );
2502     ECP_VALIDATE_RET( m   != NULL );
2503     ECP_VALIDATE_RET( P   != NULL );
2504     ECP_VALIDATE_RET( n   != NULL );
2505     ECP_VALIDATE_RET( Q   != NULL );
2506 
2507     if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
2508         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2509 
2510     mbedtls_ecp_point_init( &mP );
2511 
2512     ECP_RS_ENTER( ma );
2513 
2514 #if defined(MBEDTLS_ECP_RESTARTABLE)
2515     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2516     {
2517         /* redirect intermediate results to restart context */
2518         pmP = &rs_ctx->ma->mP;
2519         pR  = &rs_ctx->ma->R;
2520 
2521         /* jump to next operation */
2522         if( rs_ctx->ma->state == ecp_rsma_mul2 )
2523             goto mul2;
2524         if( rs_ctx->ma->state == ecp_rsma_add )
2525             goto add;
2526         if( rs_ctx->ma->state == ecp_rsma_norm )
2527             goto norm;
2528     }
2529 #endif /* MBEDTLS_ECP_RESTARTABLE */
2530 
2531     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
2532 #if defined(MBEDTLS_ECP_RESTARTABLE)
2533     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2534         rs_ctx->ma->state = ecp_rsma_mul2;
2535 
2536 mul2:
2537 #endif
2538     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR,  n, Q, rs_ctx ) );
2539 
2540 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2541     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2542         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2543 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2544 
2545 #if defined(MBEDTLS_ECP_RESTARTABLE)
2546     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2547         rs_ctx->ma->state = ecp_rsma_add;
2548 
2549 add:
2550 #endif
2551     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2552     MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
2553 #if defined(MBEDTLS_ECP_RESTARTABLE)
2554     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2555         rs_ctx->ma->state = ecp_rsma_norm;
2556 
2557 norm:
2558 #endif
2559     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2560     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2561 
2562 #if defined(MBEDTLS_ECP_RESTARTABLE)
2563     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2564         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2565 #endif
2566 
2567 cleanup:
2568 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2569     if( is_grp_capable )
2570         mbedtls_internal_ecp_free( grp );
2571 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2572 
2573     mbedtls_ecp_point_free( &mP );
2574 
2575     ECP_RS_LEAVE( ma );
2576 
2577     return( ret );
2578 }
2579 
2580 /*
2581  * Linear combination
2582  * NOT constant-time
2583  */
2584 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2585              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2586              const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2587 {
2588     ECP_VALIDATE_RET( grp != NULL );
2589     ECP_VALIDATE_RET( R   != NULL );
2590     ECP_VALIDATE_RET( m   != NULL );
2591     ECP_VALIDATE_RET( P   != NULL );
2592     ECP_VALIDATE_RET( n   != NULL );
2593     ECP_VALIDATE_RET( Q   != NULL );
2594     return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
2595 }
2596 
2597 #if defined(ECP_MONTGOMERY)
2598 /*
2599  * Check validity of a public key for Montgomery curves with x-only schemes
2600  */
2601 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2602 {
2603     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2604     /* Allow any public value, if it's too big then we'll just reduce it mod p
2605      * (RFC 7748 sec. 5 para. 3). */
2606     if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
2607         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2608 
2609     return( 0 );
2610 }
2611 #endif /* ECP_MONTGOMERY */
2612 
2613 /*
2614  * Check that a point is valid as a public key
2615  */
2616 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
2617                               const mbedtls_ecp_point *pt )
2618 {
2619     ECP_VALIDATE_RET( grp != NULL );
2620     ECP_VALIDATE_RET( pt  != NULL );
2621 
2622     /* Must use affine coordinates */
2623     if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
2624         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2625 
2626 #if defined(ECP_MONTGOMERY)
2627     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2628         return( ecp_check_pubkey_mx( grp, pt ) );
2629 #endif
2630 #if defined(ECP_SHORTWEIERSTRASS)
2631     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2632         return( ecp_check_pubkey_sw( grp, pt ) );
2633 #endif
2634     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2635 }
2636 
2637 /*
2638  * Check that an mbedtls_mpi is valid as a private key
2639  */
2640 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
2641                                const mbedtls_mpi *d )
2642 {
2643     ECP_VALIDATE_RET( grp != NULL );
2644     ECP_VALIDATE_RET( d   != NULL );
2645 
2646 #if defined(ECP_MONTGOMERY)
2647     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2648     {
2649         /* see RFC 7748 sec. 5 para. 5 */
2650         if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
2651             mbedtls_mpi_get_bit( d, 1 ) != 0 ||
2652             mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
2653             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2654 
2655         /* see [Curve25519] page 5 */
2656         if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
2657             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2658 
2659         return( 0 );
2660     }
2661 #endif /* ECP_MONTGOMERY */
2662 #if defined(ECP_SHORTWEIERSTRASS)
2663     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2664     {
2665         /* see SEC1 3.2 */
2666         if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2667             mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
2668             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2669         else
2670             return( 0 );
2671     }
2672 #endif /* ECP_SHORTWEIERSTRASS */
2673 
2674     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2675 }
2676 
2677 /*
2678  * Generate a private key
2679  */
2680 int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
2681                      mbedtls_mpi *d,
2682                      int (*f_rng)(void *, unsigned char *, size_t),
2683                      void *p_rng )
2684 {
2685     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2686     size_t n_size;
2687 
2688     ECP_VALIDATE_RET( grp   != NULL );
2689     ECP_VALIDATE_RET( d     != NULL );
2690     ECP_VALIDATE_RET( f_rng != NULL );
2691 
2692     n_size = ( grp->nbits + 7 ) / 8;
2693 
2694 #if defined(ECP_MONTGOMERY)
2695     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2696     {
2697         /* [M225] page 5 */
2698         size_t b;
2699 
2700         do {
2701             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
2702         } while( mbedtls_mpi_bitlen( d ) == 0);
2703 
2704         /* Make sure the most significant bit is nbits */
2705         b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
2706         if( b > grp->nbits )
2707             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
2708         else
2709             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
2710 
2711         /* Make sure the last two bits are unset for Curve448, three bits for
2712            Curve25519 */
2713         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
2714         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
2715         if( grp->nbits == 254 )
2716         {
2717             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
2718         }
2719     }
2720 #endif /* ECP_MONTGOMERY */
2721 
2722 #if defined(ECP_SHORTWEIERSTRASS)
2723     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2724     {
2725         /* SEC1 3.2.1: Generate d such that 1 <= n < N */
2726         int count = 0;
2727         unsigned cmp = 0;
2728 
2729         /*
2730          * Match the procedure given in RFC 6979 (deterministic ECDSA):
2731          * - use the same byte ordering;
2732          * - keep the leftmost nbits bits of the generated octet string;
2733          * - try until result is in the desired range.
2734          * This also avoids any biais, which is especially important for ECDSA.
2735          */
2736         do
2737         {
2738             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
2739             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
2740 
2741             /*
2742              * Each try has at worst a probability 1/2 of failing (the msb has
2743              * a probability 1/2 of being 0, and then the result will be < N),
2744              * so after 30 tries failure probability is a most 2**(-30).
2745              *
2746              * For most curves, 1 try is enough with overwhelming probability,
2747              * since N starts with a lot of 1s in binary, but some curves
2748              * such as secp224k1 are actually very close to the worst case.
2749              */
2750             if( ++count > 30 )
2751                 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
2752 
2753             ret = mbedtls_mpi_lt_mpi_ct( d, &grp->N, &cmp );
2754             if( ret != 0 )
2755             {
2756                 goto cleanup;
2757             }
2758         }
2759         while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || cmp != 1 );
2760     }
2761 #endif /* ECP_SHORTWEIERSTRASS */
2762 
2763 cleanup:
2764     return( ret );
2765 }
2766 
2767 /*
2768  * Generate a keypair with configurable base point
2769  */
2770 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
2771                      const mbedtls_ecp_point *G,
2772                      mbedtls_mpi *d, mbedtls_ecp_point *Q,
2773                      int (*f_rng)(void *, unsigned char *, size_t),
2774                      void *p_rng )
2775 {
2776     int ret;
2777     ECP_VALIDATE_RET( grp   != NULL );
2778     ECP_VALIDATE_RET( d     != NULL );
2779     ECP_VALIDATE_RET( G     != NULL );
2780     ECP_VALIDATE_RET( Q     != NULL );
2781     ECP_VALIDATE_RET( f_rng != NULL );
2782 
2783     MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
2784     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
2785 
2786 cleanup:
2787     return( ret );
2788 }
2789 
2790 /*
2791  * Generate key pair, wrapper for conventional base point
2792  */
2793 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
2794                              mbedtls_mpi *d, mbedtls_ecp_point *Q,
2795                              int (*f_rng)(void *, unsigned char *, size_t),
2796                              void *p_rng )
2797 {
2798     ECP_VALIDATE_RET( grp   != NULL );
2799     ECP_VALIDATE_RET( d     != NULL );
2800     ECP_VALIDATE_RET( Q     != NULL );
2801     ECP_VALIDATE_RET( f_rng != NULL );
2802 
2803     return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
2804 }
2805 
2806 /*
2807  * Generate a keypair, prettier wrapper
2808  */
2809 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
2810                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2811 {
2812     int ret;
2813     ECP_VALIDATE_RET( key   != NULL );
2814     ECP_VALIDATE_RET( f_rng != NULL );
2815 
2816     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
2817         return( ret );
2818 
2819     return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
2820 }
2821 
2822 /*
2823  * Check a public-private key pair
2824  */
2825 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
2826 {
2827     int ret;
2828     mbedtls_ecp_point Q;
2829     mbedtls_ecp_group grp;
2830     ECP_VALIDATE_RET( pub != NULL );
2831     ECP_VALIDATE_RET( prv != NULL );
2832 
2833     if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
2834         pub->grp.id != prv->grp.id ||
2835         mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
2836         mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
2837         mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
2838     {
2839         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2840     }
2841 
2842     mbedtls_ecp_point_init( &Q );
2843     mbedtls_ecp_group_init( &grp );
2844 
2845     /* mbedtls_ecp_mul() needs a non-const group... */
2846     mbedtls_ecp_group_copy( &grp, &prv->grp );
2847 
2848     /* Also checks d is valid */
2849     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
2850 
2851     if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
2852         mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
2853         mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
2854     {
2855         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2856         goto cleanup;
2857     }
2858 
2859 cleanup:
2860     mbedtls_ecp_point_free( &Q );
2861     mbedtls_ecp_group_free( &grp );
2862 
2863     return( ret );
2864 }
2865 
2866 #if defined(MBEDTLS_SELF_TEST)
2867 
2868 /*
2869  * Checkup routine
2870  */
2871 int mbedtls_ecp_self_test( int verbose )
2872 {
2873     int ret;
2874     size_t i;
2875     mbedtls_ecp_group grp;
2876     mbedtls_ecp_point R, P;
2877     mbedtls_mpi m;
2878     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
2879     /* exponents especially adapted for secp192r1 */
2880     const char *exponents[] =
2881     {
2882         "000000000000000000000000000000000000000000000001", /* one */
2883         "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2884         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2885         "400000000000000000000000000000000000000000000000", /* one and zeros */
2886         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2887         "555555555555555555555555555555555555555555555555", /* 101010... */
2888     };
2889 
2890     mbedtls_ecp_group_init( &grp );
2891     mbedtls_ecp_point_init( &R );
2892     mbedtls_ecp_point_init( &P );
2893     mbedtls_mpi_init( &m );
2894 
2895     /* Use secp192r1 if available, or any available curve */
2896 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
2897     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
2898 #else
2899     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
2900 #endif
2901 
2902     if( verbose != 0 )
2903         mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " );
2904 
2905     /* Do a dummy multiplication first to trigger precomputation */
2906     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
2907     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
2908 
2909     add_count = 0;
2910     dbl_count = 0;
2911     mul_count = 0;
2912     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2913     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2914 
2915     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2916     {
2917         add_c_prev = add_count;
2918         dbl_c_prev = dbl_count;
2919         mul_c_prev = mul_count;
2920         add_count = 0;
2921         dbl_count = 0;
2922         mul_count = 0;
2923 
2924         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2925         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2926 
2927         if( add_count != add_c_prev ||
2928             dbl_count != dbl_c_prev ||
2929             mul_count != mul_c_prev )
2930         {
2931             if( verbose != 0 )
2932                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2933 
2934             ret = 1;
2935             goto cleanup;
2936         }
2937     }
2938 
2939     if( verbose != 0 )
2940         mbedtls_printf( "passed\n" );
2941 
2942     if( verbose != 0 )
2943         mbedtls_printf( "  ECP test #2 (constant op_count, other point): " );
2944     /* We computed P = 2G last time, use it */
2945 
2946     add_count = 0;
2947     dbl_count = 0;
2948     mul_count = 0;
2949     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2950     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2951 
2952     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2953     {
2954         add_c_prev = add_count;
2955         dbl_c_prev = dbl_count;
2956         mul_c_prev = mul_count;
2957         add_count = 0;
2958         dbl_count = 0;
2959         mul_count = 0;
2960 
2961         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2962         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2963 
2964         if( add_count != add_c_prev ||
2965             dbl_count != dbl_c_prev ||
2966             mul_count != mul_c_prev )
2967         {
2968             if( verbose != 0 )
2969                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2970 
2971             ret = 1;
2972             goto cleanup;
2973         }
2974     }
2975 
2976     if( verbose != 0 )
2977         mbedtls_printf( "passed\n" );
2978 
2979 cleanup:
2980 
2981     if( ret < 0 && verbose != 0 )
2982         mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
2983 
2984     mbedtls_ecp_group_free( &grp );
2985     mbedtls_ecp_point_free( &R );
2986     mbedtls_ecp_point_free( &P );
2987     mbedtls_mpi_free( &m );
2988 
2989     if( verbose != 0 )
2990         mbedtls_printf( "\n" );
2991 
2992     return( ret );
2993 }
2994 
2995 #endif /* MBEDTLS_SELF_TEST */
2996 
2997 #endif /* !MBEDTLS_ECP_ALT */
2998 
2999 #endif /* MBEDTLS_ECP_C */
3000