1 /** 2 * \file alignment.h 3 * 4 * \brief Utility code for dealing with unaligned memory accesses 5 */ 6 /* 7 * Copyright The Mbed TLS Contributors 8 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later 9 */ 10 11 #ifndef MBEDTLS_LIBRARY_ALIGNMENT_H 12 #define MBEDTLS_LIBRARY_ALIGNMENT_H 13 14 #include <stdint.h> 15 #include <string.h> 16 #include <stdlib.h> 17 18 /* 19 * Define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS for architectures where unaligned memory 20 * accesses are known to be efficient. 21 * 22 * All functions defined here will behave correctly regardless, but might be less 23 * efficient when this is not defined. 24 */ 25 #if defined(__ARM_FEATURE_UNALIGNED) \ 26 || defined(MBEDTLS_ARCH_IS_X86) || defined(MBEDTLS_ARCH_IS_X64) \ 27 || defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) 28 /* 29 * __ARM_FEATURE_UNALIGNED is defined where appropriate by armcc, gcc 7, clang 9 30 * (and later versions) for Arm v7 and later; all x86 platforms should have 31 * efficient unaligned access. 32 * 33 * https://learn.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-170#alignment 34 * specifies that on Windows-on-Arm64, unaligned access is safe (except for uncached 35 * device memory). 36 */ 37 #define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS 38 #endif 39 40 #if defined(__IAR_SYSTEMS_ICC__) && \ 41 (defined(MBEDTLS_ARCH_IS_ARM64) || defined(MBEDTLS_ARCH_IS_ARM32) \ 42 || defined(__ICCRX__) || defined(__ICCRL78__) || defined(__ICCRISCV__)) 43 #pragma language=save 44 #pragma language=extended 45 #define MBEDTLS_POP_IAR_LANGUAGE_PRAGMA 46 /* IAR recommend this technique for accessing unaligned data in 47 * https://www.iar.com/knowledge/support/technical-notes/compiler/accessing-unaligned-data 48 * This results in a single load / store instruction (if unaligned access is supported). 49 * According to that document, this is only supported on certain architectures. 50 */ 51 #define UINT_UNALIGNED 52 typedef uint16_t __packed mbedtls_uint16_unaligned_t; 53 typedef uint32_t __packed mbedtls_uint32_unaligned_t; 54 typedef uint64_t __packed mbedtls_uint64_unaligned_t; 55 #elif defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 40504) && \ 56 ((MBEDTLS_GCC_VERSION < 60300) || (!defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS))) 57 /* 58 * gcc may generate a branch to memcpy for calls like `memcpy(dest, src, 4)` rather than 59 * generating some LDR or LDRB instructions (similar for stores). 60 * 61 * This is architecture dependent: x86-64 seems fine even with old gcc; 32-bit Arm 62 * is affected. To keep it simple, we enable for all architectures. 63 * 64 * For versions of gcc < 5.4.0 this issue always happens. 65 * For gcc < 6.3.0, this issue happens at -O0 66 * For all versions, this issue happens iff unaligned access is not supported. 67 * 68 * For gcc 4.x, this implementation will generate byte-by-byte loads even if unaligned access is 69 * supported, which is correct but not optimal. 70 * 71 * For performance (and code size, in some cases), we want to avoid the branch and just generate 72 * some inline load/store instructions since the access is small and constant-size. 73 * 74 * The manual states: 75 * "The packed attribute specifies that a variable or structure field should have the smallest 76 * possible alignment—one byte for a variable" 77 * https://gcc.gnu.org/onlinedocs/gcc-4.5.4/gcc/Variable-Attributes.html 78 * 79 * Previous implementations used __attribute__((__aligned__(1)), but had issues with a gcc bug: 80 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94662 81 * 82 * Tested with several versions of GCC from 4.5.0 up to 13.2.0 83 * We don't enable for older than 4.5.0 as this has not been tested. 84 */ 85 #define UINT_UNALIGNED_STRUCT 86 typedef struct { 87 uint16_t x; 88 } __attribute__((packed)) mbedtls_uint16_unaligned_t; 89 typedef struct { 90 uint32_t x; 91 } __attribute__((packed)) mbedtls_uint32_unaligned_t; 92 typedef struct { 93 uint64_t x; 94 } __attribute__((packed)) mbedtls_uint64_unaligned_t; 95 #endif 96 97 /* 98 * We try to force mbedtls_(get|put)_unaligned_uintXX to be always inline, because this results 99 * in code that is both smaller and faster. IAR and gcc both benefit from this when optimising 100 * for size. 101 */ 102 103 /** 104 * Read the unsigned 16 bits integer from the given address, which need not 105 * be aligned. 106 * 107 * \param p pointer to 2 bytes of data 108 * \return Data at the given address 109 */ 110 #if defined(__IAR_SYSTEMS_ICC__) 111 #pragma inline = forced 112 #elif defined(__GNUC__) 113 __attribute__((always_inline)) 114 #endif 115 static inline uint16_t mbedtls_get_unaligned_uint16(const void *p) 116 { 117 uint16_t r; 118 #if defined(UINT_UNALIGNED) 119 mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; 120 r = *p16; 121 #elif defined(UINT_UNALIGNED_STRUCT) 122 mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; 123 r = p16->x; 124 #else 125 memcpy(&r, p, sizeof(r)); 126 #endif 127 return r; 128 } 129 130 /** 131 * Write the unsigned 16 bits integer to the given address, which need not 132 * be aligned. 133 * 134 * \param p pointer to 2 bytes of data 135 * \param x data to write 136 */ 137 #if defined(__IAR_SYSTEMS_ICC__) 138 #pragma inline = forced 139 #elif defined(__GNUC__) 140 __attribute__((always_inline)) 141 #endif 142 static inline void mbedtls_put_unaligned_uint16(void *p, uint16_t x) 143 { 144 #if defined(UINT_UNALIGNED) 145 mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; 146 *p16 = x; 147 #elif defined(UINT_UNALIGNED_STRUCT) 148 mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; 149 p16->x = x; 150 #else 151 memcpy(p, &x, sizeof(x)); 152 #endif 153 } 154 155 /** 156 * Read the unsigned 32 bits integer from the given address, which need not 157 * be aligned. 158 * 159 * \param p pointer to 4 bytes of data 160 * \return Data at the given address 161 */ 162 #if defined(__IAR_SYSTEMS_ICC__) 163 #pragma inline = forced 164 #elif defined(__GNUC__) 165 __attribute__((always_inline)) 166 #endif 167 static inline uint32_t mbedtls_get_unaligned_uint32(const void *p) 168 { 169 uint32_t r; 170 #if defined(UINT_UNALIGNED) 171 mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; 172 r = *p32; 173 #elif defined(UINT_UNALIGNED_STRUCT) 174 mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; 175 r = p32->x; 176 #else 177 memcpy(&r, p, sizeof(r)); 178 #endif 179 return r; 180 } 181 182 /** 183 * Write the unsigned 32 bits integer to the given address, which need not 184 * be aligned. 185 * 186 * \param p pointer to 4 bytes of data 187 * \param x data to write 188 */ 189 #if defined(__IAR_SYSTEMS_ICC__) 190 #pragma inline = forced 191 #elif defined(__GNUC__) 192 __attribute__((always_inline)) 193 #endif 194 static inline void mbedtls_put_unaligned_uint32(void *p, uint32_t x) 195 { 196 #if defined(UINT_UNALIGNED) 197 mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; 198 *p32 = x; 199 #elif defined(UINT_UNALIGNED_STRUCT) 200 mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; 201 p32->x = x; 202 #else 203 memcpy(p, &x, sizeof(x)); 204 #endif 205 } 206 207 /** 208 * Read the unsigned 64 bits integer from the given address, which need not 209 * be aligned. 210 * 211 * \param p pointer to 8 bytes of data 212 * \return Data at the given address 213 */ 214 #if defined(__IAR_SYSTEMS_ICC__) 215 #pragma inline = forced 216 #elif defined(__GNUC__) 217 __attribute__((always_inline)) 218 #endif 219 static inline uint64_t mbedtls_get_unaligned_uint64(const void *p) 220 { 221 uint64_t r; 222 #if defined(UINT_UNALIGNED) 223 mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; 224 r = *p64; 225 #elif defined(UINT_UNALIGNED_STRUCT) 226 mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; 227 r = p64->x; 228 #else 229 memcpy(&r, p, sizeof(r)); 230 #endif 231 return r; 232 } 233 234 /** 235 * Write the unsigned 64 bits integer to the given address, which need not 236 * be aligned. 237 * 238 * \param p pointer to 8 bytes of data 239 * \param x data to write 240 */ 241 #if defined(__IAR_SYSTEMS_ICC__) 242 #pragma inline = forced 243 #elif defined(__GNUC__) 244 __attribute__((always_inline)) 245 #endif 246 static inline void mbedtls_put_unaligned_uint64(void *p, uint64_t x) 247 { 248 #if defined(UINT_UNALIGNED) 249 mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; 250 *p64 = x; 251 #elif defined(UINT_UNALIGNED_STRUCT) 252 mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; 253 p64->x = x; 254 #else 255 memcpy(p, &x, sizeof(x)); 256 #endif 257 } 258 259 #if defined(MBEDTLS_POP_IAR_LANGUAGE_PRAGMA) 260 #pragma language=restore 261 #endif 262 263 /** Byte Reading Macros 264 * 265 * Given a multi-byte integer \p x, MBEDTLS_BYTE_n retrieves the n-th 266 * byte from x, where byte 0 is the least significant byte. 267 */ 268 #define MBEDTLS_BYTE_0(x) ((uint8_t) ((x) & 0xff)) 269 #define MBEDTLS_BYTE_1(x) ((uint8_t) (((x) >> 8) & 0xff)) 270 #define MBEDTLS_BYTE_2(x) ((uint8_t) (((x) >> 16) & 0xff)) 271 #define MBEDTLS_BYTE_3(x) ((uint8_t) (((x) >> 24) & 0xff)) 272 #define MBEDTLS_BYTE_4(x) ((uint8_t) (((x) >> 32) & 0xff)) 273 #define MBEDTLS_BYTE_5(x) ((uint8_t) (((x) >> 40) & 0xff)) 274 #define MBEDTLS_BYTE_6(x) ((uint8_t) (((x) >> 48) & 0xff)) 275 #define MBEDTLS_BYTE_7(x) ((uint8_t) (((x) >> 56) & 0xff)) 276 277 /* 278 * Detect GCC built-in byteswap routines 279 */ 280 #if defined(__GNUC__) && defined(__GNUC_PREREQ) 281 #if __GNUC_PREREQ(4, 8) 282 #define MBEDTLS_BSWAP16 __builtin_bswap16 283 #endif /* __GNUC_PREREQ(4,8) */ 284 #if __GNUC_PREREQ(4, 3) 285 #define MBEDTLS_BSWAP32 __builtin_bswap32 286 #define MBEDTLS_BSWAP64 __builtin_bswap64 287 #endif /* __GNUC_PREREQ(4,3) */ 288 #endif /* defined(__GNUC__) && defined(__GNUC_PREREQ) */ 289 290 /* 291 * Detect Clang built-in byteswap routines 292 */ 293 #if defined(__clang__) && defined(__has_builtin) 294 #if __has_builtin(__builtin_bswap16) && !defined(MBEDTLS_BSWAP16) 295 #define MBEDTLS_BSWAP16 __builtin_bswap16 296 #endif /* __has_builtin(__builtin_bswap16) */ 297 #if __has_builtin(__builtin_bswap32) && !defined(MBEDTLS_BSWAP32) 298 #define MBEDTLS_BSWAP32 __builtin_bswap32 299 #endif /* __has_builtin(__builtin_bswap32) */ 300 #if __has_builtin(__builtin_bswap64) && !defined(MBEDTLS_BSWAP64) 301 #define MBEDTLS_BSWAP64 __builtin_bswap64 302 #endif /* __has_builtin(__builtin_bswap64) */ 303 #endif /* defined(__clang__) && defined(__has_builtin) */ 304 305 /* 306 * Detect MSVC built-in byteswap routines 307 */ 308 #if defined(_MSC_VER) 309 #if !defined(MBEDTLS_BSWAP16) 310 #define MBEDTLS_BSWAP16 _byteswap_ushort 311 #endif 312 #if !defined(MBEDTLS_BSWAP32) 313 #define MBEDTLS_BSWAP32 _byteswap_ulong 314 #endif 315 #if !defined(MBEDTLS_BSWAP64) 316 #define MBEDTLS_BSWAP64 _byteswap_uint64 317 #endif 318 #endif /* defined(_MSC_VER) */ 319 320 /* Detect armcc built-in byteswap routine */ 321 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 410000) && !defined(MBEDTLS_BSWAP32) 322 #if defined(__ARM_ACLE) /* ARM Compiler 6 - earlier versions don't need a header */ 323 #include <arm_acle.h> 324 #endif 325 #define MBEDTLS_BSWAP32 __rev 326 #endif 327 328 /* Detect IAR built-in byteswap routine */ 329 #if defined(__IAR_SYSTEMS_ICC__) 330 #if defined(__ARM_ACLE) 331 #include <arm_acle.h> 332 #define MBEDTLS_BSWAP16(x) ((uint16_t) __rev16((uint32_t) (x))) 333 #define MBEDTLS_BSWAP32 __rev 334 #define MBEDTLS_BSWAP64 __revll 335 #endif 336 #endif 337 338 /* 339 * Where compiler built-ins are not present, fall back to C code that the 340 * compiler may be able to detect and transform into the relevant bswap or 341 * similar instruction. 342 */ 343 #if !defined(MBEDTLS_BSWAP16) 344 static inline uint16_t mbedtls_bswap16(uint16_t x) 345 { 346 return 347 (x & 0x00ff) << 8 | 348 (x & 0xff00) >> 8; 349 } 350 #define MBEDTLS_BSWAP16 mbedtls_bswap16 351 #endif /* !defined(MBEDTLS_BSWAP16) */ 352 353 #if !defined(MBEDTLS_BSWAP32) 354 static inline uint32_t mbedtls_bswap32(uint32_t x) 355 { 356 return 357 (x & 0x000000ff) << 24 | 358 (x & 0x0000ff00) << 8 | 359 (x & 0x00ff0000) >> 8 | 360 (x & 0xff000000) >> 24; 361 } 362 #define MBEDTLS_BSWAP32 mbedtls_bswap32 363 #endif /* !defined(MBEDTLS_BSWAP32) */ 364 365 #if !defined(MBEDTLS_BSWAP64) 366 static inline uint64_t mbedtls_bswap64(uint64_t x) 367 { 368 return 369 (x & 0x00000000000000ffULL) << 56 | 370 (x & 0x000000000000ff00ULL) << 40 | 371 (x & 0x0000000000ff0000ULL) << 24 | 372 (x & 0x00000000ff000000ULL) << 8 | 373 (x & 0x000000ff00000000ULL) >> 8 | 374 (x & 0x0000ff0000000000ULL) >> 24 | 375 (x & 0x00ff000000000000ULL) >> 40 | 376 (x & 0xff00000000000000ULL) >> 56; 377 } 378 #define MBEDTLS_BSWAP64 mbedtls_bswap64 379 #endif /* !defined(MBEDTLS_BSWAP64) */ 380 381 #if !defined(__BYTE_ORDER__) 382 383 #if defined(__LITTLE_ENDIAN__) 384 /* IAR defines __xxx_ENDIAN__, but not __BYTE_ORDER__ */ 385 #define MBEDTLS_IS_BIG_ENDIAN 0 386 #elif defined(__BIG_ENDIAN__) 387 #define MBEDTLS_IS_BIG_ENDIAN 1 388 #else 389 static const uint16_t mbedtls_byte_order_detector = { 0x100 }; 390 #define MBEDTLS_IS_BIG_ENDIAN (*((unsigned char *) (&mbedtls_byte_order_detector)) == 0x01) 391 #endif 392 393 #else 394 395 #if (__BYTE_ORDER__) == (__ORDER_BIG_ENDIAN__) 396 #define MBEDTLS_IS_BIG_ENDIAN 1 397 #else 398 #define MBEDTLS_IS_BIG_ENDIAN 0 399 #endif 400 401 #endif /* !defined(__BYTE_ORDER__) */ 402 403 /** 404 * Get the unsigned 32 bits integer corresponding to four bytes in 405 * big-endian order (MSB first). 406 * 407 * \param data Base address of the memory to get the four bytes from. 408 * \param offset Offset from \p data of the first and most significant 409 * byte of the four bytes to build the 32 bits unsigned 410 * integer from. 411 */ 412 #define MBEDTLS_GET_UINT32_BE(data, offset) \ 413 ((MBEDTLS_IS_BIG_ENDIAN) \ 414 ? mbedtls_get_unaligned_uint32((data) + (offset)) \ 415 : MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \ 416 ) 417 418 /** 419 * Put in memory a 32 bits unsigned integer in big-endian order. 420 * 421 * \param n 32 bits unsigned integer to put in memory. 422 * \param data Base address of the memory where to put the 32 423 * bits unsigned integer in. 424 * \param offset Offset from \p data where to put the most significant 425 * byte of the 32 bits unsigned integer \p n. 426 */ 427 #define MBEDTLS_PUT_UINT32_BE(n, data, offset) \ 428 { \ 429 if (MBEDTLS_IS_BIG_ENDIAN) \ 430 { \ 431 mbedtls_put_unaligned_uint32((data) + (offset), (uint32_t) (n)); \ 432 } \ 433 else \ 434 { \ 435 mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \ 436 } \ 437 } 438 439 /** 440 * Get the unsigned 32 bits integer corresponding to four bytes in 441 * little-endian order (LSB first). 442 * 443 * \param data Base address of the memory to get the four bytes from. 444 * \param offset Offset from \p data of the first and least significant 445 * byte of the four bytes to build the 32 bits unsigned 446 * integer from. 447 */ 448 #define MBEDTLS_GET_UINT32_LE(data, offset) \ 449 ((MBEDTLS_IS_BIG_ENDIAN) \ 450 ? MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \ 451 : mbedtls_get_unaligned_uint32((data) + (offset)) \ 452 ) 453 454 455 /** 456 * Put in memory a 32 bits unsigned integer in little-endian order. 457 * 458 * \param n 32 bits unsigned integer to put in memory. 459 * \param data Base address of the memory where to put the 32 460 * bits unsigned integer in. 461 * \param offset Offset from \p data where to put the least significant 462 * byte of the 32 bits unsigned integer \p n. 463 */ 464 #define MBEDTLS_PUT_UINT32_LE(n, data, offset) \ 465 { \ 466 if (MBEDTLS_IS_BIG_ENDIAN) \ 467 { \ 468 mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \ 469 } \ 470 else \ 471 { \ 472 mbedtls_put_unaligned_uint32((data) + (offset), ((uint32_t) (n))); \ 473 } \ 474 } 475 476 /** 477 * Get the unsigned 16 bits integer corresponding to two bytes in 478 * little-endian order (LSB first). 479 * 480 * \param data Base address of the memory to get the two bytes from. 481 * \param offset Offset from \p data of the first and least significant 482 * byte of the two bytes to build the 16 bits unsigned 483 * integer from. 484 */ 485 #define MBEDTLS_GET_UINT16_LE(data, offset) \ 486 ((MBEDTLS_IS_BIG_ENDIAN) \ 487 ? MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \ 488 : mbedtls_get_unaligned_uint16((data) + (offset)) \ 489 ) 490 491 /** 492 * Put in memory a 16 bits unsigned integer in little-endian order. 493 * 494 * \param n 16 bits unsigned integer to put in memory. 495 * \param data Base address of the memory where to put the 16 496 * bits unsigned integer in. 497 * \param offset Offset from \p data where to put the least significant 498 * byte of the 16 bits unsigned integer \p n. 499 */ 500 #define MBEDTLS_PUT_UINT16_LE(n, data, offset) \ 501 { \ 502 if (MBEDTLS_IS_BIG_ENDIAN) \ 503 { \ 504 mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \ 505 } \ 506 else \ 507 { \ 508 mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \ 509 } \ 510 } 511 512 /** 513 * Get the unsigned 16 bits integer corresponding to two bytes in 514 * big-endian order (MSB first). 515 * 516 * \param data Base address of the memory to get the two bytes from. 517 * \param offset Offset from \p data of the first and most significant 518 * byte of the two bytes to build the 16 bits unsigned 519 * integer from. 520 */ 521 #define MBEDTLS_GET_UINT16_BE(data, offset) \ 522 ((MBEDTLS_IS_BIG_ENDIAN) \ 523 ? mbedtls_get_unaligned_uint16((data) + (offset)) \ 524 : MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \ 525 ) 526 527 /** 528 * Put in memory a 16 bits unsigned integer in big-endian order. 529 * 530 * \param n 16 bits unsigned integer to put in memory. 531 * \param data Base address of the memory where to put the 16 532 * bits unsigned integer in. 533 * \param offset Offset from \p data where to put the most significant 534 * byte of the 16 bits unsigned integer \p n. 535 */ 536 #define MBEDTLS_PUT_UINT16_BE(n, data, offset) \ 537 { \ 538 if (MBEDTLS_IS_BIG_ENDIAN) \ 539 { \ 540 mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \ 541 } \ 542 else \ 543 { \ 544 mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \ 545 } \ 546 } 547 548 /** 549 * Get the unsigned 24 bits integer corresponding to three bytes in 550 * big-endian order (MSB first). 551 * 552 * \param data Base address of the memory to get the three bytes from. 553 * \param offset Offset from \p data of the first and most significant 554 * byte of the three bytes to build the 24 bits unsigned 555 * integer from. 556 */ 557 #define MBEDTLS_GET_UINT24_BE(data, offset) \ 558 ( \ 559 ((uint32_t) (data)[(offset)] << 16) \ 560 | ((uint32_t) (data)[(offset) + 1] << 8) \ 561 | ((uint32_t) (data)[(offset) + 2]) \ 562 ) 563 564 /** 565 * Put in memory a 24 bits unsigned integer in big-endian order. 566 * 567 * \param n 24 bits unsigned integer to put in memory. 568 * \param data Base address of the memory where to put the 24 569 * bits unsigned integer in. 570 * \param offset Offset from \p data where to put the most significant 571 * byte of the 24 bits unsigned integer \p n. 572 */ 573 #define MBEDTLS_PUT_UINT24_BE(n, data, offset) \ 574 { \ 575 (data)[(offset)] = MBEDTLS_BYTE_2(n); \ 576 (data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \ 577 (data)[(offset) + 2] = MBEDTLS_BYTE_0(n); \ 578 } 579 580 /** 581 * Get the unsigned 24 bits integer corresponding to three bytes in 582 * little-endian order (LSB first). 583 * 584 * \param data Base address of the memory to get the three bytes from. 585 * \param offset Offset from \p data of the first and least significant 586 * byte of the three bytes to build the 24 bits unsigned 587 * integer from. 588 */ 589 #define MBEDTLS_GET_UINT24_LE(data, offset) \ 590 ( \ 591 ((uint32_t) (data)[(offset)]) \ 592 | ((uint32_t) (data)[(offset) + 1] << 8) \ 593 | ((uint32_t) (data)[(offset) + 2] << 16) \ 594 ) 595 596 /** 597 * Put in memory a 24 bits unsigned integer in little-endian order. 598 * 599 * \param n 24 bits unsigned integer to put in memory. 600 * \param data Base address of the memory where to put the 24 601 * bits unsigned integer in. 602 * \param offset Offset from \p data where to put the least significant 603 * byte of the 24 bits unsigned integer \p n. 604 */ 605 #define MBEDTLS_PUT_UINT24_LE(n, data, offset) \ 606 { \ 607 (data)[(offset)] = MBEDTLS_BYTE_0(n); \ 608 (data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \ 609 (data)[(offset) + 2] = MBEDTLS_BYTE_2(n); \ 610 } 611 612 /** 613 * Get the unsigned 64 bits integer corresponding to eight bytes in 614 * big-endian order (MSB first). 615 * 616 * \param data Base address of the memory to get the eight bytes from. 617 * \param offset Offset from \p data of the first and most significant 618 * byte of the eight bytes to build the 64 bits unsigned 619 * integer from. 620 */ 621 #define MBEDTLS_GET_UINT64_BE(data, offset) \ 622 ((MBEDTLS_IS_BIG_ENDIAN) \ 623 ? mbedtls_get_unaligned_uint64((data) + (offset)) \ 624 : MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \ 625 ) 626 627 /** 628 * Put in memory a 64 bits unsigned integer in big-endian order. 629 * 630 * \param n 64 bits unsigned integer to put in memory. 631 * \param data Base address of the memory where to put the 64 632 * bits unsigned integer in. 633 * \param offset Offset from \p data where to put the most significant 634 * byte of the 64 bits unsigned integer \p n. 635 */ 636 #define MBEDTLS_PUT_UINT64_BE(n, data, offset) \ 637 { \ 638 if (MBEDTLS_IS_BIG_ENDIAN) \ 639 { \ 640 mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \ 641 } \ 642 else \ 643 { \ 644 mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \ 645 } \ 646 } 647 648 /** 649 * Get the unsigned 64 bits integer corresponding to eight bytes in 650 * little-endian order (LSB first). 651 * 652 * \param data Base address of the memory to get the eight bytes from. 653 * \param offset Offset from \p data of the first and least significant 654 * byte of the eight bytes to build the 64 bits unsigned 655 * integer from. 656 */ 657 #define MBEDTLS_GET_UINT64_LE(data, offset) \ 658 ((MBEDTLS_IS_BIG_ENDIAN) \ 659 ? MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \ 660 : mbedtls_get_unaligned_uint64((data) + (offset)) \ 661 ) 662 663 /** 664 * Put in memory a 64 bits unsigned integer in little-endian order. 665 * 666 * \param n 64 bits unsigned integer to put in memory. 667 * \param data Base address of the memory where to put the 64 668 * bits unsigned integer in. 669 * \param offset Offset from \p data where to put the least significant 670 * byte of the 64 bits unsigned integer \p n. 671 */ 672 #define MBEDTLS_PUT_UINT64_LE(n, data, offset) \ 673 { \ 674 if (MBEDTLS_IS_BIG_ENDIAN) \ 675 { \ 676 mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \ 677 } \ 678 else \ 679 { \ 680 mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \ 681 } \ 682 } 683 684 #endif /* MBEDTLS_LIBRARY_ALIGNMENT_H */ 685