1 /* 2 * AES-NI support functions 3 * 4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved 5 * SPDX-License-Identifier: Apache-2.0 6 * 7 * Licensed under the Apache License, Version 2.0 (the "License"); you may 8 * not use this file except in compliance with the License. 9 * You may obtain a copy of the License at 10 * 11 * http://www.apache.org/licenses/LICENSE-2.0 12 * 13 * Unless required by applicable law or agreed to in writing, software 14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 * See the License for the specific language governing permissions and 17 * limitations under the License. 18 * 19 * This file is part of mbed TLS (https://tls.mbed.org) 20 */ 21 22 /* 23 * [AES-WP] http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set 24 * [CLMUL-WP] http://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode/ 25 */ 26 27 #if !defined(MBEDTLS_CONFIG_FILE) 28 #include "mbedtls/config.h" 29 #else 30 #include MBEDTLS_CONFIG_FILE 31 #endif 32 33 #if defined(MBEDTLS_AESNI_C) 34 35 #include "mbedtls/aesni.h" 36 37 #include <string.h> 38 39 #ifndef asm 40 #define asm __asm 41 #endif 42 43 #if defined(MBEDTLS_HAVE_X86_64) 44 45 /* 46 * AES-NI support detection routine 47 */ 48 int mbedtls_aesni_has_support( unsigned int what ) 49 { 50 static int done = 0; 51 static unsigned int c = 0; 52 53 if( ! done ) 54 { 55 asm( "movl $1, %%eax \n\t" 56 "cpuid \n\t" 57 : "=c" (c) 58 : 59 : "eax", "ebx", "edx" ); 60 done = 1; 61 } 62 63 return( ( c & what ) != 0 ); 64 } 65 66 /* 67 * Binutils needs to be at least 2.19 to support AES-NI instructions. 68 * Unfortunately, a lot of users have a lower version now (2014-04). 69 * Emit bytecode directly in order to support "old" version of gas. 70 * 71 * Opcodes from the Intel architecture reference manual, vol. 3. 72 * We always use registers, so we don't need prefixes for memory operands. 73 * Operand macros are in gas order (src, dst) as opposed to Intel order 74 * (dst, src) in order to blend better into the surrounding assembly code. 75 */ 76 #define AESDEC ".byte 0x66,0x0F,0x38,0xDE," 77 #define AESDECLAST ".byte 0x66,0x0F,0x38,0xDF," 78 #define AESENC ".byte 0x66,0x0F,0x38,0xDC," 79 #define AESENCLAST ".byte 0x66,0x0F,0x38,0xDD," 80 #define AESIMC ".byte 0x66,0x0F,0x38,0xDB," 81 #define AESKEYGENA ".byte 0x66,0x0F,0x3A,0xDF," 82 #define PCLMULQDQ ".byte 0x66,0x0F,0x3A,0x44," 83 84 #define xmm0_xmm0 "0xC0" 85 #define xmm0_xmm1 "0xC8" 86 #define xmm0_xmm2 "0xD0" 87 #define xmm0_xmm3 "0xD8" 88 #define xmm0_xmm4 "0xE0" 89 #define xmm1_xmm0 "0xC1" 90 #define xmm1_xmm2 "0xD1" 91 92 /* 93 * AES-NI AES-ECB block en(de)cryption 94 */ 95 int mbedtls_aesni_crypt_ecb( mbedtls_aes_context *ctx, 96 int mode, 97 const unsigned char input[16], 98 unsigned char output[16] ) 99 { 100 asm( "movdqu (%3), %%xmm0 \n\t" // load input 101 "movdqu (%1), %%xmm1 \n\t" // load round key 0 102 "pxor %%xmm1, %%xmm0 \n\t" // round 0 103 "add $16, %1 \n\t" // point to next round key 104 "subl $1, %0 \n\t" // normal rounds = nr - 1 105 "test %2, %2 \n\t" // mode? 106 "jz 2f \n\t" // 0 = decrypt 107 108 "1: \n\t" // encryption loop 109 "movdqu (%1), %%xmm1 \n\t" // load round key 110 AESENC xmm1_xmm0 "\n\t" // do round 111 "add $16, %1 \n\t" // point to next round key 112 "subl $1, %0 \n\t" // loop 113 "jnz 1b \n\t" 114 "movdqu (%1), %%xmm1 \n\t" // load round key 115 AESENCLAST xmm1_xmm0 "\n\t" // last round 116 "jmp 3f \n\t" 117 118 "2: \n\t" // decryption loop 119 "movdqu (%1), %%xmm1 \n\t" 120 AESDEC xmm1_xmm0 "\n\t" // do round 121 "add $16, %1 \n\t" 122 "subl $1, %0 \n\t" 123 "jnz 2b \n\t" 124 "movdqu (%1), %%xmm1 \n\t" // load round key 125 AESDECLAST xmm1_xmm0 "\n\t" // last round 126 127 "3: \n\t" 128 "movdqu %%xmm0, (%4) \n\t" // export output 129 : 130 : "r" (ctx->nr), "r" (ctx->rk), "r" (mode), "r" (input), "r" (output) 131 : "memory", "cc", "xmm0", "xmm1" ); 132 133 134 return( 0 ); 135 } 136 137 /* 138 * GCM multiplication: c = a times b in GF(2^128) 139 * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. 140 */ 141 void mbedtls_aesni_gcm_mult( unsigned char c[16], 142 const unsigned char a[16], 143 const unsigned char b[16] ) 144 { 145 unsigned char aa[16], bb[16], cc[16]; 146 size_t i; 147 148 /* The inputs are in big-endian order, so byte-reverse them */ 149 for( i = 0; i < 16; i++ ) 150 { 151 aa[i] = a[15 - i]; 152 bb[i] = b[15 - i]; 153 } 154 155 asm( "movdqu (%0), %%xmm0 \n\t" // a1:a0 156 "movdqu (%1), %%xmm1 \n\t" // b1:b0 157 158 /* 159 * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1 160 * using [CLMUL-WP] algorithm 1 (p. 13). 161 */ 162 "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0 163 "movdqa %%xmm1, %%xmm3 \n\t" // same 164 "movdqa %%xmm1, %%xmm4 \n\t" // same 165 PCLMULQDQ xmm0_xmm1 ",0x00 \n\t" // a0*b0 = c1:c0 166 PCLMULQDQ xmm0_xmm2 ",0x11 \n\t" // a1*b1 = d1:d0 167 PCLMULQDQ xmm0_xmm3 ",0x10 \n\t" // a0*b1 = e1:e0 168 PCLMULQDQ xmm0_xmm4 ",0x01 \n\t" // a1*b0 = f1:f0 169 "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0 170 "movdqa %%xmm4, %%xmm3 \n\t" // same 171 "psrldq $8, %%xmm4 \n\t" // 0:e1+f1 172 "pslldq $8, %%xmm3 \n\t" // e0+f0:0 173 "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1 174 "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0 175 176 /* 177 * Now shift the result one bit to the left, 178 * taking advantage of [CLMUL-WP] eq 27 (p. 20) 179 */ 180 "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0 181 "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2 182 "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1 183 "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1 184 "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63 185 "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63 186 "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63 187 "pslldq $8, %%xmm3 \n\t" // r0>>63:0 188 "pslldq $8, %%xmm4 \n\t" // r2>>63:0 189 "psrldq $8, %%xmm5 \n\t" // 0:r1>>63 190 "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1 191 "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1 192 "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63 193 194 /* 195 * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 196 * using [CLMUL-WP] algorithm 5 (p. 20). 197 * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted). 198 */ 199 /* Step 2 (1) */ 200 "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0 201 "movdqa %%xmm1, %%xmm4 \n\t" // same 202 "movdqa %%xmm1, %%xmm5 \n\t" // same 203 "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a 204 "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b 205 "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c 206 207 /* Step 2 (2) */ 208 "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b 209 "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c 210 "pslldq $8, %%xmm3 \n\t" // a+b+c:0 211 "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0 212 213 /* Steps 3 and 4 */ 214 "movdqa %%xmm1,%%xmm0 \n\t" // d:x0 215 "movdqa %%xmm1,%%xmm4 \n\t" // same 216 "movdqa %%xmm1,%%xmm5 \n\t" // same 217 "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0' 218 "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0' 219 "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0' 220 "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0' 221 "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0' 222 // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing 223 // bits carried from d. Now get those\t bits back in. 224 "movdqa %%xmm1,%%xmm3 \n\t" // d:x0 225 "movdqa %%xmm1,%%xmm4 \n\t" // same 226 "movdqa %%xmm1,%%xmm5 \n\t" // same 227 "psllq $63, %%xmm3 \n\t" // d<<63:stuff 228 "psllq $62, %%xmm4 \n\t" // d<<62:stuff 229 "psllq $57, %%xmm5 \n\t" // d<<57:stuff 230 "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff 231 "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff 232 "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d 233 "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0 234 "pxor %%xmm1, %%xmm0 \n\t" // h1:h0 235 "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0 236 237 "movdqu %%xmm0, (%2) \n\t" // done 238 : 239 : "r" (aa), "r" (bb), "r" (cc) 240 : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" ); 241 242 /* Now byte-reverse the outputs */ 243 for( i = 0; i < 16; i++ ) 244 c[i] = cc[15 - i]; 245 246 return; 247 } 248 249 /* 250 * Compute decryption round keys from encryption round keys 251 */ 252 void mbedtls_aesni_inverse_key( unsigned char *invkey, 253 const unsigned char *fwdkey, int nr ) 254 { 255 unsigned char *ik = invkey; 256 const unsigned char *fk = fwdkey + 16 * nr; 257 258 memcpy( ik, fk, 16 ); 259 260 for( fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16 ) 261 asm( "movdqu (%0), %%xmm0 \n\t" 262 AESIMC xmm0_xmm0 "\n\t" 263 "movdqu %%xmm0, (%1) \n\t" 264 : 265 : "r" (fk), "r" (ik) 266 : "memory", "xmm0" ); 267 268 memcpy( ik, fk, 16 ); 269 } 270 271 /* 272 * Key expansion, 128-bit case 273 */ 274 static void aesni_setkey_enc_128( unsigned char *rk, 275 const unsigned char *key ) 276 { 277 asm( "movdqu (%1), %%xmm0 \n\t" // copy the original key 278 "movdqu %%xmm0, (%0) \n\t" // as round key 0 279 "jmp 2f \n\t" // skip auxiliary routine 280 281 /* 282 * Finish generating the next round key. 283 * 284 * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff 285 * with X = rot( sub( r3 ) ) ^ RCON. 286 * 287 * On exit, xmm0 is r7:r6:r5:r4 288 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 289 * and those are written to the round key buffer. 290 */ 291 "1: \n\t" 292 "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X 293 "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4 294 "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0 295 "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4 296 "pslldq $4, %%xmm0 \n\t" // etc 297 "pxor %%xmm0, %%xmm1 \n\t" 298 "pslldq $4, %%xmm0 \n\t" 299 "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time! 300 "add $16, %0 \n\t" // point to next round key 301 "movdqu %%xmm0, (%0) \n\t" // write it 302 "ret \n\t" 303 304 /* Main "loop" */ 305 "2: \n\t" 306 AESKEYGENA xmm0_xmm1 ",0x01 \n\tcall 1b \n\t" 307 AESKEYGENA xmm0_xmm1 ",0x02 \n\tcall 1b \n\t" 308 AESKEYGENA xmm0_xmm1 ",0x04 \n\tcall 1b \n\t" 309 AESKEYGENA xmm0_xmm1 ",0x08 \n\tcall 1b \n\t" 310 AESKEYGENA xmm0_xmm1 ",0x10 \n\tcall 1b \n\t" 311 AESKEYGENA xmm0_xmm1 ",0x20 \n\tcall 1b \n\t" 312 AESKEYGENA xmm0_xmm1 ",0x40 \n\tcall 1b \n\t" 313 AESKEYGENA xmm0_xmm1 ",0x80 \n\tcall 1b \n\t" 314 AESKEYGENA xmm0_xmm1 ",0x1B \n\tcall 1b \n\t" 315 AESKEYGENA xmm0_xmm1 ",0x36 \n\tcall 1b \n\t" 316 : 317 : "r" (rk), "r" (key) 318 : "memory", "cc", "0" ); 319 } 320 321 /* 322 * Key expansion, 192-bit case 323 */ 324 static void aesni_setkey_enc_192( unsigned char *rk, 325 const unsigned char *key ) 326 { 327 asm( "movdqu (%1), %%xmm0 \n\t" // copy original round key 328 "movdqu %%xmm0, (%0) \n\t" 329 "add $16, %0 \n\t" 330 "movq 16(%1), %%xmm1 \n\t" 331 "movq %%xmm1, (%0) \n\t" 332 "add $8, %0 \n\t" 333 "jmp 2f \n\t" // skip auxiliary routine 334 335 /* 336 * Finish generating the next 6 quarter-keys. 337 * 338 * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 339 * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. 340 * 341 * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 342 * and those are written to the round key buffer. 343 */ 344 "1: \n\t" 345 "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X 346 "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4 347 "pslldq $4, %%xmm0 \n\t" // etc 348 "pxor %%xmm0, %%xmm2 \n\t" 349 "pslldq $4, %%xmm0 \n\t" 350 "pxor %%xmm0, %%xmm2 \n\t" 351 "pslldq $4, %%xmm0 \n\t" 352 "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6 353 "movdqu %%xmm0, (%0) \n\t" 354 "add $16, %0 \n\t" 355 "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9 356 "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10 357 "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0 358 "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10 359 "movq %%xmm1, (%0) \n\t" 360 "add $8, %0 \n\t" 361 "ret \n\t" 362 363 "2: \n\t" 364 AESKEYGENA xmm1_xmm2 ",0x01 \n\tcall 1b \n\t" 365 AESKEYGENA xmm1_xmm2 ",0x02 \n\tcall 1b \n\t" 366 AESKEYGENA xmm1_xmm2 ",0x04 \n\tcall 1b \n\t" 367 AESKEYGENA xmm1_xmm2 ",0x08 \n\tcall 1b \n\t" 368 AESKEYGENA xmm1_xmm2 ",0x10 \n\tcall 1b \n\t" 369 AESKEYGENA xmm1_xmm2 ",0x20 \n\tcall 1b \n\t" 370 AESKEYGENA xmm1_xmm2 ",0x40 \n\tcall 1b \n\t" 371 AESKEYGENA xmm1_xmm2 ",0x80 \n\tcall 1b \n\t" 372 373 : 374 : "r" (rk), "r" (key) 375 : "memory", "cc", "0" ); 376 } 377 378 /* 379 * Key expansion, 256-bit case 380 */ 381 static void aesni_setkey_enc_256( unsigned char *rk, 382 const unsigned char *key ) 383 { 384 asm( "movdqu (%1), %%xmm0 \n\t" 385 "movdqu %%xmm0, (%0) \n\t" 386 "add $16, %0 \n\t" 387 "movdqu 16(%1), %%xmm1 \n\t" 388 "movdqu %%xmm1, (%0) \n\t" 389 "jmp 2f \n\t" // skip auxiliary routine 390 391 /* 392 * Finish generating the next two round keys. 393 * 394 * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and 395 * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON 396 * 397 * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12 398 * and those have been written to the output buffer. 399 */ 400 "1: \n\t" 401 "pshufd $0xff, %%xmm2, %%xmm2 \n\t" 402 "pxor %%xmm0, %%xmm2 \n\t" 403 "pslldq $4, %%xmm0 \n\t" 404 "pxor %%xmm0, %%xmm2 \n\t" 405 "pslldq $4, %%xmm0 \n\t" 406 "pxor %%xmm0, %%xmm2 \n\t" 407 "pslldq $4, %%xmm0 \n\t" 408 "pxor %%xmm2, %%xmm0 \n\t" 409 "add $16, %0 \n\t" 410 "movdqu %%xmm0, (%0) \n\t" 411 412 /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) 413 * and proceed to generate next round key from there */ 414 AESKEYGENA xmm0_xmm2 ",0x00 \n\t" 415 "pshufd $0xaa, %%xmm2, %%xmm2 \n\t" 416 "pxor %%xmm1, %%xmm2 \n\t" 417 "pslldq $4, %%xmm1 \n\t" 418 "pxor %%xmm1, %%xmm2 \n\t" 419 "pslldq $4, %%xmm1 \n\t" 420 "pxor %%xmm1, %%xmm2 \n\t" 421 "pslldq $4, %%xmm1 \n\t" 422 "pxor %%xmm2, %%xmm1 \n\t" 423 "add $16, %0 \n\t" 424 "movdqu %%xmm1, (%0) \n\t" 425 "ret \n\t" 426 427 /* 428 * Main "loop" - Generating one more key than necessary, 429 * see definition of mbedtls_aes_context.buf 430 */ 431 "2: \n\t" 432 AESKEYGENA xmm1_xmm2 ",0x01 \n\tcall 1b \n\t" 433 AESKEYGENA xmm1_xmm2 ",0x02 \n\tcall 1b \n\t" 434 AESKEYGENA xmm1_xmm2 ",0x04 \n\tcall 1b \n\t" 435 AESKEYGENA xmm1_xmm2 ",0x08 \n\tcall 1b \n\t" 436 AESKEYGENA xmm1_xmm2 ",0x10 \n\tcall 1b \n\t" 437 AESKEYGENA xmm1_xmm2 ",0x20 \n\tcall 1b \n\t" 438 AESKEYGENA xmm1_xmm2 ",0x40 \n\tcall 1b \n\t" 439 : 440 : "r" (rk), "r" (key) 441 : "memory", "cc", "0" ); 442 } 443 444 /* 445 * Key expansion, wrapper 446 */ 447 int mbedtls_aesni_setkey_enc( unsigned char *rk, 448 const unsigned char *key, 449 size_t bits ) 450 { 451 switch( bits ) 452 { 453 case 128: aesni_setkey_enc_128( rk, key ); break; 454 case 192: aesni_setkey_enc_192( rk, key ); break; 455 case 256: aesni_setkey_enc_256( rk, key ); break; 456 default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH ); 457 } 458 459 return( 0 ); 460 } 461 462 #endif /* MBEDTLS_HAVE_X86_64 */ 463 464 #endif /* MBEDTLS_AESNI_C */ 465