1817466cbSJens Wiklander /* 2817466cbSJens Wiklander * AES-NI support functions 3817466cbSJens Wiklander * 47901324dSJerome Forissier * Copyright The Mbed TLS Contributors 57901324dSJerome Forissier * SPDX-License-Identifier: Apache-2.0 6817466cbSJens Wiklander * 7817466cbSJens Wiklander * Licensed under the Apache License, Version 2.0 (the "License"); you may 8817466cbSJens Wiklander * not use this file except in compliance with the License. 9817466cbSJens Wiklander * You may obtain a copy of the License at 10817466cbSJens Wiklander * 11817466cbSJens Wiklander * http://www.apache.org/licenses/LICENSE-2.0 12817466cbSJens Wiklander * 13817466cbSJens Wiklander * Unless required by applicable law or agreed to in writing, software 14817466cbSJens Wiklander * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 15817466cbSJens Wiklander * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16817466cbSJens Wiklander * See the License for the specific language governing permissions and 17817466cbSJens Wiklander * limitations under the License. 18817466cbSJens Wiklander */ 19817466cbSJens Wiklander 20817466cbSJens Wiklander /* 21*32b31808SJens Wiklander * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html 22*32b31808SJens Wiklander * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html 23817466cbSJens Wiklander */ 24817466cbSJens Wiklander 257901324dSJerome Forissier #include "common.h" 26817466cbSJens Wiklander 27817466cbSJens Wiklander #if defined(MBEDTLS_AESNI_C) 28817466cbSJens Wiklander 29*32b31808SJens Wiklander #include "aesni.h" 30817466cbSJens Wiklander 31817466cbSJens Wiklander #include <string.h> 32817466cbSJens Wiklander 33*32b31808SJens Wiklander #if defined(MBEDTLS_AESNI_HAVE_CODE) 34817466cbSJens Wiklander 35*32b31808SJens Wiklander #if MBEDTLS_AESNI_HAVE_CODE == 2 36*32b31808SJens Wiklander #if !defined(_WIN32) 37*32b31808SJens Wiklander #include <cpuid.h> 38*32b31808SJens Wiklander #endif 39*32b31808SJens Wiklander #include <immintrin.h> 40*32b31808SJens Wiklander #endif 41817466cbSJens Wiklander 42817466cbSJens Wiklander /* 43817466cbSJens Wiklander * AES-NI support detection routine 44817466cbSJens Wiklander */ 45817466cbSJens Wiklander int mbedtls_aesni_has_support(unsigned int what) 46817466cbSJens Wiklander { 47817466cbSJens Wiklander static int done = 0; 48817466cbSJens Wiklander static unsigned int c = 0; 49817466cbSJens Wiklander 50*32b31808SJens Wiklander if (!done) { 51*32b31808SJens Wiklander #if MBEDTLS_AESNI_HAVE_CODE == 2 52*32b31808SJens Wiklander static unsigned info[4] = { 0, 0, 0, 0 }; 53*32b31808SJens Wiklander #if defined(_MSC_VER) 54*32b31808SJens Wiklander __cpuid(info, 1); 55*32b31808SJens Wiklander #else 56*32b31808SJens Wiklander __cpuid(1, info[0], info[1], info[2], info[3]); 57*32b31808SJens Wiklander #endif 58*32b31808SJens Wiklander c = info[2]; 59*32b31808SJens Wiklander #else /* AESNI using asm */ 60817466cbSJens Wiklander asm ("movl $1, %%eax \n\t" 61817466cbSJens Wiklander "cpuid \n\t" 62817466cbSJens Wiklander : "=c" (c) 63817466cbSJens Wiklander : 64817466cbSJens Wiklander : "eax", "ebx", "edx"); 65*32b31808SJens Wiklander #endif /* MBEDTLS_AESNI_HAVE_CODE */ 66817466cbSJens Wiklander done = 1; 67817466cbSJens Wiklander } 68817466cbSJens Wiklander 69*32b31808SJens Wiklander return (c & what) != 0; 70817466cbSJens Wiklander } 71817466cbSJens Wiklander 72*32b31808SJens Wiklander #if MBEDTLS_AESNI_HAVE_CODE == 2 73*32b31808SJens Wiklander 74*32b31808SJens Wiklander /* 75*32b31808SJens Wiklander * AES-NI AES-ECB block en(de)cryption 76*32b31808SJens Wiklander */ 77*32b31808SJens Wiklander int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, 78*32b31808SJens Wiklander int mode, 79*32b31808SJens Wiklander const unsigned char input[16], 80*32b31808SJens Wiklander unsigned char output[16]) 81*32b31808SJens Wiklander { 82*32b31808SJens Wiklander const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset); 83*32b31808SJens Wiklander unsigned nr = ctx->nr; // Number of remaining rounds 84*32b31808SJens Wiklander 85*32b31808SJens Wiklander // Load round key 0 86*32b31808SJens Wiklander __m128i state; 87*32b31808SJens Wiklander memcpy(&state, input, 16); 88*32b31808SJens Wiklander state = _mm_xor_si128(state, rk[0]); // state ^= *rk; 89*32b31808SJens Wiklander ++rk; 90*32b31808SJens Wiklander --nr; 91*32b31808SJens Wiklander 92*32b31808SJens Wiklander if (mode == 0) { 93*32b31808SJens Wiklander while (nr != 0) { 94*32b31808SJens Wiklander state = _mm_aesdec_si128(state, *rk); 95*32b31808SJens Wiklander ++rk; 96*32b31808SJens Wiklander --nr; 97*32b31808SJens Wiklander } 98*32b31808SJens Wiklander state = _mm_aesdeclast_si128(state, *rk); 99*32b31808SJens Wiklander } else { 100*32b31808SJens Wiklander while (nr != 0) { 101*32b31808SJens Wiklander state = _mm_aesenc_si128(state, *rk); 102*32b31808SJens Wiklander ++rk; 103*32b31808SJens Wiklander --nr; 104*32b31808SJens Wiklander } 105*32b31808SJens Wiklander state = _mm_aesenclast_si128(state, *rk); 106*32b31808SJens Wiklander } 107*32b31808SJens Wiklander 108*32b31808SJens Wiklander memcpy(output, &state, 16); 109*32b31808SJens Wiklander return 0; 110*32b31808SJens Wiklander } 111*32b31808SJens Wiklander 112*32b31808SJens Wiklander /* 113*32b31808SJens Wiklander * GCM multiplication: c = a times b in GF(2^128) 114*32b31808SJens Wiklander * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. 115*32b31808SJens Wiklander */ 116*32b31808SJens Wiklander 117*32b31808SJens Wiklander static void gcm_clmul(const __m128i aa, const __m128i bb, 118*32b31808SJens Wiklander __m128i *cc, __m128i *dd) 119*32b31808SJens Wiklander { 120*32b31808SJens Wiklander /* 121*32b31808SJens Wiklander * Caryless multiplication dd:cc = aa * bb 122*32b31808SJens Wiklander * using [CLMUL-WP] algorithm 1 (p. 12). 123*32b31808SJens Wiklander */ 124*32b31808SJens Wiklander *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0 125*32b31808SJens Wiklander *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0 126*32b31808SJens Wiklander __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0 127*32b31808SJens Wiklander __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0 128*32b31808SJens Wiklander ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0 129*32b31808SJens Wiklander ee = ff; // e1+f1:e0+f0 130*32b31808SJens Wiklander ff = _mm_srli_si128(ff, 8); // 0:e1+f1 131*32b31808SJens Wiklander ee = _mm_slli_si128(ee, 8); // e0+f0:0 132*32b31808SJens Wiklander *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1 133*32b31808SJens Wiklander *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0 134*32b31808SJens Wiklander } 135*32b31808SJens Wiklander 136*32b31808SJens Wiklander static void gcm_shift(__m128i *cc, __m128i *dd) 137*32b31808SJens Wiklander { 138*32b31808SJens Wiklander /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left, 139*32b31808SJens Wiklander * taking advantage of [CLMUL-WP] eq 27 (p. 18). */ 140*32b31808SJens Wiklander // // *cc = r1:r0 141*32b31808SJens Wiklander // // *dd = r3:r2 142*32b31808SJens Wiklander __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1 143*32b31808SJens Wiklander __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1 144*32b31808SJens Wiklander __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63 145*32b31808SJens Wiklander __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63 146*32b31808SJens Wiklander __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63 147*32b31808SJens Wiklander cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0 148*32b31808SJens Wiklander dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63 149*32b31808SJens Wiklander 150*32b31808SJens Wiklander *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1 151*32b31808SJens Wiklander *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63 152*32b31808SJens Wiklander } 153*32b31808SJens Wiklander 154*32b31808SJens Wiklander static __m128i gcm_reduce(__m128i xx) 155*32b31808SJens Wiklander { 156*32b31808SJens Wiklander // // xx = x1:x0 157*32b31808SJens Wiklander /* [CLMUL-WP] Algorithm 5 Step 2 */ 158*32b31808SJens Wiklander __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a 159*32b31808SJens Wiklander __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b 160*32b31808SJens Wiklander __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c 161*32b31808SJens Wiklander __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0 162*32b31808SJens Wiklander return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0 163*32b31808SJens Wiklander } 164*32b31808SJens Wiklander 165*32b31808SJens Wiklander static __m128i gcm_mix(__m128i dx) 166*32b31808SJens Wiklander { 167*32b31808SJens Wiklander /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */ 168*32b31808SJens Wiklander __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0' 169*32b31808SJens Wiklander __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0' 170*32b31808SJens Wiklander __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0' 171*32b31808SJens Wiklander 172*32b31808SJens Wiklander // e0'+f0'+g0' is almost e0+f0+g0, except for some missing 173*32b31808SJens Wiklander // bits carried from d. Now get those bits back in. 174*32b31808SJens Wiklander __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff 175*32b31808SJens Wiklander __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff 176*32b31808SJens Wiklander __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff 177*32b31808SJens Wiklander __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d 178*32b31808SJens Wiklander 179*32b31808SJens Wiklander return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx); 180*32b31808SJens Wiklander } 181*32b31808SJens Wiklander 182*32b31808SJens Wiklander void mbedtls_aesni_gcm_mult(unsigned char c[16], 183*32b31808SJens Wiklander const unsigned char a[16], 184*32b31808SJens Wiklander const unsigned char b[16]) 185*32b31808SJens Wiklander { 186*32b31808SJens Wiklander __m128i aa, bb, cc, dd; 187*32b31808SJens Wiklander 188*32b31808SJens Wiklander /* The inputs are in big-endian order, so byte-reverse them */ 189*32b31808SJens Wiklander for (size_t i = 0; i < 16; i++) { 190*32b31808SJens Wiklander ((uint8_t *) &aa)[i] = a[15 - i]; 191*32b31808SJens Wiklander ((uint8_t *) &bb)[i] = b[15 - i]; 192*32b31808SJens Wiklander } 193*32b31808SJens Wiklander 194*32b31808SJens Wiklander gcm_clmul(aa, bb, &cc, &dd); 195*32b31808SJens Wiklander gcm_shift(&cc, &dd); 196*32b31808SJens Wiklander /* 197*32b31808SJens Wiklander * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 198*32b31808SJens Wiklander * using [CLMUL-WP] algorithm 5 (p. 18). 199*32b31808SJens Wiklander * Currently dd:cc holds x3:x2:x1:x0 (already shifted). 200*32b31808SJens Wiklander */ 201*32b31808SJens Wiklander __m128i dx = gcm_reduce(cc); 202*32b31808SJens Wiklander __m128i xh = gcm_mix(dx); 203*32b31808SJens Wiklander cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0 204*32b31808SJens Wiklander 205*32b31808SJens Wiklander /* Now byte-reverse the outputs */ 206*32b31808SJens Wiklander for (size_t i = 0; i < 16; i++) { 207*32b31808SJens Wiklander c[i] = ((uint8_t *) &cc)[15 - i]; 208*32b31808SJens Wiklander } 209*32b31808SJens Wiklander 210*32b31808SJens Wiklander return; 211*32b31808SJens Wiklander } 212*32b31808SJens Wiklander 213*32b31808SJens Wiklander /* 214*32b31808SJens Wiklander * Compute decryption round keys from encryption round keys 215*32b31808SJens Wiklander */ 216*32b31808SJens Wiklander void mbedtls_aesni_inverse_key(unsigned char *invkey, 217*32b31808SJens Wiklander const unsigned char *fwdkey, int nr) 218*32b31808SJens Wiklander { 219*32b31808SJens Wiklander __m128i *ik = (__m128i *) invkey; 220*32b31808SJens Wiklander const __m128i *fk = (const __m128i *) fwdkey + nr; 221*32b31808SJens Wiklander 222*32b31808SJens Wiklander *ik = *fk; 223*32b31808SJens Wiklander for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) { 224*32b31808SJens Wiklander *ik = _mm_aesimc_si128(*fk); 225*32b31808SJens Wiklander } 226*32b31808SJens Wiklander *ik = *fk; 227*32b31808SJens Wiklander } 228*32b31808SJens Wiklander 229*32b31808SJens Wiklander /* 230*32b31808SJens Wiklander * Key expansion, 128-bit case 231*32b31808SJens Wiklander */ 232*32b31808SJens Wiklander static __m128i aesni_set_rk_128(__m128i state, __m128i xword) 233*32b31808SJens Wiklander { 234*32b31808SJens Wiklander /* 235*32b31808SJens Wiklander * Finish generating the next round key. 236*32b31808SJens Wiklander * 237*32b31808SJens Wiklander * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff 238*32b31808SJens Wiklander * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST). 239*32b31808SJens Wiklander * 240*32b31808SJens Wiklander * On exit, xword is r7:r6:r5:r4 241*32b31808SJens Wiklander * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 242*32b31808SJens Wiklander * and this is returned, to be written to the round key buffer. 243*32b31808SJens Wiklander */ 244*32b31808SJens Wiklander xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X 245*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4 246*32b31808SJens Wiklander state = _mm_slli_si128(state, 4); // r2:r1:r0:0 247*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4 248*32b31808SJens Wiklander state = _mm_slli_si128(state, 4); // r1:r0:0:0 249*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4 250*32b31808SJens Wiklander state = _mm_slli_si128(state, 4); // r0:0:0:0 251*32b31808SJens Wiklander state = _mm_xor_si128(xword, state); // r7:r6:r5:r4 252*32b31808SJens Wiklander return state; 253*32b31808SJens Wiklander } 254*32b31808SJens Wiklander 255*32b31808SJens Wiklander static void aesni_setkey_enc_128(unsigned char *rk_bytes, 256*32b31808SJens Wiklander const unsigned char *key) 257*32b31808SJens Wiklander { 258*32b31808SJens Wiklander __m128i *rk = (__m128i *) rk_bytes; 259*32b31808SJens Wiklander 260*32b31808SJens Wiklander memcpy(&rk[0], key, 16); 261*32b31808SJens Wiklander rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01)); 262*32b31808SJens Wiklander rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02)); 263*32b31808SJens Wiklander rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04)); 264*32b31808SJens Wiklander rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08)); 265*32b31808SJens Wiklander rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10)); 266*32b31808SJens Wiklander rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20)); 267*32b31808SJens Wiklander rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40)); 268*32b31808SJens Wiklander rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80)); 269*32b31808SJens Wiklander rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B)); 270*32b31808SJens Wiklander rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36)); 271*32b31808SJens Wiklander } 272*32b31808SJens Wiklander 273*32b31808SJens Wiklander /* 274*32b31808SJens Wiklander * Key expansion, 192-bit case 275*32b31808SJens Wiklander */ 276*32b31808SJens Wiklander static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword, 277*32b31808SJens Wiklander unsigned char *rk) 278*32b31808SJens Wiklander { 279*32b31808SJens Wiklander /* 280*32b31808SJens Wiklander * Finish generating the next 6 quarter-keys. 281*32b31808SJens Wiklander * 282*32b31808SJens Wiklander * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4 283*32b31808SJens Wiklander * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON 284*32b31808SJens Wiklander * (obtained with AESKEYGENASSIST). 285*32b31808SJens Wiklander * 286*32b31808SJens Wiklander * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10 287*32b31808SJens Wiklander * and those are written to the round key buffer. 288*32b31808SJens Wiklander */ 289*32b31808SJens Wiklander xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X 290*32b31808SJens Wiklander xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0 291*32b31808SJens Wiklander *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0 292*32b31808SJens Wiklander xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0 293*32b31808SJens Wiklander *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0 294*32b31808SJens Wiklander xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0 295*32b31808SJens Wiklander *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0 296*32b31808SJens Wiklander xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0 297*32b31808SJens Wiklander *state0 = xword; // = r9:r8:r7:r6 298*32b31808SJens Wiklander 299*32b31808SJens Wiklander xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9 300*32b31808SJens Wiklander xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4 301*32b31808SJens Wiklander *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0 302*32b31808SJens Wiklander xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4 303*32b31808SJens Wiklander *state1 = xword; // = stuff:stuff:r11:r10 304*32b31808SJens Wiklander 305*32b31808SJens Wiklander /* Store state0 and the low half of state1 into rk, which is conceptually 306*32b31808SJens Wiklander * an array of 24-byte elements. Since 24 is not a multiple of 16, 307*32b31808SJens Wiklander * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */ 308*32b31808SJens Wiklander memcpy(rk, state0, 16); 309*32b31808SJens Wiklander memcpy(rk + 16, state1, 8); 310*32b31808SJens Wiklander } 311*32b31808SJens Wiklander 312*32b31808SJens Wiklander static void aesni_setkey_enc_192(unsigned char *rk, 313*32b31808SJens Wiklander const unsigned char *key) 314*32b31808SJens Wiklander { 315*32b31808SJens Wiklander /* First round: use original key */ 316*32b31808SJens Wiklander memcpy(rk, key, 24); 317*32b31808SJens Wiklander /* aes.c guarantees that rk is aligned on a 16-byte boundary. */ 318*32b31808SJens Wiklander __m128i state0 = ((__m128i *) rk)[0]; 319*32b31808SJens Wiklander __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1); 320*32b31808SJens Wiklander 321*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1); 322*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2); 323*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3); 324*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4); 325*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5); 326*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6); 327*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7); 328*32b31808SJens Wiklander aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8); 329*32b31808SJens Wiklander } 330*32b31808SJens Wiklander 331*32b31808SJens Wiklander /* 332*32b31808SJens Wiklander * Key expansion, 256-bit case 333*32b31808SJens Wiklander */ 334*32b31808SJens Wiklander static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword, 335*32b31808SJens Wiklander __m128i *rk0, __m128i *rk1) 336*32b31808SJens Wiklander { 337*32b31808SJens Wiklander /* 338*32b31808SJens Wiklander * Finish generating the next two round keys. 339*32b31808SJens Wiklander * 340*32b31808SJens Wiklander * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and 341*32b31808SJens Wiklander * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON 342*32b31808SJens Wiklander * (obtained with AESKEYGENASSIST). 343*32b31808SJens Wiklander * 344*32b31808SJens Wiklander * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12 345*32b31808SJens Wiklander */ 346*32b31808SJens Wiklander xword = _mm_shuffle_epi32(xword, 0xff); 347*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state0); 348*32b31808SJens Wiklander state0 = _mm_slli_si128(state0, 4); 349*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state0); 350*32b31808SJens Wiklander state0 = _mm_slli_si128(state0, 4); 351*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state0); 352*32b31808SJens Wiklander state0 = _mm_slli_si128(state0, 4); 353*32b31808SJens Wiklander state0 = _mm_xor_si128(state0, xword); 354*32b31808SJens Wiklander *rk0 = state0; 355*32b31808SJens Wiklander 356*32b31808SJens Wiklander /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 ) 357*32b31808SJens Wiklander * and proceed to generate next round key from there */ 358*32b31808SJens Wiklander xword = _mm_aeskeygenassist_si128(state0, 0x00); 359*32b31808SJens Wiklander xword = _mm_shuffle_epi32(xword, 0xaa); 360*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state1); 361*32b31808SJens Wiklander state1 = _mm_slli_si128(state1, 4); 362*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state1); 363*32b31808SJens Wiklander state1 = _mm_slli_si128(state1, 4); 364*32b31808SJens Wiklander xword = _mm_xor_si128(xword, state1); 365*32b31808SJens Wiklander state1 = _mm_slli_si128(state1, 4); 366*32b31808SJens Wiklander state1 = _mm_xor_si128(state1, xword); 367*32b31808SJens Wiklander *rk1 = state1; 368*32b31808SJens Wiklander } 369*32b31808SJens Wiklander 370*32b31808SJens Wiklander static void aesni_setkey_enc_256(unsigned char *rk_bytes, 371*32b31808SJens Wiklander const unsigned char *key) 372*32b31808SJens Wiklander { 373*32b31808SJens Wiklander __m128i *rk = (__m128i *) rk_bytes; 374*32b31808SJens Wiklander 375*32b31808SJens Wiklander memcpy(&rk[0], key, 16); 376*32b31808SJens Wiklander memcpy(&rk[1], key + 16, 16); 377*32b31808SJens Wiklander 378*32b31808SJens Wiklander /* 379*32b31808SJens Wiklander * Main "loop" - Generating one more key than necessary, 380*32b31808SJens Wiklander * see definition of mbedtls_aes_context.buf 381*32b31808SJens Wiklander */ 382*32b31808SJens Wiklander aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]); 383*32b31808SJens Wiklander aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]); 384*32b31808SJens Wiklander aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]); 385*32b31808SJens Wiklander aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]); 386*32b31808SJens Wiklander aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]); 387*32b31808SJens Wiklander aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]); 388*32b31808SJens Wiklander aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]); 389*32b31808SJens Wiklander } 390*32b31808SJens Wiklander 391*32b31808SJens Wiklander #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */ 392*32b31808SJens Wiklander 393*32b31808SJens Wiklander #if defined(__has_feature) 394*32b31808SJens Wiklander #if __has_feature(memory_sanitizer) 395*32b31808SJens Wiklander #warning \ 396*32b31808SJens Wiklander "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code." 397*32b31808SJens Wiklander #endif 398*32b31808SJens Wiklander #endif 399*32b31808SJens Wiklander 400817466cbSJens Wiklander /* 401817466cbSJens Wiklander * Binutils needs to be at least 2.19 to support AES-NI instructions. 402817466cbSJens Wiklander * Unfortunately, a lot of users have a lower version now (2014-04). 403817466cbSJens Wiklander * Emit bytecode directly in order to support "old" version of gas. 404817466cbSJens Wiklander * 405817466cbSJens Wiklander * Opcodes from the Intel architecture reference manual, vol. 3. 406817466cbSJens Wiklander * We always use registers, so we don't need prefixes for memory operands. 407817466cbSJens Wiklander * Operand macros are in gas order (src, dst) as opposed to Intel order 408817466cbSJens Wiklander * (dst, src) in order to blend better into the surrounding assembly code. 409817466cbSJens Wiklander */ 410*32b31808SJens Wiklander #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t" 411*32b31808SJens Wiklander #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t" 412*32b31808SJens Wiklander #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t" 413*32b31808SJens Wiklander #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t" 414*32b31808SJens Wiklander #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t" 415*32b31808SJens Wiklander #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t" 416*32b31808SJens Wiklander #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t" 417817466cbSJens Wiklander 418817466cbSJens Wiklander #define xmm0_xmm0 "0xC0" 419817466cbSJens Wiklander #define xmm0_xmm1 "0xC8" 420817466cbSJens Wiklander #define xmm0_xmm2 "0xD0" 421817466cbSJens Wiklander #define xmm0_xmm3 "0xD8" 422817466cbSJens Wiklander #define xmm0_xmm4 "0xE0" 423817466cbSJens Wiklander #define xmm1_xmm0 "0xC1" 424817466cbSJens Wiklander #define xmm1_xmm2 "0xD1" 425817466cbSJens Wiklander 426817466cbSJens Wiklander /* 427817466cbSJens Wiklander * AES-NI AES-ECB block en(de)cryption 428817466cbSJens Wiklander */ 429817466cbSJens Wiklander int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, 430817466cbSJens Wiklander int mode, 431817466cbSJens Wiklander const unsigned char input[16], 432817466cbSJens Wiklander unsigned char output[16]) 433817466cbSJens Wiklander { 434817466cbSJens Wiklander asm ("movdqu (%3), %%xmm0 \n\t" // load input 435817466cbSJens Wiklander "movdqu (%1), %%xmm1 \n\t" // load round key 0 436817466cbSJens Wiklander "pxor %%xmm1, %%xmm0 \n\t" // round 0 437817466cbSJens Wiklander "add $16, %1 \n\t" // point to next round key 438817466cbSJens Wiklander "subl $1, %0 \n\t" // normal rounds = nr - 1 439817466cbSJens Wiklander "test %2, %2 \n\t" // mode? 440817466cbSJens Wiklander "jz 2f \n\t" // 0 = decrypt 441817466cbSJens Wiklander 442817466cbSJens Wiklander "1: \n\t" // encryption loop 443817466cbSJens Wiklander "movdqu (%1), %%xmm1 \n\t" // load round key 444*32b31808SJens Wiklander AESENC(xmm1_xmm0) // do round 445817466cbSJens Wiklander "add $16, %1 \n\t" // point to next round key 446817466cbSJens Wiklander "subl $1, %0 \n\t" // loop 447817466cbSJens Wiklander "jnz 1b \n\t" 448817466cbSJens Wiklander "movdqu (%1), %%xmm1 \n\t" // load round key 449*32b31808SJens Wiklander AESENCLAST(xmm1_xmm0) // last round 450817466cbSJens Wiklander "jmp 3f \n\t" 451817466cbSJens Wiklander 452817466cbSJens Wiklander "2: \n\t" // decryption loop 453817466cbSJens Wiklander "movdqu (%1), %%xmm1 \n\t" 454*32b31808SJens Wiklander AESDEC(xmm1_xmm0) // do round 455817466cbSJens Wiklander "add $16, %1 \n\t" 456817466cbSJens Wiklander "subl $1, %0 \n\t" 457817466cbSJens Wiklander "jnz 2b \n\t" 458817466cbSJens Wiklander "movdqu (%1), %%xmm1 \n\t" // load round key 459*32b31808SJens Wiklander AESDECLAST(xmm1_xmm0) // last round 460817466cbSJens Wiklander 461817466cbSJens Wiklander "3: \n\t" 462817466cbSJens Wiklander "movdqu %%xmm0, (%4) \n\t" // export output 463817466cbSJens Wiklander : 464*32b31808SJens Wiklander : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output) 465817466cbSJens Wiklander : "memory", "cc", "xmm0", "xmm1"); 466817466cbSJens Wiklander 467817466cbSJens Wiklander 468*32b31808SJens Wiklander return 0; 469817466cbSJens Wiklander } 470817466cbSJens Wiklander 471817466cbSJens Wiklander /* 472817466cbSJens Wiklander * GCM multiplication: c = a times b in GF(2^128) 473817466cbSJens Wiklander * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. 474817466cbSJens Wiklander */ 475817466cbSJens Wiklander void mbedtls_aesni_gcm_mult(unsigned char c[16], 476817466cbSJens Wiklander const unsigned char a[16], 477817466cbSJens Wiklander const unsigned char b[16]) 478817466cbSJens Wiklander { 479817466cbSJens Wiklander unsigned char aa[16], bb[16], cc[16]; 480817466cbSJens Wiklander size_t i; 481817466cbSJens Wiklander 482817466cbSJens Wiklander /* The inputs are in big-endian order, so byte-reverse them */ 483*32b31808SJens Wiklander for (i = 0; i < 16; i++) { 484817466cbSJens Wiklander aa[i] = a[15 - i]; 485817466cbSJens Wiklander bb[i] = b[15 - i]; 486817466cbSJens Wiklander } 487817466cbSJens Wiklander 488817466cbSJens Wiklander asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0 489817466cbSJens Wiklander "movdqu (%1), %%xmm1 \n\t" // b1:b0 490817466cbSJens Wiklander 491817466cbSJens Wiklander /* 492817466cbSJens Wiklander * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1 493*32b31808SJens Wiklander * using [CLMUL-WP] algorithm 1 (p. 12). 494817466cbSJens Wiklander */ 495817466cbSJens Wiklander "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0 496817466cbSJens Wiklander "movdqa %%xmm1, %%xmm3 \n\t" // same 497817466cbSJens Wiklander "movdqa %%xmm1, %%xmm4 \n\t" // same 498*32b31808SJens Wiklander PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0 499*32b31808SJens Wiklander PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0 500*32b31808SJens Wiklander PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0 501*32b31808SJens Wiklander PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0 502817466cbSJens Wiklander "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0 503817466cbSJens Wiklander "movdqa %%xmm4, %%xmm3 \n\t" // same 504817466cbSJens Wiklander "psrldq $8, %%xmm4 \n\t" // 0:e1+f1 505817466cbSJens Wiklander "pslldq $8, %%xmm3 \n\t" // e0+f0:0 506817466cbSJens Wiklander "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1 507817466cbSJens Wiklander "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0 508817466cbSJens Wiklander 509817466cbSJens Wiklander /* 510817466cbSJens Wiklander * Now shift the result one bit to the left, 511*32b31808SJens Wiklander * taking advantage of [CLMUL-WP] eq 27 (p. 18) 512817466cbSJens Wiklander */ 513817466cbSJens Wiklander "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0 514817466cbSJens Wiklander "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2 515817466cbSJens Wiklander "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1 516817466cbSJens Wiklander "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1 517817466cbSJens Wiklander "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63 518817466cbSJens Wiklander "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63 519817466cbSJens Wiklander "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63 520817466cbSJens Wiklander "pslldq $8, %%xmm3 \n\t" // r0>>63:0 521817466cbSJens Wiklander "pslldq $8, %%xmm4 \n\t" // r2>>63:0 522817466cbSJens Wiklander "psrldq $8, %%xmm5 \n\t" // 0:r1>>63 523817466cbSJens Wiklander "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1 524817466cbSJens Wiklander "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1 525817466cbSJens Wiklander "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63 526817466cbSJens Wiklander 527817466cbSJens Wiklander /* 528817466cbSJens Wiklander * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 529*32b31808SJens Wiklander * using [CLMUL-WP] algorithm 5 (p. 18). 530817466cbSJens Wiklander * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted). 531817466cbSJens Wiklander */ 532817466cbSJens Wiklander /* Step 2 (1) */ 533817466cbSJens Wiklander "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0 534817466cbSJens Wiklander "movdqa %%xmm1, %%xmm4 \n\t" // same 535817466cbSJens Wiklander "movdqa %%xmm1, %%xmm5 \n\t" // same 536817466cbSJens Wiklander "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a 537817466cbSJens Wiklander "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b 538817466cbSJens Wiklander "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c 539817466cbSJens Wiklander 540817466cbSJens Wiklander /* Step 2 (2) */ 541817466cbSJens Wiklander "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b 542817466cbSJens Wiklander "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c 543817466cbSJens Wiklander "pslldq $8, %%xmm3 \n\t" // a+b+c:0 544817466cbSJens Wiklander "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0 545817466cbSJens Wiklander 546817466cbSJens Wiklander /* Steps 3 and 4 */ 547817466cbSJens Wiklander "movdqa %%xmm1,%%xmm0 \n\t" // d:x0 548817466cbSJens Wiklander "movdqa %%xmm1,%%xmm4 \n\t" // same 549817466cbSJens Wiklander "movdqa %%xmm1,%%xmm5 \n\t" // same 550817466cbSJens Wiklander "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0' 551817466cbSJens Wiklander "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0' 552817466cbSJens Wiklander "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0' 553817466cbSJens Wiklander "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0' 554817466cbSJens Wiklander "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0' 555817466cbSJens Wiklander // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing 556817466cbSJens Wiklander // bits carried from d. Now get those\t bits back in. 557817466cbSJens Wiklander "movdqa %%xmm1,%%xmm3 \n\t" // d:x0 558817466cbSJens Wiklander "movdqa %%xmm1,%%xmm4 \n\t" // same 559817466cbSJens Wiklander "movdqa %%xmm1,%%xmm5 \n\t" // same 560817466cbSJens Wiklander "psllq $63, %%xmm3 \n\t" // d<<63:stuff 561817466cbSJens Wiklander "psllq $62, %%xmm4 \n\t" // d<<62:stuff 562817466cbSJens Wiklander "psllq $57, %%xmm5 \n\t" // d<<57:stuff 563817466cbSJens Wiklander "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff 564817466cbSJens Wiklander "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff 565817466cbSJens Wiklander "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d 566817466cbSJens Wiklander "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0 567817466cbSJens Wiklander "pxor %%xmm1, %%xmm0 \n\t" // h1:h0 568817466cbSJens Wiklander "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0 569817466cbSJens Wiklander 570817466cbSJens Wiklander "movdqu %%xmm0, (%2) \n\t" // done 571817466cbSJens Wiklander : 572817466cbSJens Wiklander : "r" (aa), "r" (bb), "r" (cc) 573817466cbSJens Wiklander : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5"); 574817466cbSJens Wiklander 575817466cbSJens Wiklander /* Now byte-reverse the outputs */ 576*32b31808SJens Wiklander for (i = 0; i < 16; i++) { 577817466cbSJens Wiklander c[i] = cc[15 - i]; 578*32b31808SJens Wiklander } 579817466cbSJens Wiklander 580817466cbSJens Wiklander return; 581817466cbSJens Wiklander } 582817466cbSJens Wiklander 583817466cbSJens Wiklander /* 584817466cbSJens Wiklander * Compute decryption round keys from encryption round keys 585817466cbSJens Wiklander */ 586817466cbSJens Wiklander void mbedtls_aesni_inverse_key(unsigned char *invkey, 587817466cbSJens Wiklander const unsigned char *fwdkey, int nr) 588817466cbSJens Wiklander { 589817466cbSJens Wiklander unsigned char *ik = invkey; 590817466cbSJens Wiklander const unsigned char *fk = fwdkey + 16 * nr; 591817466cbSJens Wiklander 592817466cbSJens Wiklander memcpy(ik, fk, 16); 593817466cbSJens Wiklander 594*32b31808SJens Wiklander for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) { 595817466cbSJens Wiklander asm ("movdqu (%0), %%xmm0 \n\t" 596*32b31808SJens Wiklander AESIMC(xmm0_xmm0) 597817466cbSJens Wiklander "movdqu %%xmm0, (%1) \n\t" 598817466cbSJens Wiklander : 599817466cbSJens Wiklander : "r" (fk), "r" (ik) 600817466cbSJens Wiklander : "memory", "xmm0"); 601*32b31808SJens Wiklander } 602817466cbSJens Wiklander 603817466cbSJens Wiklander memcpy(ik, fk, 16); 604817466cbSJens Wiklander } 605817466cbSJens Wiklander 606817466cbSJens Wiklander /* 607817466cbSJens Wiklander * Key expansion, 128-bit case 608817466cbSJens Wiklander */ 609817466cbSJens Wiklander static void aesni_setkey_enc_128(unsigned char *rk, 610817466cbSJens Wiklander const unsigned char *key) 611817466cbSJens Wiklander { 612817466cbSJens Wiklander asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key 613817466cbSJens Wiklander "movdqu %%xmm0, (%0) \n\t" // as round key 0 614817466cbSJens Wiklander "jmp 2f \n\t" // skip auxiliary routine 615817466cbSJens Wiklander 616817466cbSJens Wiklander /* 617817466cbSJens Wiklander * Finish generating the next round key. 618817466cbSJens Wiklander * 619817466cbSJens Wiklander * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff 620817466cbSJens Wiklander * with X = rot( sub( r3 ) ) ^ RCON. 621817466cbSJens Wiklander * 622817466cbSJens Wiklander * On exit, xmm0 is r7:r6:r5:r4 623817466cbSJens Wiklander * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 624817466cbSJens Wiklander * and those are written to the round key buffer. 625817466cbSJens Wiklander */ 626817466cbSJens Wiklander "1: \n\t" 627817466cbSJens Wiklander "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X 628817466cbSJens Wiklander "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4 629817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0 630817466cbSJens Wiklander "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4 631817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" // etc 632817466cbSJens Wiklander "pxor %%xmm0, %%xmm1 \n\t" 633817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" 634817466cbSJens Wiklander "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time! 635817466cbSJens Wiklander "add $16, %0 \n\t" // point to next round key 636817466cbSJens Wiklander "movdqu %%xmm0, (%0) \n\t" // write it 637817466cbSJens Wiklander "ret \n\t" 638817466cbSJens Wiklander 639817466cbSJens Wiklander /* Main "loop" */ 640817466cbSJens Wiklander "2: \n\t" 641*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t" 642*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t" 643*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t" 644*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t" 645*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t" 646*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t" 647*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t" 648*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t" 649*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t" 650*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t" 651817466cbSJens Wiklander : 652817466cbSJens Wiklander : "r" (rk), "r" (key) 653817466cbSJens Wiklander : "memory", "cc", "0"); 654817466cbSJens Wiklander } 655817466cbSJens Wiklander 656817466cbSJens Wiklander /* 657817466cbSJens Wiklander * Key expansion, 192-bit case 658817466cbSJens Wiklander */ 659817466cbSJens Wiklander static void aesni_setkey_enc_192(unsigned char *rk, 660817466cbSJens Wiklander const unsigned char *key) 661817466cbSJens Wiklander { 662817466cbSJens Wiklander asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key 663817466cbSJens Wiklander "movdqu %%xmm0, (%0) \n\t" 664817466cbSJens Wiklander "add $16, %0 \n\t" 665817466cbSJens Wiklander "movq 16(%1), %%xmm1 \n\t" 666817466cbSJens Wiklander "movq %%xmm1, (%0) \n\t" 667817466cbSJens Wiklander "add $8, %0 \n\t" 668817466cbSJens Wiklander "jmp 2f \n\t" // skip auxiliary routine 669817466cbSJens Wiklander 670817466cbSJens Wiklander /* 671817466cbSJens Wiklander * Finish generating the next 6 quarter-keys. 672817466cbSJens Wiklander * 673817466cbSJens Wiklander * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 674817466cbSJens Wiklander * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. 675817466cbSJens Wiklander * 676817466cbSJens Wiklander * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 677817466cbSJens Wiklander * and those are written to the round key buffer. 678817466cbSJens Wiklander */ 679817466cbSJens Wiklander "1: \n\t" 680817466cbSJens Wiklander "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X 681817466cbSJens Wiklander "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4 682817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" // etc 683817466cbSJens Wiklander "pxor %%xmm0, %%xmm2 \n\t" 684817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" 685817466cbSJens Wiklander "pxor %%xmm0, %%xmm2 \n\t" 686817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" 687817466cbSJens Wiklander "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6 688817466cbSJens Wiklander "movdqu %%xmm0, (%0) \n\t" 689817466cbSJens Wiklander "add $16, %0 \n\t" 690817466cbSJens Wiklander "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9 691817466cbSJens Wiklander "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10 692817466cbSJens Wiklander "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0 693817466cbSJens Wiklander "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10 694817466cbSJens Wiklander "movq %%xmm1, (%0) \n\t" 695817466cbSJens Wiklander "add $8, %0 \n\t" 696817466cbSJens Wiklander "ret \n\t" 697817466cbSJens Wiklander 698817466cbSJens Wiklander "2: \n\t" 699*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t" 700*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t" 701*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t" 702*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t" 703*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t" 704*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t" 705*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t" 706*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t" 707817466cbSJens Wiklander 708817466cbSJens Wiklander : 709817466cbSJens Wiklander : "r" (rk), "r" (key) 710817466cbSJens Wiklander : "memory", "cc", "0"); 711817466cbSJens Wiklander } 712817466cbSJens Wiklander 713817466cbSJens Wiklander /* 714817466cbSJens Wiklander * Key expansion, 256-bit case 715817466cbSJens Wiklander */ 716817466cbSJens Wiklander static void aesni_setkey_enc_256(unsigned char *rk, 717817466cbSJens Wiklander const unsigned char *key) 718817466cbSJens Wiklander { 719817466cbSJens Wiklander asm ("movdqu (%1), %%xmm0 \n\t" 720817466cbSJens Wiklander "movdqu %%xmm0, (%0) \n\t" 721817466cbSJens Wiklander "add $16, %0 \n\t" 722817466cbSJens Wiklander "movdqu 16(%1), %%xmm1 \n\t" 723817466cbSJens Wiklander "movdqu %%xmm1, (%0) \n\t" 724817466cbSJens Wiklander "jmp 2f \n\t" // skip auxiliary routine 725817466cbSJens Wiklander 726817466cbSJens Wiklander /* 727817466cbSJens Wiklander * Finish generating the next two round keys. 728817466cbSJens Wiklander * 729817466cbSJens Wiklander * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and 730817466cbSJens Wiklander * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON 731817466cbSJens Wiklander * 732817466cbSJens Wiklander * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12 733817466cbSJens Wiklander * and those have been written to the output buffer. 734817466cbSJens Wiklander */ 735817466cbSJens Wiklander "1: \n\t" 736817466cbSJens Wiklander "pshufd $0xff, %%xmm2, %%xmm2 \n\t" 737817466cbSJens Wiklander "pxor %%xmm0, %%xmm2 \n\t" 738817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" 739817466cbSJens Wiklander "pxor %%xmm0, %%xmm2 \n\t" 740817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" 741817466cbSJens Wiklander "pxor %%xmm0, %%xmm2 \n\t" 742817466cbSJens Wiklander "pslldq $4, %%xmm0 \n\t" 743817466cbSJens Wiklander "pxor %%xmm2, %%xmm0 \n\t" 744817466cbSJens Wiklander "add $16, %0 \n\t" 745817466cbSJens Wiklander "movdqu %%xmm0, (%0) \n\t" 746817466cbSJens Wiklander 747817466cbSJens Wiklander /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) 748817466cbSJens Wiklander * and proceed to generate next round key from there */ 749*32b31808SJens Wiklander AESKEYGENA(xmm0_xmm2, "0x00") 750817466cbSJens Wiklander "pshufd $0xaa, %%xmm2, %%xmm2 \n\t" 751817466cbSJens Wiklander "pxor %%xmm1, %%xmm2 \n\t" 752817466cbSJens Wiklander "pslldq $4, %%xmm1 \n\t" 753817466cbSJens Wiklander "pxor %%xmm1, %%xmm2 \n\t" 754817466cbSJens Wiklander "pslldq $4, %%xmm1 \n\t" 755817466cbSJens Wiklander "pxor %%xmm1, %%xmm2 \n\t" 756817466cbSJens Wiklander "pslldq $4, %%xmm1 \n\t" 757817466cbSJens Wiklander "pxor %%xmm2, %%xmm1 \n\t" 758817466cbSJens Wiklander "add $16, %0 \n\t" 759817466cbSJens Wiklander "movdqu %%xmm1, (%0) \n\t" 760817466cbSJens Wiklander "ret \n\t" 761817466cbSJens Wiklander 762817466cbSJens Wiklander /* 763817466cbSJens Wiklander * Main "loop" - Generating one more key than necessary, 764817466cbSJens Wiklander * see definition of mbedtls_aes_context.buf 765817466cbSJens Wiklander */ 766817466cbSJens Wiklander "2: \n\t" 767*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t" 768*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t" 769*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t" 770*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t" 771*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t" 772*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t" 773*32b31808SJens Wiklander AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t" 774817466cbSJens Wiklander : 775817466cbSJens Wiklander : "r" (rk), "r" (key) 776817466cbSJens Wiklander : "memory", "cc", "0"); 777817466cbSJens Wiklander } 778817466cbSJens Wiklander 779*32b31808SJens Wiklander #endif /* MBEDTLS_AESNI_HAVE_CODE */ 780*32b31808SJens Wiklander 781817466cbSJens Wiklander /* 782817466cbSJens Wiklander * Key expansion, wrapper 783817466cbSJens Wiklander */ 784817466cbSJens Wiklander int mbedtls_aesni_setkey_enc(unsigned char *rk, 785817466cbSJens Wiklander const unsigned char *key, 786817466cbSJens Wiklander size_t bits) 787817466cbSJens Wiklander { 788*32b31808SJens Wiklander switch (bits) { 789817466cbSJens Wiklander case 128: aesni_setkey_enc_128(rk, key); break; 790817466cbSJens Wiklander case 192: aesni_setkey_enc_192(rk, key); break; 791817466cbSJens Wiklander case 256: aesni_setkey_enc_256(rk, key); break; 792*32b31808SJens Wiklander default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; 793817466cbSJens Wiklander } 794817466cbSJens Wiklander 795*32b31808SJens Wiklander return 0; 796817466cbSJens Wiklander } 797817466cbSJens Wiklander 798*32b31808SJens Wiklander #endif /* MBEDTLS_AESNI_HAVE_CODE */ 799817466cbSJens Wiklander 800817466cbSJens Wiklander #endif /* MBEDTLS_AESNI_C */ 801