xref: /optee_os/ldelf/ta_elf.c (revision e84a7da412e39afa3c71b569d07997ea455dae28)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2019, Linaro Limited
4  * Copyright (c) 2020, Arm Limited
5  */
6 
7 #include <assert.h>
8 #include <config.h>
9 #include <confine_array_index.h>
10 #include <ctype.h>
11 #include <elf32.h>
12 #include <elf64.h>
13 #include <elf_common.h>
14 #include <ldelf.h>
15 #include <link.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string_ext.h>
19 #include <string.h>
20 #include <tee_api_types.h>
21 #include <tee_internal_api_extensions.h>
22 #include <unw/unwind.h>
23 #include <user_ta_header.h>
24 #include <util.h>
25 
26 #include "sys.h"
27 #include "ta_elf.h"
28 
29 /*
30  * Layout of a 32-bit struct dl_phdr_info for a 64-bit ldelf to access a 32-bit
31  * TA
32  */
33 struct dl_phdr_info32 {
34 	uint32_t dlpi_addr;
35 	uint32_t dlpi_name;
36 	uint32_t dlpi_phdr;
37 	uint16_t dlpi_phnum;
38 	uint64_t dlpi_adds;
39 	uint64_t dlpi_subs;
40 	uint32_t dlpi_tls_modid;
41 	uint32_t dlpi_tls_data;
42 };
43 
44 static vaddr_t ta_stack;
45 static vaddr_t ta_stack_size;
46 
47 struct ta_elf_queue main_elf_queue = TAILQ_HEAD_INITIALIZER(main_elf_queue);
48 
49 /*
50  * Main application is always ID 1, shared libraries with TLS take IDs 2 and
51  * above
52  */
53 static void assign_tls_mod_id(struct ta_elf *elf)
54 {
55 	static size_t last_tls_mod_id = 1;
56 
57 	if (elf->is_main)
58 		assert(last_tls_mod_id == 1); /* Main always comes first */
59 	elf->tls_mod_id = last_tls_mod_id++;
60 }
61 
62 static struct ta_elf *queue_elf_helper(const TEE_UUID *uuid)
63 {
64 	struct ta_elf *elf = calloc(1, sizeof(*elf));
65 
66 	if (!elf)
67 		return NULL;
68 
69 	TAILQ_INIT(&elf->segs);
70 
71 	elf->uuid = *uuid;
72 	TAILQ_INSERT_TAIL(&main_elf_queue, elf, link);
73 	return elf;
74 }
75 
76 static struct ta_elf *queue_elf(const TEE_UUID *uuid)
77 {
78 	struct ta_elf *elf = ta_elf_find_elf(uuid);
79 
80 	if (elf)
81 		return NULL;
82 
83 	elf = queue_elf_helper(uuid);
84 	if (!elf)
85 		err(TEE_ERROR_OUT_OF_MEMORY, "queue_elf_helper");
86 
87 	return elf;
88 }
89 
90 struct ta_elf *ta_elf_find_elf(const TEE_UUID *uuid)
91 {
92 	struct ta_elf *elf = NULL;
93 
94 	TAILQ_FOREACH(elf, &main_elf_queue, link)
95 		if (!memcmp(uuid, &elf->uuid, sizeof(*uuid)))
96 			return elf;
97 
98 	return NULL;
99 }
100 
101 static TEE_Result e32_parse_ehdr(struct ta_elf *elf, Elf32_Ehdr *ehdr)
102 {
103 	if (ehdr->e_ident[EI_VERSION] != EV_CURRENT ||
104 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
105 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
106 	    ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE ||
107 	    ehdr->e_type != ET_DYN || ehdr->e_machine != EM_ARM ||
108 	    (ehdr->e_flags & EF_ARM_ABIMASK) != EF_ARM_ABI_VERSION ||
109 #ifndef CFG_WITH_VFP
110 	    (ehdr->e_flags & EF_ARM_ABI_FLOAT_HARD) ||
111 #endif
112 	    ehdr->e_phentsize != sizeof(Elf32_Phdr) ||
113 	    ehdr->e_shentsize != sizeof(Elf32_Shdr))
114 		return TEE_ERROR_BAD_FORMAT;
115 
116 	elf->is_32bit = true;
117 	elf->e_entry = ehdr->e_entry;
118 	elf->e_phoff = ehdr->e_phoff;
119 	elf->e_shoff = ehdr->e_shoff;
120 	elf->e_phnum = ehdr->e_phnum;
121 	elf->e_shnum = ehdr->e_shnum;
122 	elf->e_phentsize = ehdr->e_phentsize;
123 	elf->e_shentsize = ehdr->e_shentsize;
124 
125 	return TEE_SUCCESS;
126 }
127 
128 #ifdef ARM64
129 static TEE_Result e64_parse_ehdr(struct ta_elf *elf, Elf64_Ehdr *ehdr)
130 {
131 	if (ehdr->e_ident[EI_VERSION] != EV_CURRENT ||
132 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
133 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
134 	    ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE ||
135 	    ehdr->e_type != ET_DYN || ehdr->e_machine != EM_AARCH64 ||
136 	    ehdr->e_flags || ehdr->e_phentsize != sizeof(Elf64_Phdr) ||
137 	    ehdr->e_shentsize != sizeof(Elf64_Shdr))
138 		return TEE_ERROR_BAD_FORMAT;
139 
140 
141 	elf->is_32bit = false;
142 	elf->e_entry = ehdr->e_entry;
143 	elf->e_phoff = ehdr->e_phoff;
144 	elf->e_shoff = ehdr->e_shoff;
145 	elf->e_phnum = ehdr->e_phnum;
146 	elf->e_shnum = ehdr->e_shnum;
147 	elf->e_phentsize = ehdr->e_phentsize;
148 	elf->e_shentsize = ehdr->e_shentsize;
149 
150 	return TEE_SUCCESS;
151 }
152 #else /*ARM64*/
153 static TEE_Result e64_parse_ehdr(struct ta_elf *elf __unused,
154 				 Elf64_Ehdr *ehdr __unused)
155 {
156 	return TEE_ERROR_NOT_SUPPORTED;
157 }
158 #endif /*ARM64*/
159 
160 static void check_phdr_in_range(struct ta_elf *elf, unsigned int type,
161 				vaddr_t addr, size_t memsz)
162 {
163 	vaddr_t max_addr = 0;
164 
165 	if (ADD_OVERFLOW(addr, memsz, &max_addr))
166 		err(TEE_ERROR_BAD_FORMAT, "Program header %#x overflow", type);
167 
168 	/*
169 	 * elf->load_addr and elf->max_addr are both using the
170 	 * final virtual addresses, while this program header is
171 	 * relative to 0.
172 	 */
173 	if (max_addr > elf->max_addr - elf->load_addr)
174 		err(TEE_ERROR_BAD_FORMAT, "Program header %#x out of bounds",
175 		    type);
176 }
177 
178 static void read_dyn(struct ta_elf *elf, vaddr_t addr,
179 		     size_t idx, unsigned int *tag, size_t *val)
180 {
181 	if (elf->is_32bit) {
182 		Elf32_Dyn *dyn = (Elf32_Dyn *)(addr + elf->load_addr);
183 
184 		*tag = dyn[idx].d_tag;
185 		*val = dyn[idx].d_un.d_val;
186 	} else {
187 		Elf64_Dyn *dyn = (Elf64_Dyn *)(addr + elf->load_addr);
188 
189 		*tag = dyn[idx].d_tag;
190 		*val = dyn[idx].d_un.d_val;
191 	}
192 }
193 
194 static void save_hashtab_from_segment(struct ta_elf *elf, unsigned int type,
195 				      vaddr_t addr, size_t memsz)
196 {
197 	size_t dyn_entsize = 0;
198 	size_t num_dyns = 0;
199 	size_t n = 0;
200 	unsigned int tag = 0;
201 	size_t val = 0;
202 
203 	if (type != PT_DYNAMIC)
204 		return;
205 
206 	check_phdr_in_range(elf, type, addr, memsz);
207 
208 	if (elf->is_32bit)
209 		dyn_entsize = sizeof(Elf32_Dyn);
210 	else
211 		dyn_entsize = sizeof(Elf64_Dyn);
212 
213 	assert(!(memsz % dyn_entsize));
214 	num_dyns = memsz / dyn_entsize;
215 
216 	for (n = 0; n < num_dyns; n++) {
217 		read_dyn(elf, addr, n, &tag, &val);
218 		if (tag == DT_HASH) {
219 			elf->hashtab = (void *)(val + elf->load_addr);
220 			break;
221 		}
222 	}
223 }
224 
225 static void check_range(struct ta_elf *elf, const char *name, const void *ptr,
226 			size_t sz)
227 {
228 	size_t max_addr = 0;
229 
230 	if ((vaddr_t)ptr < elf->load_addr)
231 		err(TEE_ERROR_BAD_FORMAT, "%s %p out of range", name, ptr);
232 
233 	if (ADD_OVERFLOW((vaddr_t)ptr, sz, &max_addr))
234 		err(TEE_ERROR_BAD_FORMAT, "%s range overflow", name);
235 
236 	if (max_addr > elf->max_addr)
237 		err(TEE_ERROR_BAD_FORMAT,
238 		    "%s %p..%#zx out of range", name, ptr, max_addr);
239 }
240 
241 static void check_hashtab(struct ta_elf *elf, void *ptr, size_t num_buckets,
242 			  size_t num_chains)
243 {
244 	/*
245 	 * Starting from 2 as the first two words are mandatory and hold
246 	 * num_buckets and num_chains. So this function is called twice,
247 	 * first to see that there's indeed room for num_buckets and
248 	 * num_chains and then to see that all of it fits.
249 	 * See http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
250 	 */
251 	size_t num_words = 2;
252 	size_t sz = 0;
253 
254 	if (!IS_ALIGNED_WITH_TYPE(ptr, uint32_t))
255 		err(TEE_ERROR_BAD_FORMAT, "Bad alignment of DT_HASH %p", ptr);
256 
257 	if (ADD_OVERFLOW(num_words, num_buckets, &num_words) ||
258 	    ADD_OVERFLOW(num_words, num_chains, &num_words) ||
259 	    MUL_OVERFLOW(num_words, sizeof(uint32_t), &sz))
260 		err(TEE_ERROR_BAD_FORMAT, "DT_HASH overflow");
261 
262 	check_range(elf, "DT_HASH", ptr, sz);
263 }
264 
265 static void save_hashtab(struct ta_elf *elf)
266 {
267 	uint32_t *hashtab = NULL;
268 	size_t n = 0;
269 
270 	if (elf->is_32bit) {
271 		Elf32_Phdr *phdr = elf->phdr;
272 
273 		for (n = 0; n < elf->e_phnum; n++)
274 			save_hashtab_from_segment(elf, phdr[n].p_type,
275 						  phdr[n].p_vaddr,
276 						  phdr[n].p_memsz);
277 	} else {
278 		Elf64_Phdr *phdr = elf->phdr;
279 
280 		for (n = 0; n < elf->e_phnum; n++)
281 			save_hashtab_from_segment(elf, phdr[n].p_type,
282 						  phdr[n].p_vaddr,
283 						  phdr[n].p_memsz);
284 	}
285 
286 	check_hashtab(elf, elf->hashtab, 0, 0);
287 	hashtab = elf->hashtab;
288 	check_hashtab(elf, elf->hashtab, hashtab[0], hashtab[1]);
289 }
290 
291 static void save_soname_from_segment(struct ta_elf *elf, unsigned int type,
292 				     vaddr_t addr, size_t memsz)
293 {
294 	size_t dyn_entsize = 0;
295 	size_t num_dyns = 0;
296 	size_t n = 0;
297 	unsigned int tag = 0;
298 	size_t val = 0;
299 	char *str_tab = NULL;
300 
301 	if (type != PT_DYNAMIC)
302 		return;
303 
304 	if (elf->is_32bit)
305 		dyn_entsize = sizeof(Elf32_Dyn);
306 	else
307 		dyn_entsize = sizeof(Elf64_Dyn);
308 
309 	assert(!(memsz % dyn_entsize));
310 	num_dyns = memsz / dyn_entsize;
311 
312 	for (n = 0; n < num_dyns; n++) {
313 		read_dyn(elf, addr, n, &tag, &val);
314 		if (tag == DT_STRTAB) {
315 			str_tab = (char *)(val + elf->load_addr);
316 			break;
317 		}
318 	}
319 	for (n = 0; n < num_dyns; n++) {
320 		read_dyn(elf, addr, n, &tag, &val);
321 		if (tag == DT_SONAME) {
322 			elf->soname = str_tab + val;
323 			break;
324 		}
325 	}
326 }
327 
328 static void save_soname(struct ta_elf *elf)
329 {
330 	size_t n = 0;
331 
332 	if (elf->is_32bit) {
333 		Elf32_Phdr *phdr = elf->phdr;
334 
335 		for (n = 0; n < elf->e_phnum; n++)
336 			save_soname_from_segment(elf, phdr[n].p_type,
337 						 phdr[n].p_vaddr,
338 						 phdr[n].p_memsz);
339 	} else {
340 		Elf64_Phdr *phdr = elf->phdr;
341 
342 		for (n = 0; n < elf->e_phnum; n++)
343 			save_soname_from_segment(elf, phdr[n].p_type,
344 						 phdr[n].p_vaddr,
345 						 phdr[n].p_memsz);
346 	}
347 }
348 
349 static void e32_save_symtab(struct ta_elf *elf, size_t tab_idx)
350 {
351 	Elf32_Shdr *shdr = elf->shdr;
352 	size_t str_idx = shdr[tab_idx].sh_link;
353 
354 	elf->dynsymtab = (void *)(shdr[tab_idx].sh_addr + elf->load_addr);
355 	if (!IS_ALIGNED_WITH_TYPE(elf->dynsymtab, Elf32_Sym))
356 		err(TEE_ERROR_BAD_FORMAT, "Bad alignment of dynsymtab %p",
357 		    elf->dynsymtab);
358 	check_range(elf, "Dynsymtab", elf->dynsymtab, shdr[tab_idx].sh_size);
359 
360 	if (shdr[tab_idx].sh_size % sizeof(Elf32_Sym))
361 		err(TEE_ERROR_BAD_FORMAT,
362 		    "Size of dynsymtab not an even multiple of Elf32_Sym");
363 	elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf32_Sym);
364 
365 	if (str_idx >= elf->e_shnum)
366 		err(TEE_ERROR_BAD_FORMAT, "Dynstr section index out of range");
367 	elf->dynstr = (void *)(shdr[str_idx].sh_addr + elf->load_addr);
368 	check_range(elf, "Dynstr", elf->dynstr, shdr[str_idx].sh_size);
369 
370 	elf->dynstr_size = shdr[str_idx].sh_size;
371 }
372 
373 static void e64_save_symtab(struct ta_elf *elf, size_t tab_idx)
374 {
375 	Elf64_Shdr *shdr = elf->shdr;
376 	size_t str_idx = shdr[tab_idx].sh_link;
377 
378 	elf->dynsymtab = (void *)(vaddr_t)(shdr[tab_idx].sh_addr +
379 					   elf->load_addr);
380 
381 	if (!IS_ALIGNED_WITH_TYPE(elf->dynsymtab, Elf64_Sym))
382 		err(TEE_ERROR_BAD_FORMAT, "Bad alignment of .dynsym/DYNSYM %p",
383 		    elf->dynsymtab);
384 	check_range(elf, ".dynsym/DYNSYM", elf->dynsymtab,
385 		    shdr[tab_idx].sh_size);
386 
387 	if (shdr[tab_idx].sh_size % sizeof(Elf64_Sym))
388 		err(TEE_ERROR_BAD_FORMAT,
389 		    "Size of .dynsym/DYNSYM not an even multiple of Elf64_Sym");
390 	elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf64_Sym);
391 
392 	if (str_idx >= elf->e_shnum)
393 		err(TEE_ERROR_BAD_FORMAT,
394 		    ".dynstr/STRTAB section index out of range");
395 	elf->dynstr = (void *)(vaddr_t)(shdr[str_idx].sh_addr + elf->load_addr);
396 	check_range(elf, ".dynstr/STRTAB", elf->dynstr, shdr[str_idx].sh_size);
397 
398 	elf->dynstr_size = shdr[str_idx].sh_size;
399 }
400 
401 static void save_symtab(struct ta_elf *elf)
402 {
403 	size_t n = 0;
404 
405 	if (elf->is_32bit) {
406 		Elf32_Shdr *shdr = elf->shdr;
407 
408 		for (n = 0; n < elf->e_shnum; n++) {
409 			if (shdr[n].sh_type == SHT_DYNSYM) {
410 				e32_save_symtab(elf, n);
411 				break;
412 			}
413 		}
414 	} else {
415 		Elf64_Shdr *shdr = elf->shdr;
416 
417 		for (n = 0; n < elf->e_shnum; n++) {
418 			if (shdr[n].sh_type == SHT_DYNSYM) {
419 				e64_save_symtab(elf, n);
420 				break;
421 			}
422 		}
423 
424 	}
425 
426 	save_hashtab(elf);
427 	save_soname(elf);
428 }
429 
430 static void init_elf(struct ta_elf *elf)
431 {
432 	TEE_Result res = TEE_SUCCESS;
433 	vaddr_t va = 0;
434 	uint32_t flags = LDELF_MAP_FLAG_SHAREABLE;
435 	size_t sz = 0;
436 
437 	res = sys_open_ta_bin(&elf->uuid, &elf->handle);
438 	if (res)
439 		err(res, "sys_open_ta_bin(%pUl)", (void *)&elf->uuid);
440 
441 	/*
442 	 * Map it read-only executable when we're loading a library where
443 	 * the ELF header is included in a load segment.
444 	 */
445 	if (!elf->is_main)
446 		flags |= LDELF_MAP_FLAG_EXECUTABLE;
447 	res = sys_map_ta_bin(&va, SMALL_PAGE_SIZE, flags, elf->handle, 0, 0, 0);
448 	if (res)
449 		err(res, "sys_map_ta_bin");
450 	elf->ehdr_addr = va;
451 	if (!elf->is_main) {
452 		elf->load_addr = va;
453 		elf->max_addr = va + SMALL_PAGE_SIZE;
454 		elf->max_offs = SMALL_PAGE_SIZE;
455 	}
456 
457 	if (!IS_ELF(*(Elf32_Ehdr *)va))
458 		err(TEE_ERROR_BAD_FORMAT, "TA is not an ELF");
459 
460 	res = e32_parse_ehdr(elf, (void *)va);
461 	if (res == TEE_ERROR_BAD_FORMAT)
462 		res = e64_parse_ehdr(elf, (void *)va);
463 	if (res)
464 		err(res, "Cannot parse ELF");
465 
466 	if (MUL_OVERFLOW(elf->e_phnum, elf->e_phentsize, &sz) ||
467 	    ADD_OVERFLOW(sz, elf->e_phoff, &sz))
468 		err(TEE_ERROR_BAD_FORMAT, "Program headers size overflow");
469 
470 	if (sz > SMALL_PAGE_SIZE)
471 		err(TEE_ERROR_NOT_SUPPORTED, "Cannot read program headers");
472 
473 	elf->phdr = (void *)(va + elf->e_phoff);
474 }
475 
476 static size_t roundup(size_t v)
477 {
478 	return ROUNDUP(v, SMALL_PAGE_SIZE);
479 }
480 
481 static size_t rounddown(size_t v)
482 {
483 	return ROUNDDOWN(v, SMALL_PAGE_SIZE);
484 }
485 
486 static void add_segment(struct ta_elf *elf, size_t offset, size_t vaddr,
487 			size_t filesz, size_t memsz, size_t flags, size_t align)
488 {
489 	struct segment *seg = calloc(1, sizeof(*seg));
490 
491 	if (!seg)
492 		err(TEE_ERROR_OUT_OF_MEMORY, "calloc");
493 
494 	if (memsz < filesz)
495 		err(TEE_ERROR_BAD_FORMAT, "Memsz smaller than filesz");
496 
497 	seg->offset = offset;
498 	seg->vaddr = vaddr;
499 	seg->filesz = filesz;
500 	seg->memsz = memsz;
501 	seg->flags = flags;
502 	seg->align = align;
503 
504 	TAILQ_INSERT_TAIL(&elf->segs, seg, link);
505 }
506 
507 static void parse_load_segments(struct ta_elf *elf)
508 {
509 	size_t n = 0;
510 
511 	if (elf->is_32bit) {
512 		Elf32_Phdr *phdr = elf->phdr;
513 
514 		for (n = 0; n < elf->e_phnum; n++)
515 			if (phdr[n].p_type == PT_LOAD) {
516 				add_segment(elf, phdr[n].p_offset,
517 					    phdr[n].p_vaddr, phdr[n].p_filesz,
518 					    phdr[n].p_memsz, phdr[n].p_flags,
519 					    phdr[n].p_align);
520 			} else if (phdr[n].p_type == PT_ARM_EXIDX) {
521 				elf->exidx_start = phdr[n].p_vaddr;
522 				elf->exidx_size = phdr[n].p_filesz;
523 			} else if (phdr[n].p_type == PT_TLS) {
524 				assign_tls_mod_id(elf);
525 			}
526 	} else {
527 		Elf64_Phdr *phdr = elf->phdr;
528 
529 		for (n = 0; n < elf->e_phnum; n++)
530 			if (phdr[n].p_type == PT_LOAD) {
531 				add_segment(elf, phdr[n].p_offset,
532 					    phdr[n].p_vaddr, phdr[n].p_filesz,
533 					    phdr[n].p_memsz, phdr[n].p_flags,
534 					    phdr[n].p_align);
535 			} else if (phdr[n].p_type == PT_TLS) {
536 				elf->tls_start = phdr[n].p_vaddr;
537 				elf->tls_filesz = phdr[n].p_filesz;
538 				elf->tls_memsz = phdr[n].p_memsz;
539 			} else if (IS_ENABLED(CFG_TA_BTI) &&
540 				   phdr[n].p_type == PT_GNU_PROPERTY) {
541 				elf->prop_start = phdr[n].p_vaddr;
542 				elf->prop_align = phdr[n].p_align;
543 				elf->prop_memsz = phdr[n].p_memsz;
544 			}
545 	}
546 }
547 
548 static void copy_remapped_to(struct ta_elf *elf, const struct segment *seg)
549 {
550 	uint8_t *dst = (void *)(seg->vaddr + elf->load_addr);
551 	size_t n = 0;
552 	size_t offs = seg->offset;
553 	size_t num_bytes = seg->filesz;
554 
555 	if (offs < elf->max_offs) {
556 		n = MIN(elf->max_offs - offs, num_bytes);
557 		memcpy(dst, (void *)(elf->max_addr + offs - elf->max_offs), n);
558 		dst += n;
559 		offs += n;
560 		num_bytes -= n;
561 	}
562 
563 	if (num_bytes) {
564 		TEE_Result res = sys_copy_from_ta_bin(dst, num_bytes,
565 						      elf->handle, offs);
566 
567 		if (res)
568 			err(res, "sys_copy_from_ta_bin");
569 		elf->max_offs += offs;
570 	}
571 }
572 
573 static void adjust_segments(struct ta_elf *elf)
574 {
575 	struct segment *seg = NULL;
576 	struct segment *prev_seg = NULL;
577 	size_t prev_end_addr = 0;
578 	size_t align = 0;
579 	size_t mask = 0;
580 
581 	/* Sanity check */
582 	TAILQ_FOREACH(seg, &elf->segs, link) {
583 		size_t dummy __maybe_unused = 0;
584 
585 		assert(seg->align >= SMALL_PAGE_SIZE);
586 		assert(!ADD_OVERFLOW(seg->vaddr, seg->memsz, &dummy));
587 		assert(seg->filesz <= seg->memsz);
588 		assert((seg->offset & SMALL_PAGE_MASK) ==
589 		       (seg->vaddr & SMALL_PAGE_MASK));
590 
591 		prev_seg = TAILQ_PREV(seg, segment_head, link);
592 		if (prev_seg) {
593 			assert(seg->vaddr >= prev_seg->vaddr + prev_seg->memsz);
594 			assert(seg->offset >=
595 			       prev_seg->offset + prev_seg->filesz);
596 		}
597 		if (!align)
598 			align = seg->align;
599 		assert(align == seg->align);
600 	}
601 
602 	mask = align - 1;
603 
604 	seg = TAILQ_FIRST(&elf->segs);
605 	if (seg)
606 		seg = TAILQ_NEXT(seg, link);
607 	while (seg) {
608 		prev_seg = TAILQ_PREV(seg, segment_head, link);
609 		prev_end_addr = prev_seg->vaddr + prev_seg->memsz;
610 
611 		/*
612 		 * This segment may overlap with the last "page" in the
613 		 * previous segment in two different ways:
614 		 * 1. Virtual address (and offset) overlaps =>
615 		 *    Permissions needs to be merged. The offset must have
616 		 *    the SMALL_PAGE_MASK bits set as vaddr and offset must
617 		 *    add up with prevsion segment.
618 		 *
619 		 * 2. Only offset overlaps =>
620 		 *    The same page in the ELF is mapped at two different
621 		 *    virtual addresses. As a limitation this segment must
622 		 *    be mapped as writeable.
623 		 */
624 
625 		/* Case 1. */
626 		if (rounddown(seg->vaddr) < prev_end_addr) {
627 			assert((seg->vaddr & mask) == (seg->offset & mask));
628 			assert(prev_seg->memsz == prev_seg->filesz);
629 
630 			/*
631 			 * Merge the segments and their permissions.
632 			 * Note that the may be a small hole between the
633 			 * two sections.
634 			 */
635 			prev_seg->filesz = seg->vaddr + seg->filesz -
636 					   prev_seg->vaddr;
637 			prev_seg->memsz = seg->vaddr + seg->memsz -
638 					   prev_seg->vaddr;
639 			prev_seg->flags |= seg->flags;
640 
641 			TAILQ_REMOVE(&elf->segs, seg, link);
642 			free(seg);
643 			seg = TAILQ_NEXT(prev_seg, link);
644 			continue;
645 		}
646 
647 		/* Case 2. */
648 		if ((seg->offset & mask) &&
649 		    rounddown(seg->offset) <
650 		    (prev_seg->offset + prev_seg->filesz)) {
651 
652 			assert(seg->flags & PF_W);
653 			seg->remapped_writeable = true;
654 		}
655 
656 		/*
657 		 * No overlap, but we may need to align address, offset and
658 		 * size.
659 		 */
660 		seg->filesz += seg->vaddr - rounddown(seg->vaddr);
661 		seg->memsz += seg->vaddr - rounddown(seg->vaddr);
662 		seg->vaddr = rounddown(seg->vaddr);
663 		seg->offset = rounddown(seg->offset);
664 		seg = TAILQ_NEXT(seg, link);
665 	}
666 
667 }
668 
669 static void populate_segments_legacy(struct ta_elf *elf)
670 {
671 	TEE_Result res = TEE_SUCCESS;
672 	struct segment *seg = NULL;
673 	vaddr_t va = 0;
674 
675 	assert(elf->is_legacy);
676 	TAILQ_FOREACH(seg, &elf->segs, link) {
677 		struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head);
678 		size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz -
679 					 seg->vaddr - seg->memsz);
680 		size_t num_bytes = roundup(seg->memsz);
681 
682 		if (!elf->load_addr)
683 			va = 0;
684 		else
685 			va = seg->vaddr + elf->load_addr;
686 
687 
688 		if (!(seg->flags & PF_R))
689 			err(TEE_ERROR_NOT_SUPPORTED,
690 			    "Segment must be readable");
691 
692 		res = sys_map_zi(num_bytes, 0, &va, 0, pad_end);
693 		if (res)
694 			err(res, "sys_map_zi");
695 		res = sys_copy_from_ta_bin((void *)va, seg->filesz,
696 					   elf->handle, seg->offset);
697 		if (res)
698 			err(res, "sys_copy_from_ta_bin");
699 
700 		if (!elf->load_addr)
701 			elf->load_addr = va;
702 		elf->max_addr = va + num_bytes;
703 		elf->max_offs = seg->offset + seg->filesz;
704 	}
705 }
706 
707 static size_t get_pad_begin(void)
708 {
709 #ifdef CFG_TA_ASLR
710 	size_t min = CFG_TA_ASLR_MIN_OFFSET_PAGES;
711 	size_t max = CFG_TA_ASLR_MAX_OFFSET_PAGES;
712 	TEE_Result res = TEE_SUCCESS;
713 	uint32_t rnd32 = 0;
714 	size_t rnd = 0;
715 
716 	COMPILE_TIME_ASSERT(CFG_TA_ASLR_MIN_OFFSET_PAGES <
717 			    CFG_TA_ASLR_MAX_OFFSET_PAGES);
718 	if (max > min) {
719 		res = sys_gen_random_num(&rnd32, sizeof(rnd32));
720 		if (res) {
721 			DMSG("Random read failed: %#"PRIx32, res);
722 			return min * SMALL_PAGE_SIZE;
723 		}
724 		rnd = rnd32 % (max - min);
725 	}
726 
727 	return (min + rnd) * SMALL_PAGE_SIZE;
728 #else /*!CFG_TA_ASLR*/
729 	return 0;
730 #endif /*!CFG_TA_ASLR*/
731 }
732 
733 static void populate_segments(struct ta_elf *elf)
734 {
735 	TEE_Result res = TEE_SUCCESS;
736 	struct segment *seg = NULL;
737 	vaddr_t va = 0;
738 	size_t pad_begin = 0;
739 
740 	assert(!elf->is_legacy);
741 	TAILQ_FOREACH(seg, &elf->segs, link) {
742 		struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head);
743 		size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz -
744 					 seg->vaddr - seg->memsz);
745 
746 		if (seg->remapped_writeable) {
747 			size_t num_bytes = roundup(seg->vaddr + seg->memsz) -
748 					   rounddown(seg->vaddr);
749 
750 			assert(elf->load_addr);
751 			va = rounddown(elf->load_addr + seg->vaddr);
752 			assert(va >= elf->max_addr);
753 			res = sys_map_zi(num_bytes, 0, &va, 0, pad_end);
754 			if (res)
755 				err(res, "sys_map_zi");
756 
757 			copy_remapped_to(elf, seg);
758 			elf->max_addr = va + num_bytes;
759 		} else {
760 			uint32_t flags =  0;
761 			size_t filesz = seg->filesz;
762 			size_t memsz = seg->memsz;
763 			size_t offset = seg->offset;
764 			size_t vaddr = seg->vaddr;
765 
766 			if (offset < elf->max_offs) {
767 				/*
768 				 * We're in a load segment which overlaps
769 				 * with (or is covered by) the first page
770 				 * of a shared library.
771 				 */
772 				if (vaddr + filesz < SMALL_PAGE_SIZE) {
773 					size_t num_bytes = 0;
774 
775 					/*
776 					 * If this segment is completely
777 					 * covered, take next.
778 					 */
779 					if (vaddr + memsz <= SMALL_PAGE_SIZE)
780 						continue;
781 
782 					/*
783 					 * All data of the segment is
784 					 * loaded, but we need to zero
785 					 * extend it.
786 					 */
787 					va = elf->max_addr;
788 					num_bytes = roundup(vaddr + memsz) -
789 						    roundup(vaddr) -
790 						    SMALL_PAGE_SIZE;
791 					assert(num_bytes);
792 					res = sys_map_zi(num_bytes, 0, &va, 0,
793 							 0);
794 					if (res)
795 						err(res, "sys_map_zi");
796 					elf->max_addr = roundup(va + num_bytes);
797 					continue;
798 				}
799 
800 				/* Partial overlap, remove the first page. */
801 				vaddr += SMALL_PAGE_SIZE;
802 				filesz -= SMALL_PAGE_SIZE;
803 				memsz -= SMALL_PAGE_SIZE;
804 				offset += SMALL_PAGE_SIZE;
805 			}
806 
807 			if (!elf->load_addr) {
808 				va = 0;
809 				pad_begin = get_pad_begin();
810 				/*
811 				 * If mapping with pad_begin fails we'll
812 				 * retry without pad_begin, effectively
813 				 * disabling ASLR for the current ELF file.
814 				 */
815 			} else {
816 				va = vaddr + elf->load_addr;
817 				pad_begin = 0;
818 			}
819 
820 			if (seg->flags & PF_W)
821 				flags |= LDELF_MAP_FLAG_WRITEABLE;
822 			else
823 				flags |= LDELF_MAP_FLAG_SHAREABLE;
824 			if (seg->flags & PF_X)
825 				flags |= LDELF_MAP_FLAG_EXECUTABLE;
826 			if (!(seg->flags & PF_R))
827 				err(TEE_ERROR_NOT_SUPPORTED,
828 				    "Segment must be readable");
829 			if (flags & LDELF_MAP_FLAG_WRITEABLE) {
830 				res = sys_map_zi(memsz, 0, &va, pad_begin,
831 						 pad_end);
832 				if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY)
833 					res = sys_map_zi(memsz, 0, &va, 0,
834 							 pad_end);
835 				if (res)
836 					err(res, "sys_map_zi");
837 				res = sys_copy_from_ta_bin((void *)va, filesz,
838 							   elf->handle, offset);
839 				if (res)
840 					err(res, "sys_copy_from_ta_bin");
841 			} else {
842 				if (filesz != memsz)
843 					err(TEE_ERROR_BAD_FORMAT,
844 					    "Filesz and memsz mismatch");
845 				res = sys_map_ta_bin(&va, filesz, flags,
846 						     elf->handle, offset,
847 						     pad_begin, pad_end);
848 				if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY)
849 					res = sys_map_ta_bin(&va, filesz, flags,
850 							     elf->handle,
851 							     offset, 0,
852 							     pad_end);
853 				if (res)
854 					err(res, "sys_map_ta_bin");
855 			}
856 
857 			if (!elf->load_addr)
858 				elf->load_addr = va;
859 			elf->max_addr = roundup(va + memsz);
860 			elf->max_offs += filesz;
861 		}
862 	}
863 }
864 
865 static void parse_property_segment(struct ta_elf *elf)
866 {
867 	char *desc = NULL;
868 	size_t align = elf->prop_align;
869 	size_t desc_offset = 0;
870 	size_t prop_offset = 0;
871 	vaddr_t va = 0;
872 	Elf_Note *note = NULL;
873 	char *name = NULL;
874 
875 	if (!IS_ENABLED(CFG_TA_BTI) || !elf->prop_start)
876 		return;
877 
878 	check_phdr_in_range(elf, PT_GNU_PROPERTY, elf->prop_start,
879 			    elf->prop_memsz);
880 
881 	va = elf->load_addr + elf->prop_start;
882 	note = (void *)va;
883 	name = (char *)(note + 1);
884 
885 	if (elf->prop_memsz < sizeof(*note) + sizeof(ELF_NOTE_GNU))
886 		return;
887 
888 	if (note->n_type != NT_GNU_PROPERTY_TYPE_0 ||
889 	    note->n_namesz != sizeof(ELF_NOTE_GNU) ||
890 	    memcmp(name, ELF_NOTE_GNU, sizeof(ELF_NOTE_GNU)) ||
891 	    !IS_POWER_OF_TWO(align))
892 		return;
893 
894 	desc_offset = ROUNDUP(sizeof(*note) + sizeof(ELF_NOTE_GNU), align);
895 
896 	if (desc_offset > elf->prop_memsz ||
897 	    ROUNDUP(desc_offset + note->n_descsz, align) > elf->prop_memsz)
898 		return;
899 
900 	desc = (char *)(va + desc_offset);
901 
902 	do {
903 		Elf_Prop *prop = (void *)(desc + prop_offset);
904 		size_t data_offset = prop_offset + sizeof(*prop);
905 
906 		if (note->n_descsz < data_offset)
907 			return;
908 
909 		data_offset = confine_array_index(data_offset, note->n_descsz);
910 
911 		if (prop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
912 			uint32_t *pr_data = (void *)(desc + data_offset);
913 
914 			if (note->n_descsz < (data_offset + sizeof(*pr_data)) &&
915 			    prop->pr_datasz != sizeof(*pr_data))
916 				return;
917 
918 			if (*pr_data & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) {
919 				DMSG("BTI Feature present in note property");
920 				elf->bti_enabled = true;
921 			}
922 		}
923 
924 		prop_offset += ROUNDUP(sizeof(*prop) + prop->pr_datasz, align);
925 	} while (prop_offset < note->n_descsz);
926 }
927 
928 static void map_segments(struct ta_elf *elf)
929 {
930 	TEE_Result res = TEE_SUCCESS;
931 
932 	parse_load_segments(elf);
933 	adjust_segments(elf);
934 	if (TAILQ_FIRST(&elf->segs)->offset < SMALL_PAGE_SIZE) {
935 		vaddr_t va = 0;
936 		size_t sz = elf->max_addr - elf->load_addr;
937 		struct segment *seg = TAILQ_LAST(&elf->segs, segment_head);
938 		size_t pad_begin = get_pad_begin();
939 
940 		/*
941 		 * We're loading a library, if not other parts of the code
942 		 * need to be updated too.
943 		 */
944 		assert(!elf->is_main);
945 
946 		/*
947 		 * Now that we know how much virtual memory is needed move
948 		 * the already mapped part to a location which can
949 		 * accommodate us.
950 		 */
951 		res = sys_remap(elf->load_addr, &va, sz, pad_begin,
952 				roundup(seg->vaddr + seg->memsz));
953 		if (res == TEE_ERROR_OUT_OF_MEMORY)
954 			res = sys_remap(elf->load_addr, &va, sz, 0,
955 					roundup(seg->vaddr + seg->memsz));
956 		if (res)
957 			err(res, "sys_remap");
958 		elf->ehdr_addr = va;
959 		elf->load_addr = va;
960 		elf->max_addr = va + sz;
961 		elf->phdr = (void *)(va + elf->e_phoff);
962 	}
963 }
964 
965 static void add_deps_from_segment(struct ta_elf *elf, unsigned int type,
966 				  vaddr_t addr, size_t memsz)
967 {
968 	size_t dyn_entsize = 0;
969 	size_t num_dyns = 0;
970 	size_t n = 0;
971 	unsigned int tag = 0;
972 	size_t val = 0;
973 	TEE_UUID uuid = { };
974 	char *str_tab = NULL;
975 	size_t str_tab_sz = 0;
976 
977 	if (type != PT_DYNAMIC)
978 		return;
979 
980 	check_phdr_in_range(elf, type, addr, memsz);
981 
982 	if (elf->is_32bit)
983 		dyn_entsize = sizeof(Elf32_Dyn);
984 	else
985 		dyn_entsize = sizeof(Elf64_Dyn);
986 
987 	assert(!(memsz % dyn_entsize));
988 	num_dyns = memsz / dyn_entsize;
989 
990 	for (n = 0; n < num_dyns && !(str_tab && str_tab_sz); n++) {
991 		read_dyn(elf, addr, n, &tag, &val);
992 		if (tag == DT_STRTAB)
993 			str_tab = (char *)(val + elf->load_addr);
994 		else if (tag == DT_STRSZ)
995 			str_tab_sz = val;
996 	}
997 	check_range(elf, ".dynstr/STRTAB", str_tab, str_tab_sz);
998 
999 	for (n = 0; n < num_dyns; n++) {
1000 		read_dyn(elf, addr, n, &tag, &val);
1001 		if (tag != DT_NEEDED)
1002 			continue;
1003 		if (val >= str_tab_sz)
1004 			err(TEE_ERROR_BAD_FORMAT,
1005 			    "Offset into .dynstr/STRTAB out of range");
1006 		tee_uuid_from_str(&uuid, str_tab + val);
1007 		queue_elf(&uuid);
1008 	}
1009 }
1010 
1011 static void add_dependencies(struct ta_elf *elf)
1012 {
1013 	size_t n = 0;
1014 
1015 	if (elf->is_32bit) {
1016 		Elf32_Phdr *phdr = elf->phdr;
1017 
1018 		for (n = 0; n < elf->e_phnum; n++)
1019 			add_deps_from_segment(elf, phdr[n].p_type,
1020 					      phdr[n].p_vaddr, phdr[n].p_memsz);
1021 	} else {
1022 		Elf64_Phdr *phdr = elf->phdr;
1023 
1024 		for (n = 0; n < elf->e_phnum; n++)
1025 			add_deps_from_segment(elf, phdr[n].p_type,
1026 					      phdr[n].p_vaddr, phdr[n].p_memsz);
1027 	}
1028 }
1029 
1030 static void copy_section_headers(struct ta_elf *elf)
1031 {
1032 	TEE_Result res = TEE_SUCCESS;
1033 	size_t sz = 0;
1034 	size_t offs = 0;
1035 
1036 	if (MUL_OVERFLOW(elf->e_shnum, elf->e_shentsize, &sz))
1037 		err(TEE_ERROR_BAD_FORMAT, "Section headers size overflow");
1038 
1039 	elf->shdr = malloc(sz);
1040 	if (!elf->shdr)
1041 		err(TEE_ERROR_OUT_OF_MEMORY, "malloc");
1042 
1043 	/*
1044 	 * We're assuming that section headers comes after the load segments,
1045 	 * but if it's a very small dynamically linked library the section
1046 	 * headers can still end up (partially?) in the first mapped page.
1047 	 */
1048 	if (elf->e_shoff < SMALL_PAGE_SIZE) {
1049 		assert(!elf->is_main);
1050 		offs = MIN(SMALL_PAGE_SIZE - elf->e_shoff, sz);
1051 		memcpy(elf->shdr, (void *)(elf->load_addr + elf->e_shoff),
1052 		       offs);
1053 	}
1054 
1055 	if (offs < sz) {
1056 		res = sys_copy_from_ta_bin((uint8_t *)elf->shdr + offs,
1057 					   sz - offs, elf->handle,
1058 					   elf->e_shoff + offs);
1059 		if (res)
1060 			err(res, "sys_copy_from_ta_bin");
1061 	}
1062 }
1063 
1064 static void close_handle(struct ta_elf *elf)
1065 {
1066 	TEE_Result res = sys_close_ta_bin(elf->handle);
1067 
1068 	if (res)
1069 		err(res, "sys_close_ta_bin");
1070 	elf->handle = -1;
1071 }
1072 
1073 static void clean_elf_load_main(struct ta_elf *elf)
1074 {
1075 	TEE_Result res = TEE_SUCCESS;
1076 
1077 	/*
1078 	 * Clean up from last attempt to load
1079 	 */
1080 	res = sys_unmap(elf->ehdr_addr, SMALL_PAGE_SIZE);
1081 	if (res)
1082 		err(res, "sys_unmap");
1083 
1084 	while (!TAILQ_EMPTY(&elf->segs)) {
1085 		struct segment *seg = TAILQ_FIRST(&elf->segs);
1086 		vaddr_t va = 0;
1087 		size_t num_bytes = 0;
1088 
1089 		va = rounddown(elf->load_addr + seg->vaddr);
1090 		if (seg->remapped_writeable)
1091 			num_bytes = roundup(seg->vaddr + seg->memsz) -
1092 				    rounddown(seg->vaddr);
1093 		else
1094 			num_bytes = seg->memsz;
1095 
1096 		res = sys_unmap(va, num_bytes);
1097 		if (res)
1098 			err(res, "sys_unmap");
1099 
1100 		TAILQ_REMOVE(&elf->segs, seg, link);
1101 		free(seg);
1102 	}
1103 
1104 	free(elf->shdr);
1105 	memset(&elf->is_32bit, 0,
1106 	       (vaddr_t)&elf->uuid - (vaddr_t)&elf->is_32bit);
1107 
1108 	TAILQ_INIT(&elf->segs);
1109 }
1110 
1111 #ifdef ARM64
1112 /*
1113  * Allocates an offset in the TA's Thread Control Block for the TLS segment of
1114  * the @elf module.
1115  */
1116 #define TCB_HEAD_SIZE (2 * sizeof(long))
1117 static void set_tls_offset(struct ta_elf *elf)
1118 {
1119 	static size_t next_offs = TCB_HEAD_SIZE;
1120 
1121 	if (!elf->tls_start)
1122 		return;
1123 
1124 	/* Module has a TLS segment */
1125 	elf->tls_tcb_offs = next_offs;
1126 	next_offs += elf->tls_memsz;
1127 }
1128 #else
1129 static void set_tls_offset(struct ta_elf *elf __unused) {}
1130 #endif
1131 
1132 static void load_main(struct ta_elf *elf)
1133 {
1134 	init_elf(elf);
1135 	map_segments(elf);
1136 	populate_segments(elf);
1137 	add_dependencies(elf);
1138 	copy_section_headers(elf);
1139 	save_symtab(elf);
1140 	close_handle(elf);
1141 	set_tls_offset(elf);
1142 
1143 	elf->head = (struct ta_head *)elf->load_addr;
1144 	if (elf->head->depr_entry != UINT64_MAX) {
1145 		/*
1146 		 * Legacy TAs sets their entry point in ta_head. For
1147 		 * non-legacy TAs the entry point of the ELF is set instead
1148 		 * and leaving the ta_head entry point set to UINT64_MAX to
1149 		 * indicate that it's not used.
1150 		 *
1151 		 * NB, everything before the commit a73b5878c89d ("Replace
1152 		 * ta_head.entry with elf entry") is considered legacy TAs
1153 		 * for ldelf.
1154 		 *
1155 		 * Legacy TAs cannot be mapped with shared memory segments
1156 		 * so restart the mapping if it turned out we're loading a
1157 		 * legacy TA.
1158 		 */
1159 
1160 		DMSG("Reloading TA %pUl as legacy TA", (void *)&elf->uuid);
1161 		clean_elf_load_main(elf);
1162 		elf->is_legacy = true;
1163 		init_elf(elf);
1164 		map_segments(elf);
1165 		populate_segments_legacy(elf);
1166 		add_dependencies(elf);
1167 		copy_section_headers(elf);
1168 		save_symtab(elf);
1169 		close_handle(elf);
1170 		elf->head = (struct ta_head *)elf->load_addr;
1171 		/*
1172 		 * Check that the TA is still a legacy TA, if it isn't give
1173 		 * up now since we're likely under attack.
1174 		 */
1175 		if (elf->head->depr_entry == UINT64_MAX)
1176 			err(TEE_ERROR_GENERIC,
1177 			    "TA %pUl was changed on disk to non-legacy",
1178 			    (void *)&elf->uuid);
1179 	}
1180 
1181 }
1182 
1183 void ta_elf_load_main(const TEE_UUID *uuid, uint32_t *is_32bit, uint64_t *sp,
1184 		      uint32_t *ta_flags)
1185 {
1186 	struct ta_elf *elf = queue_elf(uuid);
1187 	vaddr_t va = 0;
1188 	TEE_Result res = TEE_SUCCESS;
1189 
1190 	assert(elf);
1191 	elf->is_main = true;
1192 
1193 	load_main(elf);
1194 
1195 	*is_32bit = elf->is_32bit;
1196 	res = sys_map_zi(elf->head->stack_size, 0, &va, 0, 0);
1197 	if (res)
1198 		err(res, "sys_map_zi stack");
1199 
1200 	if (elf->head->flags & ~TA_FLAGS_MASK)
1201 		err(TEE_ERROR_BAD_FORMAT, "Invalid TA flags(s) %#"PRIx32,
1202 		    elf->head->flags & ~TA_FLAGS_MASK);
1203 
1204 	*ta_flags = elf->head->flags;
1205 	*sp = va + elf->head->stack_size;
1206 	ta_stack = va;
1207 	ta_stack_size = elf->head->stack_size;
1208 }
1209 
1210 void ta_elf_finalize_load_main(uint64_t *entry)
1211 {
1212 	struct ta_elf *elf = TAILQ_FIRST(&main_elf_queue);
1213 	TEE_Result res = TEE_SUCCESS;
1214 
1215 	assert(elf->is_main);
1216 
1217 	res = ta_elf_set_init_fini_info_compat(elf->is_32bit);
1218 	if (res)
1219 		err(res, "ta_elf_set_init_fini_info_compat");
1220 	res = ta_elf_set_elf_phdr_info(elf->is_32bit);
1221 	if (res)
1222 		err(res, "ta_elf_set_elf_phdr_info");
1223 
1224 	if (elf->is_legacy)
1225 		*entry = elf->head->depr_entry;
1226 	else
1227 		*entry = elf->e_entry + elf->load_addr;
1228 }
1229 
1230 
1231 void ta_elf_load_dependency(struct ta_elf *elf, bool is_32bit)
1232 {
1233 	if (elf->is_main)
1234 		return;
1235 
1236 	init_elf(elf);
1237 	if (elf->is_32bit != is_32bit)
1238 		err(TEE_ERROR_BAD_FORMAT, "ELF %pUl is %sbit (expected %sbit)",
1239 		    (void *)&elf->uuid, elf->is_32bit ? "32" : "64",
1240 		    is_32bit ? "32" : "64");
1241 
1242 	map_segments(elf);
1243 	populate_segments(elf);
1244 	add_dependencies(elf);
1245 	copy_section_headers(elf);
1246 	save_symtab(elf);
1247 	close_handle(elf);
1248 	set_tls_offset(elf);
1249 }
1250 
1251 void ta_elf_finalize_mappings(struct ta_elf *elf)
1252 {
1253 	TEE_Result res = TEE_SUCCESS;
1254 	struct segment *seg = NULL;
1255 
1256 	if (!elf->is_legacy)
1257 		return;
1258 
1259 	TAILQ_FOREACH(seg, &elf->segs, link) {
1260 		vaddr_t va = elf->load_addr + seg->vaddr;
1261 		uint32_t flags =  0;
1262 
1263 		if (seg->flags & PF_W)
1264 			flags |= LDELF_MAP_FLAG_WRITEABLE;
1265 		if (seg->flags & PF_X)
1266 			flags |= LDELF_MAP_FLAG_EXECUTABLE;
1267 
1268 		res = sys_set_prot(va, seg->memsz, flags);
1269 		if (res)
1270 			err(res, "sys_set_prot");
1271 	}
1272 }
1273 
1274 static void __printf(3, 4) print_wrapper(void *pctx, print_func_t print_func,
1275 					 const char *fmt, ...)
1276 {
1277 	va_list ap;
1278 
1279 	va_start(ap, fmt);
1280 	print_func(pctx, fmt, ap);
1281 	va_end(ap);
1282 }
1283 
1284 static void print_seg(void *pctx, print_func_t print_func,
1285 		      size_t idx __maybe_unused, int elf_idx __maybe_unused,
1286 		      vaddr_t va __maybe_unused, paddr_t pa __maybe_unused,
1287 		      size_t sz __maybe_unused, uint32_t flags)
1288 {
1289 	int rc __maybe_unused = 0;
1290 	int width __maybe_unused = 8;
1291 	char desc[14] __maybe_unused = "";
1292 	char flags_str[] __maybe_unused = "----";
1293 
1294 	if (elf_idx > -1) {
1295 		rc = snprintf(desc, sizeof(desc), " [%d]", elf_idx);
1296 		assert(rc >= 0);
1297 	} else {
1298 		if (flags & DUMP_MAP_EPHEM) {
1299 			rc = snprintf(desc, sizeof(desc), " (param)");
1300 			assert(rc >= 0);
1301 		}
1302 		if (flags & DUMP_MAP_LDELF) {
1303 			rc = snprintf(desc, sizeof(desc), " (ldelf)");
1304 			assert(rc >= 0);
1305 		}
1306 		if (va == ta_stack) {
1307 			rc = snprintf(desc, sizeof(desc), " (stack)");
1308 			assert(rc >= 0);
1309 		}
1310 	}
1311 
1312 	if (flags & DUMP_MAP_READ)
1313 		flags_str[0] = 'r';
1314 	if (flags & DUMP_MAP_WRITE)
1315 		flags_str[1] = 'w';
1316 	if (flags & DUMP_MAP_EXEC)
1317 		flags_str[2] = 'x';
1318 	if (flags & DUMP_MAP_SECURE)
1319 		flags_str[3] = 's';
1320 
1321 	print_wrapper(pctx, print_func,
1322 		      "region %2zu: va 0x%0*"PRIxVA" pa 0x%0*"PRIxPA" size 0x%06zx flags %s%s\n",
1323 		      idx, width, va, width, pa, sz, flags_str, desc);
1324 }
1325 
1326 static bool get_next_in_order(struct ta_elf_queue *elf_queue,
1327 			      struct ta_elf **elf, struct segment **seg,
1328 			      size_t *elf_idx)
1329 {
1330 	struct ta_elf *e = NULL;
1331 	struct segment *s = NULL;
1332 	size_t idx = 0;
1333 	vaddr_t va = 0;
1334 	struct ta_elf *e2 = NULL;
1335 	size_t i2 = 0;
1336 
1337 	assert(elf && seg && elf_idx);
1338 	e = *elf;
1339 	s = *seg;
1340 	assert((e == NULL && s == NULL) || (e != NULL && s != NULL));
1341 
1342 	if (s) {
1343 		s = TAILQ_NEXT(s, link);
1344 		if (s) {
1345 			*seg = s;
1346 			return true;
1347 		}
1348 	}
1349 
1350 	if (e)
1351 		va = e->load_addr;
1352 
1353 	/* Find the ELF with next load address */
1354 	e = NULL;
1355 	TAILQ_FOREACH(e2, elf_queue, link) {
1356 		if (e2->load_addr > va) {
1357 			if (!e || e2->load_addr < e->load_addr) {
1358 				e = e2;
1359 				idx = i2;
1360 			}
1361 		}
1362 		i2++;
1363 	}
1364 	if (!e)
1365 		return false;
1366 
1367 	*elf = e;
1368 	*seg = TAILQ_FIRST(&e->segs);
1369 	*elf_idx = idx;
1370 	return true;
1371 }
1372 
1373 void ta_elf_print_mappings(void *pctx, print_func_t print_func,
1374 			   struct ta_elf_queue *elf_queue, size_t num_maps,
1375 			   struct dump_map *maps, vaddr_t mpool_base)
1376 {
1377 	struct segment *seg = NULL;
1378 	struct ta_elf *elf = NULL;
1379 	size_t elf_idx = 0;
1380 	size_t idx = 0;
1381 	size_t map_idx = 0;
1382 
1383 	/*
1384 	 * Loop over all segments and maps, printing virtual address in
1385 	 * order. Segment has priority if the virtual address is present
1386 	 * in both map and segment.
1387 	 */
1388 	get_next_in_order(elf_queue, &elf, &seg, &elf_idx);
1389 	while (true) {
1390 		vaddr_t va = -1;
1391 		size_t sz = 0;
1392 		uint32_t flags = DUMP_MAP_SECURE;
1393 		size_t offs = 0;
1394 
1395 		if (seg) {
1396 			va = rounddown(seg->vaddr + elf->load_addr);
1397 			sz = roundup(seg->vaddr + seg->memsz) -
1398 				     rounddown(seg->vaddr);
1399 		}
1400 
1401 		while (map_idx < num_maps && maps[map_idx].va <= va) {
1402 			uint32_t f = 0;
1403 
1404 			/* If there's a match, it should be the same map */
1405 			if (maps[map_idx].va == va) {
1406 				/*
1407 				 * In shared libraries the first page is
1408 				 * mapped separately with the rest of that
1409 				 * segment following back to back in a
1410 				 * separate entry.
1411 				 */
1412 				if (map_idx + 1 < num_maps &&
1413 				    maps[map_idx].sz == SMALL_PAGE_SIZE) {
1414 					vaddr_t next_va = maps[map_idx].va +
1415 							  maps[map_idx].sz;
1416 					size_t comb_sz = maps[map_idx].sz +
1417 							 maps[map_idx + 1].sz;
1418 
1419 					if (next_va == maps[map_idx + 1].va &&
1420 					    comb_sz == sz &&
1421 					    maps[map_idx].flags ==
1422 					    maps[map_idx + 1].flags) {
1423 						/* Skip this and next entry */
1424 						map_idx += 2;
1425 						continue;
1426 					}
1427 				}
1428 				assert(maps[map_idx].sz == sz);
1429 			} else if (maps[map_idx].va < va) {
1430 				if (maps[map_idx].va == mpool_base)
1431 					f |= DUMP_MAP_LDELF;
1432 				print_seg(pctx, print_func, idx, -1,
1433 					  maps[map_idx].va, maps[map_idx].pa,
1434 					  maps[map_idx].sz,
1435 					  maps[map_idx].flags | f);
1436 				idx++;
1437 			}
1438 			map_idx++;
1439 		}
1440 
1441 		if (!seg)
1442 			break;
1443 
1444 		offs = rounddown(seg->offset);
1445 		if (seg->flags & PF_R)
1446 			flags |= DUMP_MAP_READ;
1447 		if (seg->flags & PF_W)
1448 			flags |= DUMP_MAP_WRITE;
1449 		if (seg->flags & PF_X)
1450 			flags |= DUMP_MAP_EXEC;
1451 
1452 		print_seg(pctx, print_func, idx, elf_idx, va, offs, sz, flags);
1453 		idx++;
1454 
1455 		if (!get_next_in_order(elf_queue, &elf, &seg, &elf_idx))
1456 			seg = NULL;
1457 	}
1458 
1459 	elf_idx = 0;
1460 	TAILQ_FOREACH(elf, elf_queue, link) {
1461 		print_wrapper(pctx, print_func,
1462 			      " [%zu] %pUl @ 0x%0*"PRIxVA"\n",
1463 			      elf_idx, (void *)&elf->uuid, 8, elf->load_addr);
1464 		elf_idx++;
1465 	}
1466 }
1467 
1468 #ifdef CFG_UNWIND
1469 /* Called by libunw */
1470 bool find_exidx(vaddr_t addr, vaddr_t *idx_start, vaddr_t *idx_end)
1471 {
1472 	struct segment *seg = NULL;
1473 	struct ta_elf *elf = NULL;
1474 	vaddr_t a = 0;
1475 
1476 	TAILQ_FOREACH(elf, &main_elf_queue, link) {
1477 		if (addr < elf->load_addr)
1478 			continue;
1479 		a = addr - elf->load_addr;
1480 		TAILQ_FOREACH(seg, &elf->segs, link) {
1481 			if (a < seg->vaddr)
1482 				continue;
1483 			if (a - seg->vaddr < seg->filesz) {
1484 				*idx_start = elf->exidx_start + elf->load_addr;
1485 				*idx_end = elf->exidx_start + elf->load_addr +
1486 					   elf->exidx_size;
1487 				return true;
1488 			}
1489 		}
1490 	}
1491 
1492 	return false;
1493 }
1494 
1495 void ta_elf_stack_trace_a32(uint32_t regs[16])
1496 {
1497 	struct unwind_state_arm32 state = { };
1498 
1499 	memcpy(state.registers, regs, sizeof(state.registers));
1500 	print_stack_arm32(&state, ta_stack, ta_stack_size);
1501 }
1502 
1503 void ta_elf_stack_trace_a64(uint64_t fp, uint64_t sp, uint64_t pc)
1504 {
1505 	struct unwind_state_arm64 state = { .fp = fp, .sp = sp, .pc = pc };
1506 
1507 	print_stack_arm64(&state, ta_stack, ta_stack_size);
1508 }
1509 #endif
1510 
1511 TEE_Result ta_elf_add_library(const TEE_UUID *uuid)
1512 {
1513 	TEE_Result res = TEE_ERROR_GENERIC;
1514 	struct ta_elf *ta = TAILQ_FIRST(&main_elf_queue);
1515 	struct ta_elf *lib = ta_elf_find_elf(uuid);
1516 	struct ta_elf *elf = NULL;
1517 
1518 	if (lib)
1519 		return TEE_SUCCESS; /* Already mapped */
1520 
1521 	lib = queue_elf_helper(uuid);
1522 	if (!lib)
1523 		return TEE_ERROR_OUT_OF_MEMORY;
1524 
1525 	for (elf = lib; elf; elf = TAILQ_NEXT(elf, link))
1526 		ta_elf_load_dependency(elf, ta->is_32bit);
1527 
1528 	for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) {
1529 		ta_elf_relocate(elf);
1530 		ta_elf_finalize_mappings(elf);
1531 	}
1532 
1533 	for (elf = lib; elf; elf = TAILQ_NEXT(elf, link))
1534 		DMSG("ELF (%pUl) at %#"PRIxVA,
1535 		     (void *)&elf->uuid, elf->load_addr);
1536 
1537 	res = ta_elf_set_init_fini_info_compat(ta->is_32bit);
1538 	if (res)
1539 		return res;
1540 
1541 	return ta_elf_set_elf_phdr_info(ta->is_32bit);
1542 }
1543 
1544 /* Get address/size of .init_array and .fini_array from the dynamic segment */
1545 static void get_init_fini_array(struct ta_elf *elf, unsigned int type,
1546 				vaddr_t addr, size_t memsz, vaddr_t *init,
1547 				size_t *init_cnt, vaddr_t *fini,
1548 				size_t *fini_cnt)
1549 {
1550 	size_t addrsz = 0;
1551 	size_t dyn_entsize = 0;
1552 	size_t num_dyns = 0;
1553 	size_t n = 0;
1554 	unsigned int tag = 0;
1555 	size_t val = 0;
1556 
1557 	assert(type == PT_DYNAMIC);
1558 
1559 	check_phdr_in_range(elf, type, addr, memsz);
1560 
1561 	if (elf->is_32bit) {
1562 		dyn_entsize = sizeof(Elf32_Dyn);
1563 		addrsz = 4;
1564 	} else {
1565 		dyn_entsize = sizeof(Elf64_Dyn);
1566 		addrsz = 8;
1567 	}
1568 
1569 	assert(!(memsz % dyn_entsize));
1570 	num_dyns = memsz / dyn_entsize;
1571 
1572 	for (n = 0; n < num_dyns; n++) {
1573 		read_dyn(elf, addr, n, &tag, &val);
1574 		if (tag == DT_INIT_ARRAY)
1575 			*init = val + elf->load_addr;
1576 		else if (tag == DT_FINI_ARRAY)
1577 			*fini = val + elf->load_addr;
1578 		else if (tag == DT_INIT_ARRAYSZ)
1579 			*init_cnt = val / addrsz;
1580 		else if (tag == DT_FINI_ARRAYSZ)
1581 			*fini_cnt = val / addrsz;
1582 	}
1583 }
1584 
1585 /* Get address/size of .init_array and .fini_array in @elf (if present) */
1586 static void elf_get_init_fini_array(struct ta_elf *elf, vaddr_t *init,
1587 				    size_t *init_cnt, vaddr_t *fini,
1588 				    size_t *fini_cnt)
1589 {
1590 	size_t n = 0;
1591 
1592 	if (elf->is_32bit) {
1593 		Elf32_Phdr *phdr = elf->phdr;
1594 
1595 		for (n = 0; n < elf->e_phnum; n++) {
1596 			if (phdr[n].p_type == PT_DYNAMIC) {
1597 				get_init_fini_array(elf, phdr[n].p_type,
1598 						    phdr[n].p_vaddr,
1599 						    phdr[n].p_memsz,
1600 						    init, init_cnt, fini,
1601 						    fini_cnt);
1602 				return;
1603 			}
1604 		}
1605 	} else {
1606 		Elf64_Phdr *phdr = elf->phdr;
1607 
1608 		for (n = 0; n < elf->e_phnum; n++) {
1609 			if (phdr[n].p_type == PT_DYNAMIC) {
1610 				get_init_fini_array(elf, phdr[n].p_type,
1611 						    phdr[n].p_vaddr,
1612 						    phdr[n].p_memsz,
1613 						    init, init_cnt, fini,
1614 						    fini_cnt);
1615 				return;
1616 			}
1617 		}
1618 	}
1619 }
1620 
1621 /*
1622  * Deprecated by __elf_phdr_info below. Kept for compatibility.
1623  *
1624  * Pointers to ELF initialization and finalization functions are extracted by
1625  * ldelf and stored on the TA heap, then exported to the TA via the global
1626  * symbol __init_fini_info. libutee in OP-TEE 3.9.0 uses this mechanism.
1627  */
1628 
1629 struct __init_fini {
1630 	uint32_t flags;
1631 	uint16_t init_size;
1632 	uint16_t fini_size;
1633 
1634 	void (**init)(void); /* @init_size entries */
1635 	void (**fini)(void); /* @fini_size entries */
1636 };
1637 
1638 #define __IFS_VALID            BIT(0)
1639 #define __IFS_INIT_HAS_RUN     BIT(1)
1640 #define __IFS_FINI_HAS_RUN     BIT(2)
1641 
1642 struct __init_fini_info {
1643 	uint32_t reserved;
1644 	uint16_t size;
1645 	uint16_t pad;
1646 	struct __init_fini *ifs; /* @size entries */
1647 };
1648 
1649 /* 32-bit variants for a 64-bit ldelf to access a 32-bit TA */
1650 
1651 struct __init_fini32 {
1652 	uint32_t flags;
1653 	uint16_t init_size;
1654 	uint16_t fini_size;
1655 	uint32_t init;
1656 	uint32_t fini;
1657 };
1658 
1659 struct __init_fini_info32 {
1660 	uint32_t reserved;
1661 	uint16_t size;
1662 	uint16_t pad;
1663 	uint32_t ifs;
1664 };
1665 
1666 static TEE_Result realloc_ifs(vaddr_t va, size_t cnt, bool is_32bit)
1667 {
1668 	struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va;
1669 	struct __init_fini_info *info = (struct __init_fini_info *)va;
1670 	struct __init_fini32 *ifs32 = NULL;
1671 	struct __init_fini *ifs = NULL;
1672 	size_t prev_cnt = 0;
1673 	void *ptr = NULL;
1674 
1675 	if (is_32bit) {
1676 		ptr = (void *)(vaddr_t)info32->ifs;
1677 		ptr = realloc(ptr, cnt * sizeof(struct __init_fini32));
1678 		if (!ptr)
1679 			return TEE_ERROR_OUT_OF_MEMORY;
1680 		ifs32 = ptr;
1681 		prev_cnt = info32->size;
1682 		if (cnt > prev_cnt)
1683 			memset(ifs32 + prev_cnt, 0,
1684 			       (cnt - prev_cnt) * sizeof(*ifs32));
1685 		info32->ifs = (uint32_t)(vaddr_t)ifs32;
1686 		info32->size = cnt;
1687 	} else {
1688 		ptr = realloc(info->ifs, cnt * sizeof(struct __init_fini));
1689 		if (!ptr)
1690 			return TEE_ERROR_OUT_OF_MEMORY;
1691 		ifs = ptr;
1692 		prev_cnt = info->size;
1693 		if (cnt > prev_cnt)
1694 			memset(ifs + prev_cnt, 0,
1695 			       (cnt - prev_cnt) * sizeof(*ifs));
1696 		info->ifs = ifs;
1697 		info->size = cnt;
1698 	}
1699 
1700 	return TEE_SUCCESS;
1701 }
1702 
1703 static void fill_ifs(vaddr_t va, size_t idx, struct ta_elf *elf, bool is_32bit)
1704 {
1705 	struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va;
1706 	struct __init_fini_info *info = (struct __init_fini_info *)va;
1707 	struct __init_fini32 *ifs32 = NULL;
1708 	struct __init_fini *ifs = NULL;
1709 	size_t init_cnt = 0;
1710 	size_t fini_cnt = 0;
1711 	vaddr_t init = 0;
1712 	vaddr_t fini = 0;
1713 
1714 	if (is_32bit) {
1715 		assert(idx < info32->size);
1716 		ifs32 = &((struct __init_fini32 *)(vaddr_t)info32->ifs)[idx];
1717 
1718 		if (ifs32->flags & __IFS_VALID)
1719 			return;
1720 
1721 		elf_get_init_fini_array(elf, &init, &init_cnt, &fini,
1722 					&fini_cnt);
1723 
1724 		ifs32->init = (uint32_t)init;
1725 		ifs32->init_size = init_cnt;
1726 
1727 		ifs32->fini = (uint32_t)fini;
1728 		ifs32->fini_size = fini_cnt;
1729 
1730 		ifs32->flags |= __IFS_VALID;
1731 	} else {
1732 		assert(idx < info->size);
1733 		ifs = &info->ifs[idx];
1734 
1735 		if (ifs->flags & __IFS_VALID)
1736 			return;
1737 
1738 		elf_get_init_fini_array(elf, &init, &init_cnt, &fini,
1739 					&fini_cnt);
1740 
1741 		ifs->init = (void (**)(void))init;
1742 		ifs->init_size = init_cnt;
1743 
1744 		ifs->fini = (void (**)(void))fini;
1745 		ifs->fini_size = fini_cnt;
1746 
1747 		ifs->flags |= __IFS_VALID;
1748 	}
1749 }
1750 
1751 /*
1752  * Set or update __init_fini_info in the TA with information from the ELF
1753  * queue
1754  */
1755 TEE_Result ta_elf_set_init_fini_info_compat(bool is_32bit)
1756 {
1757 	struct __init_fini_info *info = NULL;
1758 	TEE_Result res = TEE_SUCCESS;
1759 	struct ta_elf *elf = NULL;
1760 	vaddr_t info_va = 0;
1761 	size_t cnt = 0;
1762 
1763 	res = ta_elf_resolve_sym("__init_fini_info", &info_va, NULL, NULL);
1764 	if (res) {
1765 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1766 			/*
1767 			 * Not an error, only TAs linked against libutee from
1768 			 * OP-TEE 3.9.0 have this symbol.
1769 			 */
1770 			return TEE_SUCCESS;
1771 		}
1772 		return res;
1773 	}
1774 	assert(info_va);
1775 
1776 	info = (struct __init_fini_info *)info_va;
1777 	if (info->reserved)
1778 		return TEE_ERROR_NOT_SUPPORTED;
1779 
1780 	TAILQ_FOREACH(elf, &main_elf_queue, link)
1781 		cnt++;
1782 
1783 	/* Queue has at least one file (main) */
1784 	assert(cnt);
1785 
1786 	res = realloc_ifs(info_va, cnt, is_32bit);
1787 	if (res)
1788 		goto err;
1789 
1790 	cnt = 0;
1791 	TAILQ_FOREACH(elf, &main_elf_queue, link) {
1792 		fill_ifs(info_va, cnt, elf, is_32bit);
1793 		cnt++;
1794 	}
1795 
1796 	return TEE_SUCCESS;
1797 err:
1798 	free(info);
1799 	return res;
1800 }
1801 
1802 static TEE_Result realloc_elf_phdr_info(vaddr_t va, size_t cnt, bool is_32bit)
1803 {
1804 	struct __elf_phdr_info32 *info32 = (struct __elf_phdr_info32 *)va;
1805 	struct __elf_phdr_info *info = (struct __elf_phdr_info *)va;
1806 	struct dl_phdr_info32 *dlpi32 = NULL;
1807 	struct dl_phdr_info *dlpi = NULL;
1808 	size_t prev_cnt = 0;
1809 	void *ptr = NULL;
1810 
1811 	if (is_32bit) {
1812 		ptr = (void *)(vaddr_t)info32->dlpi;
1813 		ptr = realloc(ptr, cnt * sizeof(*dlpi32));
1814 		if (!ptr)
1815 			return TEE_ERROR_OUT_OF_MEMORY;
1816 		dlpi32 = ptr;
1817 		prev_cnt = info32->count;
1818 		if (cnt > prev_cnt)
1819 			memset(dlpi32 + prev_cnt, 0,
1820 			       (cnt - prev_cnt) * sizeof(*dlpi32));
1821 		info32->dlpi = (uint32_t)(vaddr_t)dlpi32;
1822 		info32->count = cnt;
1823 	} else {
1824 		ptr = realloc(info->dlpi, cnt * sizeof(*dlpi));
1825 		if (!ptr)
1826 			return TEE_ERROR_OUT_OF_MEMORY;
1827 		dlpi = ptr;
1828 		prev_cnt = info->count;
1829 		if (cnt > prev_cnt)
1830 			memset(dlpi + prev_cnt, 0,
1831 			       (cnt - prev_cnt) * sizeof(*dlpi));
1832 		info->dlpi = dlpi;
1833 		info->count = cnt;
1834 	}
1835 
1836 	return TEE_SUCCESS;
1837 }
1838 
1839 static void fill_elf_phdr_info(vaddr_t va, size_t idx, struct ta_elf *elf,
1840 			       bool is_32bit)
1841 {
1842 	struct __elf_phdr_info32 *info32 = (struct __elf_phdr_info32 *)va;
1843 	struct __elf_phdr_info *info = (struct __elf_phdr_info *)va;
1844 	struct dl_phdr_info32 *dlpi32 = NULL;
1845 	struct dl_phdr_info *dlpi = NULL;
1846 
1847 	if (is_32bit) {
1848 		assert(idx < info32->count);
1849 		dlpi32 = (struct dl_phdr_info32 *)(vaddr_t)info32->dlpi + idx;
1850 
1851 		dlpi32->dlpi_addr = elf->load_addr;
1852 		if (elf->soname)
1853 			dlpi32->dlpi_name = (vaddr_t)elf->soname;
1854 		else
1855 			dlpi32->dlpi_name = (vaddr_t)&info32->zero;
1856 		dlpi32->dlpi_phdr = (vaddr_t)elf->phdr;
1857 		dlpi32->dlpi_phnum = elf->e_phnum;
1858 		dlpi32->dlpi_adds = 1; /* No unloading on dlclose() currently */
1859 		dlpi32->dlpi_subs = 0; /* No unloading on dlclose() currently */
1860 		dlpi32->dlpi_tls_modid = elf->tls_mod_id;
1861 		dlpi32->dlpi_tls_data = elf->tls_start;
1862 	} else {
1863 		assert(idx < info->count);
1864 		dlpi = info->dlpi + idx;
1865 
1866 		dlpi->dlpi_addr = elf->load_addr;
1867 		if (elf->soname)
1868 			dlpi->dlpi_name = elf->soname;
1869 		else
1870 			dlpi->dlpi_name = &info32->zero;
1871 		dlpi->dlpi_phdr = elf->phdr;
1872 		dlpi->dlpi_phnum = elf->e_phnum;
1873 		dlpi->dlpi_adds = 1; /* No unloading on dlclose() currently */
1874 		dlpi->dlpi_subs = 0; /* No unloading on dlclose() currently */
1875 		dlpi->dlpi_tls_modid = elf->tls_mod_id;
1876 		dlpi->dlpi_tls_data = (void *)elf->tls_start;
1877 	}
1878 }
1879 
1880 /* Set or update __elf_hdr_info in the TA with information from the ELF queue */
1881 TEE_Result ta_elf_set_elf_phdr_info(bool is_32bit)
1882 {
1883 	struct __elf_phdr_info *info = NULL;
1884 	TEE_Result res = TEE_SUCCESS;
1885 	struct ta_elf *elf = NULL;
1886 	vaddr_t info_va = 0;
1887 	size_t cnt = 0;
1888 
1889 	res = ta_elf_resolve_sym("__elf_phdr_info", &info_va, NULL, NULL);
1890 	if (res) {
1891 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1892 			/* Older TA */
1893 			return TEE_SUCCESS;
1894 		}
1895 		return res;
1896 	}
1897 	assert(info_va);
1898 
1899 	info = (struct __elf_phdr_info *)info_va;
1900 	if (info->reserved)
1901 		return TEE_ERROR_NOT_SUPPORTED;
1902 
1903 	TAILQ_FOREACH(elf, &main_elf_queue, link)
1904 		cnt++;
1905 
1906 	res = realloc_elf_phdr_info(info_va, cnt, is_32bit);
1907 	if (res)
1908 		return res;
1909 
1910 	cnt = 0;
1911 	TAILQ_FOREACH(elf, &main_elf_queue, link) {
1912 		fill_elf_phdr_info(info_va, cnt, elf, is_32bit);
1913 		cnt++;
1914 	}
1915 
1916 	return TEE_SUCCESS;
1917 }
1918