1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2019, Linaro Limited 4 */ 5 6 #include <assert.h> 7 #include <ctype.h> 8 #include <elf32.h> 9 #include <elf64.h> 10 #include <elf_common.h> 11 #include <ldelf.h> 12 #include <pta_system.h> 13 #include <stdio.h> 14 #include <stdlib.h> 15 #include <string_ext.h> 16 #include <string.h> 17 #include <tee_api_types.h> 18 #include <tee_internal_api_extensions.h> 19 #include <user_ta_header.h> 20 #include <utee_syscalls.h> 21 #include <util.h> 22 23 #include "sys.h" 24 #include "ta_elf.h" 25 #include "unwind.h" 26 27 static vaddr_t ta_stack; 28 static vaddr_t ta_stack_size; 29 30 struct ta_elf_queue main_elf_queue = TAILQ_HEAD_INITIALIZER(main_elf_queue); 31 32 static struct ta_elf *queue_elf_helper(const TEE_UUID *uuid) 33 { 34 struct ta_elf *elf = calloc(1, sizeof(*elf)); 35 36 if (!elf) 37 return NULL; 38 39 TAILQ_INIT(&elf->segs); 40 41 elf->uuid = *uuid; 42 TAILQ_INSERT_TAIL(&main_elf_queue, elf, link); 43 return elf; 44 } 45 46 static struct ta_elf *queue_elf(const TEE_UUID *uuid) 47 { 48 struct ta_elf *elf = ta_elf_find_elf(uuid); 49 50 if (elf) 51 return NULL; 52 53 elf = queue_elf_helper(uuid); 54 if (!elf) 55 err(TEE_ERROR_OUT_OF_MEMORY, "queue_elf_helper"); 56 57 return elf; 58 } 59 60 struct ta_elf *ta_elf_find_elf(const TEE_UUID *uuid) 61 { 62 struct ta_elf *elf = NULL; 63 64 TAILQ_FOREACH(elf, &main_elf_queue, link) 65 if (!memcmp(uuid, &elf->uuid, sizeof(*uuid))) 66 return elf; 67 68 return NULL; 69 } 70 71 static TEE_Result e32_parse_ehdr(struct ta_elf *elf, Elf32_Ehdr *ehdr) 72 { 73 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 74 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 75 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 76 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 77 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_ARM || 78 (ehdr->e_flags & EF_ARM_ABIMASK) != EF_ARM_ABI_VERSION || 79 #ifndef CFG_WITH_VFP 80 (ehdr->e_flags & EF_ARM_ABI_FLOAT_HARD) || 81 #endif 82 ehdr->e_phentsize != sizeof(Elf32_Phdr) || 83 ehdr->e_shentsize != sizeof(Elf32_Shdr)) 84 return TEE_ERROR_BAD_FORMAT; 85 86 elf->is_32bit = true; 87 elf->e_entry = ehdr->e_entry; 88 elf->e_phoff = ehdr->e_phoff; 89 elf->e_shoff = ehdr->e_shoff; 90 elf->e_phnum = ehdr->e_phnum; 91 elf->e_shnum = ehdr->e_shnum; 92 elf->e_phentsize = ehdr->e_phentsize; 93 elf->e_shentsize = ehdr->e_shentsize; 94 95 return TEE_SUCCESS; 96 } 97 98 #ifdef ARM64 99 static TEE_Result e64_parse_ehdr(struct ta_elf *elf, Elf64_Ehdr *ehdr) 100 { 101 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 102 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 103 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 104 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 105 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_AARCH64 || 106 ehdr->e_flags || ehdr->e_phentsize != sizeof(Elf64_Phdr) || 107 ehdr->e_shentsize != sizeof(Elf64_Shdr)) 108 return TEE_ERROR_BAD_FORMAT; 109 110 111 elf->is_32bit = false; 112 elf->e_entry = ehdr->e_entry; 113 elf->e_phoff = ehdr->e_phoff; 114 elf->e_shoff = ehdr->e_shoff; 115 elf->e_phnum = ehdr->e_phnum; 116 elf->e_shnum = ehdr->e_shnum; 117 elf->e_phentsize = ehdr->e_phentsize; 118 elf->e_shentsize = ehdr->e_shentsize; 119 120 return TEE_SUCCESS; 121 } 122 #else /*ARM64*/ 123 static TEE_Result e64_parse_ehdr(struct ta_elf *elf __unused, 124 Elf64_Ehdr *ehdr __unused) 125 { 126 return TEE_ERROR_NOT_SUPPORTED; 127 } 128 #endif /*ARM64*/ 129 130 static void check_phdr_in_range(struct ta_elf *elf, unsigned int type, 131 vaddr_t addr, size_t memsz) 132 { 133 vaddr_t max_addr = 0; 134 135 if (ADD_OVERFLOW(addr, memsz, &max_addr)) 136 err(TEE_ERROR_BAD_FORMAT, "Program header %#x overflow", type); 137 138 /* 139 * elf->load_addr and elf->max_addr are both using the 140 * final virtual addresses, while this program header is 141 * relative to 0. 142 */ 143 if (max_addr > elf->max_addr - elf->load_addr) 144 err(TEE_ERROR_BAD_FORMAT, "Program header %#x out of bounds", 145 type); 146 } 147 148 static void read_dyn(struct ta_elf *elf, vaddr_t addr, 149 size_t idx, unsigned int *tag, size_t *val) 150 { 151 if (elf->is_32bit) { 152 Elf32_Dyn *dyn = (Elf32_Dyn *)(addr + elf->load_addr); 153 154 *tag = dyn[idx].d_tag; 155 *val = dyn[idx].d_un.d_val; 156 } else { 157 Elf64_Dyn *dyn = (Elf64_Dyn *)(addr + elf->load_addr); 158 159 *tag = dyn[idx].d_tag; 160 *val = dyn[idx].d_un.d_val; 161 } 162 } 163 164 static void save_hashtab_from_segment(struct ta_elf *elf, unsigned int type, 165 vaddr_t addr, size_t memsz) 166 { 167 size_t dyn_entsize = 0; 168 size_t num_dyns = 0; 169 size_t n = 0; 170 unsigned int tag = 0; 171 size_t val = 0; 172 173 if (type != PT_DYNAMIC) 174 return; 175 176 check_phdr_in_range(elf, type, addr, memsz); 177 178 if (elf->is_32bit) 179 dyn_entsize = sizeof(Elf32_Dyn); 180 else 181 dyn_entsize = sizeof(Elf64_Dyn); 182 183 assert(!(memsz % dyn_entsize)); 184 num_dyns = memsz / dyn_entsize; 185 186 for (n = 0; n < num_dyns; n++) { 187 read_dyn(elf, addr, n, &tag, &val); 188 if (tag == DT_HASH) { 189 elf->hashtab = (void *)(val + elf->load_addr); 190 break; 191 } 192 } 193 } 194 195 static void check_range(struct ta_elf *elf, const char *name, const void *ptr, 196 size_t sz) 197 { 198 size_t max_addr = 0; 199 200 if ((vaddr_t)ptr < elf->load_addr) 201 err(TEE_ERROR_GENERIC, "%s %p out of range", name, ptr); 202 203 if (ADD_OVERFLOW((vaddr_t)ptr, sz, &max_addr)) 204 err(TEE_ERROR_GENERIC, "%s range overflow", name); 205 206 if (max_addr > elf->max_addr) 207 err(TEE_ERROR_GENERIC, 208 "%s %p..%#zx out of range", name, ptr, max_addr); 209 } 210 211 static void check_hashtab(struct ta_elf *elf, void *ptr, size_t num_buckets, 212 size_t num_chains) 213 { 214 /* 215 * Starting from 2 as the first two words are mandatory and hold 216 * num_buckets and num_chains. So this function is called twice, 217 * first to see that there's indeed room for num_buckets and 218 * num_chains and then to see that all of it fits. 219 * See http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash 220 */ 221 size_t num_words = 2; 222 size_t sz = 0; 223 224 if (!ALIGNMENT_IS_OK(ptr, uint32_t)) 225 err(TEE_ERROR_GENERIC, "Bad alignment of hashtab %p", ptr); 226 227 if (ADD_OVERFLOW(num_words, num_buckets, &num_words) || 228 ADD_OVERFLOW(num_words, num_chains, &num_words) || 229 MUL_OVERFLOW(num_words, sizeof(uint32_t), &sz)) 230 err(TEE_ERROR_GENERIC, "Hashtab overflow"); 231 232 check_range(elf, "Hashtab", ptr, sz); 233 } 234 235 static void save_hashtab(struct ta_elf *elf) 236 { 237 uint32_t *hashtab = NULL; 238 size_t n = 0; 239 240 if (elf->is_32bit) { 241 Elf32_Phdr *phdr = elf->phdr; 242 243 for (n = 0; n < elf->e_phnum; n++) 244 save_hashtab_from_segment(elf, phdr[n].p_type, 245 phdr[n].p_vaddr, 246 phdr[n].p_memsz); 247 } else { 248 Elf64_Phdr *phdr = elf->phdr; 249 250 for (n = 0; n < elf->e_phnum; n++) 251 save_hashtab_from_segment(elf, phdr[n].p_type, 252 phdr[n].p_vaddr, 253 phdr[n].p_memsz); 254 } 255 256 check_hashtab(elf, elf->hashtab, 0, 0); 257 hashtab = elf->hashtab; 258 check_hashtab(elf, elf->hashtab, hashtab[0], hashtab[1]); 259 } 260 261 static void e32_save_symtab(struct ta_elf *elf, size_t tab_idx) 262 { 263 Elf32_Shdr *shdr = elf->shdr; 264 size_t str_idx = shdr[tab_idx].sh_link; 265 266 elf->dynsymtab = (void *)(shdr[tab_idx].sh_addr + elf->load_addr); 267 if (!ALIGNMENT_IS_OK(elf->dynsymtab, Elf32_Sym)) 268 err(TEE_ERROR_GENERIC, "Bad alignment of dynsymtab %p", 269 elf->dynsymtab); 270 check_range(elf, "Dynsymtab", elf->dynsymtab, shdr[tab_idx].sh_size); 271 272 if (shdr[tab_idx].sh_size % sizeof(Elf32_Sym)) 273 err(TEE_ERROR_GENERIC, 274 "Size of dynsymtab not an even multiple of Elf32_Sym"); 275 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf32_Sym); 276 277 if (str_idx >= elf->e_shnum) 278 err(TEE_ERROR_GENERIC, "Dynstr section index out of range"); 279 elf->dynstr = (void *)(shdr[str_idx].sh_addr + elf->load_addr); 280 check_range(elf, "Dynstr", elf->dynstr, shdr[str_idx].sh_size); 281 282 elf->dynstr_size = shdr[str_idx].sh_size; 283 } 284 285 static void e64_save_symtab(struct ta_elf *elf, size_t tab_idx) 286 { 287 Elf64_Shdr *shdr = elf->shdr; 288 size_t str_idx = shdr[tab_idx].sh_link; 289 290 elf->dynsymtab = (void *)(vaddr_t)(shdr[tab_idx].sh_addr + 291 elf->load_addr); 292 293 if (!ALIGNMENT_IS_OK(elf->dynsymtab, Elf64_Sym)) 294 err(TEE_ERROR_GENERIC, "Bad alignment of dynsymtab %p", 295 elf->dynsymtab); 296 check_range(elf, "Dynsymtab", elf->dynsymtab, shdr[tab_idx].sh_size); 297 298 if (shdr[tab_idx].sh_size % sizeof(Elf64_Sym)) 299 err(TEE_ERROR_GENERIC, 300 "Size of dynsymtab not an even multiple of Elf64_Sym"); 301 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf64_Sym); 302 303 if (str_idx >= elf->e_shnum) 304 err(TEE_ERROR_GENERIC, "Dynstr section index out of range"); 305 elf->dynstr = (void *)(vaddr_t)(shdr[str_idx].sh_addr + elf->load_addr); 306 check_range(elf, "Dynstr", elf->dynstr, shdr[str_idx].sh_size); 307 308 elf->dynstr_size = shdr[str_idx].sh_size; 309 } 310 311 static void save_symtab(struct ta_elf *elf) 312 { 313 size_t n = 0; 314 315 if (elf->is_32bit) { 316 Elf32_Shdr *shdr = elf->shdr; 317 318 for (n = 0; n < elf->e_shnum; n++) { 319 if (shdr[n].sh_type == SHT_DYNSYM) { 320 e32_save_symtab(elf, n); 321 break; 322 } 323 } 324 } else { 325 Elf64_Shdr *shdr = elf->shdr; 326 327 for (n = 0; n < elf->e_shnum; n++) { 328 if (shdr[n].sh_type == SHT_DYNSYM) { 329 e64_save_symtab(elf, n); 330 break; 331 } 332 } 333 334 } 335 336 save_hashtab(elf); 337 } 338 339 static void init_elf(struct ta_elf *elf) 340 { 341 TEE_Result res = TEE_SUCCESS; 342 vaddr_t va = 0; 343 uint32_t flags = PTA_SYSTEM_MAP_FLAG_SHAREABLE; 344 size_t sz = 0; 345 346 res = sys_open_ta_bin(&elf->uuid, &elf->handle); 347 if (res) 348 err(res, "sys_open_ta_bin(%pUl)", (void *)&elf->uuid); 349 350 /* 351 * Map it read-only executable when we're loading a library where 352 * the ELF header is included in a load segment. 353 */ 354 if (!elf->is_main) 355 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 356 res = sys_map_ta_bin(&va, SMALL_PAGE_SIZE, flags, elf->handle, 0, 0, 0); 357 if (res) 358 err(res, "sys_map_ta_bin"); 359 elf->ehdr_addr = va; 360 if (!elf->is_main) { 361 elf->load_addr = va; 362 elf->max_addr = va + SMALL_PAGE_SIZE; 363 elf->max_offs = SMALL_PAGE_SIZE; 364 } 365 366 if (!IS_ELF(*(Elf32_Ehdr *)va)) 367 err(TEE_ERROR_BAD_FORMAT, "TA is not an ELF"); 368 369 res = e32_parse_ehdr(elf, (void *)va); 370 if (res == TEE_ERROR_BAD_FORMAT) 371 res = e64_parse_ehdr(elf, (void *)va); 372 if (res) 373 err(res, "Cannot parse ELF"); 374 375 if (MUL_OVERFLOW(elf->e_phnum, elf->e_phentsize, &sz) || 376 ADD_OVERFLOW(sz, elf->e_phoff, &sz)) 377 err(TEE_ERROR_BAD_FORMAT, "Program headers size overflow"); 378 379 if (sz > SMALL_PAGE_SIZE) 380 err(TEE_ERROR_NOT_SUPPORTED, "Cannot read program headers"); 381 382 elf->phdr = (void *)(va + elf->e_phoff); 383 } 384 385 static size_t roundup(size_t v) 386 { 387 return ROUNDUP(v, SMALL_PAGE_SIZE); 388 } 389 390 static size_t rounddown(size_t v) 391 { 392 return ROUNDDOWN(v, SMALL_PAGE_SIZE); 393 } 394 395 static void add_segment(struct ta_elf *elf, size_t offset, size_t vaddr, 396 size_t filesz, size_t memsz, size_t flags, size_t align) 397 { 398 struct segment *seg = calloc(1, sizeof(*seg)); 399 400 if (!seg) 401 err(TEE_ERROR_OUT_OF_MEMORY, "calloc"); 402 403 if (memsz < filesz) 404 err(TEE_ERROR_BAD_FORMAT, "Memsz smaller than filesz"); 405 406 seg->offset = offset; 407 seg->vaddr = vaddr; 408 seg->filesz = filesz; 409 seg->memsz = memsz; 410 seg->flags = flags; 411 seg->align = align; 412 413 TAILQ_INSERT_TAIL(&elf->segs, seg, link); 414 } 415 416 static void parse_load_segments(struct ta_elf *elf) 417 { 418 size_t n = 0; 419 420 if (elf->is_32bit) { 421 Elf32_Phdr *phdr = elf->phdr; 422 423 for (n = 0; n < elf->e_phnum; n++) 424 if (phdr[n].p_type == PT_LOAD) { 425 add_segment(elf, phdr[n].p_offset, 426 phdr[n].p_vaddr, phdr[n].p_filesz, 427 phdr[n].p_memsz, phdr[n].p_flags, 428 phdr[n].p_align); 429 } else if (phdr[n].p_type == PT_ARM_EXIDX) { 430 elf->exidx_start = phdr[n].p_vaddr; 431 elf->exidx_size = phdr[n].p_filesz; 432 } 433 } else { 434 Elf64_Phdr *phdr = elf->phdr; 435 436 for (n = 0; n < elf->e_phnum; n++) 437 if (phdr[n].p_type == PT_LOAD) 438 add_segment(elf, phdr[n].p_offset, 439 phdr[n].p_vaddr, phdr[n].p_filesz, 440 phdr[n].p_memsz, phdr[n].p_flags, 441 phdr[n].p_align); 442 } 443 } 444 445 static void copy_remapped_to(struct ta_elf *elf, const struct segment *seg) 446 { 447 uint8_t *dst = (void *)(seg->vaddr + elf->load_addr); 448 size_t n = 0; 449 size_t offs = seg->offset; 450 size_t num_bytes = seg->filesz; 451 452 if (offs < elf->max_offs) { 453 n = MIN(elf->max_offs - offs, num_bytes); 454 memcpy(dst, (void *)(elf->max_addr + offs - elf->max_offs), n); 455 dst += n; 456 offs += n; 457 num_bytes -= n; 458 } 459 460 if (num_bytes) { 461 TEE_Result res = sys_copy_from_ta_bin(dst, num_bytes, 462 elf->handle, offs); 463 464 if (res) 465 err(res, "sys_copy_from_ta_bin"); 466 elf->max_offs += offs; 467 } 468 } 469 470 static void adjust_segments(struct ta_elf *elf) 471 { 472 struct segment *seg = NULL; 473 struct segment *prev_seg = NULL; 474 size_t prev_end_addr = 0; 475 size_t align = 0; 476 size_t mask = 0; 477 478 /* Sanity check */ 479 TAILQ_FOREACH(seg, &elf->segs, link) { 480 size_t dummy __maybe_unused = 0; 481 482 assert(seg->align >= SMALL_PAGE_SIZE); 483 assert(!ADD_OVERFLOW(seg->vaddr, seg->memsz, &dummy)); 484 assert(seg->filesz <= seg->memsz); 485 assert((seg->offset & SMALL_PAGE_MASK) == 486 (seg->vaddr & SMALL_PAGE_MASK)); 487 488 prev_seg = TAILQ_PREV(seg, segment_head, link); 489 if (prev_seg) { 490 assert(seg->vaddr >= prev_seg->vaddr + prev_seg->memsz); 491 assert(seg->offset >= 492 prev_seg->offset + prev_seg->filesz); 493 } 494 if (!align) 495 align = seg->align; 496 assert(align == seg->align); 497 } 498 499 mask = align - 1; 500 501 seg = TAILQ_FIRST(&elf->segs); 502 if (seg) 503 seg = TAILQ_NEXT(seg, link); 504 while (seg) { 505 prev_seg = TAILQ_PREV(seg, segment_head, link); 506 prev_end_addr = prev_seg->vaddr + prev_seg->memsz; 507 508 /* 509 * This segment may overlap with the last "page" in the 510 * previous segment in two different ways: 511 * 1. Virtual address (and offset) overlaps => 512 * Permissions needs to be merged. The offset must have 513 * the SMALL_PAGE_MASK bits set as vaddr and offset must 514 * add up with prevsion segment. 515 * 516 * 2. Only offset overlaps => 517 * The same page in the ELF is mapped at two different 518 * virtual addresses. As a limitation this segment must 519 * be mapped as writeable. 520 */ 521 522 /* Case 1. */ 523 if (rounddown(seg->vaddr) < prev_end_addr) { 524 assert((seg->vaddr & mask) == (seg->offset & mask)); 525 assert(prev_seg->memsz == prev_seg->filesz); 526 527 /* 528 * Merge the segments and their permissions. 529 * Note that the may be a small hole between the 530 * two sections. 531 */ 532 prev_seg->filesz = seg->vaddr + seg->filesz - 533 prev_seg->vaddr; 534 prev_seg->memsz = seg->vaddr + seg->memsz - 535 prev_seg->vaddr; 536 prev_seg->flags |= seg->flags; 537 538 TAILQ_REMOVE(&elf->segs, seg, link); 539 free(seg); 540 seg = TAILQ_NEXT(prev_seg, link); 541 continue; 542 } 543 544 /* Case 2. */ 545 if ((seg->offset & mask) && 546 rounddown(seg->offset) < 547 (prev_seg->offset + prev_seg->filesz)) { 548 549 assert(seg->flags & PF_W); 550 seg->remapped_writeable = true; 551 } 552 553 /* 554 * No overlap, but we may need to align address, offset and 555 * size. 556 */ 557 seg->filesz += seg->vaddr - rounddown(seg->vaddr); 558 seg->memsz += seg->vaddr - rounddown(seg->vaddr); 559 seg->vaddr = rounddown(seg->vaddr); 560 seg->offset = rounddown(seg->offset); 561 seg = TAILQ_NEXT(seg, link); 562 } 563 564 } 565 566 static void populate_segments_legacy(struct ta_elf *elf) 567 { 568 TEE_Result res = TEE_SUCCESS; 569 struct segment *seg = NULL; 570 vaddr_t va = 0; 571 572 assert(elf->is_legacy); 573 TAILQ_FOREACH(seg, &elf->segs, link) { 574 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 575 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 576 seg->vaddr - seg->memsz); 577 size_t num_bytes = roundup(seg->memsz); 578 579 if (!elf->load_addr) 580 va = 0; 581 else 582 va = seg->vaddr + elf->load_addr; 583 584 585 if (!(seg->flags & PF_R)) 586 err(TEE_ERROR_NOT_SUPPORTED, 587 "Segment must be readable"); 588 589 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 590 if (res) 591 err(res, "sys_map_zi"); 592 res = sys_copy_from_ta_bin((void *)va, seg->filesz, 593 elf->handle, seg->offset); 594 if (res) 595 err(res, "sys_copy_from_ta_bin"); 596 597 if (!elf->load_addr) 598 elf->load_addr = va; 599 elf->max_addr = va + num_bytes; 600 elf->max_offs = seg->offset + seg->filesz; 601 } 602 } 603 604 static size_t get_pad_begin(void) 605 { 606 #ifdef CFG_TA_ASLR 607 size_t min = CFG_TA_ASLR_MIN_OFFSET_PAGES; 608 size_t max = CFG_TA_ASLR_MAX_OFFSET_PAGES; 609 TEE_Result res = TEE_SUCCESS; 610 uint32_t rnd32 = 0; 611 size_t rnd = 0; 612 613 COMPILE_TIME_ASSERT(CFG_TA_ASLR_MIN_OFFSET_PAGES < 614 CFG_TA_ASLR_MAX_OFFSET_PAGES); 615 if (max > min) { 616 res = utee_cryp_random_number_generate(&rnd32, sizeof(rnd32)); 617 if (res) { 618 DMSG("Random read failed: %#"PRIx32, res); 619 return min * SMALL_PAGE_SIZE; 620 } 621 rnd = rnd32 % (max - min); 622 } 623 624 return (min + rnd) * SMALL_PAGE_SIZE; 625 #else /*!CFG_TA_ASLR*/ 626 return 0; 627 #endif /*!CFG_TA_ASLR*/ 628 } 629 630 static void populate_segments(struct ta_elf *elf) 631 { 632 TEE_Result res = TEE_SUCCESS; 633 struct segment *seg = NULL; 634 vaddr_t va = 0; 635 size_t pad_begin = 0; 636 637 assert(!elf->is_legacy); 638 TAILQ_FOREACH(seg, &elf->segs, link) { 639 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 640 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 641 seg->vaddr - seg->memsz); 642 643 if (seg->remapped_writeable) { 644 size_t num_bytes = roundup(seg->vaddr + seg->memsz) - 645 rounddown(seg->vaddr); 646 647 assert(elf->load_addr); 648 va = rounddown(elf->load_addr + seg->vaddr); 649 assert(va >= elf->max_addr); 650 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 651 if (res) 652 err(res, "sys_map_zi"); 653 654 copy_remapped_to(elf, seg); 655 elf->max_addr = va + num_bytes; 656 } else { 657 uint32_t flags = 0; 658 size_t filesz = seg->filesz; 659 size_t memsz = seg->memsz; 660 size_t offset = seg->offset; 661 size_t vaddr = seg->vaddr; 662 663 if (offset < elf->max_offs) { 664 /* 665 * We're in a load segment which overlaps 666 * with (or is covered by) the first page 667 * of a shared library. 668 */ 669 if (vaddr + filesz < SMALL_PAGE_SIZE) { 670 size_t num_bytes = 0; 671 672 /* 673 * If this segment is completely 674 * covered, take next. 675 */ 676 if (vaddr + memsz <= SMALL_PAGE_SIZE) 677 continue; 678 679 /* 680 * All data of the segment is 681 * loaded, but we need to zero 682 * extend it. 683 */ 684 va = elf->max_addr; 685 num_bytes = roundup(vaddr + memsz) - 686 roundup(vaddr) - 687 SMALL_PAGE_SIZE; 688 assert(num_bytes); 689 res = sys_map_zi(num_bytes, 0, &va, 0, 690 0); 691 if (res) 692 err(res, "sys_map_zi"); 693 elf->max_addr = roundup(va + num_bytes); 694 continue; 695 } 696 697 /* Partial overlap, remove the first page. */ 698 vaddr += SMALL_PAGE_SIZE; 699 filesz -= SMALL_PAGE_SIZE; 700 memsz -= SMALL_PAGE_SIZE; 701 offset += SMALL_PAGE_SIZE; 702 } 703 704 if (!elf->load_addr) { 705 va = 0; 706 pad_begin = get_pad_begin(); 707 /* 708 * If mapping with pad_begin fails we'll 709 * retry without pad_begin, effectively 710 * disabling ASLR for the current ELF file. 711 */ 712 } else { 713 va = vaddr + elf->load_addr; 714 pad_begin = 0; 715 } 716 717 if (seg->flags & PF_W) 718 flags |= PTA_SYSTEM_MAP_FLAG_WRITEABLE; 719 else 720 flags |= PTA_SYSTEM_MAP_FLAG_SHAREABLE; 721 if (seg->flags & PF_X) 722 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 723 if (!(seg->flags & PF_R)) 724 err(TEE_ERROR_NOT_SUPPORTED, 725 "Segment must be readable"); 726 if (flags & PTA_SYSTEM_MAP_FLAG_WRITEABLE) { 727 res = sys_map_zi(memsz, 0, &va, pad_begin, 728 pad_end); 729 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 730 res = sys_map_zi(memsz, 0, &va, 0, 731 pad_end); 732 if (res) 733 err(res, "sys_map_zi"); 734 res = sys_copy_from_ta_bin((void *)va, filesz, 735 elf->handle, offset); 736 if (res) 737 err(res, "sys_copy_from_ta_bin"); 738 } else { 739 if (filesz != memsz) 740 err(TEE_ERROR_BAD_FORMAT, 741 "Filesz and memsz mismatch"); 742 res = sys_map_ta_bin(&va, filesz, flags, 743 elf->handle, offset, 744 pad_begin, pad_end); 745 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 746 res = sys_map_ta_bin(&va, filesz, flags, 747 elf->handle, 748 offset, 0, 749 pad_end); 750 if (res) 751 err(res, "sys_map_ta_bin"); 752 } 753 754 if (!elf->load_addr) 755 elf->load_addr = va; 756 elf->max_addr = roundup(va + memsz); 757 elf->max_offs += filesz; 758 } 759 } 760 } 761 762 static void map_segments(struct ta_elf *elf) 763 { 764 TEE_Result res = TEE_SUCCESS; 765 766 parse_load_segments(elf); 767 adjust_segments(elf); 768 if (TAILQ_FIRST(&elf->segs)->offset < SMALL_PAGE_SIZE) { 769 vaddr_t va = 0; 770 size_t sz = elf->max_addr - elf->load_addr; 771 struct segment *seg = TAILQ_LAST(&elf->segs, segment_head); 772 size_t pad_begin = get_pad_begin(); 773 774 /* 775 * We're loading a library, if not other parts of the code 776 * need to be updated too. 777 */ 778 assert(!elf->is_main); 779 780 /* 781 * Now that we know how much virtual memory is needed move 782 * the already mapped part to a location which can 783 * accommodate us. 784 */ 785 res = sys_remap(elf->load_addr, &va, sz, pad_begin, 786 roundup(seg->vaddr + seg->memsz)); 787 if (res == TEE_ERROR_OUT_OF_MEMORY) 788 res = sys_remap(elf->load_addr, &va, sz, 0, 789 roundup(seg->vaddr + seg->memsz)); 790 if (res) 791 err(res, "sys_remap"); 792 elf->ehdr_addr = va; 793 elf->load_addr = va; 794 elf->max_addr = va + sz; 795 elf->phdr = (void *)(va + elf->e_phoff); 796 } 797 } 798 799 static void add_deps_from_segment(struct ta_elf *elf, unsigned int type, 800 vaddr_t addr, size_t memsz) 801 { 802 size_t dyn_entsize = 0; 803 size_t num_dyns = 0; 804 size_t n = 0; 805 unsigned int tag = 0; 806 size_t val = 0; 807 TEE_UUID uuid = { }; 808 char *str_tab = NULL; 809 size_t str_tab_sz = 0; 810 811 if (type != PT_DYNAMIC) 812 return; 813 814 check_phdr_in_range(elf, type, addr, memsz); 815 816 if (elf->is_32bit) 817 dyn_entsize = sizeof(Elf32_Dyn); 818 else 819 dyn_entsize = sizeof(Elf64_Dyn); 820 821 assert(!(memsz % dyn_entsize)); 822 num_dyns = memsz / dyn_entsize; 823 824 for (n = 0; n < num_dyns && !(str_tab && str_tab_sz); n++) { 825 read_dyn(elf, addr, n, &tag, &val); 826 if (tag == DT_STRTAB) 827 str_tab = (char *)(val + elf->load_addr); 828 else if (tag == DT_STRSZ) 829 str_tab_sz = val; 830 } 831 check_range(elf, "Strtab", str_tab, str_tab_sz); 832 833 for (n = 0; n < num_dyns; n++) { 834 read_dyn(elf, addr, n, &tag, &val); 835 if (tag != DT_NEEDED) 836 continue; 837 if (val >= str_tab_sz) 838 err(TEE_ERROR_GENERIC, 839 "Offset into strtab out of range"); 840 tee_uuid_from_str(&uuid, str_tab + val); 841 queue_elf(&uuid); 842 } 843 } 844 845 static void add_dependencies(struct ta_elf *elf) 846 { 847 size_t n = 0; 848 849 if (elf->is_32bit) { 850 Elf32_Phdr *phdr = elf->phdr; 851 852 for (n = 0; n < elf->e_phnum; n++) 853 add_deps_from_segment(elf, phdr[n].p_type, 854 phdr[n].p_vaddr, phdr[n].p_memsz); 855 } else { 856 Elf64_Phdr *phdr = elf->phdr; 857 858 for (n = 0; n < elf->e_phnum; n++) 859 add_deps_from_segment(elf, phdr[n].p_type, 860 phdr[n].p_vaddr, phdr[n].p_memsz); 861 } 862 } 863 864 static void copy_section_headers(struct ta_elf *elf) 865 { 866 TEE_Result res = TEE_SUCCESS; 867 size_t sz = 0; 868 size_t offs = 0; 869 870 if (MUL_OVERFLOW(elf->e_shnum, elf->e_shentsize, &sz)) 871 err(TEE_ERROR_BAD_FORMAT, "Shdr size overflow"); 872 873 elf->shdr = malloc(sz); 874 if (!elf->shdr) 875 err(TEE_ERROR_OUT_OF_MEMORY, "malloc"); 876 877 /* 878 * We're assuming that section headers comes after the load segments, 879 * but if it's a very small dynamically linked library the section 880 * headers can still end up (partially?) in the first mapped page. 881 */ 882 if (elf->e_shoff < SMALL_PAGE_SIZE) { 883 assert(!elf->is_main); 884 offs = MIN(SMALL_PAGE_SIZE - elf->e_shoff, sz); 885 memcpy(elf->shdr, (void *)(elf->load_addr + elf->e_shoff), 886 offs); 887 } 888 889 if (offs < sz) { 890 res = sys_copy_from_ta_bin((uint8_t *)elf->shdr + offs, 891 sz - offs, elf->handle, 892 elf->e_shoff + offs); 893 if (res) 894 err(res, "sys_copy_from_ta_bin"); 895 } 896 } 897 898 static void close_handle(struct ta_elf *elf) 899 { 900 TEE_Result res = sys_close_ta_bin(elf->handle); 901 902 if (res) 903 err(res, "sys_close_ta_bin"); 904 elf->handle = -1; 905 } 906 907 static void clean_elf_load_main(struct ta_elf *elf) 908 { 909 TEE_Result res = TEE_SUCCESS; 910 911 /* 912 * Clean up from last attempt to load 913 */ 914 res = sys_unmap(elf->ehdr_addr, SMALL_PAGE_SIZE); 915 if (res) 916 err(res, "sys_unmap"); 917 918 while (!TAILQ_EMPTY(&elf->segs)) { 919 struct segment *seg = TAILQ_FIRST(&elf->segs); 920 vaddr_t va = 0; 921 size_t num_bytes = 0; 922 923 va = rounddown(elf->load_addr + seg->vaddr); 924 if (seg->remapped_writeable) 925 num_bytes = roundup(seg->vaddr + seg->memsz) - 926 rounddown(seg->vaddr); 927 else 928 num_bytes = seg->memsz; 929 930 res = sys_unmap(va, num_bytes); 931 if (res) 932 err(res, "sys_unmap"); 933 934 TAILQ_REMOVE(&elf->segs, seg, link); 935 free(seg); 936 } 937 938 free(elf->shdr); 939 memset(&elf->is_32bit, 0, 940 (vaddr_t)&elf->uuid - (vaddr_t)&elf->is_32bit); 941 942 TAILQ_INIT(&elf->segs); 943 } 944 945 static void load_main(struct ta_elf *elf) 946 { 947 init_elf(elf); 948 map_segments(elf); 949 populate_segments(elf); 950 add_dependencies(elf); 951 copy_section_headers(elf); 952 save_symtab(elf); 953 close_handle(elf); 954 955 elf->head = (struct ta_head *)elf->load_addr; 956 if (elf->head->depr_entry != UINT64_MAX) { 957 /* 958 * Legacy TAs sets their entry point in ta_head. For 959 * non-legacy TAs the entry point of the ELF is set instead 960 * and leaving the ta_head entry point set to UINT64_MAX to 961 * indicate that it's not used. 962 * 963 * NB, everything before the commit a73b5878c89d ("Replace 964 * ta_head.entry with elf entry") is considered legacy TAs 965 * for ldelf. 966 * 967 * Legacy TAs cannot be mapped with shared memory segments 968 * so restart the mapping if it turned out we're loading a 969 * legacy TA. 970 */ 971 972 DMSG("Reloading TA %pUl as legacy TA", (void *)&elf->uuid); 973 clean_elf_load_main(elf); 974 elf->is_legacy = true; 975 init_elf(elf); 976 map_segments(elf); 977 populate_segments_legacy(elf); 978 add_dependencies(elf); 979 copy_section_headers(elf); 980 save_symtab(elf); 981 close_handle(elf); 982 elf->head = (struct ta_head *)elf->load_addr; 983 /* 984 * Check that the TA is still a legacy TA, if it isn't give 985 * up now since we're likely under attack. 986 */ 987 if (elf->head->depr_entry == UINT64_MAX) 988 err(TEE_ERROR_GENERIC, 989 "TA %pUl was changed on disk to non-legacy", 990 (void *)&elf->uuid); 991 } 992 993 } 994 995 void ta_elf_load_main(const TEE_UUID *uuid, uint32_t *is_32bit, uint64_t *sp, 996 uint32_t *ta_flags) 997 { 998 struct ta_elf *elf = queue_elf(uuid); 999 vaddr_t va = 0; 1000 TEE_Result res = TEE_SUCCESS; 1001 1002 assert(elf); 1003 elf->is_main = true; 1004 1005 load_main(elf); 1006 1007 *is_32bit = elf->is_32bit; 1008 res = sys_map_zi(elf->head->stack_size, 0, &va, 0, 0); 1009 if (res) 1010 err(res, "sys_map_zi stack"); 1011 1012 if (elf->head->flags & ~TA_FLAGS_MASK) 1013 err(TEE_ERROR_BAD_FORMAT, "Invalid TA flags(s) %#"PRIx32, 1014 elf->head->flags & ~TA_FLAGS_MASK); 1015 1016 *ta_flags = elf->head->flags; 1017 *sp = va + elf->head->stack_size; 1018 ta_stack = va; 1019 ta_stack_size = elf->head->stack_size; 1020 } 1021 1022 void ta_elf_finalize_load_main(uint64_t *entry) 1023 { 1024 struct ta_elf *elf = TAILQ_FIRST(&main_elf_queue); 1025 TEE_Result res = TEE_SUCCESS; 1026 1027 assert(elf->is_main); 1028 1029 res = ta_elf_set_init_fini_info(elf->is_32bit); 1030 if (res) 1031 err(res, "ta_elf_set_init_fini_info"); 1032 1033 if (elf->is_legacy) 1034 *entry = elf->head->depr_entry; 1035 else 1036 *entry = elf->e_entry + elf->load_addr; 1037 } 1038 1039 1040 void ta_elf_load_dependency(struct ta_elf *elf, bool is_32bit) 1041 { 1042 if (elf->is_main) 1043 return; 1044 1045 init_elf(elf); 1046 if (elf->is_32bit != is_32bit) 1047 err(TEE_ERROR_BAD_FORMAT, "ELF %pUl is %sbit (expected %sbit)", 1048 (void *)&elf->uuid, elf->is_32bit ? "32" : "64", 1049 is_32bit ? "32" : "64"); 1050 1051 map_segments(elf); 1052 populate_segments(elf); 1053 add_dependencies(elf); 1054 copy_section_headers(elf); 1055 save_symtab(elf); 1056 close_handle(elf); 1057 } 1058 1059 void ta_elf_finalize_mappings(struct ta_elf *elf) 1060 { 1061 TEE_Result res = TEE_SUCCESS; 1062 struct segment *seg = NULL; 1063 1064 if (!elf->is_legacy) 1065 return; 1066 1067 TAILQ_FOREACH(seg, &elf->segs, link) { 1068 vaddr_t va = elf->load_addr + seg->vaddr; 1069 uint32_t flags = 0; 1070 1071 if (seg->flags & PF_W) 1072 flags |= PTA_SYSTEM_MAP_FLAG_WRITEABLE; 1073 if (seg->flags & PF_X) 1074 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 1075 1076 res = sys_set_prot(va, seg->memsz, flags); 1077 if (res) 1078 err(res, "sys_set_prot"); 1079 } 1080 } 1081 1082 static void __printf(3, 4) print_wrapper(void *pctx, print_func_t print_func, 1083 const char *fmt, ...) 1084 { 1085 va_list ap; 1086 1087 va_start(ap, fmt); 1088 print_func(pctx, fmt, ap); 1089 va_end(ap); 1090 } 1091 1092 static void print_seg(void *pctx, print_func_t print_func, 1093 size_t idx __maybe_unused, int elf_idx __maybe_unused, 1094 vaddr_t va __maybe_unused, paddr_t pa __maybe_unused, 1095 size_t sz __maybe_unused, uint32_t flags) 1096 { 1097 int width __maybe_unused = 8; 1098 char desc[14] __maybe_unused = ""; 1099 char flags_str[] __maybe_unused = "----"; 1100 1101 if (elf_idx > -1) { 1102 snprintf(desc, sizeof(desc), " [%d]", elf_idx); 1103 } else { 1104 if (flags & DUMP_MAP_EPHEM) 1105 snprintf(desc, sizeof(desc), " (param)"); 1106 if (flags & DUMP_MAP_LDELF) 1107 snprintf(desc, sizeof(desc), " (ldelf)"); 1108 if (va == ta_stack) 1109 snprintf(desc, sizeof(desc), " (stack)"); 1110 } 1111 1112 if (flags & DUMP_MAP_READ) 1113 flags_str[0] = 'r'; 1114 if (flags & DUMP_MAP_WRITE) 1115 flags_str[1] = 'w'; 1116 if (flags & DUMP_MAP_EXEC) 1117 flags_str[2] = 'x'; 1118 if (flags & DUMP_MAP_SECURE) 1119 flags_str[3] = 's'; 1120 1121 print_wrapper(pctx, print_func, 1122 "region %2zu: va 0x%0*"PRIxVA" pa 0x%0*"PRIxPA" size 0x%06zx flags %s%s\n", 1123 idx, width, va, width, pa, sz, flags_str, desc); 1124 } 1125 1126 static bool get_next_in_order(struct ta_elf_queue *elf_queue, 1127 struct ta_elf **elf, struct segment **seg, 1128 size_t *elf_idx) 1129 { 1130 struct ta_elf *e = NULL; 1131 struct segment *s = NULL; 1132 size_t idx = 0; 1133 vaddr_t va = 0; 1134 struct ta_elf *e2 = NULL; 1135 size_t i2 = 0; 1136 1137 assert(elf && seg && elf_idx); 1138 e = *elf; 1139 s = *seg; 1140 assert((e == NULL && s == NULL) || (e != NULL && s != NULL)); 1141 1142 if (s) { 1143 s = TAILQ_NEXT(s, link); 1144 if (s) { 1145 *seg = s; 1146 return true; 1147 } 1148 } 1149 1150 if (e) 1151 va = e->load_addr; 1152 1153 /* Find the ELF with next load address */ 1154 e = NULL; 1155 TAILQ_FOREACH(e2, elf_queue, link) { 1156 if (e2->load_addr > va) { 1157 if (!e || e2->load_addr < e->load_addr) { 1158 e = e2; 1159 idx = i2; 1160 } 1161 } 1162 i2++; 1163 } 1164 if (!e) 1165 return false; 1166 1167 *elf = e; 1168 *seg = TAILQ_FIRST(&e->segs); 1169 *elf_idx = idx; 1170 return true; 1171 } 1172 1173 void ta_elf_print_mappings(void *pctx, print_func_t print_func, 1174 struct ta_elf_queue *elf_queue, size_t num_maps, 1175 struct dump_map *maps, vaddr_t mpool_base) 1176 { 1177 struct segment *seg = NULL; 1178 struct ta_elf *elf = NULL; 1179 size_t elf_idx = 0; 1180 size_t idx = 0; 1181 size_t map_idx = 0; 1182 1183 /* 1184 * Loop over all segments and maps, printing virtual address in 1185 * order. Segment has priority if the virtual address is present 1186 * in both map and segment. 1187 */ 1188 get_next_in_order(elf_queue, &elf, &seg, &elf_idx); 1189 while (true) { 1190 vaddr_t va = -1; 1191 size_t sz = 0; 1192 uint32_t flags = DUMP_MAP_SECURE; 1193 size_t offs = 0; 1194 1195 if (seg) { 1196 va = rounddown(seg->vaddr + elf->load_addr); 1197 sz = roundup(seg->vaddr + seg->memsz) - 1198 rounddown(seg->vaddr); 1199 } 1200 1201 while (map_idx < num_maps && maps[map_idx].va <= va) { 1202 uint32_t f = 0; 1203 1204 /* If there's a match, it should be the same map */ 1205 if (maps[map_idx].va == va) { 1206 /* 1207 * In shared libraries the first page is 1208 * mapped separately with the rest of that 1209 * segment following back to back in a 1210 * separate entry. 1211 */ 1212 if (map_idx + 1 < num_maps && 1213 maps[map_idx].sz == SMALL_PAGE_SIZE) { 1214 vaddr_t next_va = maps[map_idx].va + 1215 maps[map_idx].sz; 1216 size_t comb_sz = maps[map_idx].sz + 1217 maps[map_idx + 1].sz; 1218 1219 if (next_va == maps[map_idx + 1].va && 1220 comb_sz == sz && 1221 maps[map_idx].flags == 1222 maps[map_idx + 1].flags) { 1223 /* Skip this and next entry */ 1224 map_idx += 2; 1225 continue; 1226 } 1227 } 1228 assert(maps[map_idx].sz == sz); 1229 } else if (maps[map_idx].va < va) { 1230 if (maps[map_idx].va == mpool_base) 1231 f |= DUMP_MAP_LDELF; 1232 print_seg(pctx, print_func, idx, -1, 1233 maps[map_idx].va, maps[map_idx].pa, 1234 maps[map_idx].sz, 1235 maps[map_idx].flags | f); 1236 idx++; 1237 } 1238 map_idx++; 1239 } 1240 1241 if (!seg) 1242 break; 1243 1244 offs = rounddown(seg->offset); 1245 if (seg->flags & PF_R) 1246 flags |= DUMP_MAP_READ; 1247 if (seg->flags & PF_W) 1248 flags |= DUMP_MAP_WRITE; 1249 if (seg->flags & PF_X) 1250 flags |= DUMP_MAP_EXEC; 1251 1252 print_seg(pctx, print_func, idx, elf_idx, va, offs, sz, flags); 1253 idx++; 1254 1255 if (!get_next_in_order(elf_queue, &elf, &seg, &elf_idx)) 1256 seg = NULL; 1257 } 1258 1259 elf_idx = 0; 1260 TAILQ_FOREACH(elf, elf_queue, link) { 1261 print_wrapper(pctx, print_func, 1262 " [%zu] %pUl @ 0x%0*"PRIxVA"\n", 1263 elf_idx, (void *)&elf->uuid, 8, elf->load_addr); 1264 elf_idx++; 1265 } 1266 } 1267 1268 #ifdef CFG_UNWIND 1269 void ta_elf_stack_trace_a32(uint32_t regs[16]) 1270 { 1271 struct unwind_state_arm32 state = { }; 1272 1273 memcpy(state.registers, regs, sizeof(state.registers)); 1274 print_stack_arm32(&state, ta_stack, ta_stack_size); 1275 } 1276 1277 void ta_elf_stack_trace_a64(uint64_t fp, uint64_t sp, uint64_t pc) 1278 { 1279 struct unwind_state_arm64 state = { .fp = fp, .sp = sp, .pc = pc }; 1280 1281 print_stack_arm64(&state, ta_stack, ta_stack_size); 1282 } 1283 #endif 1284 1285 TEE_Result ta_elf_add_library(const TEE_UUID *uuid) 1286 { 1287 struct ta_elf *ta = TAILQ_FIRST(&main_elf_queue); 1288 struct ta_elf *lib = ta_elf_find_elf(uuid); 1289 struct ta_elf *elf = NULL; 1290 1291 if (lib) 1292 return TEE_SUCCESS; /* Already mapped */ 1293 1294 lib = queue_elf_helper(uuid); 1295 if (!lib) 1296 return TEE_ERROR_OUT_OF_MEMORY; 1297 1298 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) 1299 ta_elf_load_dependency(elf, ta->is_32bit); 1300 1301 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) { 1302 ta_elf_relocate(elf); 1303 ta_elf_finalize_mappings(elf); 1304 } 1305 1306 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) 1307 DMSG("ELF (%pUl) at %#"PRIxVA, 1308 (void *)&elf->uuid, elf->load_addr); 1309 1310 return ta_elf_set_init_fini_info(ta->is_32bit); 1311 } 1312 1313 /* Get address/size of .init_array and .fini_array from the dynamic segment */ 1314 static void get_init_fini_array(struct ta_elf *elf, unsigned int type, 1315 vaddr_t addr, size_t memsz, vaddr_t *init, 1316 size_t *init_cnt, vaddr_t *fini, 1317 size_t *fini_cnt) 1318 { 1319 size_t addrsz = 0; 1320 size_t dyn_entsize = 0; 1321 size_t num_dyns = 0; 1322 size_t n = 0; 1323 unsigned int tag = 0; 1324 size_t val = 0; 1325 1326 assert(type == PT_DYNAMIC); 1327 1328 check_phdr_in_range(elf, type, addr, memsz); 1329 1330 if (elf->is_32bit) { 1331 dyn_entsize = sizeof(Elf32_Dyn); 1332 addrsz = 4; 1333 } else { 1334 dyn_entsize = sizeof(Elf64_Dyn); 1335 addrsz = 8; 1336 } 1337 1338 assert(!(memsz % dyn_entsize)); 1339 num_dyns = memsz / dyn_entsize; 1340 1341 for (n = 0; n < num_dyns; n++) { 1342 read_dyn(elf, addr, n, &tag, &val); 1343 if (tag == DT_INIT_ARRAY) 1344 *init = val + elf->load_addr; 1345 else if (tag == DT_FINI_ARRAY) 1346 *fini = val + elf->load_addr; 1347 else if (tag == DT_INIT_ARRAYSZ) 1348 *init_cnt = val / addrsz; 1349 else if (tag == DT_FINI_ARRAYSZ) 1350 *fini_cnt = val / addrsz; 1351 } 1352 } 1353 1354 /* Get address/size of .init_array and .fini_array in @elf (if present) */ 1355 static void elf_get_init_fini_array(struct ta_elf *elf, vaddr_t *init, 1356 size_t *init_cnt, vaddr_t *fini, 1357 size_t *fini_cnt) 1358 { 1359 size_t n = 0; 1360 1361 if (elf->is_32bit) { 1362 Elf32_Phdr *phdr = elf->phdr; 1363 1364 for (n = 0; n < elf->e_phnum; n++) { 1365 if (phdr[n].p_type == PT_DYNAMIC) { 1366 get_init_fini_array(elf, phdr[n].p_type, 1367 phdr[n].p_vaddr, 1368 phdr[n].p_memsz, 1369 init, init_cnt, fini, 1370 fini_cnt); 1371 return; 1372 } 1373 } 1374 } else { 1375 Elf64_Phdr *phdr = elf->phdr; 1376 1377 for (n = 0; n < elf->e_phnum; n++) { 1378 if (phdr[n].p_type == PT_DYNAMIC) { 1379 get_init_fini_array(elf, phdr[n].p_type, 1380 phdr[n].p_vaddr, 1381 phdr[n].p_memsz, 1382 init, init_cnt, fini, 1383 fini_cnt); 1384 return; 1385 } 1386 } 1387 } 1388 } 1389 1390 static TEE_Result realloc_ifs(vaddr_t va, size_t cnt, bool is_32bit) 1391 { 1392 struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va; 1393 struct __init_fini_info *info = (struct __init_fini_info *)va; 1394 struct __init_fini32 *ifs32 = NULL; 1395 struct __init_fini *ifs = NULL; 1396 size_t prev_cnt = 0; 1397 void *ptr = NULL; 1398 1399 if (is_32bit) { 1400 ptr = (void *)(vaddr_t)info32->ifs; 1401 ptr = realloc(ptr, cnt * sizeof(struct __init_fini32)); 1402 if (!ptr) 1403 return TEE_ERROR_OUT_OF_MEMORY; 1404 ifs32 = ptr; 1405 prev_cnt = info32->size; 1406 if (cnt > prev_cnt) 1407 memset(ifs32 + prev_cnt, 0, 1408 (cnt - prev_cnt) * sizeof(*ifs32)); 1409 info32->ifs = (uint32_t)(vaddr_t)ifs32; 1410 info32->size = cnt; 1411 } else { 1412 ptr = realloc(info->ifs, cnt * sizeof(struct __init_fini)); 1413 if (!ptr) 1414 return TEE_ERROR_OUT_OF_MEMORY; 1415 ifs = ptr; 1416 prev_cnt = info->size; 1417 if (cnt > prev_cnt) 1418 memset(ifs + prev_cnt, 0, 1419 (cnt - prev_cnt) * sizeof(*ifs)); 1420 info->ifs = ifs; 1421 info->size = cnt; 1422 } 1423 1424 return TEE_SUCCESS; 1425 } 1426 1427 static void fill_ifs(vaddr_t va, size_t idx, struct ta_elf *elf, bool is_32bit) 1428 { 1429 struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va; 1430 struct __init_fini_info *info = (struct __init_fini_info *)va; 1431 struct __init_fini32 *ifs32 = NULL; 1432 struct __init_fini *ifs = NULL; 1433 size_t init_cnt = 0; 1434 size_t fini_cnt = 0; 1435 vaddr_t init = 0; 1436 vaddr_t fini = 0; 1437 1438 if (is_32bit) { 1439 assert(idx < info32->size); 1440 ifs32 = &((struct __init_fini32 *)(vaddr_t)info32->ifs)[idx]; 1441 1442 if (ifs32->flags & __IFS_VALID) 1443 return; 1444 1445 elf_get_init_fini_array(elf, &init, &init_cnt, &fini, 1446 &fini_cnt); 1447 1448 ifs32->init = (uint32_t)init; 1449 ifs32->init_size = init_cnt; 1450 1451 ifs32->fini = (uint32_t)fini; 1452 ifs32->fini_size = fini_cnt; 1453 1454 ifs32->flags |= __IFS_VALID; 1455 } else { 1456 assert(idx < info->size); 1457 ifs = &info->ifs[idx]; 1458 1459 if (ifs->flags & __IFS_VALID) 1460 return; 1461 1462 elf_get_init_fini_array(elf, &init, &init_cnt, &fini, 1463 &fini_cnt); 1464 1465 ifs->init = (void (**)(void))init; 1466 ifs->init_size = init_cnt; 1467 1468 ifs->fini = (void (**)(void))fini; 1469 ifs->fini_size = fini_cnt; 1470 1471 ifs->flags |= __IFS_VALID; 1472 } 1473 } 1474 1475 /* 1476 * Set or update __init_fini_info in the TA with information from the ELF 1477 * queue 1478 */ 1479 TEE_Result ta_elf_set_init_fini_info(bool is_32bit) 1480 { 1481 struct __init_fini_info *info = NULL; 1482 TEE_Result res = TEE_SUCCESS; 1483 struct ta_elf *elf = NULL; 1484 vaddr_t info_va = 0; 1485 size_t cnt = 0; 1486 1487 res = ta_elf_resolve_sym("__init_fini_info", &info_va, NULL); 1488 if (res) { 1489 if (res == TEE_ERROR_ITEM_NOT_FOUND) { 1490 /* Older TA */ 1491 return TEE_SUCCESS; 1492 } 1493 return res; 1494 } 1495 assert(info_va); 1496 1497 info = (struct __init_fini_info *)info_va; 1498 if (info->reserved) 1499 return TEE_ERROR_NOT_SUPPORTED; 1500 1501 TAILQ_FOREACH(elf, &main_elf_queue, link) 1502 cnt++; 1503 1504 /* Queue has at least one file (main) */ 1505 assert(cnt); 1506 1507 res = realloc_ifs(info_va, cnt, is_32bit); 1508 if (res) 1509 goto err; 1510 1511 cnt = 0; 1512 TAILQ_FOREACH(elf, &main_elf_queue, link) { 1513 fill_ifs(info_va, cnt, elf, is_32bit); 1514 cnt++; 1515 } 1516 1517 return TEE_SUCCESS; 1518 err: 1519 free(info); 1520 return res; 1521 } 1522