1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2019, Linaro Limited 4 */ 5 6 #include <assert.h> 7 #include <ctype.h> 8 #include <elf32.h> 9 #include <elf64.h> 10 #include <elf_common.h> 11 #include <ldelf.h> 12 #include <pta_system.h> 13 #include <stdio.h> 14 #include <stdlib.h> 15 #include <string_ext.h> 16 #include <string.h> 17 #include <tee_api_types.h> 18 #include <tee_internal_api_extensions.h> 19 #include <user_ta_header.h> 20 #include <utee_syscalls.h> 21 #include <util.h> 22 23 #include "sys.h" 24 #include "ta_elf.h" 25 #include "unwind.h" 26 27 static vaddr_t ta_stack; 28 static vaddr_t ta_stack_size; 29 30 struct ta_elf_queue main_elf_queue = TAILQ_HEAD_INITIALIZER(main_elf_queue); 31 32 static struct ta_elf *queue_elf_helper(const TEE_UUID *uuid) 33 { 34 struct ta_elf *elf = calloc(1, sizeof(*elf)); 35 36 if (!elf) 37 return NULL; 38 39 TAILQ_INIT(&elf->segs); 40 41 elf->uuid = *uuid; 42 TAILQ_INSERT_TAIL(&main_elf_queue, elf, link); 43 return elf; 44 } 45 46 static struct ta_elf *queue_elf(const TEE_UUID *uuid) 47 { 48 struct ta_elf *elf = ta_elf_find_elf(uuid); 49 50 if (elf) 51 return NULL; 52 53 elf = queue_elf_helper(uuid); 54 if (!elf) 55 err(TEE_ERROR_OUT_OF_MEMORY, "queue_elf_helper"); 56 57 return elf; 58 } 59 60 struct ta_elf *ta_elf_find_elf(const TEE_UUID *uuid) 61 { 62 struct ta_elf *elf = NULL; 63 64 TAILQ_FOREACH(elf, &main_elf_queue, link) 65 if (!memcmp(uuid, &elf->uuid, sizeof(*uuid))) 66 return elf; 67 68 return NULL; 69 } 70 71 static TEE_Result e32_parse_ehdr(struct ta_elf *elf, Elf32_Ehdr *ehdr) 72 { 73 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 74 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 75 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 76 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 77 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_ARM || 78 (ehdr->e_flags & EF_ARM_ABIMASK) != EF_ARM_ABI_VERSION || 79 #ifndef CFG_WITH_VFP 80 (ehdr->e_flags & EF_ARM_ABI_FLOAT_HARD) || 81 #endif 82 ehdr->e_phentsize != sizeof(Elf32_Phdr) || 83 ehdr->e_shentsize != sizeof(Elf32_Shdr)) 84 return TEE_ERROR_BAD_FORMAT; 85 86 elf->is_32bit = true; 87 elf->e_entry = ehdr->e_entry; 88 elf->e_phoff = ehdr->e_phoff; 89 elf->e_shoff = ehdr->e_shoff; 90 elf->e_phnum = ehdr->e_phnum; 91 elf->e_shnum = ehdr->e_shnum; 92 elf->e_phentsize = ehdr->e_phentsize; 93 elf->e_shentsize = ehdr->e_shentsize; 94 95 return TEE_SUCCESS; 96 } 97 98 #ifdef ARM64 99 static TEE_Result e64_parse_ehdr(struct ta_elf *elf, Elf64_Ehdr *ehdr) 100 { 101 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 102 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 103 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 104 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 105 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_AARCH64 || 106 ehdr->e_flags || ehdr->e_phentsize != sizeof(Elf64_Phdr) || 107 ehdr->e_shentsize != sizeof(Elf64_Shdr)) 108 return TEE_ERROR_BAD_FORMAT; 109 110 111 elf->is_32bit = false; 112 elf->e_entry = ehdr->e_entry; 113 elf->e_phoff = ehdr->e_phoff; 114 elf->e_shoff = ehdr->e_shoff; 115 elf->e_phnum = ehdr->e_phnum; 116 elf->e_shnum = ehdr->e_shnum; 117 elf->e_phentsize = ehdr->e_phentsize; 118 elf->e_shentsize = ehdr->e_shentsize; 119 120 return TEE_SUCCESS; 121 } 122 #else /*ARM64*/ 123 static TEE_Result e64_parse_ehdr(struct ta_elf *elf __unused, 124 Elf64_Ehdr *ehdr __unused) 125 { 126 return TEE_ERROR_NOT_SUPPORTED; 127 } 128 #endif /*ARM64*/ 129 130 static void check_phdr_in_range(struct ta_elf *elf, unsigned int type, 131 vaddr_t addr, size_t memsz) 132 { 133 vaddr_t max_addr = 0; 134 135 if (ADD_OVERFLOW(addr, memsz, &max_addr)) 136 err(TEE_ERROR_BAD_FORMAT, "Program header %#x overflow", type); 137 138 /* 139 * elf->load_addr and elf->max_addr are both using the 140 * final virtual addresses, while this program header is 141 * relative to 0. 142 */ 143 if (max_addr > elf->max_addr - elf->load_addr) 144 err(TEE_ERROR_BAD_FORMAT, "Program header %#x out of bounds", 145 type); 146 } 147 148 static void read_dyn(struct ta_elf *elf, vaddr_t addr, 149 size_t idx, unsigned int *tag, size_t *val) 150 { 151 if (elf->is_32bit) { 152 Elf32_Dyn *dyn = (Elf32_Dyn *)(addr + elf->load_addr); 153 154 *tag = dyn[idx].d_tag; 155 *val = dyn[idx].d_un.d_val; 156 } else { 157 Elf64_Dyn *dyn = (Elf64_Dyn *)(addr + elf->load_addr); 158 159 *tag = dyn[idx].d_tag; 160 *val = dyn[idx].d_un.d_val; 161 } 162 } 163 164 static void save_hashtab_from_segment(struct ta_elf *elf, unsigned int type, 165 vaddr_t addr, size_t memsz) 166 { 167 size_t dyn_entsize = 0; 168 size_t num_dyns = 0; 169 size_t n = 0; 170 unsigned int tag = 0; 171 size_t val = 0; 172 173 if (type != PT_DYNAMIC) 174 return; 175 176 check_phdr_in_range(elf, type, addr, memsz); 177 178 if (elf->is_32bit) 179 dyn_entsize = sizeof(Elf32_Dyn); 180 else 181 dyn_entsize = sizeof(Elf64_Dyn); 182 183 assert(!(memsz % dyn_entsize)); 184 num_dyns = memsz / dyn_entsize; 185 186 for (n = 0; n < num_dyns; n++) { 187 read_dyn(elf, addr, n, &tag, &val); 188 if (tag == DT_HASH) { 189 elf->hashtab = (void *)(val + elf->load_addr); 190 break; 191 } 192 } 193 } 194 195 static void check_range(struct ta_elf *elf, const char *name, const void *ptr, 196 size_t sz) 197 { 198 size_t max_addr = 0; 199 200 if ((vaddr_t)ptr < elf->load_addr) 201 err(TEE_ERROR_GENERIC, "%s %p out of range", name, ptr); 202 203 if (ADD_OVERFLOW((vaddr_t)ptr, sz, &max_addr)) 204 err(TEE_ERROR_GENERIC, "%s range overflow", name); 205 206 if (max_addr > elf->max_addr) 207 err(TEE_ERROR_GENERIC, 208 "%s %p..%#zx out of range", name, ptr, max_addr); 209 } 210 211 static void check_hashtab(struct ta_elf *elf, void *ptr, size_t num_buckets, 212 size_t num_chains) 213 { 214 /* 215 * Starting from 2 as the first two words are mandatory and hold 216 * num_buckets and num_chains. So this function is called twice, 217 * first to see that there's indeed room for num_buckets and 218 * num_chains and then to see that all of it fits. 219 * See http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash 220 */ 221 size_t num_words = 2; 222 size_t sz = 0; 223 224 if (!ALIGNMENT_IS_OK(ptr, uint32_t)) 225 err(TEE_ERROR_GENERIC, "Bad alignment of hashtab %p", ptr); 226 227 if (ADD_OVERFLOW(num_words, num_buckets, &num_words) || 228 ADD_OVERFLOW(num_words, num_chains, &num_words) || 229 MUL_OVERFLOW(num_words, sizeof(uint32_t), &sz)) 230 err(TEE_ERROR_GENERIC, "Hashtab overflow"); 231 232 check_range(elf, "Hashtab", ptr, sz); 233 } 234 235 static void save_hashtab(struct ta_elf *elf) 236 { 237 uint32_t *hashtab = NULL; 238 size_t n = 0; 239 240 if (elf->is_32bit) { 241 Elf32_Phdr *phdr = elf->phdr; 242 243 for (n = 0; n < elf->e_phnum; n++) 244 save_hashtab_from_segment(elf, phdr[n].p_type, 245 phdr[n].p_vaddr, 246 phdr[n].p_memsz); 247 } else { 248 Elf64_Phdr *phdr = elf->phdr; 249 250 for (n = 0; n < elf->e_phnum; n++) 251 save_hashtab_from_segment(elf, phdr[n].p_type, 252 phdr[n].p_vaddr, 253 phdr[n].p_memsz); 254 } 255 256 check_hashtab(elf, elf->hashtab, 0, 0); 257 hashtab = elf->hashtab; 258 check_hashtab(elf, elf->hashtab, hashtab[0], hashtab[1]); 259 } 260 261 static void e32_save_symtab(struct ta_elf *elf, size_t tab_idx) 262 { 263 Elf32_Shdr *shdr = elf->shdr; 264 size_t str_idx = shdr[tab_idx].sh_link; 265 266 elf->dynsymtab = (void *)(shdr[tab_idx].sh_addr + elf->load_addr); 267 if (!ALIGNMENT_IS_OK(elf->dynsymtab, Elf32_Sym)) 268 err(TEE_ERROR_GENERIC, "Bad alignment of dynsymtab %p", 269 elf->dynsymtab); 270 check_range(elf, "Dynsymtab", elf->dynsymtab, shdr[tab_idx].sh_size); 271 272 if (shdr[tab_idx].sh_size % sizeof(Elf32_Sym)) 273 err(TEE_ERROR_GENERIC, 274 "Size of dynsymtab not an even multiple of Elf32_Sym"); 275 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf32_Sym); 276 277 if (str_idx >= elf->e_shnum) 278 err(TEE_ERROR_GENERIC, "Dynstr section index out of range"); 279 elf->dynstr = (void *)(shdr[str_idx].sh_addr + elf->load_addr); 280 check_range(elf, "Dynstr", elf->dynstr, shdr[str_idx].sh_size); 281 282 elf->dynstr_size = shdr[str_idx].sh_size; 283 } 284 285 static void e64_save_symtab(struct ta_elf *elf, size_t tab_idx) 286 { 287 Elf64_Shdr *shdr = elf->shdr; 288 size_t str_idx = shdr[tab_idx].sh_link; 289 290 elf->dynsymtab = (void *)(vaddr_t)(shdr[tab_idx].sh_addr + 291 elf->load_addr); 292 293 if (!ALIGNMENT_IS_OK(elf->dynsymtab, Elf64_Sym)) 294 err(TEE_ERROR_GENERIC, "Bad alignment of dynsymtab %p", 295 elf->dynsymtab); 296 check_range(elf, "Dynsymtab", elf->dynsymtab, shdr[tab_idx].sh_size); 297 298 if (shdr[tab_idx].sh_size % sizeof(Elf64_Sym)) 299 err(TEE_ERROR_GENERIC, 300 "Size of dynsymtab not an even multiple of Elf64_Sym"); 301 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf64_Sym); 302 303 if (str_idx >= elf->e_shnum) 304 err(TEE_ERROR_GENERIC, "Dynstr section index out of range"); 305 elf->dynstr = (void *)(vaddr_t)(shdr[str_idx].sh_addr + elf->load_addr); 306 check_range(elf, "Dynstr", elf->dynstr, shdr[str_idx].sh_size); 307 308 elf->dynstr_size = shdr[str_idx].sh_size; 309 } 310 311 static void save_symtab(struct ta_elf *elf) 312 { 313 size_t n = 0; 314 315 if (elf->is_32bit) { 316 Elf32_Shdr *shdr = elf->shdr; 317 318 for (n = 0; n < elf->e_shnum; n++) { 319 if (shdr[n].sh_type == SHT_DYNSYM) { 320 e32_save_symtab(elf, n); 321 break; 322 } 323 } 324 } else { 325 Elf64_Shdr *shdr = elf->shdr; 326 327 for (n = 0; n < elf->e_shnum; n++) { 328 if (shdr[n].sh_type == SHT_DYNSYM) { 329 e64_save_symtab(elf, n); 330 break; 331 } 332 } 333 334 } 335 336 save_hashtab(elf); 337 } 338 339 static void init_elf(struct ta_elf *elf) 340 { 341 TEE_Result res = TEE_SUCCESS; 342 vaddr_t va = 0; 343 uint32_t flags = PTA_SYSTEM_MAP_FLAG_SHAREABLE; 344 345 res = sys_open_ta_bin(&elf->uuid, &elf->handle); 346 if (res) 347 err(res, "sys_open_ta_bin(%pUl)", (void *)&elf->uuid); 348 349 /* 350 * Map it read-only executable when we're loading a library where 351 * the ELF header is included in a load segment. 352 */ 353 if (!elf->is_main) 354 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 355 res = sys_map_ta_bin(&va, SMALL_PAGE_SIZE, flags, elf->handle, 0, 0, 0); 356 if (res) 357 err(res, "sys_map_ta_bin"); 358 elf->ehdr_addr = va; 359 if (!elf->is_main) { 360 elf->load_addr = va; 361 elf->max_addr = va + SMALL_PAGE_SIZE; 362 elf->max_offs = SMALL_PAGE_SIZE; 363 } 364 365 if (!IS_ELF(*(Elf32_Ehdr *)va)) 366 err(TEE_ERROR_BAD_FORMAT, "TA is not an ELF"); 367 368 res = e32_parse_ehdr(elf, (void *)va); 369 if (res == TEE_ERROR_BAD_FORMAT) 370 res = e64_parse_ehdr(elf, (void *)va); 371 if (res) 372 err(res, "Cannot parse ELF"); 373 374 if (elf->e_phoff + elf->e_phnum * elf->e_phentsize > SMALL_PAGE_SIZE) 375 err(TEE_ERROR_NOT_SUPPORTED, "Cannot read program headers"); 376 377 elf->phdr = (void *)(va + elf->e_phoff); 378 } 379 380 static size_t roundup(size_t v) 381 { 382 return ROUNDUP(v, SMALL_PAGE_SIZE); 383 } 384 385 static size_t rounddown(size_t v) 386 { 387 return ROUNDDOWN(v, SMALL_PAGE_SIZE); 388 } 389 390 static void add_segment(struct ta_elf *elf, size_t offset, size_t vaddr, 391 size_t filesz, size_t memsz, size_t flags, size_t align) 392 { 393 struct segment *seg = calloc(1, sizeof(*seg)); 394 395 if (!seg) 396 err(TEE_ERROR_OUT_OF_MEMORY, "calloc"); 397 398 seg->offset = offset; 399 seg->vaddr = vaddr; 400 seg->filesz = filesz; 401 seg->memsz = memsz; 402 seg->flags = flags; 403 seg->align = align; 404 405 TAILQ_INSERT_TAIL(&elf->segs, seg, link); 406 } 407 408 static void parse_load_segments(struct ta_elf *elf) 409 { 410 size_t n = 0; 411 412 if (elf->is_32bit) { 413 Elf32_Phdr *phdr = elf->phdr; 414 415 for (n = 0; n < elf->e_phnum; n++) 416 if (phdr[n].p_type == PT_LOAD) { 417 add_segment(elf, phdr[n].p_offset, 418 phdr[n].p_vaddr, phdr[n].p_filesz, 419 phdr[n].p_memsz, phdr[n].p_flags, 420 phdr[n].p_align); 421 } else if (phdr[n].p_type == PT_ARM_EXIDX) { 422 elf->exidx_start = phdr[n].p_vaddr; 423 elf->exidx_size = phdr[n].p_filesz; 424 } 425 } else { 426 Elf64_Phdr *phdr = elf->phdr; 427 428 for (n = 0; n < elf->e_phnum; n++) 429 if (phdr[n].p_type == PT_LOAD) 430 add_segment(elf, phdr[n].p_offset, 431 phdr[n].p_vaddr, phdr[n].p_filesz, 432 phdr[n].p_memsz, phdr[n].p_flags, 433 phdr[n].p_align); 434 } 435 } 436 437 static void copy_remapped_to(struct ta_elf *elf, const struct segment *seg) 438 { 439 uint8_t *dst = (void *)(seg->vaddr + elf->load_addr); 440 size_t n = 0; 441 size_t offs = seg->offset; 442 size_t num_bytes = seg->filesz; 443 444 if (offs < elf->max_offs) { 445 n = MIN(elf->max_offs - offs, num_bytes); 446 memcpy(dst, (void *)(elf->max_addr + offs - elf->max_offs), n); 447 dst += n; 448 offs += n; 449 num_bytes -= n; 450 } 451 452 if (num_bytes) { 453 TEE_Result res = sys_copy_from_ta_bin(dst, num_bytes, 454 elf->handle, offs); 455 456 if (res) 457 err(res, "sys_copy_from_ta_bin"); 458 elf->max_offs += offs; 459 } 460 } 461 462 static void adjust_segments(struct ta_elf *elf) 463 { 464 struct segment *seg = NULL; 465 struct segment *prev_seg = NULL; 466 size_t prev_end_addr = 0; 467 size_t align = 0; 468 size_t mask = 0; 469 470 /* Sanity check */ 471 TAILQ_FOREACH(seg, &elf->segs, link) { 472 size_t dummy __maybe_unused = 0; 473 474 assert(seg->align >= SMALL_PAGE_SIZE); 475 assert(!ADD_OVERFLOW(seg->vaddr, seg->memsz, &dummy)); 476 assert(seg->filesz <= seg->memsz); 477 assert((seg->offset & SMALL_PAGE_MASK) == 478 (seg->vaddr & SMALL_PAGE_MASK)); 479 480 prev_seg = TAILQ_PREV(seg, segment_head, link); 481 if (prev_seg) { 482 assert(seg->vaddr >= prev_seg->vaddr + prev_seg->memsz); 483 assert(seg->offset >= 484 prev_seg->offset + prev_seg->filesz); 485 } 486 if (!align) 487 align = seg->align; 488 assert(align == seg->align); 489 } 490 491 mask = align - 1; 492 493 seg = TAILQ_FIRST(&elf->segs); 494 if (seg) 495 seg = TAILQ_NEXT(seg, link); 496 while (seg) { 497 prev_seg = TAILQ_PREV(seg, segment_head, link); 498 prev_end_addr = prev_seg->vaddr + prev_seg->memsz; 499 500 /* 501 * This segment may overlap with the last "page" in the 502 * previous segment in two different ways: 503 * 1. Virtual address (and offset) overlaps => 504 * Permissions needs to be merged. The offset must have 505 * the SMALL_PAGE_MASK bits set as vaddr and offset must 506 * add up with prevsion segment. 507 * 508 * 2. Only offset overlaps => 509 * The same page in the ELF is mapped at two different 510 * virtual addresses. As a limitation this segment must 511 * be mapped as writeable. 512 */ 513 514 /* Case 1. */ 515 if (rounddown(seg->vaddr) < prev_end_addr) { 516 assert((seg->vaddr & mask) == (seg->offset & mask)); 517 assert(prev_seg->memsz == prev_seg->filesz); 518 519 /* 520 * Merge the segments and their permissions. 521 * Note that the may be a small hole between the 522 * two sections. 523 */ 524 prev_seg->filesz = seg->vaddr + seg->filesz - 525 prev_seg->vaddr; 526 prev_seg->memsz = seg->vaddr + seg->memsz - 527 prev_seg->vaddr; 528 prev_seg->flags |= seg->flags; 529 530 TAILQ_REMOVE(&elf->segs, seg, link); 531 free(seg); 532 seg = TAILQ_NEXT(prev_seg, link); 533 continue; 534 } 535 536 /* Case 2. */ 537 if ((seg->offset & mask) && 538 rounddown(seg->offset) < 539 (prev_seg->offset + prev_seg->filesz)) { 540 541 assert(seg->flags & PF_W); 542 seg->remapped_writeable = true; 543 } 544 545 /* 546 * No overlap, but we may need to align address, offset and 547 * size. 548 */ 549 seg->filesz += seg->vaddr - rounddown(seg->vaddr); 550 seg->memsz += seg->vaddr - rounddown(seg->vaddr); 551 seg->vaddr = rounddown(seg->vaddr); 552 seg->offset = rounddown(seg->offset); 553 seg = TAILQ_NEXT(seg, link); 554 } 555 556 } 557 558 static void populate_segments_legacy(struct ta_elf *elf) 559 { 560 TEE_Result res = TEE_SUCCESS; 561 struct segment *seg = NULL; 562 vaddr_t va = 0; 563 564 assert(elf->is_legacy); 565 TAILQ_FOREACH(seg, &elf->segs, link) { 566 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 567 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 568 seg->vaddr - seg->memsz); 569 size_t num_bytes = roundup(seg->memsz); 570 571 if (!elf->load_addr) 572 va = 0; 573 else 574 va = seg->vaddr + elf->load_addr; 575 576 577 if (!(seg->flags & PF_R)) 578 err(TEE_ERROR_NOT_SUPPORTED, 579 "Segment must be readable"); 580 581 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 582 if (res) 583 err(res, "sys_map_zi"); 584 res = sys_copy_from_ta_bin((void *)va, seg->filesz, 585 elf->handle, seg->offset); 586 if (res) 587 err(res, "sys_copy_from_ta_bin"); 588 589 if (!elf->load_addr) 590 elf->load_addr = va; 591 elf->max_addr = va + num_bytes; 592 elf->max_offs = seg->offset + seg->filesz; 593 } 594 } 595 596 static size_t get_pad_begin(void) 597 { 598 #ifdef CFG_TA_ASLR 599 size_t min = CFG_TA_ASLR_MIN_OFFSET_PAGES; 600 size_t max = CFG_TA_ASLR_MAX_OFFSET_PAGES; 601 TEE_Result res = TEE_SUCCESS; 602 uint32_t rnd32 = 0; 603 size_t rnd = 0; 604 605 COMPILE_TIME_ASSERT(CFG_TA_ASLR_MIN_OFFSET_PAGES < 606 CFG_TA_ASLR_MAX_OFFSET_PAGES); 607 if (max > min) { 608 res = utee_cryp_random_number_generate(&rnd32, sizeof(rnd32)); 609 if (res) { 610 DMSG("Random read failed: %#"PRIx32, res); 611 return min * SMALL_PAGE_SIZE; 612 } 613 rnd = rnd32 % (max - min); 614 } 615 616 return (min + rnd) * SMALL_PAGE_SIZE; 617 #else /*!CFG_TA_ASLR*/ 618 return 0; 619 #endif /*!CFG_TA_ASLR*/ 620 } 621 622 static void populate_segments(struct ta_elf *elf) 623 { 624 TEE_Result res = TEE_SUCCESS; 625 struct segment *seg = NULL; 626 vaddr_t va = 0; 627 size_t pad_begin = 0; 628 629 assert(!elf->is_legacy); 630 TAILQ_FOREACH(seg, &elf->segs, link) { 631 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 632 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 633 seg->vaddr - seg->memsz); 634 635 if (seg->remapped_writeable) { 636 size_t num_bytes = roundup(seg->vaddr + seg->memsz) - 637 rounddown(seg->vaddr); 638 639 assert(elf->load_addr); 640 va = rounddown(elf->load_addr + seg->vaddr); 641 assert(va >= elf->max_addr); 642 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 643 if (res) 644 err(res, "sys_map_zi"); 645 646 copy_remapped_to(elf, seg); 647 elf->max_addr = va + num_bytes; 648 } else { 649 uint32_t flags = 0; 650 size_t filesz = seg->filesz; 651 size_t memsz = seg->memsz; 652 size_t offset = seg->offset; 653 size_t vaddr = seg->vaddr; 654 655 if (offset < elf->max_offs) { 656 /* 657 * We're in a load segment which overlaps 658 * with (or is covered by) the first page 659 * of a shared library. 660 */ 661 if (vaddr + filesz < SMALL_PAGE_SIZE) { 662 size_t num_bytes = 0; 663 664 /* 665 * If this segment is completely 666 * covered, take next. 667 */ 668 if (vaddr + memsz <= SMALL_PAGE_SIZE) 669 continue; 670 671 /* 672 * All data of the segment is 673 * loaded, but we need to zero 674 * extend it. 675 */ 676 va = elf->max_addr; 677 num_bytes = roundup(vaddr + memsz) - 678 roundup(vaddr) - 679 SMALL_PAGE_SIZE; 680 assert(num_bytes); 681 res = sys_map_zi(num_bytes, 0, &va, 0, 682 0); 683 if (res) 684 err(res, "sys_map_zi"); 685 elf->max_addr = roundup(va + num_bytes); 686 continue; 687 } 688 689 /* Partial overlap, remove the first page. */ 690 vaddr += SMALL_PAGE_SIZE; 691 filesz -= SMALL_PAGE_SIZE; 692 memsz -= SMALL_PAGE_SIZE; 693 offset += SMALL_PAGE_SIZE; 694 } 695 696 if (!elf->load_addr) { 697 va = 0; 698 pad_begin = get_pad_begin(); 699 /* 700 * If mapping with pad_begin fails we'll 701 * retry without pad_begin, effectively 702 * disabling ASLR for the current ELF file. 703 */ 704 } else { 705 va = vaddr + elf->load_addr; 706 pad_begin = 0; 707 } 708 709 if (seg->flags & PF_W) 710 flags |= PTA_SYSTEM_MAP_FLAG_WRITEABLE; 711 else 712 flags |= PTA_SYSTEM_MAP_FLAG_SHAREABLE; 713 if (seg->flags & PF_X) 714 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 715 if (!(seg->flags & PF_R)) 716 err(TEE_ERROR_NOT_SUPPORTED, 717 "Segment must be readable"); 718 if (flags & PTA_SYSTEM_MAP_FLAG_WRITEABLE) { 719 res = sys_map_zi(memsz, 0, &va, pad_begin, 720 pad_end); 721 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 722 res = sys_map_zi(memsz, 0, &va, 0, 723 pad_end); 724 if (res) 725 err(res, "sys_map_zi"); 726 res = sys_copy_from_ta_bin((void *)va, filesz, 727 elf->handle, offset); 728 if (res) 729 err(res, "sys_copy_from_ta_bin"); 730 } else { 731 res = sys_map_ta_bin(&va, filesz, flags, 732 elf->handle, offset, 733 pad_begin, pad_end); 734 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 735 res = sys_map_ta_bin(&va, filesz, flags, 736 elf->handle, 737 offset, 0, 738 pad_end); 739 if (res) 740 err(res, "sys_map_ta_bin"); 741 } 742 743 if (!elf->load_addr) 744 elf->load_addr = va; 745 elf->max_addr = roundup(va + filesz); 746 elf->max_offs += filesz; 747 } 748 } 749 } 750 751 static void map_segments(struct ta_elf *elf) 752 { 753 TEE_Result res = TEE_SUCCESS; 754 755 parse_load_segments(elf); 756 adjust_segments(elf); 757 if (TAILQ_FIRST(&elf->segs)->offset < SMALL_PAGE_SIZE) { 758 vaddr_t va = 0; 759 size_t sz = elf->max_addr - elf->load_addr; 760 struct segment *seg = TAILQ_LAST(&elf->segs, segment_head); 761 size_t pad_begin = get_pad_begin(); 762 763 /* 764 * We're loading a library, if not other parts of the code 765 * need to be updated too. 766 */ 767 assert(!elf->is_main); 768 769 /* 770 * Now that we know how much virtual memory is needed move 771 * the already mapped part to a location which can 772 * accommodate us. 773 */ 774 res = sys_remap(elf->load_addr, &va, sz, pad_begin, 775 roundup(seg->vaddr + seg->memsz)); 776 if (res == TEE_ERROR_OUT_OF_MEMORY) 777 res = sys_remap(elf->load_addr, &va, sz, 0, 778 roundup(seg->vaddr + seg->memsz)); 779 if (res) 780 err(res, "sys_remap"); 781 elf->ehdr_addr = va; 782 elf->load_addr = va; 783 elf->max_addr = va + sz; 784 elf->phdr = (void *)(va + elf->e_phoff); 785 } 786 } 787 788 static void add_deps_from_segment(struct ta_elf *elf, unsigned int type, 789 vaddr_t addr, size_t memsz) 790 { 791 size_t dyn_entsize = 0; 792 size_t num_dyns = 0; 793 size_t n = 0; 794 unsigned int tag = 0; 795 size_t val = 0; 796 TEE_UUID uuid = { }; 797 char *str_tab = NULL; 798 799 if (type != PT_DYNAMIC) 800 return; 801 802 check_phdr_in_range(elf, type, addr, memsz); 803 804 if (elf->is_32bit) 805 dyn_entsize = sizeof(Elf32_Dyn); 806 else 807 dyn_entsize = sizeof(Elf64_Dyn); 808 809 assert(!(memsz % dyn_entsize)); 810 num_dyns = memsz / dyn_entsize; 811 812 for (n = 0; n < num_dyns; n++) { 813 read_dyn(elf, addr, n, &tag, &val); 814 if (tag == DT_STRTAB) { 815 str_tab = (char *)(val + elf->load_addr); 816 break; 817 } 818 } 819 820 for (n = 0; n < num_dyns; n++) { 821 read_dyn(elf, addr, n, &tag, &val); 822 if (tag != DT_NEEDED) 823 continue; 824 tee_uuid_from_str(&uuid, str_tab + val); 825 queue_elf(&uuid); 826 } 827 } 828 829 static void add_dependencies(struct ta_elf *elf) 830 { 831 size_t n = 0; 832 833 if (elf->is_32bit) { 834 Elf32_Phdr *phdr = elf->phdr; 835 836 for (n = 0; n < elf->e_phnum; n++) 837 add_deps_from_segment(elf, phdr[n].p_type, 838 phdr[n].p_vaddr, phdr[n].p_memsz); 839 } else { 840 Elf64_Phdr *phdr = elf->phdr; 841 842 for (n = 0; n < elf->e_phnum; n++) 843 add_deps_from_segment(elf, phdr[n].p_type, 844 phdr[n].p_vaddr, phdr[n].p_memsz); 845 } 846 } 847 848 static void copy_section_headers(struct ta_elf *elf) 849 { 850 TEE_Result res = TEE_SUCCESS; 851 size_t sz = 0; 852 size_t offs = 0; 853 854 if (MUL_OVERFLOW(elf->e_shnum, elf->e_shentsize, &sz)) 855 err(TEE_ERROR_BAD_FORMAT, "Shdr size overflow"); 856 857 elf->shdr = malloc(sz); 858 if (!elf->shdr) 859 err(TEE_ERROR_OUT_OF_MEMORY, "malloc"); 860 861 /* 862 * We're assuming that section headers comes after the load segments, 863 * but if it's a very small dynamically linked library the section 864 * headers can still end up (partially?) in the first mapped page. 865 */ 866 if (elf->e_shoff < SMALL_PAGE_SIZE) { 867 assert(!elf->is_main); 868 offs = MIN(SMALL_PAGE_SIZE - elf->e_shoff, sz); 869 memcpy(elf->shdr, (void *)(elf->load_addr + elf->e_shoff), 870 offs); 871 } 872 873 if (offs < sz) { 874 res = sys_copy_from_ta_bin((uint8_t *)elf->shdr + offs, 875 sz - offs, elf->handle, 876 elf->e_shoff + offs); 877 if (res) 878 err(res, "sys_copy_from_ta_bin"); 879 } 880 } 881 882 static void close_handle(struct ta_elf *elf) 883 { 884 TEE_Result res = sys_close_ta_bin(elf->handle); 885 886 if (res) 887 err(res, "sys_close_ta_bin"); 888 elf->handle = -1; 889 } 890 891 static void clean_elf_load_main(struct ta_elf *elf) 892 { 893 TEE_Result res = TEE_SUCCESS; 894 895 /* 896 * Clean up from last attempt to load 897 */ 898 res = sys_unmap(elf->ehdr_addr, SMALL_PAGE_SIZE); 899 if (res) 900 err(res, "sys_unmap"); 901 902 while (!TAILQ_EMPTY(&elf->segs)) { 903 struct segment *seg = TAILQ_FIRST(&elf->segs); 904 vaddr_t va = 0; 905 size_t num_bytes = 0; 906 907 va = rounddown(elf->load_addr + seg->vaddr); 908 if (seg->remapped_writeable) 909 num_bytes = roundup(seg->vaddr + seg->memsz) - 910 rounddown(seg->vaddr); 911 else 912 num_bytes = seg->memsz; 913 914 res = sys_unmap(va, num_bytes); 915 if (res) 916 err(res, "sys_unmap"); 917 918 TAILQ_REMOVE(&elf->segs, seg, link); 919 free(seg); 920 } 921 922 free(elf->shdr); 923 memset(&elf->is_32bit, 0, 924 (vaddr_t)&elf->uuid - (vaddr_t)&elf->is_32bit); 925 926 TAILQ_INIT(&elf->segs); 927 } 928 929 static void load_main(struct ta_elf *elf) 930 { 931 init_elf(elf); 932 map_segments(elf); 933 populate_segments(elf); 934 add_dependencies(elf); 935 copy_section_headers(elf); 936 save_symtab(elf); 937 close_handle(elf); 938 939 elf->head = (struct ta_head *)elf->load_addr; 940 if (elf->head->depr_entry != UINT64_MAX) { 941 /* 942 * Legacy TAs sets their entry point in ta_head. For 943 * non-legacy TAs the entry point of the ELF is set instead 944 * and leaving the ta_head entry point set to UINT64_MAX to 945 * indicate that it's not used. 946 * 947 * NB, everything before the commit a73b5878c89d ("Replace 948 * ta_head.entry with elf entry") is considered legacy TAs 949 * for ldelf. 950 * 951 * Legacy TAs cannot be mapped with shared memory segments 952 * so restart the mapping if it turned out we're loading a 953 * legacy TA. 954 */ 955 956 DMSG("Reloading TA %pUl as legacy TA", (void *)&elf->uuid); 957 clean_elf_load_main(elf); 958 elf->is_legacy = true; 959 init_elf(elf); 960 map_segments(elf); 961 populate_segments_legacy(elf); 962 add_dependencies(elf); 963 copy_section_headers(elf); 964 save_symtab(elf); 965 close_handle(elf); 966 elf->head = (struct ta_head *)elf->load_addr; 967 /* 968 * Check that the TA is still a legacy TA, if it isn't give 969 * up now since we're likely under attack. 970 */ 971 if (elf->head->depr_entry == UINT64_MAX) 972 err(TEE_ERROR_GENERIC, 973 "TA %pUl was changed on disk to non-legacy", 974 (void *)&elf->uuid); 975 } 976 977 } 978 979 void ta_elf_load_main(const TEE_UUID *uuid, uint32_t *is_32bit, uint64_t *sp, 980 uint32_t *ta_flags) 981 { 982 struct ta_elf *elf = queue_elf(uuid); 983 vaddr_t va = 0; 984 TEE_Result res = TEE_SUCCESS; 985 986 assert(elf); 987 elf->is_main = true; 988 989 load_main(elf); 990 991 *is_32bit = elf->is_32bit; 992 res = sys_map_zi(elf->head->stack_size, 0, &va, 0, 0); 993 if (res) 994 err(res, "sys_map_zi stack"); 995 996 if (elf->head->flags & ~TA_FLAGS_MASK) 997 err(TEE_ERROR_BAD_FORMAT, "Invalid TA flags(s) %#"PRIx32, 998 elf->head->flags & ~TA_FLAGS_MASK); 999 1000 *ta_flags = elf->head->flags; 1001 *sp = va + elf->head->stack_size; 1002 ta_stack = va; 1003 ta_stack_size = elf->head->stack_size; 1004 } 1005 1006 void ta_elf_finalize_load_main(uint64_t *entry) 1007 { 1008 struct ta_elf *elf = TAILQ_FIRST(&main_elf_queue); 1009 TEE_Result res = TEE_SUCCESS; 1010 1011 assert(elf->is_main); 1012 1013 res = ta_elf_set_init_fini_info(elf->is_32bit); 1014 if (res) 1015 err(res, "ta_elf_set_init_fini_info"); 1016 1017 if (elf->is_legacy) 1018 *entry = elf->head->depr_entry; 1019 else 1020 *entry = elf->e_entry + elf->load_addr; 1021 } 1022 1023 1024 void ta_elf_load_dependency(struct ta_elf *elf, bool is_32bit) 1025 { 1026 if (elf->is_main) 1027 return; 1028 1029 init_elf(elf); 1030 if (elf->is_32bit != is_32bit) 1031 err(TEE_ERROR_BAD_FORMAT, "ELF %pUl is %sbit (expected %sbit)", 1032 (void *)&elf->uuid, elf->is_32bit ? "32" : "64", 1033 is_32bit ? "32" : "64"); 1034 1035 map_segments(elf); 1036 populate_segments(elf); 1037 add_dependencies(elf); 1038 copy_section_headers(elf); 1039 save_symtab(elf); 1040 close_handle(elf); 1041 } 1042 1043 void ta_elf_finalize_mappings(struct ta_elf *elf) 1044 { 1045 TEE_Result res = TEE_SUCCESS; 1046 struct segment *seg = NULL; 1047 1048 if (!elf->is_legacy) 1049 return; 1050 1051 TAILQ_FOREACH(seg, &elf->segs, link) { 1052 vaddr_t va = elf->load_addr + seg->vaddr; 1053 uint32_t flags = 0; 1054 1055 if (seg->flags & PF_W) 1056 flags |= PTA_SYSTEM_MAP_FLAG_WRITEABLE; 1057 if (seg->flags & PF_X) 1058 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 1059 1060 res = sys_set_prot(va, seg->memsz, flags); 1061 if (res) 1062 err(res, "sys_set_prot"); 1063 } 1064 } 1065 1066 static void __printf(3, 4) print_wrapper(void *pctx, print_func_t print_func, 1067 const char *fmt, ...) 1068 { 1069 va_list ap; 1070 1071 va_start(ap, fmt); 1072 print_func(pctx, fmt, ap); 1073 va_end(ap); 1074 } 1075 1076 static void print_seg(void *pctx, print_func_t print_func, 1077 size_t idx __maybe_unused, int elf_idx __maybe_unused, 1078 vaddr_t va __maybe_unused, paddr_t pa __maybe_unused, 1079 size_t sz __maybe_unused, uint32_t flags) 1080 { 1081 int width __maybe_unused = 8; 1082 char desc[14] __maybe_unused = ""; 1083 char flags_str[] __maybe_unused = "----"; 1084 1085 if (elf_idx > -1) { 1086 snprintf(desc, sizeof(desc), " [%d]", elf_idx); 1087 } else { 1088 if (flags & DUMP_MAP_EPHEM) 1089 snprintf(desc, sizeof(desc), " (param)"); 1090 if (flags & DUMP_MAP_LDELF) 1091 snprintf(desc, sizeof(desc), " (ldelf)"); 1092 if (va == ta_stack) 1093 snprintf(desc, sizeof(desc), " (stack)"); 1094 } 1095 1096 if (flags & DUMP_MAP_READ) 1097 flags_str[0] = 'r'; 1098 if (flags & DUMP_MAP_WRITE) 1099 flags_str[1] = 'w'; 1100 if (flags & DUMP_MAP_EXEC) 1101 flags_str[2] = 'x'; 1102 if (flags & DUMP_MAP_SECURE) 1103 flags_str[3] = 's'; 1104 1105 print_wrapper(pctx, print_func, 1106 "region %2zu: va 0x%0*"PRIxVA" pa 0x%0*"PRIxPA" size 0x%06zx flags %s%s\n", 1107 idx, width, va, width, pa, sz, flags_str, desc); 1108 } 1109 1110 static bool get_next_in_order(struct ta_elf_queue *elf_queue, 1111 struct ta_elf **elf, struct segment **seg, 1112 size_t *elf_idx) 1113 { 1114 struct ta_elf *e = NULL; 1115 struct segment *s = NULL; 1116 size_t idx = 0; 1117 vaddr_t va = 0; 1118 struct ta_elf *e2 = NULL; 1119 size_t i2 = 0; 1120 1121 assert(elf && seg && elf_idx); 1122 e = *elf; 1123 s = *seg; 1124 assert((e == NULL && s == NULL) || (e != NULL && s != NULL)); 1125 1126 if (s) { 1127 s = TAILQ_NEXT(s, link); 1128 if (s) { 1129 *seg = s; 1130 return true; 1131 } 1132 } 1133 1134 if (e) 1135 va = e->load_addr; 1136 1137 /* Find the ELF with next load address */ 1138 e = NULL; 1139 TAILQ_FOREACH(e2, elf_queue, link) { 1140 if (e2->load_addr > va) { 1141 if (!e || e2->load_addr < e->load_addr) { 1142 e = e2; 1143 idx = i2; 1144 } 1145 } 1146 i2++; 1147 } 1148 if (!e) 1149 return false; 1150 1151 *elf = e; 1152 *seg = TAILQ_FIRST(&e->segs); 1153 *elf_idx = idx; 1154 return true; 1155 } 1156 1157 void ta_elf_print_mappings(void *pctx, print_func_t print_func, 1158 struct ta_elf_queue *elf_queue, size_t num_maps, 1159 struct dump_map *maps, vaddr_t mpool_base) 1160 { 1161 struct segment *seg = NULL; 1162 struct ta_elf *elf = NULL; 1163 size_t elf_idx = 0; 1164 size_t idx = 0; 1165 size_t map_idx = 0; 1166 1167 /* 1168 * Loop over all segments and maps, printing virtual address in 1169 * order. Segment has priority if the virtual address is present 1170 * in both map and segment. 1171 */ 1172 get_next_in_order(elf_queue, &elf, &seg, &elf_idx); 1173 while (true) { 1174 vaddr_t va = -1; 1175 size_t sz = 0; 1176 uint32_t flags = DUMP_MAP_SECURE; 1177 size_t offs = 0; 1178 1179 if (seg) { 1180 va = rounddown(seg->vaddr + elf->load_addr); 1181 sz = roundup(seg->vaddr + seg->memsz) - 1182 rounddown(seg->vaddr); 1183 } 1184 1185 while (map_idx < num_maps && maps[map_idx].va <= va) { 1186 uint32_t f = 0; 1187 1188 /* If there's a match, it should be the same map */ 1189 if (maps[map_idx].va == va) { 1190 /* 1191 * In shared libraries the first page is 1192 * mapped separately with the rest of that 1193 * segment following back to back in a 1194 * separate entry. 1195 */ 1196 if (map_idx + 1 < num_maps && 1197 maps[map_idx].sz == SMALL_PAGE_SIZE) { 1198 vaddr_t next_va = maps[map_idx].va + 1199 maps[map_idx].sz; 1200 size_t comb_sz = maps[map_idx].sz + 1201 maps[map_idx + 1].sz; 1202 1203 if (next_va == maps[map_idx + 1].va && 1204 comb_sz == sz && 1205 maps[map_idx].flags == 1206 maps[map_idx + 1].flags) { 1207 /* Skip this and next entry */ 1208 map_idx += 2; 1209 continue; 1210 } 1211 } 1212 assert(maps[map_idx].sz == sz); 1213 } else if (maps[map_idx].va < va) { 1214 if (maps[map_idx].va == mpool_base) 1215 f |= DUMP_MAP_LDELF; 1216 print_seg(pctx, print_func, idx, -1, 1217 maps[map_idx].va, maps[map_idx].pa, 1218 maps[map_idx].sz, 1219 maps[map_idx].flags | f); 1220 idx++; 1221 } 1222 map_idx++; 1223 } 1224 1225 if (!seg) 1226 break; 1227 1228 offs = rounddown(seg->offset); 1229 if (seg->flags & PF_R) 1230 flags |= DUMP_MAP_READ; 1231 if (seg->flags & PF_W) 1232 flags |= DUMP_MAP_WRITE; 1233 if (seg->flags & PF_X) 1234 flags |= DUMP_MAP_EXEC; 1235 1236 print_seg(pctx, print_func, idx, elf_idx, va, offs, sz, flags); 1237 idx++; 1238 1239 if (!get_next_in_order(elf_queue, &elf, &seg, &elf_idx)) 1240 seg = NULL; 1241 } 1242 1243 elf_idx = 0; 1244 TAILQ_FOREACH(elf, elf_queue, link) { 1245 print_wrapper(pctx, print_func, 1246 " [%zu] %pUl @ 0x%0*"PRIxVA"\n", 1247 elf_idx, (void *)&elf->uuid, 8, elf->load_addr); 1248 elf_idx++; 1249 } 1250 } 1251 1252 #ifdef CFG_UNWIND 1253 void ta_elf_stack_trace_a32(uint32_t regs[16]) 1254 { 1255 struct unwind_state_arm32 state = { }; 1256 1257 memcpy(state.registers, regs, sizeof(state.registers)); 1258 print_stack_arm32(&state, ta_stack, ta_stack_size); 1259 } 1260 1261 void ta_elf_stack_trace_a64(uint64_t fp, uint64_t sp, uint64_t pc) 1262 { 1263 struct unwind_state_arm64 state = { .fp = fp, .sp = sp, .pc = pc }; 1264 1265 print_stack_arm64(&state, ta_stack, ta_stack_size); 1266 } 1267 #endif 1268 1269 TEE_Result ta_elf_add_library(const TEE_UUID *uuid) 1270 { 1271 struct ta_elf *ta = TAILQ_FIRST(&main_elf_queue); 1272 struct ta_elf *lib = ta_elf_find_elf(uuid); 1273 struct ta_elf *elf = NULL; 1274 1275 if (lib) 1276 return TEE_SUCCESS; /* Already mapped */ 1277 1278 lib = queue_elf_helper(uuid); 1279 if (!lib) 1280 return TEE_ERROR_OUT_OF_MEMORY; 1281 1282 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) 1283 ta_elf_load_dependency(elf, ta->is_32bit); 1284 1285 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) { 1286 ta_elf_relocate(elf); 1287 ta_elf_finalize_mappings(elf); 1288 } 1289 1290 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) 1291 DMSG("ELF (%pUl) at %#"PRIxVA, 1292 (void *)&elf->uuid, elf->load_addr); 1293 1294 return ta_elf_set_init_fini_info(ta->is_32bit); 1295 } 1296 1297 /* Get address/size of .init_array and .fini_array from the dynamic segment */ 1298 static void get_init_fini_array(struct ta_elf *elf, unsigned int type, 1299 vaddr_t addr, size_t memsz, vaddr_t *init, 1300 size_t *init_cnt, vaddr_t *fini, 1301 size_t *fini_cnt) 1302 { 1303 size_t addrsz = 0; 1304 size_t dyn_entsize = 0; 1305 size_t num_dyns = 0; 1306 size_t n = 0; 1307 unsigned int tag = 0; 1308 size_t val = 0; 1309 1310 assert(type == PT_DYNAMIC); 1311 1312 check_phdr_in_range(elf, type, addr, memsz); 1313 1314 if (elf->is_32bit) { 1315 dyn_entsize = sizeof(Elf32_Dyn); 1316 addrsz = 4; 1317 } else { 1318 dyn_entsize = sizeof(Elf64_Dyn); 1319 addrsz = 8; 1320 } 1321 1322 assert(!(memsz % dyn_entsize)); 1323 num_dyns = memsz / dyn_entsize; 1324 1325 for (n = 0; n < num_dyns; n++) { 1326 read_dyn(elf, addr, n, &tag, &val); 1327 if (tag == DT_INIT_ARRAY) 1328 *init = val + elf->load_addr; 1329 else if (tag == DT_FINI_ARRAY) 1330 *fini = val + elf->load_addr; 1331 else if (tag == DT_INIT_ARRAYSZ) 1332 *init_cnt = val / addrsz; 1333 else if (tag == DT_FINI_ARRAYSZ) 1334 *fini_cnt = val / addrsz; 1335 } 1336 } 1337 1338 /* Get address/size of .init_array and .fini_array in @elf (if present) */ 1339 static void elf_get_init_fini_array(struct ta_elf *elf, vaddr_t *init, 1340 size_t *init_cnt, vaddr_t *fini, 1341 size_t *fini_cnt) 1342 { 1343 size_t n = 0; 1344 1345 if (elf->is_32bit) { 1346 Elf32_Phdr *phdr = elf->phdr; 1347 1348 for (n = 0; n < elf->e_phnum; n++) { 1349 if (phdr[n].p_type == PT_DYNAMIC) { 1350 get_init_fini_array(elf, phdr[n].p_type, 1351 phdr[n].p_vaddr, 1352 phdr[n].p_memsz, 1353 init, init_cnt, fini, 1354 fini_cnt); 1355 return; 1356 } 1357 } 1358 } else { 1359 Elf64_Phdr *phdr = elf->phdr; 1360 1361 for (n = 0; n < elf->e_phnum; n++) { 1362 if (phdr[n].p_type == PT_DYNAMIC) { 1363 get_init_fini_array(elf, phdr[n].p_type, 1364 phdr[n].p_vaddr, 1365 phdr[n].p_memsz, 1366 init, init_cnt, fini, 1367 fini_cnt); 1368 return; 1369 } 1370 } 1371 } 1372 } 1373 1374 static TEE_Result realloc_ifs(vaddr_t va, size_t cnt, bool is_32bit) 1375 { 1376 struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va; 1377 struct __init_fini_info *info = (struct __init_fini_info *)va; 1378 struct __init_fini32 *ifs32 = NULL; 1379 struct __init_fini *ifs = NULL; 1380 size_t prev_cnt = 0; 1381 void *ptr = NULL; 1382 1383 if (is_32bit) { 1384 ptr = (void *)(vaddr_t)info32->ifs; 1385 ptr = realloc(ptr, cnt * sizeof(struct __init_fini32)); 1386 if (!ptr) 1387 return TEE_ERROR_OUT_OF_MEMORY; 1388 ifs32 = ptr; 1389 prev_cnt = info32->size; 1390 if (cnt > prev_cnt) 1391 memset(ifs32 + prev_cnt, 0, 1392 (cnt - prev_cnt) * sizeof(*ifs32)); 1393 info32->ifs = (uint32_t)(vaddr_t)ifs32; 1394 info32->size = cnt; 1395 } else { 1396 ptr = realloc(info->ifs, cnt * sizeof(struct __init_fini)); 1397 if (!ptr) 1398 return TEE_ERROR_OUT_OF_MEMORY; 1399 ifs = ptr; 1400 prev_cnt = info->size; 1401 if (cnt > prev_cnt) 1402 memset(ifs + prev_cnt, 0, 1403 (cnt - prev_cnt) * sizeof(*ifs)); 1404 info->ifs = ifs; 1405 info->size = cnt; 1406 } 1407 1408 return TEE_SUCCESS; 1409 } 1410 1411 static void fill_ifs(vaddr_t va, size_t idx, struct ta_elf *elf, bool is_32bit) 1412 { 1413 struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va; 1414 struct __init_fini_info *info = (struct __init_fini_info *)va; 1415 struct __init_fini32 *ifs32 = NULL; 1416 struct __init_fini *ifs = NULL; 1417 size_t init_cnt = 0; 1418 size_t fini_cnt = 0; 1419 vaddr_t init = 0; 1420 vaddr_t fini = 0; 1421 1422 if (is_32bit) { 1423 assert(idx < info32->size); 1424 ifs32 = &((struct __init_fini32 *)(vaddr_t)info32->ifs)[idx]; 1425 1426 if (ifs32->flags & __IFS_VALID) 1427 return; 1428 1429 elf_get_init_fini_array(elf, &init, &init_cnt, &fini, 1430 &fini_cnt); 1431 1432 ifs32->init = (uint32_t)init; 1433 ifs32->init_size = init_cnt; 1434 1435 ifs32->fini = (uint32_t)fini; 1436 ifs32->fini_size = fini_cnt; 1437 1438 ifs32->flags |= __IFS_VALID; 1439 } else { 1440 assert(idx < info->size); 1441 ifs = &info->ifs[idx]; 1442 1443 if (ifs->flags & __IFS_VALID) 1444 return; 1445 1446 elf_get_init_fini_array(elf, &init, &init_cnt, &fini, 1447 &fini_cnt); 1448 1449 ifs->init = (void (**)(void))init; 1450 ifs->init_size = init_cnt; 1451 1452 ifs->fini = (void (**)(void))fini; 1453 ifs->fini_size = fini_cnt; 1454 1455 ifs->flags |= __IFS_VALID; 1456 } 1457 } 1458 1459 /* 1460 * Set or update __init_fini_info in the TA with information from the ELF 1461 * queue 1462 */ 1463 TEE_Result ta_elf_set_init_fini_info(bool is_32bit) 1464 { 1465 struct __init_fini_info *info = NULL; 1466 TEE_Result res = TEE_SUCCESS; 1467 struct ta_elf *elf = NULL; 1468 vaddr_t info_va = 0; 1469 size_t cnt = 0; 1470 1471 res = ta_elf_resolve_sym("__init_fini_info", &info_va, NULL); 1472 if (res) { 1473 if (res == TEE_ERROR_ITEM_NOT_FOUND) { 1474 /* Older TA */ 1475 return TEE_SUCCESS; 1476 } 1477 return res; 1478 } 1479 assert(info_va); 1480 1481 info = (struct __init_fini_info *)info_va; 1482 if (info->reserved) 1483 return TEE_ERROR_NOT_SUPPORTED; 1484 1485 TAILQ_FOREACH(elf, &main_elf_queue, link) 1486 cnt++; 1487 1488 /* Queue has at least one file (main) */ 1489 assert(cnt); 1490 1491 res = realloc_ifs(info_va, cnt, is_32bit); 1492 if (res) 1493 goto err; 1494 1495 cnt = 0; 1496 TAILQ_FOREACH(elf, &main_elf_queue, link) { 1497 fill_ifs(info_va, cnt, elf, is_32bit); 1498 cnt++; 1499 } 1500 1501 return TEE_SUCCESS; 1502 err: 1503 free(info); 1504 return res; 1505 } 1506