1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2019, Linaro Limited 4 */ 5 6 #include <assert.h> 7 #include <ctype.h> 8 #include <elf32.h> 9 #include <elf64.h> 10 #include <elf_common.h> 11 #include <ldelf.h> 12 #include <pta_system.h> 13 #include <stdio.h> 14 #include <stdlib.h> 15 #include <string_ext.h> 16 #include <string.h> 17 #include <tee_api_types.h> 18 #include <user_ta_header.h> 19 #include <utee_syscalls.h> 20 21 #include "sys.h" 22 #include "ta_elf.h" 23 #include "unwind.h" 24 25 static vaddr_t ta_stack; 26 static vaddr_t ta_stack_size; 27 28 struct ta_elf_queue main_elf_queue = TAILQ_HEAD_INITIALIZER(main_elf_queue); 29 30 static struct ta_elf *queue_elf(const TEE_UUID *uuid) 31 { 32 struct ta_elf *elf = NULL; 33 34 TAILQ_FOREACH(elf, &main_elf_queue, link) 35 if (!memcmp(uuid, &elf->uuid, sizeof(*uuid))) 36 return NULL; 37 38 elf = calloc(1, sizeof(*elf)); 39 if (!elf) 40 err(TEE_ERROR_OUT_OF_MEMORY, "calloc"); 41 42 TAILQ_INIT(&elf->segs); 43 44 elf->uuid = *uuid; 45 TAILQ_INSERT_TAIL(&main_elf_queue, elf, link); 46 return elf; 47 } 48 49 static TEE_Result e32_parse_ehdr(struct ta_elf *elf, Elf32_Ehdr *ehdr) 50 { 51 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 52 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 53 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 54 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 55 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_ARM || 56 (ehdr->e_flags & EF_ARM_ABIMASK) != EF_ARM_ABI_VERSION || 57 #ifndef CFG_WITH_VFP 58 (ehdr->e_flags & EF_ARM_ABI_FLOAT_HARD) || 59 #endif 60 ehdr->e_phentsize != sizeof(Elf32_Phdr) || 61 ehdr->e_shentsize != sizeof(Elf32_Shdr)) 62 return TEE_ERROR_BAD_FORMAT; 63 64 elf->is_32bit = true; 65 elf->e_entry = ehdr->e_entry; 66 elf->e_phoff = ehdr->e_phoff; 67 elf->e_shoff = ehdr->e_shoff; 68 elf->e_phnum = ehdr->e_phnum; 69 elf->e_shnum = ehdr->e_shnum; 70 elf->e_phentsize = ehdr->e_phentsize; 71 elf->e_shentsize = ehdr->e_shentsize; 72 73 return TEE_SUCCESS; 74 } 75 76 #ifdef ARM64 77 static TEE_Result e64_parse_ehdr(struct ta_elf *elf, Elf64_Ehdr *ehdr) 78 { 79 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 80 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 81 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 82 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 83 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_AARCH64 || 84 ehdr->e_flags || ehdr->e_phentsize != sizeof(Elf64_Phdr) || 85 ehdr->e_shentsize != sizeof(Elf64_Shdr)) 86 return TEE_ERROR_BAD_FORMAT; 87 88 89 elf->is_32bit = false; 90 elf->e_entry = ehdr->e_entry; 91 elf->e_phoff = ehdr->e_phoff; 92 elf->e_shoff = ehdr->e_shoff; 93 elf->e_phnum = ehdr->e_phnum; 94 elf->e_shnum = ehdr->e_shnum; 95 elf->e_phentsize = ehdr->e_phentsize; 96 elf->e_shentsize = ehdr->e_shentsize; 97 98 return TEE_SUCCESS; 99 } 100 #else /*ARM64*/ 101 static TEE_Result e64_parse_ehdr(struct ta_elf *elf __unused, 102 Elf64_Ehdr *ehdr __unused) 103 { 104 return TEE_ERROR_NOT_SUPPORTED; 105 } 106 #endif /*ARM64*/ 107 108 static void read_dyn(struct ta_elf *elf, vaddr_t addr, 109 size_t idx, unsigned int *tag, size_t *val) 110 { 111 if (elf->is_32bit) { 112 Elf32_Dyn *dyn = (Elf32_Dyn *)(addr + elf->load_addr); 113 114 *tag = dyn[idx].d_tag; 115 *val = dyn[idx].d_un.d_val; 116 } else { 117 Elf64_Dyn *dyn = (Elf64_Dyn *)(addr + elf->load_addr); 118 119 *tag = dyn[idx].d_tag; 120 *val = dyn[idx].d_un.d_val; 121 } 122 } 123 124 static void save_hashtab_from_segment(struct ta_elf *elf, unsigned int type, 125 vaddr_t addr, size_t memsz) 126 { 127 size_t dyn_entsize = 0; 128 size_t num_dyns = 0; 129 size_t n = 0; 130 unsigned int tag = 0; 131 size_t val = 0; 132 133 if (type != PT_DYNAMIC) 134 return; 135 136 if (elf->is_32bit) 137 dyn_entsize = sizeof(Elf32_Dyn); 138 else 139 dyn_entsize = sizeof(Elf64_Dyn); 140 141 assert(!(memsz % dyn_entsize)); 142 num_dyns = memsz / dyn_entsize; 143 144 for (n = 0; n < num_dyns; n++) { 145 read_dyn(elf, addr, n, &tag, &val); 146 if (tag == DT_HASH) { 147 elf->hashtab = (void *)(val + elf->load_addr); 148 break; 149 } 150 } 151 } 152 153 static void save_hashtab(struct ta_elf *elf) 154 { 155 size_t n = 0; 156 157 if (elf->is_32bit) { 158 Elf32_Phdr *phdr = elf->phdr; 159 160 for (n = 0; n < elf->e_phnum; n++) 161 save_hashtab_from_segment(elf, phdr[n].p_type, 162 phdr[n].p_vaddr, 163 phdr[n].p_memsz); 164 } else { 165 Elf64_Phdr *phdr = elf->phdr; 166 167 for (n = 0; n < elf->e_phnum; n++) 168 save_hashtab_from_segment(elf, phdr[n].p_type, 169 phdr[n].p_vaddr, 170 phdr[n].p_memsz); 171 } 172 assert(elf->hashtab); 173 } 174 175 static void e32_save_symtab(struct ta_elf *elf, size_t tab_idx) 176 { 177 Elf32_Shdr *shdr = elf->shdr; 178 size_t str_idx = shdr[tab_idx].sh_link; 179 180 elf->dynsymtab = (void *)(shdr[tab_idx].sh_addr + elf->load_addr); 181 assert(!(shdr[tab_idx].sh_size % sizeof(Elf32_Sym))); 182 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf32_Sym); 183 184 elf->dynstr = (void *)(shdr[str_idx].sh_addr + elf->load_addr); 185 elf->dynstr_size = shdr[str_idx].sh_size; 186 } 187 188 static void e64_save_symtab(struct ta_elf *elf, size_t tab_idx) 189 { 190 Elf64_Shdr *shdr = elf->shdr; 191 size_t str_idx = shdr[tab_idx].sh_link; 192 193 elf->dynsymtab = (void *)(vaddr_t)(shdr[tab_idx].sh_addr + 194 elf->load_addr); 195 assert(!(shdr[tab_idx].sh_size % sizeof(Elf64_Sym))); 196 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf64_Sym); 197 198 elf->dynstr = (void *)(vaddr_t)(shdr[str_idx].sh_addr + elf->load_addr); 199 elf->dynstr_size = shdr[str_idx].sh_size; 200 } 201 202 static void save_symtab(struct ta_elf *elf) 203 { 204 size_t n = 0; 205 206 if (elf->is_32bit) { 207 Elf32_Shdr *shdr = elf->shdr; 208 209 for (n = 0; n < elf->e_shnum; n++) { 210 if (shdr[n].sh_type == SHT_DYNSYM) { 211 e32_save_symtab(elf, n); 212 break; 213 } 214 } 215 } else { 216 Elf64_Shdr *shdr = elf->shdr; 217 218 for (n = 0; n < elf->e_shnum; n++) { 219 if (shdr[n].sh_type == SHT_DYNSYM) { 220 e64_save_symtab(elf, n); 221 break; 222 } 223 } 224 225 } 226 227 save_hashtab(elf); 228 } 229 230 static void init_elf(struct ta_elf *elf) 231 { 232 TEE_Result res = TEE_SUCCESS; 233 vaddr_t va = 0; 234 uint32_t flags = PTA_SYSTEM_MAP_FLAG_SHAREABLE; 235 236 res = sys_open_ta_bin(&elf->uuid, &elf->handle); 237 if (res) 238 err(res, "sys_open_ta_bin(%pUl)", (void *)&elf->uuid); 239 240 /* 241 * Map it read-only executable when we're loading a library where 242 * the ELF header is included in a load segment. 243 */ 244 if (!elf->is_main) 245 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 246 res = sys_map_ta_bin(&va, SMALL_PAGE_SIZE, flags, elf->handle, 0, 0, 0); 247 if (res) 248 err(res, "sys_map_ta_bin"); 249 elf->ehdr_addr = va; 250 if (!elf->is_main) { 251 elf->load_addr = va; 252 elf->max_addr = va + SMALL_PAGE_SIZE; 253 elf->max_offs = SMALL_PAGE_SIZE; 254 } 255 256 if (!IS_ELF(*(Elf32_Ehdr *)va)) 257 err(TEE_ERROR_BAD_FORMAT, "TA is not an ELF"); 258 259 res = e32_parse_ehdr(elf, (void *)va); 260 if (res == TEE_ERROR_BAD_FORMAT) 261 res = e64_parse_ehdr(elf, (void *)va); 262 if (res) 263 err(res, "Cannot parse ELF"); 264 265 if (elf->e_phoff + elf->e_phnum * elf->e_phentsize > SMALL_PAGE_SIZE) 266 err(TEE_ERROR_NOT_SUPPORTED, "Cannot read program headers"); 267 268 elf->phdr = (void *)(va + elf->e_phoff); 269 } 270 271 static size_t roundup(size_t v) 272 { 273 return ROUNDUP(v, SMALL_PAGE_SIZE); 274 } 275 276 static size_t rounddown(size_t v) 277 { 278 return ROUNDDOWN(v, SMALL_PAGE_SIZE); 279 } 280 281 static void add_segment(struct ta_elf *elf, size_t offset, size_t vaddr, 282 size_t filesz, size_t memsz, size_t flags, size_t align) 283 { 284 struct segment *seg = calloc(1, sizeof(*seg)); 285 286 if (!seg) 287 err(TEE_ERROR_OUT_OF_MEMORY, "calloc"); 288 289 seg->offset = offset; 290 seg->vaddr = vaddr; 291 seg->filesz = filesz; 292 seg->memsz = memsz; 293 seg->flags = flags; 294 seg->align = align; 295 296 TAILQ_INSERT_TAIL(&elf->segs, seg, link); 297 } 298 299 static void parse_load_segments(struct ta_elf *elf) 300 { 301 size_t n = 0; 302 303 if (elf->is_32bit) { 304 Elf32_Phdr *phdr = elf->phdr; 305 306 for (n = 0; n < elf->e_phnum; n++) 307 if (phdr[n].p_type == PT_LOAD) { 308 add_segment(elf, phdr[n].p_offset, 309 phdr[n].p_vaddr, phdr[n].p_filesz, 310 phdr[n].p_memsz, phdr[n].p_flags, 311 phdr[n].p_align); 312 } else if (phdr[n].p_type == PT_ARM_EXIDX) { 313 elf->exidx_start = phdr[n].p_vaddr; 314 elf->exidx_size = phdr[n].p_filesz; 315 } 316 } else { 317 Elf64_Phdr *phdr = elf->phdr; 318 319 for (n = 0; n < elf->e_phnum; n++) 320 if (phdr[n].p_type == PT_LOAD) 321 add_segment(elf, phdr[n].p_offset, 322 phdr[n].p_vaddr, phdr[n].p_filesz, 323 phdr[n].p_memsz, phdr[n].p_flags, 324 phdr[n].p_align); 325 } 326 } 327 328 static void copy_remapped_to(struct ta_elf *elf, const struct segment *seg) 329 { 330 uint8_t *dst = (void *)(seg->vaddr + elf->load_addr); 331 size_t n = 0; 332 size_t offs = seg->offset; 333 size_t num_bytes = seg->filesz; 334 335 if (offs < elf->max_offs) { 336 n = MIN(elf->max_offs - offs, num_bytes); 337 memcpy(dst, (void *)(elf->max_addr + offs - elf->max_offs), n); 338 dst += n; 339 offs += n; 340 num_bytes -= n; 341 } 342 343 if (num_bytes) { 344 TEE_Result res = sys_copy_from_ta_bin(dst, num_bytes, 345 elf->handle, offs); 346 347 if (res) 348 err(res, "sys_copy_from_ta_bin"); 349 elf->max_offs += offs; 350 } 351 } 352 353 static void adjust_segments(struct ta_elf *elf) 354 { 355 struct segment *seg = NULL; 356 struct segment *prev_seg = NULL; 357 size_t prev_end_addr = 0; 358 size_t align = 0; 359 size_t mask = 0; 360 361 /* Sanity check */ 362 TAILQ_FOREACH(seg, &elf->segs, link) { 363 size_t dummy __maybe_unused = 0; 364 365 assert(seg->align >= SMALL_PAGE_SIZE); 366 assert(!ADD_OVERFLOW(seg->vaddr, seg->memsz, &dummy)); 367 assert(seg->filesz <= seg->memsz); 368 assert((seg->offset & SMALL_PAGE_MASK) == 369 (seg->vaddr & SMALL_PAGE_MASK)); 370 371 prev_seg = TAILQ_PREV(seg, segment_head, link); 372 if (prev_seg) { 373 assert(seg->vaddr >= prev_seg->vaddr + prev_seg->memsz); 374 assert(seg->offset >= 375 prev_seg->offset + prev_seg->filesz); 376 } 377 if (!align) 378 align = seg->align; 379 assert(align == seg->align); 380 } 381 382 mask = align - 1; 383 384 seg = TAILQ_FIRST(&elf->segs); 385 if (seg) 386 seg = TAILQ_NEXT(seg, link); 387 while (seg) { 388 prev_seg = TAILQ_PREV(seg, segment_head, link); 389 prev_end_addr = prev_seg->vaddr + prev_seg->memsz; 390 391 /* 392 * This segment may overlap with the last "page" in the 393 * previous segment in two different ways: 394 * 1. Virtual address (and offset) overlaps => 395 * Permissions needs to be merged. The offset must have 396 * the SMALL_PAGE_MASK bits set as vaddr and offset must 397 * add up with prevsion segment. 398 * 399 * 2. Only offset overlaps => 400 * The same page in the ELF is mapped at two different 401 * virtual addresses. As a limitation this segment must 402 * be mapped as writeable. 403 */ 404 405 /* Case 1. */ 406 if (rounddown(seg->vaddr) < prev_end_addr) { 407 assert((seg->vaddr & mask) == (seg->offset & mask)); 408 assert(prev_seg->memsz == prev_seg->filesz); 409 410 /* 411 * Merge the segments and their permissions. 412 * Note that the may be a small hole between the 413 * two sections. 414 */ 415 prev_seg->filesz = seg->vaddr + seg->filesz - 416 prev_seg->vaddr; 417 prev_seg->memsz = seg->vaddr + seg->memsz - 418 prev_seg->vaddr; 419 prev_seg->flags |= seg->flags; 420 421 TAILQ_REMOVE(&elf->segs, seg, link); 422 free(seg); 423 seg = TAILQ_NEXT(prev_seg, link); 424 continue; 425 } 426 427 /* Case 2. */ 428 if ((seg->offset & mask) && 429 rounddown(seg->offset) < 430 (prev_seg->offset + prev_seg->filesz)) { 431 432 assert(seg->flags & PF_W); 433 seg->remapped_writeable = true; 434 } 435 436 /* 437 * No overlap, but we may need to align address, offset and 438 * size. 439 */ 440 seg->filesz += seg->vaddr - rounddown(seg->vaddr); 441 seg->memsz += seg->vaddr - rounddown(seg->vaddr); 442 seg->vaddr = rounddown(seg->vaddr); 443 seg->offset = rounddown(seg->offset); 444 seg = TAILQ_NEXT(seg, link); 445 } 446 447 } 448 449 static void populate_segments_legacy(struct ta_elf *elf) 450 { 451 TEE_Result res = TEE_SUCCESS; 452 struct segment *seg = NULL; 453 vaddr_t va = 0; 454 455 TAILQ_FOREACH(seg, &elf->segs, link) { 456 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 457 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 458 seg->vaddr - seg->memsz); 459 size_t num_bytes = roundup(seg->memsz); 460 461 if (!elf->load_addr) 462 va = 0; 463 else 464 va = seg->vaddr + elf->load_addr; 465 466 467 if (!(seg->flags & PF_R)) 468 err(TEE_ERROR_NOT_SUPPORTED, 469 "Segment must be readable"); 470 471 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 472 if (res) 473 err(res, "sys_map_zi"); 474 res = sys_copy_from_ta_bin((void *)va, seg->filesz, 475 elf->handle, seg->offset); 476 if (res) 477 err(res, "sys_copy_from_ta_bin"); 478 479 if (!elf->load_addr) 480 elf->load_addr = va; 481 elf->max_addr = va + num_bytes; 482 elf->max_offs = seg->offset + seg->filesz; 483 } 484 } 485 486 static size_t get_pad_begin(void) 487 { 488 #ifdef CFG_TA_ASLR 489 size_t min = CFG_TA_ASLR_MIN_OFFSET_PAGES; 490 size_t max = CFG_TA_ASLR_MAX_OFFSET_PAGES; 491 TEE_Result res = TEE_SUCCESS; 492 uint32_t rnd32 = 0; 493 size_t rnd = 0; 494 495 COMPILE_TIME_ASSERT(CFG_TA_ASLR_MIN_OFFSET_PAGES < 496 CFG_TA_ASLR_MAX_OFFSET_PAGES); 497 if (max > min) { 498 res = utee_cryp_random_number_generate(&rnd32, sizeof(rnd32)); 499 if (res) { 500 DMSG("Random read failed: %#"PRIx32, res); 501 return min * SMALL_PAGE_SIZE; 502 } 503 rnd = rnd32 % (max - min); 504 } 505 506 return (min + rnd) * SMALL_PAGE_SIZE; 507 #else /*!CFG_TA_ASLR*/ 508 return 0; 509 #endif /*!CFG_TA_ASLR*/ 510 } 511 512 static void populate_segments(struct ta_elf *elf) 513 { 514 TEE_Result res = TEE_SUCCESS; 515 struct segment *seg = NULL; 516 vaddr_t va = 0; 517 size_t pad_begin = 0; 518 519 TAILQ_FOREACH(seg, &elf->segs, link) { 520 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 521 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 522 seg->vaddr - seg->memsz); 523 524 if (seg->remapped_writeable) { 525 size_t num_bytes = roundup(seg->vaddr + seg->memsz) - 526 rounddown(seg->vaddr); 527 528 assert(elf->load_addr); 529 va = rounddown(elf->load_addr + seg->vaddr); 530 assert(va >= elf->max_addr); 531 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 532 if (res) 533 err(res, "sys_map_zi"); 534 535 copy_remapped_to(elf, seg); 536 elf->max_addr = va + num_bytes; 537 } else { 538 uint32_t flags = 0; 539 size_t filesz = seg->filesz; 540 size_t memsz = seg->memsz; 541 size_t offset = seg->offset; 542 size_t vaddr = seg->vaddr; 543 544 if (offset < elf->max_offs) { 545 /* 546 * We're in a load segment which overlaps 547 * with (or is covered by) the first page 548 * of a shared library. 549 */ 550 if (vaddr + filesz < SMALL_PAGE_SIZE) { 551 size_t num_bytes = 0; 552 553 /* 554 * If this segment is completely 555 * covered, take next. 556 */ 557 if (vaddr + memsz <= SMALL_PAGE_SIZE) 558 continue; 559 560 /* 561 * All data of the segment is 562 * loaded, but we need to zero 563 * extend it. 564 */ 565 va = elf->max_addr; 566 num_bytes = roundup(vaddr + memsz) - 567 roundup(vaddr) - 568 SMALL_PAGE_SIZE; 569 assert(num_bytes); 570 res = sys_map_zi(num_bytes, 0, &va, 0, 571 0); 572 if (res) 573 err(res, "sys_map_zi"); 574 elf->max_addr = roundup(va + num_bytes); 575 continue; 576 } 577 578 /* Partial overlap, remove the first page. */ 579 vaddr += SMALL_PAGE_SIZE; 580 filesz -= SMALL_PAGE_SIZE; 581 memsz -= SMALL_PAGE_SIZE; 582 offset += SMALL_PAGE_SIZE; 583 } 584 585 if (!elf->load_addr) { 586 va = 0; 587 pad_begin = get_pad_begin(); 588 /* 589 * If mapping with pad_begin fails we'll 590 * retry without pad_begin, effectively 591 * disabling ASLR for the current ELF file. 592 */ 593 } else { 594 va = vaddr + elf->load_addr; 595 pad_begin = 0; 596 } 597 598 if (seg->flags & PF_W) 599 flags |= PTA_SYSTEM_MAP_FLAG_WRITEABLE; 600 else 601 flags |= PTA_SYSTEM_MAP_FLAG_SHAREABLE; 602 if (seg->flags & PF_X) 603 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 604 if (!(seg->flags & PF_R)) 605 err(TEE_ERROR_NOT_SUPPORTED, 606 "Segment must be readable"); 607 if (flags & PTA_SYSTEM_MAP_FLAG_WRITEABLE) { 608 res = sys_map_zi(memsz, 0, &va, pad_begin, 609 pad_end); 610 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 611 res = sys_map_zi(memsz, 0, &va, 0, 612 pad_end); 613 if (res) 614 err(res, "sys_map_zi"); 615 res = sys_copy_from_ta_bin((void *)va, filesz, 616 elf->handle, offset); 617 if (res) 618 err(res, "sys_copy_from_ta_bin"); 619 } else { 620 res = sys_map_ta_bin(&va, filesz, flags, 621 elf->handle, offset, 622 pad_begin, pad_end); 623 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 624 res = sys_map_ta_bin(&va, filesz, flags, 625 elf->handle, 626 offset, 0, 627 pad_end); 628 if (res) 629 err(res, "sys_map_ta_bin"); 630 } 631 632 if (!elf->load_addr) 633 elf->load_addr = va; 634 elf->max_addr = roundup(va + filesz); 635 elf->max_offs += filesz; 636 } 637 } 638 } 639 640 static void map_segments(struct ta_elf *elf) 641 { 642 TEE_Result res = TEE_SUCCESS; 643 644 parse_load_segments(elf); 645 adjust_segments(elf); 646 if (TAILQ_FIRST(&elf->segs)->offset < SMALL_PAGE_SIZE) { 647 vaddr_t va = 0; 648 size_t sz = elf->max_addr - elf->load_addr; 649 struct segment *seg = TAILQ_LAST(&elf->segs, segment_head); 650 size_t pad_begin = get_pad_begin(); 651 652 /* 653 * We're loading a library, if not other parts of the code 654 * need to be updated too. 655 */ 656 assert(!elf->is_main); 657 658 /* 659 * Now that we know how much virtual memory is needed move 660 * the already mapped part to a location which can 661 * accommodate us. 662 */ 663 res = sys_remap(elf->load_addr, &va, sz, pad_begin, 664 roundup(seg->vaddr + seg->memsz)); 665 if (res == TEE_ERROR_OUT_OF_MEMORY) 666 res = sys_remap(elf->load_addr, &va, sz, 0, 667 roundup(seg->vaddr + seg->memsz)); 668 if (res) 669 err(res, "sys_remap"); 670 elf->ehdr_addr = va; 671 elf->load_addr = va; 672 elf->max_addr = va + sz; 673 elf->phdr = (void *)(va + elf->e_phoff); 674 } 675 if (elf->is_legacy) 676 populate_segments_legacy(elf); 677 else 678 populate_segments(elf); 679 } 680 681 static int hex(char c) 682 { 683 char lc = tolower(c); 684 685 if (isdigit(lc)) 686 return lc - '0'; 687 if (isxdigit(lc)) 688 return lc - 'a' + 10; 689 return -1; 690 } 691 692 static uint32_t parse_hex(const char *s, size_t nchars, uint32_t *res) 693 { 694 uint32_t v = 0; 695 size_t n; 696 int c; 697 698 for (n = 0; n < nchars; n++) { 699 c = hex(s[n]); 700 if (c == (char)-1) { 701 *res = TEE_ERROR_BAD_FORMAT; 702 goto out; 703 } 704 v = (v << 4) + c; 705 } 706 *res = TEE_SUCCESS; 707 out: 708 return v; 709 } 710 711 /* 712 * Convert a UUID string @s into a TEE_UUID @uuid 713 * Expected format for @s is: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 714 * 'x' being any hexadecimal digit (0-9a-fA-F) 715 */ 716 static TEE_Result parse_uuid(const char *s, TEE_UUID *uuid) 717 { 718 TEE_Result res = TEE_SUCCESS; 719 TEE_UUID u = { 0 }; 720 const char *p = s; 721 size_t i; 722 723 if (strlen(p) != 36) 724 return TEE_ERROR_BAD_FORMAT; 725 if (p[8] != '-' || p[13] != '-' || p[18] != '-' || p[23] != '-') 726 return TEE_ERROR_BAD_FORMAT; 727 728 u.timeLow = parse_hex(p, 8, &res); 729 if (res) 730 goto out; 731 p += 9; 732 u.timeMid = parse_hex(p, 4, &res); 733 if (res) 734 goto out; 735 p += 5; 736 u.timeHiAndVersion = parse_hex(p, 4, &res); 737 if (res) 738 goto out; 739 p += 5; 740 for (i = 0; i < 8; i++) { 741 u.clockSeqAndNode[i] = parse_hex(p, 2, &res); 742 if (res) 743 goto out; 744 if (i == 1) 745 p += 3; 746 else 747 p += 2; 748 } 749 *uuid = u; 750 out: 751 return res; 752 } 753 754 static void add_deps_from_segment(struct ta_elf *elf, unsigned int type, 755 vaddr_t addr, size_t memsz) 756 { 757 size_t dyn_entsize = 0; 758 size_t num_dyns = 0; 759 size_t n = 0; 760 unsigned int tag = 0; 761 size_t val = 0; 762 TEE_UUID uuid = { }; 763 char *str_tab = NULL; 764 765 if (type != PT_DYNAMIC) 766 return; 767 768 if (elf->is_32bit) 769 dyn_entsize = sizeof(Elf32_Dyn); 770 else 771 dyn_entsize = sizeof(Elf64_Dyn); 772 773 assert(!(memsz % dyn_entsize)); 774 num_dyns = memsz / dyn_entsize; 775 776 for (n = 0; n < num_dyns; n++) { 777 read_dyn(elf, addr, n, &tag, &val); 778 if (tag == DT_STRTAB) { 779 str_tab = (char *)(val + elf->load_addr); 780 break; 781 } 782 } 783 784 for (n = 0; n < num_dyns; n++) { 785 read_dyn(elf, addr, n, &tag, &val); 786 if (tag != DT_NEEDED) 787 continue; 788 parse_uuid(str_tab + val, &uuid); 789 queue_elf(&uuid); 790 } 791 } 792 793 static void add_dependencies(struct ta_elf *elf) 794 { 795 size_t n = 0; 796 797 if (elf->is_32bit) { 798 Elf32_Phdr *phdr = elf->phdr; 799 800 for (n = 0; n < elf->e_phnum; n++) 801 add_deps_from_segment(elf, phdr[n].p_type, 802 phdr[n].p_vaddr, phdr[n].p_memsz); 803 } else { 804 Elf64_Phdr *phdr = elf->phdr; 805 806 for (n = 0; n < elf->e_phnum; n++) 807 add_deps_from_segment(elf, phdr[n].p_type, 808 phdr[n].p_vaddr, phdr[n].p_memsz); 809 } 810 } 811 812 static void copy_section_headers(struct ta_elf *elf) 813 { 814 TEE_Result res = TEE_SUCCESS; 815 size_t sz = elf->e_shnum * elf->e_shentsize; 816 size_t offs = 0; 817 818 elf->shdr = malloc(sz); 819 if (!elf->shdr) 820 err(TEE_ERROR_OUT_OF_MEMORY, "malloc"); 821 822 /* 823 * We're assuming that section headers comes after the load segments, 824 * but if it's a very small dynamically linked library the section 825 * headers can still end up (partially?) in the first mapped page. 826 */ 827 if (elf->e_shoff < SMALL_PAGE_SIZE) { 828 assert(!elf->is_main); 829 offs = MIN(SMALL_PAGE_SIZE - elf->e_shoff, sz); 830 memcpy(elf->shdr, (void *)(elf->load_addr + elf->e_shoff), 831 offs); 832 } 833 834 if (offs < sz) { 835 res = sys_copy_from_ta_bin((uint8_t *)elf->shdr + offs, 836 sz - offs, elf->handle, 837 elf->e_shoff + offs); 838 if (res) 839 err(res, "sys_copy_from_ta_bin"); 840 } 841 } 842 843 static void close_handle(struct ta_elf *elf) 844 { 845 TEE_Result res = sys_close_ta_bin(elf->handle); 846 847 if (res) 848 err(res, "sys_close_ta_bin"); 849 elf->handle = -1; 850 } 851 852 void ta_elf_load_main(const TEE_UUID *uuid, uint32_t *is_32bit, 853 uint64_t *entry, uint64_t *sp, uint32_t *ta_flags) 854 { 855 struct ta_elf *elf = queue_elf(uuid); 856 struct ta_head *head; 857 vaddr_t va = 0; 858 TEE_Result res = TEE_SUCCESS; 859 860 assert(elf); 861 elf->is_main = true; 862 863 init_elf(elf); 864 865 /* 866 * Legacy TAs doesn't set entry point, instead it's set in ta_head. 867 * If entry point isn't set explicitly, set to the start of the 868 * first executable section by the linker. Since ta_head also 869 * always comes first in legacy TA it means that the entry point 870 * will be set to 0x20. 871 * 872 * NB, everything before the commit a73b5878c89d ("Replace 873 * ta_head.entry with elf entry") is considered legacy TAs for 874 * ldelf. 875 */ 876 if (elf->e_entry == sizeof(*head)) 877 elf->is_legacy = true; 878 879 map_segments(elf); 880 add_dependencies(elf); 881 copy_section_headers(elf); 882 save_symtab(elf); 883 close_handle(elf); 884 885 head = (struct ta_head *)elf->load_addr; 886 887 *is_32bit = elf->is_32bit; 888 if (elf->is_legacy) { 889 assert(head->depr_entry != UINT64_MAX); 890 *entry = head->depr_entry + elf->load_addr; 891 } else { 892 assert(head->depr_entry == UINT64_MAX); 893 *entry = elf->e_entry + elf->load_addr; 894 } 895 896 res = sys_map_zi(head->stack_size, 0, &va, 0, 0); 897 if (res) 898 err(res, "sys_map_zi stack"); 899 900 if (head->flags & ~TA_FLAGS_MASK) 901 err(TEE_ERROR_BAD_FORMAT, "Invalid TA flags(s) %#"PRIx32, 902 head->flags & ~TA_FLAGS_MASK); 903 904 *ta_flags = head->flags; 905 *sp = va + head->stack_size; 906 ta_stack = va; 907 ta_stack_size = head->stack_size; 908 } 909 910 void ta_elf_load_dependency(struct ta_elf *elf, bool is_32bit) 911 { 912 if (elf->is_main) 913 return; 914 915 init_elf(elf); 916 if (elf->is_32bit != is_32bit) 917 err(TEE_ERROR_BAD_FORMAT, "ELF %pUl is %sbit (expected %sbit)", 918 (void *)&elf->uuid, elf->is_32bit ? "32" : "64", 919 is_32bit ? "32" : "64"); 920 921 map_segments(elf); 922 add_dependencies(elf); 923 copy_section_headers(elf); 924 save_symtab(elf); 925 close_handle(elf); 926 } 927 928 void ta_elf_finalize_mappings(struct ta_elf *elf) 929 { 930 TEE_Result res = TEE_SUCCESS; 931 struct segment *seg = NULL; 932 933 if (!elf->is_legacy) 934 return; 935 936 TAILQ_FOREACH(seg, &elf->segs, link) { 937 vaddr_t va = elf->load_addr + seg->vaddr; 938 uint32_t flags = 0; 939 940 if (seg->flags & PF_W) 941 flags |= PTA_SYSTEM_MAP_FLAG_WRITEABLE; 942 if (seg->flags & PF_X) 943 flags |= PTA_SYSTEM_MAP_FLAG_EXECUTABLE; 944 945 res = sys_set_prot(va, seg->memsz, flags); 946 if (res) 947 err(res, "sys_set_prot"); 948 } 949 } 950 951 static void __printf(3, 4) print_wrapper(void *pctx, print_func_t print_func, 952 const char *fmt, ...) 953 { 954 va_list ap; 955 956 va_start(ap, fmt); 957 print_func(pctx, fmt, ap); 958 va_end(ap); 959 } 960 961 static void print_seg(void *pctx, print_func_t print_func, 962 size_t idx __maybe_unused, int elf_idx __maybe_unused, 963 vaddr_t va __maybe_unused, paddr_t pa __maybe_unused, 964 size_t sz __maybe_unused, uint32_t flags) 965 { 966 int width __maybe_unused = 8; 967 char desc[14] __maybe_unused = ""; 968 char flags_str[] __maybe_unused = "----"; 969 970 if (elf_idx > -1) { 971 snprintf(desc, sizeof(desc), " [%d]", elf_idx); 972 } else { 973 if (flags & DUMP_MAP_EPHEM) 974 snprintf(desc, sizeof(desc), " (param)"); 975 if (flags & DUMP_MAP_LDELF) 976 snprintf(desc, sizeof(desc), " (ldelf)"); 977 if (va == ta_stack) 978 snprintf(desc, sizeof(desc), " (stack)"); 979 } 980 981 if (flags & DUMP_MAP_READ) 982 flags_str[0] = 'r'; 983 if (flags & DUMP_MAP_WRITE) 984 flags_str[1] = 'w'; 985 if (flags & DUMP_MAP_EXEC) 986 flags_str[2] = 'x'; 987 if (flags & DUMP_MAP_SECURE) 988 flags_str[3] = 's'; 989 990 print_wrapper(pctx, print_func, 991 "region %2zu: va 0x%0*"PRIxVA" pa 0x%0*"PRIxPA" size 0x%06zx flags %s%s\n", 992 idx, width, va, width, pa, sz, flags_str, desc); 993 } 994 995 static bool get_next_in_order(struct ta_elf_queue *elf_queue, 996 struct ta_elf **elf, struct segment **seg, 997 size_t *elf_idx) 998 { 999 struct ta_elf *e = NULL; 1000 struct segment *s = NULL; 1001 size_t idx = 0; 1002 vaddr_t va = 0; 1003 struct ta_elf *e2 = NULL; 1004 size_t i2 = 0; 1005 1006 assert(elf && seg && elf_idx); 1007 e = *elf; 1008 s = *seg; 1009 assert((e == NULL && s == NULL) || (e != NULL && s != NULL)); 1010 1011 if (s) { 1012 s = TAILQ_NEXT(s, link); 1013 if (s) { 1014 *seg = s; 1015 return true; 1016 } 1017 } 1018 1019 if (e) 1020 va = e->load_addr; 1021 1022 /* Find the ELF with next load address */ 1023 e = NULL; 1024 TAILQ_FOREACH(e2, elf_queue, link) { 1025 if (e2->load_addr > va) { 1026 if (!e || e2->load_addr < e->load_addr) { 1027 e = e2; 1028 idx = i2; 1029 } 1030 } 1031 i2++; 1032 } 1033 if (!e) 1034 return false; 1035 1036 *elf = e; 1037 *seg = TAILQ_FIRST(&e->segs); 1038 *elf_idx = idx; 1039 return true; 1040 } 1041 1042 void ta_elf_print_mappings(void *pctx, print_func_t print_func, 1043 struct ta_elf_queue *elf_queue, size_t num_maps, 1044 struct dump_map *maps, vaddr_t mpool_base) 1045 { 1046 struct segment *seg = NULL; 1047 struct ta_elf *elf = NULL; 1048 size_t elf_idx = 0; 1049 size_t idx = 0; 1050 size_t map_idx = 0; 1051 1052 /* 1053 * Loop over all segments and maps, printing virtual address in 1054 * order. Segment has priority if the virtual address is present 1055 * in both map and segment. 1056 */ 1057 get_next_in_order(elf_queue, &elf, &seg, &elf_idx); 1058 while (true) { 1059 vaddr_t va = -1; 1060 size_t sz = 0; 1061 uint32_t flags = DUMP_MAP_SECURE; 1062 size_t offs = 0; 1063 1064 if (seg) { 1065 va = rounddown(seg->vaddr + elf->load_addr); 1066 sz = roundup(seg->vaddr + seg->memsz) - 1067 rounddown(seg->vaddr); 1068 } 1069 1070 while (map_idx < num_maps && maps[map_idx].va <= va) { 1071 uint32_t f = 0; 1072 1073 /* If there's a match, it should be the same map */ 1074 if (maps[map_idx].va == va) { 1075 /* 1076 * In shared libraries the first page is 1077 * mapped separately with the rest of that 1078 * segment following back to back in a 1079 * separate entry. 1080 */ 1081 if (map_idx + 1 < num_maps && 1082 maps[map_idx].sz == SMALL_PAGE_SIZE) { 1083 vaddr_t next_va = maps[map_idx].va + 1084 maps[map_idx].sz; 1085 size_t comb_sz = maps[map_idx].sz + 1086 maps[map_idx + 1].sz; 1087 1088 if (next_va == maps[map_idx + 1].va && 1089 comb_sz == sz && 1090 maps[map_idx].flags == 1091 maps[map_idx + 1].flags) { 1092 /* Skip this and next entry */ 1093 map_idx += 2; 1094 continue; 1095 } 1096 } 1097 assert(maps[map_idx].sz == sz); 1098 } else if (maps[map_idx].va < va) { 1099 if (maps[map_idx].va == mpool_base) 1100 f |= DUMP_MAP_LDELF; 1101 print_seg(pctx, print_func, idx, -1, 1102 maps[map_idx].va, maps[map_idx].pa, 1103 maps[map_idx].sz, 1104 maps[map_idx].flags | f); 1105 idx++; 1106 } 1107 map_idx++; 1108 } 1109 1110 if (!seg) 1111 break; 1112 1113 offs = rounddown(seg->offset); 1114 if (seg->flags & PF_R) 1115 flags |= DUMP_MAP_READ; 1116 if (seg->flags & PF_W) 1117 flags |= DUMP_MAP_WRITE; 1118 if (seg->flags & PF_X) 1119 flags |= DUMP_MAP_EXEC; 1120 1121 print_seg(pctx, print_func, idx, elf_idx, va, offs, sz, flags); 1122 idx++; 1123 1124 if (!get_next_in_order(elf_queue, &elf, &seg, &elf_idx)) 1125 seg = NULL; 1126 } 1127 1128 elf_idx = 0; 1129 TAILQ_FOREACH(elf, elf_queue, link) { 1130 print_wrapper(pctx, print_func, 1131 " [%zu] %pUl @ 0x%0*"PRIxVA"\n", 1132 elf_idx, (void *)&elf->uuid, 8, elf->load_addr); 1133 elf_idx++; 1134 } 1135 } 1136 1137 #ifdef CFG_UNWIND 1138 void ta_elf_stack_trace_a32(uint32_t regs[16]) 1139 { 1140 struct unwind_state_arm32 state = { }; 1141 1142 memcpy(state.registers, regs, sizeof(state.registers)); 1143 print_stack_arm32(&state, ta_stack, ta_stack_size); 1144 } 1145 1146 void ta_elf_stack_trace_a64(uint64_t fp, uint64_t sp, uint64_t pc) 1147 { 1148 struct unwind_state_arm64 state = { .fp = fp, .sp = sp, .pc = pc }; 1149 1150 print_stack_arm64(&state, ta_stack, ta_stack_size); 1151 } 1152 #endif 1153