1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2019, Linaro Limited 4 * Copyright (c) 2020-2023, Arm Limited 5 */ 6 7 #include <assert.h> 8 #include <config.h> 9 #include <confine_array_index.h> 10 #include <elf32.h> 11 #include <elf64.h> 12 #include <elf_common.h> 13 #include <ldelf.h> 14 #include <link.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string_ext.h> 18 #include <string.h> 19 #include <tee_api_types.h> 20 #include <tee_internal_api_extensions.h> 21 #include <unw/unwind.h> 22 #include <user_ta_header.h> 23 #include <util.h> 24 25 #include "sys.h" 26 #include "ta_elf.h" 27 28 /* 29 * Layout of a 32-bit struct dl_phdr_info for a 64-bit ldelf to access a 32-bit 30 * TA 31 */ 32 struct dl_phdr_info32 { 33 uint32_t dlpi_addr; 34 uint32_t dlpi_name; 35 uint32_t dlpi_phdr; 36 uint16_t dlpi_phnum; 37 uint64_t dlpi_adds; 38 uint64_t dlpi_subs; 39 uint32_t dlpi_tls_modid; 40 uint32_t dlpi_tls_data; 41 }; 42 43 static vaddr_t ta_stack; 44 static vaddr_t ta_stack_size; 45 46 struct ta_elf_queue main_elf_queue = TAILQ_HEAD_INITIALIZER(main_elf_queue); 47 48 /* 49 * Main application is always ID 1, shared libraries with TLS take IDs 2 and 50 * above 51 */ 52 static void assign_tls_mod_id(struct ta_elf *elf) 53 { 54 static size_t last_tls_mod_id = 1; 55 56 if (elf->is_main) 57 assert(last_tls_mod_id == 1); /* Main always comes first */ 58 elf->tls_mod_id = last_tls_mod_id++; 59 } 60 61 static struct ta_elf *queue_elf_helper(const TEE_UUID *uuid) 62 { 63 struct ta_elf *elf = calloc(1, sizeof(*elf)); 64 65 if (!elf) 66 return NULL; 67 68 TAILQ_INIT(&elf->segs); 69 70 elf->uuid = *uuid; 71 TAILQ_INSERT_TAIL(&main_elf_queue, elf, link); 72 return elf; 73 } 74 75 static struct ta_elf *queue_elf(const TEE_UUID *uuid) 76 { 77 struct ta_elf *elf = ta_elf_find_elf(uuid); 78 79 if (elf) 80 return NULL; 81 82 elf = queue_elf_helper(uuid); 83 if (!elf) 84 err(TEE_ERROR_OUT_OF_MEMORY, "queue_elf_helper"); 85 86 return elf; 87 } 88 89 struct ta_elf *ta_elf_find_elf(const TEE_UUID *uuid) 90 { 91 struct ta_elf *elf = NULL; 92 93 TAILQ_FOREACH(elf, &main_elf_queue, link) 94 if (!memcmp(uuid, &elf->uuid, sizeof(*uuid))) 95 return elf; 96 97 return NULL; 98 } 99 100 #if defined(ARM32) || defined(ARM64) 101 static TEE_Result e32_parse_ehdr(struct ta_elf *elf, Elf32_Ehdr *ehdr) 102 { 103 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 104 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 105 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 106 (ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE && 107 ehdr->e_ident[EI_OSABI] != ELFOSABI_ARM) || 108 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_ARM || 109 #ifndef CFG_WITH_VFP 110 (ehdr->e_flags & EF_ARM_ABI_FLOAT_HARD) || 111 #endif 112 ehdr->e_phentsize != sizeof(Elf32_Phdr) || 113 ehdr->e_shentsize != sizeof(Elf32_Shdr)) 114 return TEE_ERROR_BAD_FORMAT; 115 116 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_NONE && 117 (ehdr->e_flags & EF_ARM_ABIMASK) != EF_ARM_ABI_V5) 118 return TEE_ERROR_BAD_FORMAT; 119 120 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_ARM && 121 (ehdr->e_flags & EF_ARM_ABIMASK) != EF_ARM_ABI_UNKNOWN) 122 return TEE_ERROR_BAD_FORMAT; 123 124 elf->is_32bit = true; 125 elf->e_entry = ehdr->e_entry; 126 elf->e_phoff = ehdr->e_phoff; 127 elf->e_shoff = ehdr->e_shoff; 128 elf->e_phnum = ehdr->e_phnum; 129 elf->e_shnum = ehdr->e_shnum; 130 elf->e_phentsize = ehdr->e_phentsize; 131 elf->e_shentsize = ehdr->e_shentsize; 132 133 return TEE_SUCCESS; 134 } 135 136 #ifdef ARM64 137 static TEE_Result e64_parse_ehdr(struct ta_elf *elf, Elf64_Ehdr *ehdr) 138 { 139 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 140 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 141 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 142 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 143 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_AARCH64 || 144 ehdr->e_flags || ehdr->e_phentsize != sizeof(Elf64_Phdr) || 145 ehdr->e_shentsize != sizeof(Elf64_Shdr)) 146 return TEE_ERROR_BAD_FORMAT; 147 148 149 elf->is_32bit = false; 150 elf->e_entry = ehdr->e_entry; 151 elf->e_phoff = ehdr->e_phoff; 152 elf->e_shoff = ehdr->e_shoff; 153 elf->e_phnum = ehdr->e_phnum; 154 elf->e_shnum = ehdr->e_shnum; 155 elf->e_phentsize = ehdr->e_phentsize; 156 elf->e_shentsize = ehdr->e_shentsize; 157 158 return TEE_SUCCESS; 159 } 160 #else /*ARM64*/ 161 static TEE_Result e64_parse_ehdr(struct ta_elf *elf __unused, 162 Elf64_Ehdr *ehdr __unused) 163 { 164 return TEE_ERROR_NOT_SUPPORTED; 165 } 166 #endif /*ARM64*/ 167 #endif /* ARM32 || ARM64 */ 168 169 #if defined(RV64) 170 static TEE_Result e32_parse_ehdr(struct ta_elf *elf __unused, 171 Elf32_Ehdr *ehdr __unused) 172 { 173 return TEE_ERROR_BAD_FORMAT; 174 } 175 176 static TEE_Result e64_parse_ehdr(struct ta_elf *elf, Elf64_Ehdr *ehdr) 177 { 178 if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || 179 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 180 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 181 ehdr->e_ident[EI_OSABI] != ELFOSABI_NONE || 182 ehdr->e_type != ET_DYN || ehdr->e_machine != EM_RISCV || 183 ehdr->e_phentsize != sizeof(Elf64_Phdr) || 184 ehdr->e_shentsize != sizeof(Elf64_Shdr)) 185 return TEE_ERROR_BAD_FORMAT; 186 187 elf->is_32bit = false; 188 elf->e_entry = ehdr->e_entry; 189 elf->e_phoff = ehdr->e_phoff; 190 elf->e_shoff = ehdr->e_shoff; 191 elf->e_phnum = ehdr->e_phnum; 192 elf->e_shnum = ehdr->e_shnum; 193 elf->e_phentsize = ehdr->e_phentsize; 194 elf->e_shentsize = ehdr->e_shentsize; 195 196 return TEE_SUCCESS; 197 } 198 #endif /* RV64 */ 199 200 static void check_phdr_in_range(struct ta_elf *elf, unsigned int type, 201 vaddr_t addr, size_t memsz) 202 { 203 vaddr_t max_addr = 0; 204 205 if (ADD_OVERFLOW(addr, memsz, &max_addr)) 206 err(TEE_ERROR_BAD_FORMAT, "Program header %#x overflow", type); 207 208 /* 209 * elf->load_addr and elf->max_addr are both using the 210 * final virtual addresses, while this program header is 211 * relative to 0. 212 */ 213 if (max_addr > elf->max_addr - elf->load_addr) 214 err(TEE_ERROR_BAD_FORMAT, "Program header %#x out of bounds", 215 type); 216 } 217 218 static void read_dyn(struct ta_elf *elf, vaddr_t addr, 219 size_t idx, unsigned int *tag, size_t *val) 220 { 221 if (elf->is_32bit) { 222 Elf32_Dyn *dyn = (Elf32_Dyn *)(addr + elf->load_addr); 223 224 *tag = dyn[idx].d_tag; 225 *val = dyn[idx].d_un.d_val; 226 } else { 227 Elf64_Dyn *dyn = (Elf64_Dyn *)(addr + elf->load_addr); 228 229 *tag = dyn[idx].d_tag; 230 *val = dyn[idx].d_un.d_val; 231 } 232 } 233 234 static void check_range(struct ta_elf *elf, const char *name, const void *ptr, 235 size_t sz) 236 { 237 size_t max_addr = 0; 238 239 if ((vaddr_t)ptr < elf->load_addr) 240 err(TEE_ERROR_BAD_FORMAT, "%s %p out of range", name, ptr); 241 242 if (ADD_OVERFLOW((vaddr_t)ptr, sz, &max_addr)) 243 err(TEE_ERROR_BAD_FORMAT, "%s range overflow", name); 244 245 if (max_addr > elf->max_addr) 246 err(TEE_ERROR_BAD_FORMAT, 247 "%s %p..%#zx out of range", name, ptr, max_addr); 248 } 249 250 static void check_hashtab(struct ta_elf *elf, void *ptr, size_t num_buckets, 251 size_t num_chains) 252 { 253 /* 254 * Starting from 2 as the first two words are mandatory and hold 255 * num_buckets and num_chains. So this function is called twice, 256 * first to see that there's indeed room for num_buckets and 257 * num_chains and then to see that all of it fits. 258 * See http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash 259 */ 260 size_t num_words = 2; 261 size_t sz = 0; 262 263 if (!IS_ALIGNED_WITH_TYPE(ptr, uint32_t)) 264 err(TEE_ERROR_BAD_FORMAT, "Bad alignment of DT_HASH %p", ptr); 265 266 if (ADD_OVERFLOW(num_words, num_buckets, &num_words) || 267 ADD_OVERFLOW(num_words, num_chains, &num_words) || 268 MUL_OVERFLOW(num_words, sizeof(uint32_t), &sz)) 269 err(TEE_ERROR_BAD_FORMAT, "DT_HASH overflow"); 270 271 check_range(elf, "DT_HASH", ptr, sz); 272 } 273 274 static void check_gnu_hashtab(struct ta_elf *elf, void *ptr) 275 { 276 struct gnu_hashtab *h = ptr; 277 size_t num_words = 4; /* nbuckets, symoffset, bloom_size, bloom_shift */ 278 size_t bloom_words = 0; 279 size_t sz = 0; 280 281 if (!IS_ALIGNED_WITH_TYPE(ptr, uint32_t)) 282 err(TEE_ERROR_BAD_FORMAT, "Bad alignment of DT_GNU_HASH %p", 283 ptr); 284 285 if (elf->gnu_hashtab_size < sizeof(*h)) 286 err(TEE_ERROR_BAD_FORMAT, "DT_GNU_HASH too small"); 287 288 /* Check validity of h->nbuckets and h->bloom_size */ 289 290 if (elf->is_32bit) 291 bloom_words = h->bloom_size; 292 else 293 bloom_words = h->bloom_size * 2; 294 if (ADD_OVERFLOW(num_words, h->nbuckets, &num_words) || 295 ADD_OVERFLOW(num_words, bloom_words, &num_words) || 296 MUL_OVERFLOW(num_words, sizeof(uint32_t), &sz) || 297 sz > elf->gnu_hashtab_size) 298 err(TEE_ERROR_BAD_FORMAT, "DT_GNU_HASH overflow"); 299 } 300 301 static void save_hashtab(struct ta_elf *elf) 302 { 303 uint32_t *hashtab = NULL; 304 size_t n = 0; 305 306 if (elf->is_32bit) { 307 Elf32_Shdr *shdr = elf->shdr; 308 309 for (n = 0; n < elf->e_shnum; n++) { 310 void *addr = (void *)(vaddr_t)(shdr[n].sh_addr + 311 elf->load_addr); 312 313 if (shdr[n].sh_type == SHT_HASH) { 314 elf->hashtab = addr; 315 } else if (shdr[n].sh_type == SHT_GNU_HASH) { 316 elf->gnu_hashtab = addr; 317 elf->gnu_hashtab_size = shdr[n].sh_size; 318 } 319 } 320 } else { 321 Elf64_Shdr *shdr = elf->shdr; 322 323 for (n = 0; n < elf->e_shnum; n++) { 324 void *addr = (void *)(vaddr_t)(shdr[n].sh_addr + 325 elf->load_addr); 326 327 if (shdr[n].sh_type == SHT_HASH) { 328 elf->hashtab = addr; 329 } else if (shdr[n].sh_type == SHT_GNU_HASH) { 330 elf->gnu_hashtab = addr; 331 elf->gnu_hashtab_size = shdr[n].sh_size; 332 } 333 } 334 } 335 336 if (elf->hashtab) { 337 check_hashtab(elf, elf->hashtab, 0, 0); 338 hashtab = elf->hashtab; 339 check_hashtab(elf, elf->hashtab, hashtab[0], hashtab[1]); 340 } 341 if (elf->gnu_hashtab) 342 check_gnu_hashtab(elf, elf->gnu_hashtab); 343 } 344 345 static void save_soname_from_segment(struct ta_elf *elf, unsigned int type, 346 vaddr_t addr, size_t memsz) 347 { 348 size_t dyn_entsize = 0; 349 size_t num_dyns = 0; 350 size_t n = 0; 351 unsigned int tag = 0; 352 size_t val = 0; 353 char *str_tab = NULL; 354 355 if (type != PT_DYNAMIC) 356 return; 357 358 if (elf->is_32bit) 359 dyn_entsize = sizeof(Elf32_Dyn); 360 else 361 dyn_entsize = sizeof(Elf64_Dyn); 362 363 assert(!(memsz % dyn_entsize)); 364 num_dyns = memsz / dyn_entsize; 365 366 for (n = 0; n < num_dyns; n++) { 367 read_dyn(elf, addr, n, &tag, &val); 368 if (tag == DT_STRTAB) { 369 str_tab = (char *)(val + elf->load_addr); 370 break; 371 } 372 } 373 for (n = 0; n < num_dyns; n++) { 374 read_dyn(elf, addr, n, &tag, &val); 375 if (tag == DT_SONAME) { 376 elf->soname = str_tab + val; 377 break; 378 } 379 } 380 } 381 382 static void save_soname(struct ta_elf *elf) 383 { 384 size_t n = 0; 385 386 if (elf->is_32bit) { 387 Elf32_Phdr *phdr = elf->phdr; 388 389 for (n = 0; n < elf->e_phnum; n++) 390 save_soname_from_segment(elf, phdr[n].p_type, 391 phdr[n].p_vaddr, 392 phdr[n].p_memsz); 393 } else { 394 Elf64_Phdr *phdr = elf->phdr; 395 396 for (n = 0; n < elf->e_phnum; n++) 397 save_soname_from_segment(elf, phdr[n].p_type, 398 phdr[n].p_vaddr, 399 phdr[n].p_memsz); 400 } 401 } 402 403 static void e32_save_symtab(struct ta_elf *elf, size_t tab_idx) 404 { 405 Elf32_Shdr *shdr = elf->shdr; 406 size_t str_idx = shdr[tab_idx].sh_link; 407 408 elf->dynsymtab = (void *)(shdr[tab_idx].sh_addr + elf->load_addr); 409 if (!IS_ALIGNED_WITH_TYPE(elf->dynsymtab, Elf32_Sym)) 410 err(TEE_ERROR_BAD_FORMAT, "Bad alignment of dynsymtab %p", 411 elf->dynsymtab); 412 check_range(elf, "Dynsymtab", elf->dynsymtab, shdr[tab_idx].sh_size); 413 414 if (shdr[tab_idx].sh_size % sizeof(Elf32_Sym)) 415 err(TEE_ERROR_BAD_FORMAT, 416 "Size of dynsymtab not an even multiple of Elf32_Sym"); 417 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf32_Sym); 418 419 if (str_idx >= elf->e_shnum) 420 err(TEE_ERROR_BAD_FORMAT, "Dynstr section index out of range"); 421 elf->dynstr = (void *)(shdr[str_idx].sh_addr + elf->load_addr); 422 check_range(elf, "Dynstr", elf->dynstr, shdr[str_idx].sh_size); 423 424 elf->dynstr_size = shdr[str_idx].sh_size; 425 } 426 427 static void e64_save_symtab(struct ta_elf *elf, size_t tab_idx) 428 { 429 Elf64_Shdr *shdr = elf->shdr; 430 size_t str_idx = shdr[tab_idx].sh_link; 431 432 elf->dynsymtab = (void *)(vaddr_t)(shdr[tab_idx].sh_addr + 433 elf->load_addr); 434 435 if (!IS_ALIGNED_WITH_TYPE(elf->dynsymtab, Elf64_Sym)) 436 err(TEE_ERROR_BAD_FORMAT, "Bad alignment of .dynsym/DYNSYM %p", 437 elf->dynsymtab); 438 check_range(elf, ".dynsym/DYNSYM", elf->dynsymtab, 439 shdr[tab_idx].sh_size); 440 441 if (shdr[tab_idx].sh_size % sizeof(Elf64_Sym)) 442 err(TEE_ERROR_BAD_FORMAT, 443 "Size of .dynsym/DYNSYM not an even multiple of Elf64_Sym"); 444 elf->num_dynsyms = shdr[tab_idx].sh_size / sizeof(Elf64_Sym); 445 446 if (str_idx >= elf->e_shnum) 447 err(TEE_ERROR_BAD_FORMAT, 448 ".dynstr/STRTAB section index out of range"); 449 elf->dynstr = (void *)(vaddr_t)(shdr[str_idx].sh_addr + elf->load_addr); 450 check_range(elf, ".dynstr/STRTAB", elf->dynstr, shdr[str_idx].sh_size); 451 452 elf->dynstr_size = shdr[str_idx].sh_size; 453 } 454 455 static void save_symtab(struct ta_elf *elf) 456 { 457 size_t n = 0; 458 459 if (elf->is_32bit) { 460 Elf32_Shdr *shdr = elf->shdr; 461 462 for (n = 0; n < elf->e_shnum; n++) { 463 if (shdr[n].sh_type == SHT_DYNSYM) { 464 e32_save_symtab(elf, n); 465 break; 466 } 467 } 468 } else { 469 Elf64_Shdr *shdr = elf->shdr; 470 471 for (n = 0; n < elf->e_shnum; n++) { 472 if (shdr[n].sh_type == SHT_DYNSYM) { 473 e64_save_symtab(elf, n); 474 break; 475 } 476 } 477 478 } 479 480 save_hashtab(elf); 481 save_soname(elf); 482 } 483 484 static void init_elf(struct ta_elf *elf) 485 { 486 TEE_Result res = TEE_SUCCESS; 487 vaddr_t va = 0; 488 uint32_t flags = LDELF_MAP_FLAG_SHAREABLE; 489 size_t sz = 0; 490 491 res = sys_open_ta_bin(&elf->uuid, &elf->handle); 492 if (res) 493 err(res, "sys_open_ta_bin(%pUl)", (void *)&elf->uuid); 494 495 /* 496 * Map it read-only executable when we're loading a library where 497 * the ELF header is included in a load segment. 498 */ 499 if (!elf->is_main) 500 flags |= LDELF_MAP_FLAG_EXECUTABLE; 501 res = sys_map_ta_bin(&va, SMALL_PAGE_SIZE, flags, elf->handle, 0, 0, 0); 502 if (res) 503 err(res, "sys_map_ta_bin"); 504 elf->ehdr_addr = va; 505 if (!elf->is_main) { 506 elf->load_addr = va; 507 elf->max_addr = va + SMALL_PAGE_SIZE; 508 elf->max_offs = SMALL_PAGE_SIZE; 509 } 510 511 if (!IS_ELF(*(Elf32_Ehdr *)va)) 512 err(TEE_ERROR_BAD_FORMAT, "TA is not an ELF"); 513 514 res = e32_parse_ehdr(elf, (void *)va); 515 if (res == TEE_ERROR_BAD_FORMAT) 516 res = e64_parse_ehdr(elf, (void *)va); 517 if (res) 518 err(res, "Cannot parse ELF"); 519 520 if (MUL_OVERFLOW(elf->e_phnum, elf->e_phentsize, &sz) || 521 ADD_OVERFLOW(sz, elf->e_phoff, &sz)) 522 err(TEE_ERROR_BAD_FORMAT, "Program headers size overflow"); 523 524 if (sz > SMALL_PAGE_SIZE) 525 err(TEE_ERROR_NOT_SUPPORTED, "Cannot read program headers"); 526 527 elf->phdr = (void *)(va + elf->e_phoff); 528 } 529 530 static size_t roundup(size_t v) 531 { 532 return ROUNDUP(v, SMALL_PAGE_SIZE); 533 } 534 535 static size_t rounddown(size_t v) 536 { 537 return ROUNDDOWN(v, SMALL_PAGE_SIZE); 538 } 539 540 static void add_segment(struct ta_elf *elf, size_t offset, size_t vaddr, 541 size_t filesz, size_t memsz, size_t flags, size_t align) 542 { 543 struct segment *seg = calloc(1, sizeof(*seg)); 544 545 if (!seg) 546 err(TEE_ERROR_OUT_OF_MEMORY, "calloc"); 547 548 if (memsz < filesz) 549 err(TEE_ERROR_BAD_FORMAT, "Memsz smaller than filesz"); 550 551 seg->offset = offset; 552 seg->vaddr = vaddr; 553 seg->filesz = filesz; 554 seg->memsz = memsz; 555 seg->flags = flags; 556 seg->align = align; 557 558 TAILQ_INSERT_TAIL(&elf->segs, seg, link); 559 } 560 561 static void parse_load_segments(struct ta_elf *elf) 562 { 563 size_t n = 0; 564 565 if (elf->is_32bit) { 566 Elf32_Phdr *phdr = elf->phdr; 567 568 for (n = 0; n < elf->e_phnum; n++) 569 if (phdr[n].p_type == PT_LOAD) { 570 add_segment(elf, phdr[n].p_offset, 571 phdr[n].p_vaddr, phdr[n].p_filesz, 572 phdr[n].p_memsz, phdr[n].p_flags, 573 phdr[n].p_align); 574 } else if (phdr[n].p_type == PT_ARM_EXIDX) { 575 elf->exidx_start = phdr[n].p_vaddr; 576 elf->exidx_size = phdr[n].p_filesz; 577 } else if (phdr[n].p_type == PT_TLS) { 578 assign_tls_mod_id(elf); 579 } 580 } else { 581 Elf64_Phdr *phdr = elf->phdr; 582 583 for (n = 0; n < elf->e_phnum; n++) 584 if (phdr[n].p_type == PT_LOAD) { 585 add_segment(elf, phdr[n].p_offset, 586 phdr[n].p_vaddr, phdr[n].p_filesz, 587 phdr[n].p_memsz, phdr[n].p_flags, 588 phdr[n].p_align); 589 } else if (phdr[n].p_type == PT_TLS) { 590 elf->tls_start = phdr[n].p_vaddr; 591 elf->tls_filesz = phdr[n].p_filesz; 592 elf->tls_memsz = phdr[n].p_memsz; 593 } else if (IS_ENABLED(CFG_TA_BTI) && 594 phdr[n].p_type == PT_GNU_PROPERTY) { 595 elf->prop_start = phdr[n].p_vaddr; 596 elf->prop_align = phdr[n].p_align; 597 elf->prop_memsz = phdr[n].p_memsz; 598 } 599 } 600 } 601 602 static void copy_remapped_to(struct ta_elf *elf, const struct segment *seg) 603 { 604 uint8_t *dst = (void *)(seg->vaddr + elf->load_addr); 605 size_t n = 0; 606 size_t offs = seg->offset; 607 size_t num_bytes = seg->filesz; 608 609 if (offs < elf->max_offs) { 610 n = MIN(elf->max_offs - offs, num_bytes); 611 memcpy(dst, (void *)(elf->max_addr + offs - elf->max_offs), n); 612 dst += n; 613 offs += n; 614 num_bytes -= n; 615 } 616 617 if (num_bytes) { 618 TEE_Result res = sys_copy_from_ta_bin(dst, num_bytes, 619 elf->handle, offs); 620 621 if (res) 622 err(res, "sys_copy_from_ta_bin"); 623 elf->max_offs += offs; 624 } 625 } 626 627 static void adjust_segments(struct ta_elf *elf) 628 { 629 struct segment *seg = NULL; 630 struct segment *prev_seg = NULL; 631 size_t prev_end_addr = 0; 632 size_t align = 0; 633 size_t mask = 0; 634 635 /* Sanity check */ 636 TAILQ_FOREACH(seg, &elf->segs, link) { 637 size_t dummy __maybe_unused = 0; 638 639 assert(seg->align >= SMALL_PAGE_SIZE); 640 assert(!ADD_OVERFLOW(seg->vaddr, seg->memsz, &dummy)); 641 assert(seg->filesz <= seg->memsz); 642 assert((seg->offset & SMALL_PAGE_MASK) == 643 (seg->vaddr & SMALL_PAGE_MASK)); 644 645 prev_seg = TAILQ_PREV(seg, segment_head, link); 646 if (prev_seg) { 647 assert(seg->vaddr >= prev_seg->vaddr + prev_seg->memsz); 648 assert(seg->offset >= 649 prev_seg->offset + prev_seg->filesz); 650 } 651 if (!align) 652 align = seg->align; 653 assert(align == seg->align); 654 } 655 656 mask = align - 1; 657 658 seg = TAILQ_FIRST(&elf->segs); 659 if (seg) 660 seg = TAILQ_NEXT(seg, link); 661 while (seg) { 662 prev_seg = TAILQ_PREV(seg, segment_head, link); 663 prev_end_addr = prev_seg->vaddr + prev_seg->memsz; 664 665 /* 666 * This segment may overlap with the last "page" in the 667 * previous segment in two different ways: 668 * 1. Virtual address (and offset) overlaps => 669 * Permissions needs to be merged. The offset must have 670 * the SMALL_PAGE_MASK bits set as vaddr and offset must 671 * add up with prevsion segment. 672 * 673 * 2. Only offset overlaps => 674 * The same page in the ELF is mapped at two different 675 * virtual addresses. As a limitation this segment must 676 * be mapped as writeable. 677 */ 678 679 /* Case 1. */ 680 if (rounddown(seg->vaddr) < prev_end_addr) { 681 assert((seg->vaddr & mask) == (seg->offset & mask)); 682 assert(prev_seg->memsz == prev_seg->filesz); 683 684 /* 685 * Merge the segments and their permissions. 686 * Note that the may be a small hole between the 687 * two sections. 688 */ 689 prev_seg->filesz = seg->vaddr + seg->filesz - 690 prev_seg->vaddr; 691 prev_seg->memsz = seg->vaddr + seg->memsz - 692 prev_seg->vaddr; 693 prev_seg->flags |= seg->flags; 694 695 TAILQ_REMOVE(&elf->segs, seg, link); 696 free(seg); 697 seg = TAILQ_NEXT(prev_seg, link); 698 continue; 699 } 700 701 /* Case 2. */ 702 if ((seg->offset & mask) && 703 rounddown(seg->offset) < 704 (prev_seg->offset + prev_seg->filesz)) { 705 706 assert(seg->flags & PF_W); 707 seg->remapped_writeable = true; 708 } 709 710 /* 711 * No overlap, but we may need to align address, offset and 712 * size. 713 */ 714 seg->filesz += seg->vaddr - rounddown(seg->vaddr); 715 seg->memsz += seg->vaddr - rounddown(seg->vaddr); 716 seg->vaddr = rounddown(seg->vaddr); 717 seg->offset = rounddown(seg->offset); 718 seg = TAILQ_NEXT(seg, link); 719 } 720 721 } 722 723 static void populate_segments_legacy(struct ta_elf *elf) 724 { 725 TEE_Result res = TEE_SUCCESS; 726 struct segment *seg = NULL; 727 vaddr_t va = 0; 728 729 assert(elf->is_legacy); 730 TAILQ_FOREACH(seg, &elf->segs, link) { 731 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 732 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 733 seg->vaddr - seg->memsz); 734 size_t num_bytes = roundup(seg->memsz); 735 736 if (!elf->load_addr) 737 va = 0; 738 else 739 va = seg->vaddr + elf->load_addr; 740 741 742 if (!(seg->flags & PF_R)) 743 err(TEE_ERROR_NOT_SUPPORTED, 744 "Segment must be readable"); 745 746 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 747 if (res) 748 err(res, "sys_map_zi"); 749 res = sys_copy_from_ta_bin((void *)va, seg->filesz, 750 elf->handle, seg->offset); 751 if (res) 752 err(res, "sys_copy_from_ta_bin"); 753 754 if (!elf->load_addr) 755 elf->load_addr = va; 756 elf->max_addr = va + num_bytes; 757 elf->max_offs = seg->offset + seg->filesz; 758 } 759 } 760 761 static size_t get_pad_begin(void) 762 { 763 #ifdef CFG_TA_ASLR 764 size_t min = CFG_TA_ASLR_MIN_OFFSET_PAGES; 765 size_t max = CFG_TA_ASLR_MAX_OFFSET_PAGES; 766 TEE_Result res = TEE_SUCCESS; 767 uint32_t rnd32 = 0; 768 size_t rnd = 0; 769 770 COMPILE_TIME_ASSERT(CFG_TA_ASLR_MIN_OFFSET_PAGES < 771 CFG_TA_ASLR_MAX_OFFSET_PAGES); 772 if (max > min) { 773 res = sys_gen_random_num(&rnd32, sizeof(rnd32)); 774 if (res) { 775 DMSG("Random read failed: %#"PRIx32, res); 776 return min * SMALL_PAGE_SIZE; 777 } 778 rnd = rnd32 % (max - min); 779 } 780 781 return (min + rnd) * SMALL_PAGE_SIZE; 782 #else /*!CFG_TA_ASLR*/ 783 return 0; 784 #endif /*!CFG_TA_ASLR*/ 785 } 786 787 static void populate_segments(struct ta_elf *elf) 788 { 789 TEE_Result res = TEE_SUCCESS; 790 struct segment *seg = NULL; 791 vaddr_t va = 0; 792 size_t pad_begin = 0; 793 794 assert(!elf->is_legacy); 795 TAILQ_FOREACH(seg, &elf->segs, link) { 796 struct segment *last_seg = TAILQ_LAST(&elf->segs, segment_head); 797 size_t pad_end = roundup(last_seg->vaddr + last_seg->memsz - 798 seg->vaddr - seg->memsz); 799 800 if (seg->remapped_writeable) { 801 size_t num_bytes = roundup(seg->vaddr + seg->memsz) - 802 rounddown(seg->vaddr); 803 804 assert(elf->load_addr); 805 va = rounddown(elf->load_addr + seg->vaddr); 806 assert(va >= elf->max_addr); 807 res = sys_map_zi(num_bytes, 0, &va, 0, pad_end); 808 if (res) 809 err(res, "sys_map_zi"); 810 811 copy_remapped_to(elf, seg); 812 elf->max_addr = va + num_bytes; 813 } else { 814 uint32_t flags = 0; 815 size_t filesz = seg->filesz; 816 size_t memsz = seg->memsz; 817 size_t offset = seg->offset; 818 size_t vaddr = seg->vaddr; 819 820 if (offset < elf->max_offs) { 821 /* 822 * We're in a load segment which overlaps 823 * with (or is covered by) the first page 824 * of a shared library. 825 */ 826 if (vaddr + filesz < SMALL_PAGE_SIZE) { 827 size_t num_bytes = 0; 828 829 /* 830 * If this segment is completely 831 * covered, take next. 832 */ 833 if (vaddr + memsz <= SMALL_PAGE_SIZE) 834 continue; 835 836 /* 837 * All data of the segment is 838 * loaded, but we need to zero 839 * extend it. 840 */ 841 va = elf->max_addr; 842 num_bytes = roundup(vaddr + memsz) - 843 roundup(vaddr) - 844 SMALL_PAGE_SIZE; 845 assert(num_bytes); 846 res = sys_map_zi(num_bytes, 0, &va, 0, 847 0); 848 if (res) 849 err(res, "sys_map_zi"); 850 elf->max_addr = roundup(va + num_bytes); 851 continue; 852 } 853 854 /* Partial overlap, remove the first page. */ 855 vaddr += SMALL_PAGE_SIZE; 856 filesz -= SMALL_PAGE_SIZE; 857 memsz -= SMALL_PAGE_SIZE; 858 offset += SMALL_PAGE_SIZE; 859 } 860 861 if (!elf->load_addr) { 862 va = 0; 863 pad_begin = get_pad_begin(); 864 /* 865 * If mapping with pad_begin fails we'll 866 * retry without pad_begin, effectively 867 * disabling ASLR for the current ELF file. 868 */ 869 } else { 870 va = vaddr + elf->load_addr; 871 pad_begin = 0; 872 } 873 874 if (seg->flags & PF_W) 875 flags |= LDELF_MAP_FLAG_WRITEABLE; 876 else 877 flags |= LDELF_MAP_FLAG_SHAREABLE; 878 if (seg->flags & PF_X) 879 flags |= LDELF_MAP_FLAG_EXECUTABLE; 880 if (!(seg->flags & PF_R)) 881 err(TEE_ERROR_NOT_SUPPORTED, 882 "Segment must be readable"); 883 if (flags & LDELF_MAP_FLAG_WRITEABLE) { 884 res = sys_map_zi(memsz, 0, &va, pad_begin, 885 pad_end); 886 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 887 res = sys_map_zi(memsz, 0, &va, 0, 888 pad_end); 889 if (res) 890 err(res, "sys_map_zi"); 891 res = sys_copy_from_ta_bin((void *)va, filesz, 892 elf->handle, offset); 893 if (res) 894 err(res, "sys_copy_from_ta_bin"); 895 } else { 896 if (filesz != memsz) 897 err(TEE_ERROR_BAD_FORMAT, 898 "Filesz and memsz mismatch"); 899 res = sys_map_ta_bin(&va, filesz, flags, 900 elf->handle, offset, 901 pad_begin, pad_end); 902 if (pad_begin && res == TEE_ERROR_OUT_OF_MEMORY) 903 res = sys_map_ta_bin(&va, filesz, flags, 904 elf->handle, 905 offset, 0, 906 pad_end); 907 if (res) 908 err(res, "sys_map_ta_bin"); 909 } 910 911 if (!elf->load_addr) 912 elf->load_addr = va; 913 elf->max_addr = roundup(va + memsz); 914 elf->max_offs += filesz; 915 } 916 } 917 } 918 919 static void ta_elf_add_bti(struct ta_elf *elf) 920 { 921 TEE_Result res = TEE_SUCCESS; 922 struct segment *seg = NULL; 923 uint32_t flags = LDELF_MAP_FLAG_EXECUTABLE | LDELF_MAP_FLAG_BTI; 924 925 TAILQ_FOREACH(seg, &elf->segs, link) { 926 vaddr_t va = elf->load_addr + seg->vaddr; 927 928 if (seg->flags & PF_X) { 929 res = sys_set_prot(va, seg->memsz, flags); 930 if (res) 931 err(res, "sys_set_prot"); 932 } 933 } 934 } 935 936 static void parse_property_segment(struct ta_elf *elf) 937 { 938 char *desc = NULL; 939 size_t align = elf->prop_align; 940 size_t desc_offset = 0; 941 size_t prop_offset = 0; 942 vaddr_t va = 0; 943 Elf_Note *note = NULL; 944 char *name = NULL; 945 946 if (!IS_ENABLED(CFG_TA_BTI) || !elf->prop_start) 947 return; 948 949 check_phdr_in_range(elf, PT_GNU_PROPERTY, elf->prop_start, 950 elf->prop_memsz); 951 952 va = elf->load_addr + elf->prop_start; 953 note = (void *)va; 954 name = (char *)(note + 1); 955 956 if (elf->prop_memsz < sizeof(*note) + sizeof(ELF_NOTE_GNU)) 957 return; 958 959 if (note->n_type != NT_GNU_PROPERTY_TYPE_0 || 960 note->n_namesz != sizeof(ELF_NOTE_GNU) || 961 memcmp(name, ELF_NOTE_GNU, sizeof(ELF_NOTE_GNU)) || 962 !IS_POWER_OF_TWO(align)) 963 return; 964 965 desc_offset = ROUNDUP(sizeof(*note) + sizeof(ELF_NOTE_GNU), align); 966 967 if (desc_offset > elf->prop_memsz || 968 ROUNDUP(desc_offset + note->n_descsz, align) > elf->prop_memsz) 969 return; 970 971 desc = (char *)(va + desc_offset); 972 973 do { 974 Elf_Prop *prop = (void *)(desc + prop_offset); 975 size_t data_offset = prop_offset + sizeof(*prop); 976 977 if (note->n_descsz < data_offset) 978 return; 979 980 data_offset = confine_array_index(data_offset, note->n_descsz); 981 982 if (prop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 983 uint32_t *pr_data = (void *)(desc + data_offset); 984 985 if (note->n_descsz < (data_offset + sizeof(*pr_data)) && 986 prop->pr_datasz != sizeof(*pr_data)) 987 return; 988 989 if (*pr_data & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) { 990 DMSG("BTI Feature present in note property"); 991 elf->bti_enabled = true; 992 } 993 } 994 995 prop_offset += ROUNDUP(sizeof(*prop) + prop->pr_datasz, align); 996 } while (prop_offset < note->n_descsz); 997 } 998 999 static void map_segments(struct ta_elf *elf) 1000 { 1001 TEE_Result res = TEE_SUCCESS; 1002 1003 parse_load_segments(elf); 1004 adjust_segments(elf); 1005 if (TAILQ_FIRST(&elf->segs)->offset < SMALL_PAGE_SIZE) { 1006 vaddr_t va = 0; 1007 size_t sz = elf->max_addr - elf->load_addr; 1008 struct segment *seg = TAILQ_LAST(&elf->segs, segment_head); 1009 size_t pad_begin = get_pad_begin(); 1010 1011 /* 1012 * We're loading a library, if not other parts of the code 1013 * need to be updated too. 1014 */ 1015 assert(!elf->is_main); 1016 1017 /* 1018 * Now that we know how much virtual memory is needed move 1019 * the already mapped part to a location which can 1020 * accommodate us. 1021 */ 1022 res = sys_remap(elf->load_addr, &va, sz, pad_begin, 1023 roundup(seg->vaddr + seg->memsz)); 1024 if (res == TEE_ERROR_OUT_OF_MEMORY) 1025 res = sys_remap(elf->load_addr, &va, sz, 0, 1026 roundup(seg->vaddr + seg->memsz)); 1027 if (res) 1028 err(res, "sys_remap"); 1029 elf->ehdr_addr = va; 1030 elf->load_addr = va; 1031 elf->max_addr = va + sz; 1032 elf->phdr = (void *)(va + elf->e_phoff); 1033 } 1034 } 1035 1036 static void add_deps_from_segment(struct ta_elf *elf, unsigned int type, 1037 vaddr_t addr, size_t memsz) 1038 { 1039 size_t dyn_entsize = 0; 1040 size_t num_dyns = 0; 1041 size_t n = 0; 1042 unsigned int tag = 0; 1043 size_t val = 0; 1044 TEE_UUID uuid = { }; 1045 char *str_tab = NULL; 1046 size_t str_tab_sz = 0; 1047 1048 if (type != PT_DYNAMIC) 1049 return; 1050 1051 check_phdr_in_range(elf, type, addr, memsz); 1052 1053 if (elf->is_32bit) 1054 dyn_entsize = sizeof(Elf32_Dyn); 1055 else 1056 dyn_entsize = sizeof(Elf64_Dyn); 1057 1058 assert(!(memsz % dyn_entsize)); 1059 num_dyns = memsz / dyn_entsize; 1060 1061 for (n = 0; n < num_dyns && !(str_tab && str_tab_sz); n++) { 1062 read_dyn(elf, addr, n, &tag, &val); 1063 if (tag == DT_STRTAB) 1064 str_tab = (char *)(val + elf->load_addr); 1065 else if (tag == DT_STRSZ) 1066 str_tab_sz = val; 1067 } 1068 check_range(elf, ".dynstr/STRTAB", str_tab, str_tab_sz); 1069 1070 for (n = 0; n < num_dyns; n++) { 1071 read_dyn(elf, addr, n, &tag, &val); 1072 if (tag != DT_NEEDED) 1073 continue; 1074 if (val >= str_tab_sz) 1075 err(TEE_ERROR_BAD_FORMAT, 1076 "Offset into .dynstr/STRTAB out of range"); 1077 tee_uuid_from_str(&uuid, str_tab + val); 1078 queue_elf(&uuid); 1079 } 1080 } 1081 1082 static void add_dependencies(struct ta_elf *elf) 1083 { 1084 size_t n = 0; 1085 1086 if (elf->is_32bit) { 1087 Elf32_Phdr *phdr = elf->phdr; 1088 1089 for (n = 0; n < elf->e_phnum; n++) 1090 add_deps_from_segment(elf, phdr[n].p_type, 1091 phdr[n].p_vaddr, phdr[n].p_memsz); 1092 } else { 1093 Elf64_Phdr *phdr = elf->phdr; 1094 1095 for (n = 0; n < elf->e_phnum; n++) 1096 add_deps_from_segment(elf, phdr[n].p_type, 1097 phdr[n].p_vaddr, phdr[n].p_memsz); 1098 } 1099 } 1100 1101 static void copy_section_headers(struct ta_elf *elf) 1102 { 1103 TEE_Result res = TEE_SUCCESS; 1104 size_t sz = 0; 1105 size_t offs = 0; 1106 1107 if (MUL_OVERFLOW(elf->e_shnum, elf->e_shentsize, &sz)) 1108 err(TEE_ERROR_BAD_FORMAT, "Section headers size overflow"); 1109 1110 elf->shdr = malloc(sz); 1111 if (!elf->shdr) 1112 err(TEE_ERROR_OUT_OF_MEMORY, "malloc"); 1113 1114 /* 1115 * We're assuming that section headers comes after the load segments, 1116 * but if it's a very small dynamically linked library the section 1117 * headers can still end up (partially?) in the first mapped page. 1118 */ 1119 if (elf->e_shoff < SMALL_PAGE_SIZE) { 1120 assert(!elf->is_main); 1121 offs = MIN(SMALL_PAGE_SIZE - elf->e_shoff, sz); 1122 memcpy(elf->shdr, (void *)(elf->load_addr + elf->e_shoff), 1123 offs); 1124 } 1125 1126 if (offs < sz) { 1127 res = sys_copy_from_ta_bin((uint8_t *)elf->shdr + offs, 1128 sz - offs, elf->handle, 1129 elf->e_shoff + offs); 1130 if (res) 1131 err(res, "sys_copy_from_ta_bin"); 1132 } 1133 } 1134 1135 static void close_handle(struct ta_elf *elf) 1136 { 1137 TEE_Result res = sys_close_ta_bin(elf->handle); 1138 1139 if (res) 1140 err(res, "sys_close_ta_bin"); 1141 elf->handle = -1; 1142 } 1143 1144 static void clean_elf_load_main(struct ta_elf *elf) 1145 { 1146 TEE_Result res = TEE_SUCCESS; 1147 1148 /* 1149 * Clean up from last attempt to load 1150 */ 1151 res = sys_unmap(elf->ehdr_addr, SMALL_PAGE_SIZE); 1152 if (res) 1153 err(res, "sys_unmap"); 1154 1155 while (!TAILQ_EMPTY(&elf->segs)) { 1156 struct segment *seg = TAILQ_FIRST(&elf->segs); 1157 vaddr_t va = 0; 1158 size_t num_bytes = 0; 1159 1160 va = rounddown(elf->load_addr + seg->vaddr); 1161 if (seg->remapped_writeable) 1162 num_bytes = roundup(seg->vaddr + seg->memsz) - 1163 rounddown(seg->vaddr); 1164 else 1165 num_bytes = seg->memsz; 1166 1167 res = sys_unmap(va, num_bytes); 1168 if (res) 1169 err(res, "sys_unmap"); 1170 1171 TAILQ_REMOVE(&elf->segs, seg, link); 1172 free(seg); 1173 } 1174 1175 free(elf->shdr); 1176 memset(&elf->is_32bit, 0, 1177 (vaddr_t)&elf->uuid - (vaddr_t)&elf->is_32bit); 1178 1179 TAILQ_INIT(&elf->segs); 1180 } 1181 1182 #ifdef ARM64 1183 /* 1184 * Allocates an offset in the TA's Thread Control Block for the TLS segment of 1185 * the @elf module. 1186 */ 1187 #define TCB_HEAD_SIZE (2 * sizeof(long)) 1188 static void set_tls_offset(struct ta_elf *elf) 1189 { 1190 static size_t next_offs = TCB_HEAD_SIZE; 1191 1192 if (!elf->tls_start) 1193 return; 1194 1195 /* Module has a TLS segment */ 1196 elf->tls_tcb_offs = next_offs; 1197 next_offs += elf->tls_memsz; 1198 } 1199 #else 1200 static void set_tls_offset(struct ta_elf *elf __unused) {} 1201 #endif 1202 1203 static void load_main(struct ta_elf *elf) 1204 { 1205 vaddr_t va = 0; 1206 1207 init_elf(elf); 1208 map_segments(elf); 1209 populate_segments(elf); 1210 add_dependencies(elf); 1211 copy_section_headers(elf); 1212 save_symtab(elf); 1213 close_handle(elf); 1214 set_tls_offset(elf); 1215 parse_property_segment(elf); 1216 if (elf->bti_enabled) 1217 ta_elf_add_bti(elf); 1218 1219 if (!ta_elf_resolve_sym("ta_head", &va, NULL, elf)) 1220 elf->head = (struct ta_head *)va; 1221 else 1222 elf->head = (struct ta_head *)elf->load_addr; 1223 if (elf->head->depr_entry != UINT64_MAX) { 1224 /* 1225 * Legacy TAs sets their entry point in ta_head. For 1226 * non-legacy TAs the entry point of the ELF is set instead 1227 * and leaving the ta_head entry point set to UINT64_MAX to 1228 * indicate that it's not used. 1229 * 1230 * NB, everything before the commit a73b5878c89d ("Replace 1231 * ta_head.entry with elf entry") is considered legacy TAs 1232 * for ldelf. 1233 * 1234 * Legacy TAs cannot be mapped with shared memory segments 1235 * so restart the mapping if it turned out we're loading a 1236 * legacy TA. 1237 */ 1238 1239 DMSG("Reloading TA %pUl as legacy TA", (void *)&elf->uuid); 1240 clean_elf_load_main(elf); 1241 elf->is_legacy = true; 1242 init_elf(elf); 1243 map_segments(elf); 1244 populate_segments_legacy(elf); 1245 add_dependencies(elf); 1246 copy_section_headers(elf); 1247 save_symtab(elf); 1248 close_handle(elf); 1249 elf->head = (struct ta_head *)elf->load_addr; 1250 /* 1251 * Check that the TA is still a legacy TA, if it isn't give 1252 * up now since we're likely under attack. 1253 */ 1254 if (elf->head->depr_entry == UINT64_MAX) 1255 err(TEE_ERROR_GENERIC, 1256 "TA %pUl was changed on disk to non-legacy", 1257 (void *)&elf->uuid); 1258 } 1259 1260 } 1261 1262 void ta_elf_load_main(const TEE_UUID *uuid, uint32_t *is_32bit, uint64_t *sp, 1263 uint32_t *ta_flags) 1264 { 1265 struct ta_elf *elf = queue_elf(uuid); 1266 vaddr_t va = 0; 1267 TEE_Result res = TEE_SUCCESS; 1268 1269 assert(elf); 1270 elf->is_main = true; 1271 1272 load_main(elf); 1273 1274 *is_32bit = elf->is_32bit; 1275 res = sys_map_zi(elf->head->stack_size, 0, &va, 0, 0); 1276 if (res) 1277 err(res, "sys_map_zi stack"); 1278 1279 if (elf->head->flags & ~TA_FLAGS_MASK) 1280 err(TEE_ERROR_BAD_FORMAT, "Invalid TA flags(s) %#"PRIx32, 1281 elf->head->flags & ~TA_FLAGS_MASK); 1282 1283 *ta_flags = elf->head->flags; 1284 *sp = va + elf->head->stack_size; 1285 ta_stack = va; 1286 ta_stack_size = elf->head->stack_size; 1287 } 1288 1289 void ta_elf_finalize_load_main(uint64_t *entry, uint64_t *load_addr) 1290 { 1291 struct ta_elf *elf = TAILQ_FIRST(&main_elf_queue); 1292 TEE_Result res = TEE_SUCCESS; 1293 1294 assert(elf->is_main); 1295 1296 res = ta_elf_set_init_fini_info_compat(elf->is_32bit); 1297 if (res) 1298 err(res, "ta_elf_set_init_fini_info_compat"); 1299 res = ta_elf_set_elf_phdr_info(elf->is_32bit); 1300 if (res) 1301 err(res, "ta_elf_set_elf_phdr_info"); 1302 1303 if (elf->is_legacy) 1304 *entry = elf->head->depr_entry; 1305 else 1306 *entry = elf->e_entry + elf->load_addr; 1307 1308 *load_addr = elf->load_addr; 1309 } 1310 1311 1312 void ta_elf_load_dependency(struct ta_elf *elf, bool is_32bit) 1313 { 1314 if (elf->is_main) 1315 return; 1316 1317 init_elf(elf); 1318 if (elf->is_32bit != is_32bit) 1319 err(TEE_ERROR_BAD_FORMAT, "ELF %pUl is %sbit (expected %sbit)", 1320 (void *)&elf->uuid, elf->is_32bit ? "32" : "64", 1321 is_32bit ? "32" : "64"); 1322 1323 map_segments(elf); 1324 populate_segments(elf); 1325 add_dependencies(elf); 1326 copy_section_headers(elf); 1327 save_symtab(elf); 1328 close_handle(elf); 1329 set_tls_offset(elf); 1330 parse_property_segment(elf); 1331 if (elf->bti_enabled) 1332 ta_elf_add_bti(elf); 1333 } 1334 1335 void ta_elf_finalize_mappings(struct ta_elf *elf) 1336 { 1337 TEE_Result res = TEE_SUCCESS; 1338 struct segment *seg = NULL; 1339 1340 if (!elf->is_legacy) 1341 return; 1342 1343 TAILQ_FOREACH(seg, &elf->segs, link) { 1344 vaddr_t va = elf->load_addr + seg->vaddr; 1345 uint32_t flags = 0; 1346 1347 if (seg->flags & PF_W) 1348 flags |= LDELF_MAP_FLAG_WRITEABLE; 1349 if (seg->flags & PF_X) 1350 flags |= LDELF_MAP_FLAG_EXECUTABLE; 1351 1352 res = sys_set_prot(va, seg->memsz, flags); 1353 if (res) 1354 err(res, "sys_set_prot"); 1355 } 1356 } 1357 1358 static void __printf(3, 4) print_wrapper(void *pctx, print_func_t print_func, 1359 const char *fmt, ...) 1360 { 1361 va_list ap; 1362 1363 va_start(ap, fmt); 1364 print_func(pctx, fmt, ap); 1365 va_end(ap); 1366 } 1367 1368 static void print_seg(void *pctx, print_func_t print_func, 1369 size_t idx __maybe_unused, int elf_idx __maybe_unused, 1370 vaddr_t va __maybe_unused, paddr_t pa __maybe_unused, 1371 size_t sz __maybe_unused, uint32_t flags) 1372 { 1373 int rc __maybe_unused = 0; 1374 int width __maybe_unused = 8; 1375 char desc[14] __maybe_unused = ""; 1376 char flags_str[] __maybe_unused = "----"; 1377 1378 if (elf_idx > -1) { 1379 rc = snprintf(desc, sizeof(desc), " [%d]", elf_idx); 1380 assert(rc >= 0); 1381 } else { 1382 if (flags & DUMP_MAP_EPHEM) { 1383 rc = snprintf(desc, sizeof(desc), " (param)"); 1384 assert(rc >= 0); 1385 } 1386 if (flags & DUMP_MAP_LDELF) { 1387 rc = snprintf(desc, sizeof(desc), " (ldelf)"); 1388 assert(rc >= 0); 1389 } 1390 if (va == ta_stack) { 1391 rc = snprintf(desc, sizeof(desc), " (stack)"); 1392 assert(rc >= 0); 1393 } 1394 } 1395 1396 if (flags & DUMP_MAP_READ) 1397 flags_str[0] = 'r'; 1398 if (flags & DUMP_MAP_WRITE) 1399 flags_str[1] = 'w'; 1400 if (flags & DUMP_MAP_EXEC) 1401 flags_str[2] = 'x'; 1402 if (flags & DUMP_MAP_SECURE) 1403 flags_str[3] = 's'; 1404 1405 print_wrapper(pctx, print_func, 1406 "region %2zu: va 0x%0*"PRIxVA" pa 0x%0*"PRIxPA" size 0x%06zx flags %s%s\n", 1407 idx, width, va, width, pa, sz, flags_str, desc); 1408 } 1409 1410 static bool get_next_in_order(struct ta_elf_queue *elf_queue, 1411 struct ta_elf **elf, struct segment **seg, 1412 size_t *elf_idx) 1413 { 1414 struct ta_elf *e = NULL; 1415 struct segment *s = NULL; 1416 size_t idx = 0; 1417 vaddr_t va = 0; 1418 struct ta_elf *e2 = NULL; 1419 size_t i2 = 0; 1420 1421 assert(elf && seg && elf_idx); 1422 e = *elf; 1423 s = *seg; 1424 assert((e == NULL && s == NULL) || (e != NULL && s != NULL)); 1425 1426 if (s) { 1427 s = TAILQ_NEXT(s, link); 1428 if (s) { 1429 *seg = s; 1430 return true; 1431 } 1432 } 1433 1434 if (e) 1435 va = e->load_addr; 1436 1437 /* Find the ELF with next load address */ 1438 e = NULL; 1439 TAILQ_FOREACH(e2, elf_queue, link) { 1440 if (e2->load_addr > va) { 1441 if (!e || e2->load_addr < e->load_addr) { 1442 e = e2; 1443 idx = i2; 1444 } 1445 } 1446 i2++; 1447 } 1448 if (!e) 1449 return false; 1450 1451 *elf = e; 1452 *seg = TAILQ_FIRST(&e->segs); 1453 *elf_idx = idx; 1454 return true; 1455 } 1456 1457 void ta_elf_print_mappings(void *pctx, print_func_t print_func, 1458 struct ta_elf_queue *elf_queue, size_t num_maps, 1459 struct dump_map *maps, vaddr_t mpool_base) 1460 { 1461 struct segment *seg = NULL; 1462 struct ta_elf *elf = NULL; 1463 size_t elf_idx = 0; 1464 size_t idx = 0; 1465 size_t map_idx = 0; 1466 1467 /* 1468 * Loop over all segments and maps, printing virtual address in 1469 * order. Segment has priority if the virtual address is present 1470 * in both map and segment. 1471 */ 1472 get_next_in_order(elf_queue, &elf, &seg, &elf_idx); 1473 while (true) { 1474 vaddr_t va = -1; 1475 size_t sz = 0; 1476 uint32_t flags = DUMP_MAP_SECURE; 1477 size_t offs = 0; 1478 1479 if (seg) { 1480 va = rounddown(seg->vaddr + elf->load_addr); 1481 sz = roundup(seg->vaddr + seg->memsz) - 1482 rounddown(seg->vaddr); 1483 } 1484 1485 while (map_idx < num_maps && maps[map_idx].va <= va) { 1486 uint32_t f = 0; 1487 1488 /* If there's a match, it should be the same map */ 1489 if (maps[map_idx].va == va) { 1490 /* 1491 * In shared libraries the first page is 1492 * mapped separately with the rest of that 1493 * segment following back to back in a 1494 * separate entry. 1495 */ 1496 if (map_idx + 1 < num_maps && 1497 maps[map_idx].sz == SMALL_PAGE_SIZE) { 1498 vaddr_t next_va = maps[map_idx].va + 1499 maps[map_idx].sz; 1500 size_t comb_sz = maps[map_idx].sz + 1501 maps[map_idx + 1].sz; 1502 1503 if (next_va == maps[map_idx + 1].va && 1504 comb_sz == sz && 1505 maps[map_idx].flags == 1506 maps[map_idx + 1].flags) { 1507 /* Skip this and next entry */ 1508 map_idx += 2; 1509 continue; 1510 } 1511 } 1512 assert(maps[map_idx].sz == sz); 1513 } else if (maps[map_idx].va < va) { 1514 if (maps[map_idx].va == mpool_base) 1515 f |= DUMP_MAP_LDELF; 1516 print_seg(pctx, print_func, idx, -1, 1517 maps[map_idx].va, maps[map_idx].pa, 1518 maps[map_idx].sz, 1519 maps[map_idx].flags | f); 1520 idx++; 1521 } 1522 map_idx++; 1523 } 1524 1525 if (!seg) 1526 break; 1527 1528 offs = rounddown(seg->offset); 1529 if (seg->flags & PF_R) 1530 flags |= DUMP_MAP_READ; 1531 if (seg->flags & PF_W) 1532 flags |= DUMP_MAP_WRITE; 1533 if (seg->flags & PF_X) 1534 flags |= DUMP_MAP_EXEC; 1535 1536 print_seg(pctx, print_func, idx, elf_idx, va, offs, sz, flags); 1537 idx++; 1538 1539 if (!get_next_in_order(elf_queue, &elf, &seg, &elf_idx)) 1540 seg = NULL; 1541 } 1542 1543 elf_idx = 0; 1544 TAILQ_FOREACH(elf, elf_queue, link) { 1545 print_wrapper(pctx, print_func, 1546 " [%zu] %pUl @ 0x%0*"PRIxVA"\n", 1547 elf_idx, (void *)&elf->uuid, 8, elf->load_addr); 1548 elf_idx++; 1549 } 1550 } 1551 1552 #ifdef CFG_UNWIND 1553 1554 #if defined(ARM32) || defined(ARM64) 1555 /* Called by libunw */ 1556 bool find_exidx(vaddr_t addr, vaddr_t *idx_start, vaddr_t *idx_end) 1557 { 1558 struct segment *seg = NULL; 1559 struct ta_elf *elf = NULL; 1560 vaddr_t a = 0; 1561 1562 TAILQ_FOREACH(elf, &main_elf_queue, link) { 1563 if (addr < elf->load_addr) 1564 continue; 1565 a = addr - elf->load_addr; 1566 TAILQ_FOREACH(seg, &elf->segs, link) { 1567 if (a < seg->vaddr) 1568 continue; 1569 if (a - seg->vaddr < seg->filesz) { 1570 *idx_start = elf->exidx_start + elf->load_addr; 1571 *idx_end = elf->exidx_start + elf->load_addr + 1572 elf->exidx_size; 1573 return true; 1574 } 1575 } 1576 } 1577 1578 return false; 1579 } 1580 1581 void ta_elf_stack_trace_a32(uint32_t regs[16]) 1582 { 1583 struct unwind_state_arm32 state = { }; 1584 1585 memcpy(state.registers, regs, sizeof(state.registers)); 1586 print_stack_arm32(&state, ta_stack, ta_stack_size); 1587 } 1588 1589 void ta_elf_stack_trace_a64(uint64_t fp, uint64_t sp, uint64_t pc) 1590 { 1591 struct unwind_state_arm64 state = { .fp = fp, .sp = sp, .pc = pc }; 1592 1593 print_stack_arm64(&state, ta_stack, ta_stack_size); 1594 } 1595 #elif defined(RV32) || defined(RV64) 1596 void ta_elf_stack_trace_riscv(uint64_t fp, uint64_t pc) 1597 { 1598 struct unwind_state_riscv state = { .fp = fp, .pc = pc }; 1599 1600 print_stack_riscv(&state, ta_stack, ta_stack_size); 1601 } 1602 #endif 1603 1604 #endif /* CFG_UNWIND */ 1605 1606 TEE_Result ta_elf_add_library(const TEE_UUID *uuid) 1607 { 1608 TEE_Result res = TEE_ERROR_GENERIC; 1609 struct ta_elf *ta = TAILQ_FIRST(&main_elf_queue); 1610 struct ta_elf *lib = ta_elf_find_elf(uuid); 1611 struct ta_elf *elf = NULL; 1612 1613 if (lib) 1614 return TEE_SUCCESS; /* Already mapped */ 1615 1616 lib = queue_elf_helper(uuid); 1617 if (!lib) 1618 return TEE_ERROR_OUT_OF_MEMORY; 1619 1620 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) 1621 ta_elf_load_dependency(elf, ta->is_32bit); 1622 1623 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) { 1624 ta_elf_relocate(elf); 1625 ta_elf_finalize_mappings(elf); 1626 } 1627 1628 for (elf = lib; elf; elf = TAILQ_NEXT(elf, link)) 1629 DMSG("ELF (%pUl) at %#"PRIxVA, 1630 (void *)&elf->uuid, elf->load_addr); 1631 1632 res = ta_elf_set_init_fini_info_compat(ta->is_32bit); 1633 if (res) 1634 return res; 1635 1636 return ta_elf_set_elf_phdr_info(ta->is_32bit); 1637 } 1638 1639 /* Get address/size of .init_array and .fini_array from the dynamic segment */ 1640 static void get_init_fini_array(struct ta_elf *elf, unsigned int type, 1641 vaddr_t addr, size_t memsz, vaddr_t *init, 1642 size_t *init_cnt, vaddr_t *fini, 1643 size_t *fini_cnt) 1644 { 1645 size_t addrsz = 0; 1646 size_t dyn_entsize = 0; 1647 size_t num_dyns = 0; 1648 size_t n = 0; 1649 unsigned int tag = 0; 1650 size_t val = 0; 1651 1652 assert(type == PT_DYNAMIC); 1653 1654 check_phdr_in_range(elf, type, addr, memsz); 1655 1656 if (elf->is_32bit) { 1657 dyn_entsize = sizeof(Elf32_Dyn); 1658 addrsz = 4; 1659 } else { 1660 dyn_entsize = sizeof(Elf64_Dyn); 1661 addrsz = 8; 1662 } 1663 1664 assert(!(memsz % dyn_entsize)); 1665 num_dyns = memsz / dyn_entsize; 1666 1667 for (n = 0; n < num_dyns; n++) { 1668 read_dyn(elf, addr, n, &tag, &val); 1669 if (tag == DT_INIT_ARRAY) 1670 *init = val + elf->load_addr; 1671 else if (tag == DT_FINI_ARRAY) 1672 *fini = val + elf->load_addr; 1673 else if (tag == DT_INIT_ARRAYSZ) 1674 *init_cnt = val / addrsz; 1675 else if (tag == DT_FINI_ARRAYSZ) 1676 *fini_cnt = val / addrsz; 1677 } 1678 } 1679 1680 /* Get address/size of .init_array and .fini_array in @elf (if present) */ 1681 static void elf_get_init_fini_array(struct ta_elf *elf, vaddr_t *init, 1682 size_t *init_cnt, vaddr_t *fini, 1683 size_t *fini_cnt) 1684 { 1685 size_t n = 0; 1686 1687 if (elf->is_32bit) { 1688 Elf32_Phdr *phdr = elf->phdr; 1689 1690 for (n = 0; n < elf->e_phnum; n++) { 1691 if (phdr[n].p_type == PT_DYNAMIC) { 1692 get_init_fini_array(elf, phdr[n].p_type, 1693 phdr[n].p_vaddr, 1694 phdr[n].p_memsz, 1695 init, init_cnt, fini, 1696 fini_cnt); 1697 return; 1698 } 1699 } 1700 } else { 1701 Elf64_Phdr *phdr = elf->phdr; 1702 1703 for (n = 0; n < elf->e_phnum; n++) { 1704 if (phdr[n].p_type == PT_DYNAMIC) { 1705 get_init_fini_array(elf, phdr[n].p_type, 1706 phdr[n].p_vaddr, 1707 phdr[n].p_memsz, 1708 init, init_cnt, fini, 1709 fini_cnt); 1710 return; 1711 } 1712 } 1713 } 1714 } 1715 1716 /* 1717 * Deprecated by __elf_phdr_info below. Kept for compatibility. 1718 * 1719 * Pointers to ELF initialization and finalization functions are extracted by 1720 * ldelf and stored on the TA heap, then exported to the TA via the global 1721 * symbol __init_fini_info. libutee in OP-TEE 3.9.0 uses this mechanism. 1722 */ 1723 1724 struct __init_fini { 1725 uint32_t flags; 1726 uint16_t init_size; 1727 uint16_t fini_size; 1728 1729 void (**init)(void); /* @init_size entries */ 1730 void (**fini)(void); /* @fini_size entries */ 1731 }; 1732 1733 #define __IFS_VALID BIT(0) 1734 #define __IFS_INIT_HAS_RUN BIT(1) 1735 #define __IFS_FINI_HAS_RUN BIT(2) 1736 1737 struct __init_fini_info { 1738 uint32_t reserved; 1739 uint16_t size; 1740 uint16_t pad; 1741 struct __init_fini *ifs; /* @size entries */ 1742 }; 1743 1744 /* 32-bit variants for a 64-bit ldelf to access a 32-bit TA */ 1745 1746 struct __init_fini32 { 1747 uint32_t flags; 1748 uint16_t init_size; 1749 uint16_t fini_size; 1750 uint32_t init; 1751 uint32_t fini; 1752 }; 1753 1754 struct __init_fini_info32 { 1755 uint32_t reserved; 1756 uint16_t size; 1757 uint16_t pad; 1758 uint32_t ifs; 1759 }; 1760 1761 static TEE_Result realloc_ifs(vaddr_t va, size_t cnt, bool is_32bit) 1762 { 1763 struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va; 1764 struct __init_fini_info *info = (struct __init_fini_info *)va; 1765 struct __init_fini32 *ifs32 = NULL; 1766 struct __init_fini *ifs = NULL; 1767 size_t prev_cnt = 0; 1768 void *ptr = NULL; 1769 1770 if (is_32bit) { 1771 ptr = (void *)(vaddr_t)info32->ifs; 1772 ptr = realloc(ptr, cnt * sizeof(struct __init_fini32)); 1773 if (!ptr) 1774 return TEE_ERROR_OUT_OF_MEMORY; 1775 ifs32 = ptr; 1776 prev_cnt = info32->size; 1777 if (cnt > prev_cnt) 1778 memset(ifs32 + prev_cnt, 0, 1779 (cnt - prev_cnt) * sizeof(*ifs32)); 1780 info32->ifs = (uint32_t)(vaddr_t)ifs32; 1781 info32->size = cnt; 1782 } else { 1783 ptr = realloc(info->ifs, cnt * sizeof(struct __init_fini)); 1784 if (!ptr) 1785 return TEE_ERROR_OUT_OF_MEMORY; 1786 ifs = ptr; 1787 prev_cnt = info->size; 1788 if (cnt > prev_cnt) 1789 memset(ifs + prev_cnt, 0, 1790 (cnt - prev_cnt) * sizeof(*ifs)); 1791 info->ifs = ifs; 1792 info->size = cnt; 1793 } 1794 1795 return TEE_SUCCESS; 1796 } 1797 1798 static void fill_ifs(vaddr_t va, size_t idx, struct ta_elf *elf, bool is_32bit) 1799 { 1800 struct __init_fini_info32 *info32 = (struct __init_fini_info32 *)va; 1801 struct __init_fini_info *info = (struct __init_fini_info *)va; 1802 struct __init_fini32 *ifs32 = NULL; 1803 struct __init_fini *ifs = NULL; 1804 size_t init_cnt = 0; 1805 size_t fini_cnt = 0; 1806 vaddr_t init = 0; 1807 vaddr_t fini = 0; 1808 1809 if (is_32bit) { 1810 assert(idx < info32->size); 1811 ifs32 = &((struct __init_fini32 *)(vaddr_t)info32->ifs)[idx]; 1812 1813 if (ifs32->flags & __IFS_VALID) 1814 return; 1815 1816 elf_get_init_fini_array(elf, &init, &init_cnt, &fini, 1817 &fini_cnt); 1818 1819 ifs32->init = (uint32_t)init; 1820 ifs32->init_size = init_cnt; 1821 1822 ifs32->fini = (uint32_t)fini; 1823 ifs32->fini_size = fini_cnt; 1824 1825 ifs32->flags |= __IFS_VALID; 1826 } else { 1827 assert(idx < info->size); 1828 ifs = &info->ifs[idx]; 1829 1830 if (ifs->flags & __IFS_VALID) 1831 return; 1832 1833 elf_get_init_fini_array(elf, &init, &init_cnt, &fini, 1834 &fini_cnt); 1835 1836 ifs->init = (void (**)(void))init; 1837 ifs->init_size = init_cnt; 1838 1839 ifs->fini = (void (**)(void))fini; 1840 ifs->fini_size = fini_cnt; 1841 1842 ifs->flags |= __IFS_VALID; 1843 } 1844 } 1845 1846 /* 1847 * Set or update __init_fini_info in the TA with information from the ELF 1848 * queue 1849 */ 1850 TEE_Result ta_elf_set_init_fini_info_compat(bool is_32bit) 1851 { 1852 struct __init_fini_info *info = NULL; 1853 TEE_Result res = TEE_SUCCESS; 1854 struct ta_elf *elf = NULL; 1855 vaddr_t info_va = 0; 1856 size_t cnt = 0; 1857 1858 res = ta_elf_resolve_sym("__init_fini_info", &info_va, NULL, NULL); 1859 if (res) { 1860 if (res == TEE_ERROR_ITEM_NOT_FOUND) { 1861 /* 1862 * Not an error, only TAs linked against libutee from 1863 * OP-TEE 3.9.0 have this symbol. 1864 */ 1865 return TEE_SUCCESS; 1866 } 1867 return res; 1868 } 1869 assert(info_va); 1870 1871 info = (struct __init_fini_info *)info_va; 1872 if (info->reserved) 1873 return TEE_ERROR_NOT_SUPPORTED; 1874 1875 TAILQ_FOREACH(elf, &main_elf_queue, link) 1876 cnt++; 1877 1878 /* Queue has at least one file (main) */ 1879 assert(cnt); 1880 1881 res = realloc_ifs(info_va, cnt, is_32bit); 1882 if (res) 1883 goto err; 1884 1885 cnt = 0; 1886 TAILQ_FOREACH(elf, &main_elf_queue, link) { 1887 fill_ifs(info_va, cnt, elf, is_32bit); 1888 cnt++; 1889 } 1890 1891 return TEE_SUCCESS; 1892 err: 1893 free(info); 1894 return res; 1895 } 1896 1897 static TEE_Result realloc_elf_phdr_info(vaddr_t va, size_t cnt, bool is_32bit) 1898 { 1899 struct __elf_phdr_info32 *info32 = (struct __elf_phdr_info32 *)va; 1900 struct __elf_phdr_info *info = (struct __elf_phdr_info *)va; 1901 struct dl_phdr_info32 *dlpi32 = NULL; 1902 struct dl_phdr_info *dlpi = NULL; 1903 size_t prev_cnt = 0; 1904 void *ptr = NULL; 1905 1906 if (is_32bit) { 1907 ptr = (void *)(vaddr_t)info32->dlpi; 1908 ptr = realloc(ptr, cnt * sizeof(*dlpi32)); 1909 if (!ptr) 1910 return TEE_ERROR_OUT_OF_MEMORY; 1911 dlpi32 = ptr; 1912 prev_cnt = info32->count; 1913 if (cnt > prev_cnt) 1914 memset(dlpi32 + prev_cnt, 0, 1915 (cnt - prev_cnt) * sizeof(*dlpi32)); 1916 info32->dlpi = (uint32_t)(vaddr_t)dlpi32; 1917 info32->count = cnt; 1918 } else { 1919 ptr = realloc(info->dlpi, cnt * sizeof(*dlpi)); 1920 if (!ptr) 1921 return TEE_ERROR_OUT_OF_MEMORY; 1922 dlpi = ptr; 1923 prev_cnt = info->count; 1924 if (cnt > prev_cnt) 1925 memset(dlpi + prev_cnt, 0, 1926 (cnt - prev_cnt) * sizeof(*dlpi)); 1927 info->dlpi = dlpi; 1928 info->count = cnt; 1929 } 1930 1931 return TEE_SUCCESS; 1932 } 1933 1934 static void fill_elf_phdr_info(vaddr_t va, size_t idx, struct ta_elf *elf, 1935 bool is_32bit) 1936 { 1937 struct __elf_phdr_info32 *info32 = (struct __elf_phdr_info32 *)va; 1938 struct __elf_phdr_info *info = (struct __elf_phdr_info *)va; 1939 struct dl_phdr_info32 *dlpi32 = NULL; 1940 struct dl_phdr_info *dlpi = NULL; 1941 1942 if (is_32bit) { 1943 assert(idx < info32->count); 1944 dlpi32 = (struct dl_phdr_info32 *)(vaddr_t)info32->dlpi + idx; 1945 1946 dlpi32->dlpi_addr = elf->load_addr; 1947 if (elf->soname) 1948 dlpi32->dlpi_name = (vaddr_t)elf->soname; 1949 else 1950 dlpi32->dlpi_name = (vaddr_t)&info32->zero; 1951 dlpi32->dlpi_phdr = (vaddr_t)elf->phdr; 1952 dlpi32->dlpi_phnum = elf->e_phnum; 1953 dlpi32->dlpi_adds = 1; /* No unloading on dlclose() currently */ 1954 dlpi32->dlpi_subs = 0; /* No unloading on dlclose() currently */ 1955 dlpi32->dlpi_tls_modid = elf->tls_mod_id; 1956 dlpi32->dlpi_tls_data = elf->tls_start; 1957 } else { 1958 assert(idx < info->count); 1959 dlpi = info->dlpi + idx; 1960 1961 dlpi->dlpi_addr = elf->load_addr; 1962 if (elf->soname) 1963 dlpi->dlpi_name = elf->soname; 1964 else 1965 dlpi->dlpi_name = &info32->zero; 1966 dlpi->dlpi_phdr = elf->phdr; 1967 dlpi->dlpi_phnum = elf->e_phnum; 1968 dlpi->dlpi_adds = 1; /* No unloading on dlclose() currently */ 1969 dlpi->dlpi_subs = 0; /* No unloading on dlclose() currently */ 1970 dlpi->dlpi_tls_modid = elf->tls_mod_id; 1971 dlpi->dlpi_tls_data = (void *)elf->tls_start; 1972 } 1973 } 1974 1975 /* Set or update __elf_hdr_info in the TA with information from the ELF queue */ 1976 TEE_Result ta_elf_set_elf_phdr_info(bool is_32bit) 1977 { 1978 struct __elf_phdr_info *info = NULL; 1979 TEE_Result res = TEE_SUCCESS; 1980 struct ta_elf *elf = NULL; 1981 vaddr_t info_va = 0; 1982 size_t cnt = 0; 1983 1984 res = ta_elf_resolve_sym("__elf_phdr_info", &info_va, NULL, NULL); 1985 if (res) { 1986 if (res == TEE_ERROR_ITEM_NOT_FOUND) { 1987 /* Older TA */ 1988 return TEE_SUCCESS; 1989 } 1990 return res; 1991 } 1992 assert(info_va); 1993 1994 info = (struct __elf_phdr_info *)info_va; 1995 if (info->reserved) 1996 return TEE_ERROR_NOT_SUPPORTED; 1997 1998 TAILQ_FOREACH(elf, &main_elf_queue, link) 1999 cnt++; 2000 2001 res = realloc_elf_phdr_info(info_va, cnt, is_32bit); 2002 if (res) 2003 return res; 2004 2005 cnt = 0; 2006 TAILQ_FOREACH(elf, &main_elf_queue, link) { 2007 fill_elf_phdr_info(info_va, cnt, elf, is_32bit); 2008 cnt++; 2009 } 2010 2011 return TEE_SUCCESS; 2012 } 2013