xref: /optee_os/core/tee/tee_svc_cryp.c (revision c6c416f1bf4617feef23d592155ba7de69bceea9)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <assert.h>
8 #include <bitstring.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <crypto/crypto.h>
12 #include <kernel/tee_ta_manager.h>
13 #include <kernel/user_access.h>
14 #include <mm/vm.h>
15 #include <stdlib_ext.h>
16 #include <string_ext.h>
17 #include <string.h>
18 #include <sys/queue.h>
19 #include <tee_api_defines_extensions.h>
20 #include <tee_api_types.h>
21 #include <tee/tee_cryp_utl.h>
22 #include <tee/tee_obj.h>
23 #include <tee/tee_svc_cryp.h>
24 #include <tee/tee_svc.h>
25 #include <trace.h>
26 #include <utee_defines.h>
27 #include <util.h>
28 #if defined(CFG_CRYPTO_HKDF)
29 #include <tee/tee_cryp_hkdf.h>
30 #endif
31 #if defined(CFG_CRYPTO_CONCAT_KDF)
32 #include <tee/tee_cryp_concat_kdf.h>
33 #endif
34 #if defined(CFG_CRYPTO_PBKDF2)
35 #include <tee/tee_cryp_pbkdf2.h>
36 #endif
37 
38 enum cryp_state {
39 	CRYP_STATE_INITIALIZED = 0,
40 	CRYP_STATE_UNINITIALIZED
41 };
42 
43 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx);
44 struct tee_cryp_state {
45 	TAILQ_ENTRY(tee_cryp_state) link;
46 	uint32_t algo;
47 	uint32_t mode;
48 	vaddr_t key1;
49 	vaddr_t key2;
50 	void *ctx;
51 	tee_cryp_ctx_finalize_func_t ctx_finalize;
52 	enum cryp_state state;
53 };
54 
55 struct tee_cryp_obj_secret {
56 	uint32_t key_size;
57 	uint32_t alloc_size;
58 
59 	/*
60 	 * Pseudo code visualize layout of structure
61 	 * Next follows data, such as:
62 	 *	uint8_t data[alloc_size]
63 	 * key_size must never exceed alloc_size
64 	 */
65 };
66 
67 #define TEE_TYPE_ATTR_OPTIONAL		BIT(0)
68 #define TEE_TYPE_ATTR_REQUIRED		BIT(1)
69 #define TEE_TYPE_ATTR_OPTIONAL_GROUP	BIT(2)
70 #define TEE_TYPE_ATTR_SIZE_INDICATOR	BIT(3)
71 #define TEE_TYPE_ATTR_GEN_KEY_OPT	BIT(4)
72 #define TEE_TYPE_ATTR_GEN_KEY_REQ	BIT(5)
73 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS	BIT(6)
74 
75     /* Handle storing of generic secret keys of varying lengths */
76 #define ATTR_OPS_INDEX_SECRET     0
77     /* Convert to/from big-endian byte array and provider-specific bignum */
78 #define ATTR_OPS_INDEX_BIGNUM     1
79     /* Convert to/from value attribute depending on direction */
80 #define ATTR_OPS_INDEX_VALUE      2
81 
82 struct tee_cryp_obj_type_attrs {
83 	uint32_t attr_id;
84 	uint16_t flags;
85 	uint16_t ops_index;
86 	uint16_t raw_offs;
87 	uint16_t raw_size;
88 };
89 
90 #define RAW_DATA(_x, _y)	\
91 	.raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y)
92 
93 static const struct tee_cryp_obj_type_attrs
94 	tee_cryp_obj_secret_value_attrs[] = {
95 	{
96 	.attr_id = TEE_ATTR_SECRET_VALUE,
97 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
98 	.ops_index = ATTR_OPS_INDEX_SECRET,
99 	.raw_offs = 0,
100 	.raw_size = 0
101 	},
102 };
103 
104 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = {
105 	{
106 	.attr_id = TEE_ATTR_RSA_MODULUS,
107 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
108 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
109 	RAW_DATA(struct rsa_public_key, n)
110 	},
111 
112 	{
113 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
114 	.flags = TEE_TYPE_ATTR_REQUIRED,
115 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
116 	RAW_DATA(struct rsa_public_key, e)
117 	},
118 };
119 
120 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = {
121 	{
122 	.attr_id = TEE_ATTR_RSA_MODULUS,
123 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
124 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
125 	RAW_DATA(struct rsa_keypair, n)
126 	},
127 
128 	{
129 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
130 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT,
131 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
132 	RAW_DATA(struct rsa_keypair, e)
133 	},
134 
135 	{
136 	.attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT,
137 	.flags = TEE_TYPE_ATTR_REQUIRED,
138 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
139 	RAW_DATA(struct rsa_keypair, d)
140 	},
141 
142 	{
143 	.attr_id = TEE_ATTR_RSA_PRIME1,
144 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
145 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
146 	RAW_DATA(struct rsa_keypair, p)
147 	},
148 
149 	{
150 	.attr_id = TEE_ATTR_RSA_PRIME2,
151 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
152 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
153 	RAW_DATA(struct rsa_keypair, q)
154 	},
155 
156 	{
157 	.attr_id = TEE_ATTR_RSA_EXPONENT1,
158 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
159 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
160 	RAW_DATA(struct rsa_keypair, dp)
161 	},
162 
163 	{
164 	.attr_id = TEE_ATTR_RSA_EXPONENT2,
165 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
166 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
167 	RAW_DATA(struct rsa_keypair, dq)
168 	},
169 
170 	{
171 	.attr_id = TEE_ATTR_RSA_COEFFICIENT,
172 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
173 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
174 	RAW_DATA(struct rsa_keypair, qp)
175 	},
176 };
177 
178 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = {
179 	{
180 	.attr_id = TEE_ATTR_DSA_PRIME,
181 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS |
182 		 TEE_TYPE_ATTR_SIZE_INDICATOR,
183 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
184 	RAW_DATA(struct dsa_public_key, p)
185 	},
186 
187 	{
188 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
189 	.flags = TEE_TYPE_ATTR_REQUIRED,
190 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
191 	RAW_DATA(struct dsa_public_key, q)
192 	},
193 
194 	{
195 	.attr_id = TEE_ATTR_DSA_BASE,
196 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
197 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
198 	RAW_DATA(struct dsa_public_key, g)
199 	},
200 
201 	{
202 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
203 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
204 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
205 	RAW_DATA(struct dsa_public_key, y)
206 	},
207 };
208 
209 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = {
210 	{
211 	.attr_id = TEE_ATTR_DSA_PRIME,
212 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
213 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS | TEE_TYPE_ATTR_SIZE_INDICATOR,
214 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
215 	RAW_DATA(struct dsa_keypair, p)
216 	},
217 
218 	{
219 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
220 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
221 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
222 	RAW_DATA(struct dsa_keypair, q)
223 	},
224 
225 	{
226 	.attr_id = TEE_ATTR_DSA_BASE,
227 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
228 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS,
229 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
230 	RAW_DATA(struct dsa_keypair, g)
231 	},
232 
233 	{
234 	.attr_id = TEE_ATTR_DSA_PRIVATE_VALUE,
235 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
236 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
237 	RAW_DATA(struct dsa_keypair, x)
238 	},
239 
240 	{
241 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
242 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
243 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
244 	RAW_DATA(struct dsa_keypair, y)
245 	},
246 };
247 
248 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = {
249 	{
250 	.attr_id = TEE_ATTR_DH_PRIME,
251 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
252 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
253 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
254 	RAW_DATA(struct dh_keypair, p)
255 	},
256 
257 	{
258 	.attr_id = TEE_ATTR_DH_BASE,
259 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
260 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
261 	RAW_DATA(struct dh_keypair, g)
262 	},
263 
264 	{
265 	.attr_id = TEE_ATTR_DH_PUBLIC_VALUE,
266 	.flags = TEE_TYPE_ATTR_REQUIRED,
267 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
268 	RAW_DATA(struct dh_keypair, y)
269 	},
270 
271 	{
272 	.attr_id = TEE_ATTR_DH_PRIVATE_VALUE,
273 	.flags = TEE_TYPE_ATTR_REQUIRED,
274 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
275 	RAW_DATA(struct dh_keypair, x)
276 	},
277 
278 	{
279 	.attr_id = TEE_ATTR_DH_SUBPRIME,
280 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP |	 TEE_TYPE_ATTR_GEN_KEY_OPT,
281 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
282 	RAW_DATA(struct dh_keypair, q)
283 	},
284 
285 	{
286 	.attr_id = TEE_ATTR_DH_X_BITS,
287 	.flags = TEE_TYPE_ATTR_GEN_KEY_OPT,
288 	.ops_index = ATTR_OPS_INDEX_VALUE,
289 	RAW_DATA(struct dh_keypair, xbits)
290 	},
291 };
292 
293 #if defined(CFG_CRYPTO_HKDF)
294 static const struct tee_cryp_obj_type_attrs
295 	tee_cryp_obj_hkdf_ikm_attrs[] = {
296 	{
297 	.attr_id = TEE_ATTR_HKDF_IKM,
298 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
299 	.ops_index = ATTR_OPS_INDEX_SECRET,
300 	.raw_offs = 0,
301 	.raw_size = 0
302 	},
303 };
304 #endif
305 
306 #if defined(CFG_CRYPTO_CONCAT_KDF)
307 static const struct tee_cryp_obj_type_attrs
308 	tee_cryp_obj_concat_kdf_z_attrs[] = {
309 	{
310 	.attr_id = TEE_ATTR_CONCAT_KDF_Z,
311 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
312 	.ops_index = ATTR_OPS_INDEX_SECRET,
313 	.raw_offs = 0,
314 	.raw_size = 0
315 	},
316 };
317 #endif
318 
319 #if defined(CFG_CRYPTO_PBKDF2)
320 static const struct tee_cryp_obj_type_attrs
321 	tee_cryp_obj_pbkdf2_passwd_attrs[] = {
322 	{
323 	.attr_id = TEE_ATTR_PBKDF2_PASSWORD,
324 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
325 	.ops_index = ATTR_OPS_INDEX_SECRET,
326 	.raw_offs = 0,
327 	.raw_size = 0
328 	},
329 };
330 #endif
331 
332 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = {
333 	{
334 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
335 	.flags = TEE_TYPE_ATTR_REQUIRED,
336 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
337 	RAW_DATA(struct ecc_public_key, x)
338 	},
339 
340 	{
341 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
342 	.flags = TEE_TYPE_ATTR_REQUIRED,
343 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
344 	RAW_DATA(struct ecc_public_key, y)
345 	},
346 
347 	{
348 	.attr_id = TEE_ATTR_ECC_CURVE,
349 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
350 	.ops_index = ATTR_OPS_INDEX_VALUE,
351 	RAW_DATA(struct ecc_public_key, curve)
352 	},
353 };
354 
355 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = {
356 	{
357 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
358 	.flags = TEE_TYPE_ATTR_REQUIRED,
359 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
360 	RAW_DATA(struct ecc_keypair, d)
361 	},
362 
363 	{
364 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
365 	.flags = TEE_TYPE_ATTR_REQUIRED,
366 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
367 	RAW_DATA(struct ecc_keypair, x)
368 	},
369 
370 	{
371 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
372 	.flags = TEE_TYPE_ATTR_REQUIRED,
373 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
374 	RAW_DATA(struct ecc_keypair, y)
375 	},
376 
377 	{
378 	.attr_id = TEE_ATTR_ECC_CURVE,
379 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
380 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
381 	.ops_index = ATTR_OPS_INDEX_VALUE,
382 	RAW_DATA(struct ecc_keypair, curve)
383 	},
384 };
385 
386 struct tee_cryp_obj_type_props {
387 	TEE_ObjectType obj_type;
388 	uint16_t min_size;	/* may not be smaller than this */
389 	uint16_t max_size;	/* may not be larger than this */
390 	uint16_t alloc_size;	/* this many bytes are allocated to hold data */
391 	uint8_t quanta;		/* may only be an multiple of this */
392 
393 	uint8_t num_type_attrs;
394 	const struct tee_cryp_obj_type_attrs *type_attrs;
395 };
396 
397 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \
398 		{ (obj_type), (min_size), (max_size), (alloc_size), (quanta), \
399 		  ARRAY_SIZE(type_attrs), (type_attrs) }
400 
401 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = {
402 	PROP(TEE_TYPE_AES, 64, 128, 256,	/* valid sizes 128, 192, 256 */
403 		256 / 8 + sizeof(struct tee_cryp_obj_secret),
404 		tee_cryp_obj_secret_value_attrs),
405 	PROP(TEE_TYPE_DES, 64, 64, 64,
406 	     /* Valid size 64 with parity */
407 	     64 / 8 + sizeof(struct tee_cryp_obj_secret),
408 	     tee_cryp_obj_secret_value_attrs),
409 	PROP(TEE_TYPE_DES3, 64, 128, 192,
410 	     /* Valid sizes 128, 192 with parity */
411 	     192 / 8 + sizeof(struct tee_cryp_obj_secret),
412 	     tee_cryp_obj_secret_value_attrs),
413 	PROP(TEE_TYPE_SM4, 128, 128, 128,
414 		128 / 8 + sizeof(struct tee_cryp_obj_secret),
415 		tee_cryp_obj_secret_value_attrs),
416 	PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512,
417 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
418 		tee_cryp_obj_secret_value_attrs),
419 	PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512,
420 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
421 		tee_cryp_obj_secret_value_attrs),
422 	PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512,
423 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
424 		tee_cryp_obj_secret_value_attrs),
425 	PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024,
426 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
427 		tee_cryp_obj_secret_value_attrs),
428 	PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024,
429 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
430 		tee_cryp_obj_secret_value_attrs),
431 	PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024,
432 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
433 		tee_cryp_obj_secret_value_attrs),
434 	PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024,
435 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
436 		tee_cryp_obj_secret_value_attrs),
437 	PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096,
438 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
439 		tee_cryp_obj_secret_value_attrs),
440 #if defined(CFG_CRYPTO_HKDF)
441 	PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096,
442 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
443 		tee_cryp_obj_hkdf_ikm_attrs),
444 #endif
445 #if defined(CFG_CRYPTO_CONCAT_KDF)
446 	PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096,
447 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
448 		tee_cryp_obj_concat_kdf_z_attrs),
449 #endif
450 #if defined(CFG_CRYPTO_PBKDF2)
451 	PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096,
452 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
453 		tee_cryp_obj_pbkdf2_passwd_attrs),
454 #endif
455 	PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
456 		sizeof(struct rsa_public_key),
457 		tee_cryp_obj_rsa_pub_key_attrs),
458 
459 	PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
460 		sizeof(struct rsa_keypair),
461 		tee_cryp_obj_rsa_keypair_attrs),
462 
463 	PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072,
464 		sizeof(struct dsa_public_key),
465 		tee_cryp_obj_dsa_pub_key_attrs),
466 
467 	PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072,
468 		sizeof(struct dsa_keypair),
469 		tee_cryp_obj_dsa_keypair_attrs),
470 
471 	PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048,
472 		sizeof(struct dh_keypair),
473 		tee_cryp_obj_dh_keypair_attrs),
474 
475 	PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521,
476 		sizeof(struct ecc_public_key),
477 		tee_cryp_obj_ecc_pub_key_attrs),
478 
479 	PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521,
480 		sizeof(struct ecc_keypair),
481 		tee_cryp_obj_ecc_keypair_attrs),
482 
483 	PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521,
484 		sizeof(struct ecc_public_key),
485 		tee_cryp_obj_ecc_pub_key_attrs),
486 
487 	PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521,
488 		sizeof(struct ecc_keypair),
489 		tee_cryp_obj_ecc_keypair_attrs),
490 
491 	PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256,
492 	     sizeof(struct ecc_public_key),
493 	     tee_cryp_obj_ecc_pub_key_attrs),
494 
495 	PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256,
496 	     sizeof(struct ecc_keypair),
497 	     tee_cryp_obj_ecc_keypair_attrs),
498 
499 	PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256,
500 	     sizeof(struct ecc_public_key),
501 	     tee_cryp_obj_ecc_pub_key_attrs),
502 
503 	PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256,
504 	     sizeof(struct ecc_keypair),
505 	     tee_cryp_obj_ecc_keypair_attrs),
506 
507 	PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256,
508 	     sizeof(struct ecc_public_key),
509 	     tee_cryp_obj_ecc_pub_key_attrs),
510 
511 	PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256,
512 	     sizeof(struct ecc_keypair),
513 	     tee_cryp_obj_ecc_keypair_attrs),
514 };
515 
516 struct attr_ops {
517 	TEE_Result (*from_user)(void *attr, const void *buffer, size_t size);
518 	TEE_Result (*to_user)(void *attr, struct ts_session *sess,
519 			      void *buffer, uint64_t *size);
520 	TEE_Result (*to_binary)(void *attr, void *data, size_t data_len,
521 			    size_t *offs);
522 	bool (*from_binary)(void *attr, const void *data, size_t data_len,
523 			    size_t *offs);
524 	TEE_Result (*from_obj)(void *attr, void *src_attr);
525 	void (*free)(void *attr);
526 	void (*clear)(void *attr);
527 };
528 
529 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data,
530 				    size_t data_len, size_t *offs)
531 {
532 	uint32_t field;
533 	size_t next_offs;
534 
535 	if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs))
536 		return TEE_ERROR_OVERFLOW;
537 
538 	if (data && next_offs <= data_len) {
539 		field = TEE_U32_TO_BIG_ENDIAN(v);
540 		memcpy(data + *offs, &field, sizeof(field));
541 	}
542 	(*offs) = next_offs;
543 
544 	return TEE_SUCCESS;
545 }
546 
547 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data,
548 				      size_t data_len, size_t *offs)
549 {
550 	uint32_t field;
551 
552 	if (!data || (*offs + sizeof(field)) > data_len)
553 		return false;
554 
555 	memcpy(&field, data + *offs, sizeof(field));
556 	*v = TEE_U32_FROM_BIG_ENDIAN(field);
557 	(*offs) += sizeof(field);
558 	return true;
559 }
560 
561 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer,
562 						 size_t size)
563 {
564 	struct tee_cryp_obj_secret *key = attr;
565 
566 	/* Data size has to fit in allocated buffer */
567 	if (size > key->alloc_size)
568 		return TEE_ERROR_SECURITY;
569 	memcpy(key + 1, buffer, size);
570 	key->key_size = size;
571 	return TEE_SUCCESS;
572 }
573 
574 static TEE_Result op_attr_secret_value_to_user(void *attr,
575 					       struct ts_session *sess __unused,
576 					       void *buffer, uint64_t *size)
577 {
578 	TEE_Result res;
579 	struct tee_cryp_obj_secret *key = attr;
580 	uint64_t s;
581 	uint64_t key_size;
582 
583 	res = copy_from_user(&s, size, sizeof(s));
584 	if (res != TEE_SUCCESS)
585 		return res;
586 
587 	key_size = key->key_size;
588 	res = copy_to_user(size, &key_size, sizeof(key_size));
589 	if (res != TEE_SUCCESS)
590 		return res;
591 
592 	if (s < key->key_size || !buffer)
593 		return TEE_ERROR_SHORT_BUFFER;
594 
595 	return copy_to_user(buffer, key + 1, key->key_size);
596 }
597 
598 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data,
599 					   size_t data_len, size_t *offs)
600 {
601 	TEE_Result res;
602 	struct tee_cryp_obj_secret *key = attr;
603 	size_t next_offs;
604 
605 	res = op_u32_to_binary_helper(key->key_size, data, data_len, offs);
606 	if (res != TEE_SUCCESS)
607 		return res;
608 
609 	if (ADD_OVERFLOW(*offs, key->key_size, &next_offs))
610 		return TEE_ERROR_OVERFLOW;
611 
612 	if (data && next_offs <= data_len)
613 		memcpy((uint8_t *)data + *offs, key + 1, key->key_size);
614 	(*offs) = next_offs;
615 
616 	return TEE_SUCCESS;
617 }
618 
619 static bool op_attr_secret_value_from_binary(void *attr, const void *data,
620 					     size_t data_len, size_t *offs)
621 {
622 	struct tee_cryp_obj_secret *key = attr;
623 	uint32_t s;
624 
625 	if (!op_u32_from_binary_helper(&s, data, data_len, offs))
626 		return false;
627 
628 	if ((*offs + s) > data_len)
629 		return false;
630 
631 	/* Data size has to fit in allocated buffer */
632 	if (s > key->alloc_size)
633 		return false;
634 	key->key_size = s;
635 	memcpy(key + 1, (const uint8_t *)data + *offs, s);
636 	(*offs) += s;
637 	return true;
638 }
639 
640 
641 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr)
642 {
643 	struct tee_cryp_obj_secret *key = attr;
644 	struct tee_cryp_obj_secret *src_key = src_attr;
645 
646 	if (src_key->key_size > key->alloc_size)
647 		return TEE_ERROR_BAD_STATE;
648 	memcpy(key + 1, src_key + 1, src_key->key_size);
649 	key->key_size = src_key->key_size;
650 	return TEE_SUCCESS;
651 }
652 
653 static void op_attr_secret_value_clear(void *attr)
654 {
655 	struct tee_cryp_obj_secret *key = attr;
656 
657 	key->key_size = 0;
658 	memzero_explicit(key + 1, key->alloc_size);
659 }
660 
661 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer,
662 					   size_t size)
663 {
664 	struct bignum **bn = attr;
665 
666 	return crypto_bignum_bin2bn(buffer, size, *bn);
667 }
668 
669 static TEE_Result op_attr_bignum_to_user(void *attr,
670 					 struct ts_session *sess,
671 					 void *buffer, uint64_t *size)
672 {
673 	TEE_Result res = TEE_SUCCESS;
674 	struct bignum **bn = attr;
675 	uint64_t req_size = 0;
676 	uint64_t s = 0;
677 
678 	res = copy_from_user(&s, size, sizeof(s));
679 	if (res != TEE_SUCCESS)
680 		return res;
681 
682 	req_size = crypto_bignum_num_bytes(*bn);
683 	res = copy_to_user(size, &req_size, sizeof(req_size));
684 	if (res != TEE_SUCCESS)
685 		return res;
686 	if (!req_size)
687 		return TEE_SUCCESS;
688 	if (s < req_size || !buffer)
689 		return TEE_ERROR_SHORT_BUFFER;
690 
691 	/* Check we can access data using supplied user mode pointer */
692 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
693 				     TEE_MEMORY_ACCESS_READ |
694 				     TEE_MEMORY_ACCESS_WRITE |
695 				     TEE_MEMORY_ACCESS_ANY_OWNER,
696 				     (uaddr_t)buffer, req_size);
697 	if (res != TEE_SUCCESS)
698 		return res;
699 	/*
700 	* Write the bignum (wich raw data points to) into an array of
701 	* bytes (stored in buffer)
702 	*/
703 	crypto_bignum_bn2bin(*bn, buffer);
704 	return TEE_SUCCESS;
705 }
706 
707 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data,
708 					   size_t data_len, size_t *offs)
709 {
710 	TEE_Result res;
711 	struct bignum **bn = attr;
712 	uint32_t n = crypto_bignum_num_bytes(*bn);
713 	size_t next_offs;
714 
715 	res = op_u32_to_binary_helper(n, data, data_len, offs);
716 	if (res != TEE_SUCCESS)
717 		return res;
718 
719 	if (ADD_OVERFLOW(*offs, n, &next_offs))
720 		return TEE_ERROR_OVERFLOW;
721 
722 	if (data && next_offs <= data_len)
723 		crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs);
724 	(*offs) = next_offs;
725 
726 	return TEE_SUCCESS;
727 }
728 
729 static bool op_attr_bignum_from_binary(void *attr, const void *data,
730 				       size_t data_len, size_t *offs)
731 {
732 	struct bignum **bn = attr;
733 	uint32_t n;
734 
735 	if (!op_u32_from_binary_helper(&n, data, data_len, offs))
736 		return false;
737 
738 	if ((*offs + n) > data_len)
739 		return false;
740 	if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn))
741 		return false;
742 	(*offs) += n;
743 	return true;
744 }
745 
746 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr)
747 {
748 	struct bignum **bn = attr;
749 	struct bignum **src_bn = src_attr;
750 
751 	crypto_bignum_copy(*bn, *src_bn);
752 	return TEE_SUCCESS;
753 }
754 
755 static void op_attr_bignum_clear(void *attr)
756 {
757 	struct bignum **bn = attr;
758 
759 	crypto_bignum_clear(*bn);
760 }
761 
762 static void op_attr_bignum_free(void *attr)
763 {
764 	struct bignum **bn = attr;
765 
766 	crypto_bignum_free(*bn);
767 	*bn = NULL;
768 }
769 
770 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer,
771 					  size_t size)
772 {
773 	uint32_t *v = attr;
774 
775 	if (size != sizeof(uint32_t) * 2)
776 		return TEE_ERROR_GENERIC; /* "can't happen */
777 
778 	/* Note that only the first value is copied */
779 	memcpy(v, buffer, sizeof(uint32_t));
780 	return TEE_SUCCESS;
781 }
782 
783 static TEE_Result op_attr_value_to_user(void *attr,
784 					struct ts_session *sess __unused,
785 					void *buffer, uint64_t *size)
786 {
787 	TEE_Result res;
788 	uint32_t *v = attr;
789 	uint64_t s;
790 	uint32_t value[2] = { *v };
791 	uint64_t req_size = sizeof(value);
792 
793 	res = copy_from_user(&s, size, sizeof(s));
794 	if (res != TEE_SUCCESS)
795 		return res;
796 
797 	if (s < req_size || !buffer)
798 		return TEE_ERROR_SHORT_BUFFER;
799 
800 	return copy_to_user(buffer, value, req_size);
801 }
802 
803 static TEE_Result op_attr_value_to_binary(void *attr, void *data,
804 					  size_t data_len, size_t *offs)
805 {
806 	uint32_t *v = attr;
807 
808 	return op_u32_to_binary_helper(*v, data, data_len, offs);
809 }
810 
811 static bool op_attr_value_from_binary(void *attr, const void *data,
812 				      size_t data_len, size_t *offs)
813 {
814 	uint32_t *v = attr;
815 
816 	return op_u32_from_binary_helper(v, data, data_len, offs);
817 }
818 
819 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr)
820 {
821 	uint32_t *v = attr;
822 	uint32_t *src_v = src_attr;
823 
824 	*v = *src_v;
825 	return TEE_SUCCESS;
826 }
827 
828 static void op_attr_value_clear(void *attr)
829 {
830 	uint32_t *v = attr;
831 
832 	*v = 0;
833 }
834 
835 static const struct attr_ops attr_ops[] = {
836 	[ATTR_OPS_INDEX_SECRET] = {
837 		.from_user = op_attr_secret_value_from_user,
838 		.to_user = op_attr_secret_value_to_user,
839 		.to_binary = op_attr_secret_value_to_binary,
840 		.from_binary = op_attr_secret_value_from_binary,
841 		.from_obj = op_attr_secret_value_from_obj,
842 		.free = op_attr_secret_value_clear, /* not a typo */
843 		.clear = op_attr_secret_value_clear,
844 	},
845 	[ATTR_OPS_INDEX_BIGNUM] = {
846 		.from_user = op_attr_bignum_from_user,
847 		.to_user = op_attr_bignum_to_user,
848 		.to_binary = op_attr_bignum_to_binary,
849 		.from_binary = op_attr_bignum_from_binary,
850 		.from_obj = op_attr_bignum_from_obj,
851 		.free = op_attr_bignum_free,
852 		.clear = op_attr_bignum_clear,
853 	},
854 	[ATTR_OPS_INDEX_VALUE] = {
855 		.from_user = op_attr_value_from_user,
856 		.to_user = op_attr_value_to_user,
857 		.to_binary = op_attr_value_to_binary,
858 		.from_binary = op_attr_value_from_binary,
859 		.from_obj = op_attr_value_from_obj,
860 		.free = op_attr_value_clear, /* not a typo */
861 		.clear = op_attr_value_clear,
862 	},
863 };
864 
865 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src)
866 {
867 	uint64_t d = 0;
868 	TEE_Result res = copy_from_user(&d, src, sizeof(d));
869 
870 	/*
871 	 * On 32-bit systems a size_t can't hold a uint64_t so we need to
872 	 * check that the value isn't too large.
873 	 */
874 	if (!res && ADD_OVERFLOW(0, d, dst))
875 		return TEE_ERROR_OVERFLOW;
876 
877 	return res;
878 }
879 
880 static TEE_Result put_user_u64(uint64_t *dst, size_t value)
881 {
882 	uint64_t v = value;
883 
884 	return copy_to_user(dst, &v, sizeof(v));
885 }
886 
887 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info)
888 {
889 	struct ts_session *sess = ts_get_current_session();
890 	TEE_Result res = TEE_SUCCESS;
891 	struct tee_obj *o = NULL;
892 
893 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
894 			  uref_to_vaddr(obj), &o);
895 	if (res != TEE_SUCCESS)
896 		goto exit;
897 
898 	res = copy_to_user_private(info, &o->info, sizeof(o->info));
899 
900 exit:
901 	return res;
902 }
903 
904 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj,
905 			unsigned long usage)
906 {
907 	struct ts_session *sess = ts_get_current_session();
908 	TEE_Result res = TEE_SUCCESS;
909 	struct tee_obj *o = NULL;
910 
911 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
912 	if (res != TEE_SUCCESS)
913 		goto exit;
914 
915 	o->info.objectUsage &= usage;
916 
917 exit:
918 	return res;
919 }
920 
921 static int tee_svc_cryp_obj_find_type_attr_idx(
922 		uint32_t attr_id,
923 		const struct tee_cryp_obj_type_props *type_props)
924 {
925 	size_t n;
926 
927 	for (n = 0; n < type_props->num_type_attrs; n++) {
928 		if (attr_id == type_props->type_attrs[n].attr_id)
929 			return n;
930 	}
931 	return -1;
932 }
933 
934 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props(
935 		TEE_ObjectType obj_type)
936 {
937 	size_t n;
938 
939 	for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) {
940 		if (tee_cryp_obj_props[n].obj_type == obj_type)
941 			return tee_cryp_obj_props + n;
942 	}
943 
944 	return NULL;
945 }
946 
947 /* Set an attribute on an object */
948 static void set_attribute(struct tee_obj *o,
949 			  const struct tee_cryp_obj_type_props *props,
950 			  uint32_t attr)
951 {
952 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
953 
954 	if (idx < 0)
955 		return;
956 	o->have_attrs |= BIT(idx);
957 }
958 
959 /* Get an attribute on an object */
960 static uint32_t get_attribute(const struct tee_obj *o,
961 			      const struct tee_cryp_obj_type_props *props,
962 			      uint32_t attr)
963 {
964 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
965 
966 	if (idx < 0)
967 		return 0;
968 	return o->have_attrs & BIT(idx);
969 }
970 
971 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id,
972 			void *buffer, uint64_t *size)
973 {
974 	struct ts_session *sess = ts_get_current_session();
975 	TEE_Result res = TEE_SUCCESS;
976 	struct tee_obj *o = NULL;
977 	const struct tee_cryp_obj_type_props *type_props = NULL;
978 	int idx = 0;
979 	const struct attr_ops *ops = NULL;
980 	void *attr = NULL;
981 
982 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
983 	if (res != TEE_SUCCESS)
984 		return TEE_ERROR_ITEM_NOT_FOUND;
985 
986 	/* Check that the object is initialized */
987 	if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED))
988 		return TEE_ERROR_BAD_PARAMETERS;
989 
990 	/* Check that getting the attribute is allowed */
991 	if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) &&
992 	    !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE))
993 		return TEE_ERROR_BAD_PARAMETERS;
994 
995 	type_props = tee_svc_find_type_props(o->info.objectType);
996 	if (!type_props) {
997 		/* Unknown object type, "can't happen" */
998 		return TEE_ERROR_BAD_STATE;
999 	}
1000 
1001 	idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props);
1002 	if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0))
1003 		return TEE_ERROR_ITEM_NOT_FOUND;
1004 
1005 	ops = attr_ops + type_props->type_attrs[idx].ops_index;
1006 	attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs;
1007 	return ops->to_user(attr, sess, buffer, size);
1008 }
1009 
1010 void tee_obj_attr_free(struct tee_obj *o)
1011 {
1012 	const struct tee_cryp_obj_type_props *tp;
1013 	size_t n;
1014 
1015 	if (!o->attr)
1016 		return;
1017 	tp = tee_svc_find_type_props(o->info.objectType);
1018 	if (!tp)
1019 		return;
1020 
1021 	for (n = 0; n < tp->num_type_attrs; n++) {
1022 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1023 
1024 		attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs);
1025 	}
1026 }
1027 
1028 void tee_obj_attr_clear(struct tee_obj *o)
1029 {
1030 	const struct tee_cryp_obj_type_props *tp;
1031 	size_t n;
1032 
1033 	if (!o->attr)
1034 		return;
1035 	tp = tee_svc_find_type_props(o->info.objectType);
1036 	if (!tp)
1037 		return;
1038 
1039 	for (n = 0; n < tp->num_type_attrs; n++) {
1040 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1041 
1042 		attr_ops[ta->ops_index].clear((uint8_t *)o->attr +
1043 					      ta->raw_offs);
1044 	}
1045 }
1046 
1047 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data,
1048 				  size_t *data_len)
1049 {
1050 	const struct tee_cryp_obj_type_props *tp;
1051 	size_t n;
1052 	size_t offs = 0;
1053 	size_t len = data ? *data_len : 0;
1054 	TEE_Result res;
1055 
1056 	if (o->info.objectType == TEE_TYPE_DATA) {
1057 		*data_len = 0;
1058 		return TEE_SUCCESS; /* pure data object */
1059 	}
1060 	if (!o->attr)
1061 		return TEE_ERROR_BAD_STATE;
1062 	tp = tee_svc_find_type_props(o->info.objectType);
1063 	if (!tp)
1064 		return TEE_ERROR_BAD_STATE;
1065 
1066 	for (n = 0; n < tp->num_type_attrs; n++) {
1067 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1068 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1069 
1070 		res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs);
1071 		if (res != TEE_SUCCESS)
1072 			return res;
1073 	}
1074 
1075 	*data_len = offs;
1076 	if (data && offs > len)
1077 		return TEE_ERROR_SHORT_BUFFER;
1078 	return TEE_SUCCESS;
1079 }
1080 
1081 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data,
1082 				    size_t data_len)
1083 {
1084 	const struct tee_cryp_obj_type_props *tp;
1085 	size_t n;
1086 	size_t offs = 0;
1087 
1088 	if (o->info.objectType == TEE_TYPE_DATA)
1089 		return TEE_SUCCESS; /* pure data object */
1090 	if (!o->attr)
1091 		return TEE_ERROR_BAD_STATE;
1092 	tp = tee_svc_find_type_props(o->info.objectType);
1093 	if (!tp)
1094 		return TEE_ERROR_BAD_STATE;
1095 
1096 	for (n = 0; n < tp->num_type_attrs; n++) {
1097 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1098 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1099 
1100 		if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len,
1101 							 &offs))
1102 			return TEE_ERROR_CORRUPT_OBJECT;
1103 	}
1104 	return TEE_SUCCESS;
1105 }
1106 
1107 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src)
1108 {
1109 	TEE_Result res;
1110 	const struct tee_cryp_obj_type_props *tp;
1111 	const struct tee_cryp_obj_type_attrs *ta;
1112 	size_t n;
1113 	uint32_t have_attrs = 0;
1114 	void *attr;
1115 	void *src_attr;
1116 
1117 	if (o->info.objectType == TEE_TYPE_DATA)
1118 		return TEE_SUCCESS; /* pure data object */
1119 	if (!o->attr)
1120 		return TEE_ERROR_BAD_STATE;
1121 	tp = tee_svc_find_type_props(o->info.objectType);
1122 	if (!tp)
1123 		return TEE_ERROR_BAD_STATE;
1124 
1125 	if (o->info.objectType == src->info.objectType) {
1126 		have_attrs = src->have_attrs;
1127 		for (n = 0; n < tp->num_type_attrs; n++) {
1128 			ta = tp->type_attrs + n;
1129 			attr = (uint8_t *)o->attr + ta->raw_offs;
1130 			src_attr = (uint8_t *)src->attr + ta->raw_offs;
1131 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1132 			if (res != TEE_SUCCESS)
1133 				return res;
1134 		}
1135 	} else {
1136 		const struct tee_cryp_obj_type_props *tp_src;
1137 		int idx;
1138 
1139 		if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) {
1140 			if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR)
1141 				return TEE_ERROR_BAD_PARAMETERS;
1142 		} else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) {
1143 			if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR)
1144 				return TEE_ERROR_BAD_PARAMETERS;
1145 		} else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) {
1146 			if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR)
1147 				return TEE_ERROR_BAD_PARAMETERS;
1148 		} else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) {
1149 			if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR)
1150 				return TEE_ERROR_BAD_PARAMETERS;
1151 		} else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) {
1152 			if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR)
1153 				return TEE_ERROR_BAD_PARAMETERS;
1154 		} else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) {
1155 			if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR)
1156 				return TEE_ERROR_BAD_PARAMETERS;
1157 		} else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) {
1158 			if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR)
1159 				return TEE_ERROR_BAD_PARAMETERS;
1160 		} else {
1161 			return TEE_ERROR_BAD_PARAMETERS;
1162 		}
1163 
1164 		tp_src = tee_svc_find_type_props(src->info.objectType);
1165 		if (!tp_src)
1166 			return TEE_ERROR_BAD_STATE;
1167 
1168 		have_attrs = BIT32(tp->num_type_attrs) - 1;
1169 		for (n = 0; n < tp->num_type_attrs; n++) {
1170 			ta = tp->type_attrs + n;
1171 
1172 			idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id,
1173 								  tp_src);
1174 			if (idx < 0)
1175 				return TEE_ERROR_BAD_STATE;
1176 
1177 			attr = (uint8_t *)o->attr + ta->raw_offs;
1178 			src_attr = (uint8_t *)src->attr +
1179 				   tp_src->type_attrs[idx].raw_offs;
1180 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1181 			if (res != TEE_SUCCESS)
1182 				return res;
1183 		}
1184 	}
1185 
1186 	o->have_attrs = have_attrs;
1187 	return TEE_SUCCESS;
1188 }
1189 
1190 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz)
1191 {
1192 	return IS_ENABLED(CFG_COMPAT_GP10_DES) &&
1193 	       ((type == TEE_TYPE_DES && sz == 56) ||
1194 		(type == TEE_TYPE_DES3 && (sz == 112 || sz == 168)));
1195 }
1196 
1197 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props,
1198 				 size_t key_size)
1199 {
1200 	size_t sz = key_size;
1201 
1202 	/*
1203 	 * In GP Internal API Specification 1.0 the partity bits aren't
1204 	 * counted when telling the size of the key in bits so add them
1205 	 * here if missing.
1206 	 */
1207 	if (is_gp_legacy_des_key_size(props->obj_type, sz))
1208 		sz += sz / 7;
1209 
1210 	if (sz % props->quanta != 0)
1211 		return TEE_ERROR_NOT_SUPPORTED;
1212 	if (sz < props->min_size)
1213 		return TEE_ERROR_NOT_SUPPORTED;
1214 	if (sz > props->max_size)
1215 		return TEE_ERROR_NOT_SUPPORTED;
1216 
1217 	return TEE_SUCCESS;
1218 }
1219 
1220 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type,
1221 			    size_t max_key_size)
1222 {
1223 	TEE_Result res = TEE_SUCCESS;
1224 	const struct tee_cryp_obj_type_props *type_props;
1225 
1226 	/* Can only set type for newly allocated objs */
1227 	if (o->attr)
1228 		return TEE_ERROR_BAD_STATE;
1229 
1230 	/*
1231 	 * Verify that maxKeySize is supported and find out how
1232 	 * much should be allocated.
1233 	 */
1234 
1235 	if (obj_type == TEE_TYPE_DATA) {
1236 		if (max_key_size)
1237 			return TEE_ERROR_NOT_SUPPORTED;
1238 	} else {
1239 		/* Find description of object */
1240 		type_props = tee_svc_find_type_props(obj_type);
1241 		if (!type_props)
1242 			return TEE_ERROR_NOT_SUPPORTED;
1243 
1244 		/* Check that max_key_size follows restrictions */
1245 		res = check_key_size(type_props, max_key_size);
1246 		if (res)
1247 			return res;
1248 
1249 		o->attr = calloc(1, type_props->alloc_size);
1250 		if (!o->attr)
1251 			return TEE_ERROR_OUT_OF_MEMORY;
1252 	}
1253 
1254 	/* If we have a key structure, pre-allocate the bignums inside */
1255 	switch (obj_type) {
1256 	case TEE_TYPE_RSA_PUBLIC_KEY:
1257 		res = crypto_acipher_alloc_rsa_public_key(o->attr,
1258 							  max_key_size);
1259 		break;
1260 	case TEE_TYPE_RSA_KEYPAIR:
1261 		res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size);
1262 		break;
1263 	case TEE_TYPE_DSA_PUBLIC_KEY:
1264 		res = crypto_acipher_alloc_dsa_public_key(o->attr,
1265 							  max_key_size);
1266 		break;
1267 	case TEE_TYPE_DSA_KEYPAIR:
1268 		res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size);
1269 		break;
1270 	case TEE_TYPE_DH_KEYPAIR:
1271 		res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size);
1272 		break;
1273 	case TEE_TYPE_ECDSA_PUBLIC_KEY:
1274 	case TEE_TYPE_ECDH_PUBLIC_KEY:
1275 	case TEE_TYPE_SM2_DSA_PUBLIC_KEY:
1276 	case TEE_TYPE_SM2_PKE_PUBLIC_KEY:
1277 	case TEE_TYPE_SM2_KEP_PUBLIC_KEY:
1278 		res = crypto_acipher_alloc_ecc_public_key(o->attr, obj_type,
1279 							  max_key_size);
1280 		break;
1281 	case TEE_TYPE_ECDSA_KEYPAIR:
1282 	case TEE_TYPE_ECDH_KEYPAIR:
1283 	case TEE_TYPE_SM2_DSA_KEYPAIR:
1284 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1285 	case TEE_TYPE_SM2_KEP_KEYPAIR:
1286 		res = crypto_acipher_alloc_ecc_keypair(o->attr, obj_type,
1287 						       max_key_size);
1288 		break;
1289 	default:
1290 		if (obj_type != TEE_TYPE_DATA) {
1291 			struct tee_cryp_obj_secret *key = o->attr;
1292 
1293 			key->alloc_size = type_props->alloc_size -
1294 					  sizeof(*key);
1295 		}
1296 		break;
1297 	}
1298 
1299 	if (res != TEE_SUCCESS)
1300 		return res;
1301 
1302 	o->info.objectType = obj_type;
1303 	o->info.maxKeySize = max_key_size;
1304 	o->info.objectUsage = TEE_USAGE_DEFAULT;
1305 
1306 	return TEE_SUCCESS;
1307 }
1308 
1309 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type,
1310 			unsigned long max_key_size, uint32_t *obj)
1311 {
1312 	struct ts_session *sess = ts_get_current_session();
1313 	TEE_Result res = TEE_SUCCESS;
1314 	struct tee_obj *o = NULL;
1315 
1316 
1317 	o = tee_obj_alloc();
1318 	if (!o)
1319 		return TEE_ERROR_OUT_OF_MEMORY;
1320 
1321 	res = tee_obj_set_type(o, obj_type, max_key_size);
1322 	if (res != TEE_SUCCESS) {
1323 		tee_obj_free(o);
1324 		return res;
1325 	}
1326 
1327 	tee_obj_add(to_user_ta_ctx(sess->ctx), o);
1328 
1329 	res = copy_kaddr_to_uref(obj, o);
1330 	if (res != TEE_SUCCESS)
1331 		tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1332 	return res;
1333 }
1334 
1335 TEE_Result syscall_cryp_obj_close(unsigned long obj)
1336 {
1337 	struct ts_session *sess = ts_get_current_session();
1338 	TEE_Result res = TEE_SUCCESS;
1339 	struct tee_obj *o = NULL;
1340 
1341 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1342 	if (res != TEE_SUCCESS)
1343 		return res;
1344 
1345 	/*
1346 	 * If it's busy it's used by an operation, a client should never have
1347 	 * this handle.
1348 	 */
1349 	if (o->busy)
1350 		return TEE_ERROR_ITEM_NOT_FOUND;
1351 
1352 	tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1353 	return TEE_SUCCESS;
1354 }
1355 
1356 TEE_Result syscall_cryp_obj_reset(unsigned long obj)
1357 {
1358 	struct ts_session *sess = ts_get_current_session();
1359 	TEE_Result res = TEE_SUCCESS;
1360 	struct tee_obj *o = NULL;
1361 
1362 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1363 	if (res != TEE_SUCCESS)
1364 		return res;
1365 
1366 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) {
1367 		tee_obj_attr_clear(o);
1368 		o->info.keySize = 0;
1369 		o->info.objectUsage = TEE_USAGE_DEFAULT;
1370 	} else {
1371 		return TEE_ERROR_BAD_PARAMETERS;
1372 	}
1373 
1374 	/* the object is no more initialized */
1375 	o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;
1376 
1377 	return TEE_SUCCESS;
1378 }
1379 
1380 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,
1381 			const struct utee_attribute *usr_attrs,
1382 			uint32_t attr_count, TEE_Attribute *attrs)
1383 {
1384 	TEE_Result res = TEE_SUCCESS;
1385 	size_t size = 0;
1386 	uint32_t n = 0;
1387 
1388 	if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size))
1389 		return TEE_ERROR_OVERFLOW;
1390 
1391 	res = vm_check_access_rights(&utc->uctx,
1392 				     TEE_MEMORY_ACCESS_READ |
1393 				     TEE_MEMORY_ACCESS_ANY_OWNER,
1394 				     (uaddr_t)usr_attrs, size);
1395 	if (res != TEE_SUCCESS)
1396 		return res;
1397 
1398 	for (n = 0; n < attr_count; n++) {
1399 		attrs[n].attributeID = usr_attrs[n].attribute_id;
1400 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) {
1401 			attrs[n].content.value.a = usr_attrs[n].a;
1402 			attrs[n].content.value.b = usr_attrs[n].b;
1403 		} else {
1404 			uintptr_t buf = usr_attrs[n].a;
1405 			size_t len = usr_attrs[n].b;
1406 			uint32_t flags = TEE_MEMORY_ACCESS_READ |
1407 					 TEE_MEMORY_ACCESS_ANY_OWNER;
1408 
1409 			res = vm_check_access_rights(&utc->uctx, flags, buf,
1410 						     len);
1411 			if (res != TEE_SUCCESS)
1412 				return res;
1413 			attrs[n].content.ref.buffer = (void *)buf;
1414 			attrs[n].content.ref.length = len;
1415 		}
1416 	}
1417 
1418 	return TEE_SUCCESS;
1419 }
1420 
1421 enum attr_usage {
1422 	ATTR_USAGE_POPULATE,
1423 	ATTR_USAGE_GENERATE_KEY
1424 };
1425 
1426 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage,
1427 					  const struct tee_cryp_obj_type_props
1428 						*type_props,
1429 					  const TEE_Attribute *attrs,
1430 					  uint32_t attr_count)
1431 {
1432 	uint32_t required_flag = 0;
1433 	uint32_t opt_flag = 0;
1434 	bool all_opt_needed = false;
1435 	uint32_t req_attrs = 0;
1436 	uint32_t opt_grp_attrs = 0;
1437 	uint32_t attrs_found = 0;
1438 	size_t n = 0;
1439 	uint32_t bit = 0;
1440 	uint32_t flags = 0;
1441 	int idx = 0;
1442 
1443 	if (usage == ATTR_USAGE_POPULATE) {
1444 		required_flag = TEE_TYPE_ATTR_REQUIRED;
1445 		opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP;
1446 		all_opt_needed = true;
1447 	} else {
1448 		required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ;
1449 		opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT;
1450 		all_opt_needed = false;
1451 	}
1452 
1453 	/*
1454 	 * First find out which attributes are required and which belong to
1455 	 * the optional group
1456 	 */
1457 	for (n = 0; n < type_props->num_type_attrs; n++) {
1458 		bit = 1 << n;
1459 		flags = type_props->type_attrs[n].flags;
1460 
1461 		if (flags & required_flag)
1462 			req_attrs |= bit;
1463 		else if (flags & opt_flag)
1464 			opt_grp_attrs |= bit;
1465 	}
1466 
1467 	/*
1468 	 * Verify that all required attributes are in place and
1469 	 * that the same attribute isn't repeated.
1470 	 */
1471 	for (n = 0; n < attr_count; n++) {
1472 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1473 							attrs[n].attributeID,
1474 							type_props);
1475 
1476 		/* attribute not defined in current object type */
1477 		if (idx < 0)
1478 			return TEE_ERROR_ITEM_NOT_FOUND;
1479 
1480 		bit = 1 << idx;
1481 
1482 		/* attribute not repeated */
1483 		if ((attrs_found & bit) != 0)
1484 			return TEE_ERROR_ITEM_NOT_FOUND;
1485 
1486 		/*
1487 		 * Attribute not defined in current object type for this
1488 		 * usage.
1489 		 */
1490 		if (!(bit & (req_attrs | opt_grp_attrs)))
1491 			return TEE_ERROR_ITEM_NOT_FOUND;
1492 
1493 		attrs_found |= bit;
1494 	}
1495 	/* Required attribute missing */
1496 	if ((attrs_found & req_attrs) != req_attrs)
1497 		return TEE_ERROR_ITEM_NOT_FOUND;
1498 
1499 	/*
1500 	 * If the flag says that "if one of the optional attributes are included
1501 	 * all of them has to be included" this must be checked.
1502 	 */
1503 	if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 &&
1504 	    (attrs_found & opt_grp_attrs) != opt_grp_attrs)
1505 		return TEE_ERROR_ITEM_NOT_FOUND;
1506 
1507 	return TEE_SUCCESS;
1508 }
1509 
1510 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size)
1511 {
1512 	switch (curve) {
1513 	case TEE_ECC_CURVE_NIST_P192:
1514 		*key_size = 192;
1515 		break;
1516 	case TEE_ECC_CURVE_NIST_P224:
1517 		*key_size = 224;
1518 		break;
1519 	case TEE_ECC_CURVE_NIST_P256:
1520 		*key_size = 256;
1521 		break;
1522 	case TEE_ECC_CURVE_NIST_P384:
1523 		*key_size = 384;
1524 		break;
1525 	case TEE_ECC_CURVE_NIST_P521:
1526 		*key_size = 521;
1527 		break;
1528 	case TEE_ECC_CURVE_SM2:
1529 		*key_size = 256;
1530 		break;
1531 	default:
1532 		return TEE_ERROR_NOT_SUPPORTED;
1533 	}
1534 
1535 	return TEE_SUCCESS;
1536 }
1537 
1538 static size_t get_used_bits(const TEE_Attribute *a)
1539 {
1540 	int nbits = a->content.ref.length * 8;
1541 	int v = 0;
1542 
1543 	bit_ffs(a->content.ref.buffer, nbits, &v);
1544 	return nbits - v;
1545 }
1546 
1547 static TEE_Result tee_svc_cryp_obj_populate_type(
1548 		struct tee_obj *o,
1549 		const struct tee_cryp_obj_type_props *type_props,
1550 		const TEE_Attribute *attrs,
1551 		uint32_t attr_count)
1552 {
1553 	TEE_Result res = TEE_SUCCESS;
1554 	uint32_t have_attrs = 0;
1555 	size_t obj_size = 0;
1556 	size_t n = 0;
1557 	int idx = 0;
1558 	const struct attr_ops *ops = NULL;
1559 	void *attr = NULL;
1560 
1561 	for (n = 0; n < attr_count; n++) {
1562 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1563 							attrs[n].attributeID,
1564 							type_props);
1565 		/* attribute not defined in current object type */
1566 		if (idx < 0)
1567 			return TEE_ERROR_ITEM_NOT_FOUND;
1568 
1569 		have_attrs |= BIT32(idx);
1570 		ops = attr_ops + type_props->type_attrs[idx].ops_index;
1571 		attr = (uint8_t *)o->attr +
1572 		       type_props->type_attrs[idx].raw_offs;
1573 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE)
1574 			res = ops->from_user(attr, &attrs[n].content.value,
1575 					     sizeof(attrs[n].content.value));
1576 		else
1577 			res = ops->from_user(attr, attrs[n].content.ref.buffer,
1578 					     attrs[n].content.ref.length);
1579 		if (res != TEE_SUCCESS)
1580 			return res;
1581 
1582 		/*
1583 		 * The attribute that gives the size of the object is
1584 		 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR.
1585 		 */
1586 		if (type_props->type_attrs[idx].flags &
1587 		    TEE_TYPE_ATTR_SIZE_INDICATOR) {
1588 			/* There should be only one */
1589 			if (obj_size)
1590 				return TEE_ERROR_BAD_STATE;
1591 
1592 			/*
1593 			 * For ECDSA/ECDH we need to translate curve into
1594 			 * object size
1595 			 */
1596 			if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) {
1597 				res = get_ec_key_size(attrs[n].content.value.a,
1598 						      &obj_size);
1599 				if (res != TEE_SUCCESS)
1600 					return res;
1601 			} else {
1602 				TEE_ObjectType obj_type = o->info.objectType;
1603 				size_t sz = o->info.maxKeySize;
1604 
1605 				obj_size = attrs[n].content.ref.length * 8;
1606 				/* Drop the parity bits for legacy objects */
1607 				if (is_gp_legacy_des_key_size(obj_type, sz))
1608 					obj_size -= obj_size / 8;
1609 			}
1610 			if (obj_size > o->info.maxKeySize)
1611 				return TEE_ERROR_BAD_STATE;
1612 			res = check_key_size(type_props, obj_size);
1613 			if (res != TEE_SUCCESS)
1614 				return TEE_ERROR_BAD_PARAMETERS;
1615 		}
1616 
1617 		/*
1618 		 * Bignum attributes limited by the number of bits in
1619 		 * o->info.keySize are flagged with
1620 		 * TEE_TYPE_ATTR_BIGNUM_MAXBITS.
1621 		 */
1622 		if (type_props->type_attrs[idx].flags &
1623 		    TEE_TYPE_ATTR_BIGNUM_MAXBITS) {
1624 			if (get_used_bits(attrs + n) > o->info.maxKeySize)
1625 				return TEE_ERROR_BAD_STATE;
1626 		}
1627 	}
1628 
1629 	o->have_attrs = have_attrs;
1630 	o->info.keySize = obj_size;
1631 	/*
1632 	 * In GP Internal API Specification 1.0 the partity bits aren't
1633 	 * counted when telling the size of the key in bits so remove the
1634 	 * parity bits here.
1635 	 */
1636 	if (is_gp_legacy_des_key_size(o->info.objectType, o->info.maxKeySize))
1637 		o->info.keySize -= o->info.keySize / 8;
1638 
1639 	return TEE_SUCCESS;
1640 }
1641 
1642 TEE_Result syscall_cryp_obj_populate(unsigned long obj,
1643 			struct utee_attribute *usr_attrs,
1644 			unsigned long attr_count)
1645 {
1646 	struct ts_session *sess = ts_get_current_session();
1647 	TEE_Result res = TEE_SUCCESS;
1648 	struct tee_obj *o = NULL;
1649 	const struct tee_cryp_obj_type_props *type_props = NULL;
1650 	TEE_Attribute *attrs = NULL;
1651 	size_t alloc_size = 0;
1652 
1653 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1654 	if (res != TEE_SUCCESS)
1655 		return res;
1656 
1657 	/* Must be a transient object */
1658 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1659 		return TEE_ERROR_BAD_PARAMETERS;
1660 
1661 	/* Must not be initialized already */
1662 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1663 		return TEE_ERROR_BAD_PARAMETERS;
1664 
1665 	type_props = tee_svc_find_type_props(o->info.objectType);
1666 	if (!type_props)
1667 		return TEE_ERROR_NOT_IMPLEMENTED;
1668 
1669 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size))
1670 		return TEE_ERROR_OVERFLOW;
1671 
1672 	attrs = malloc(alloc_size);
1673 	if (!attrs)
1674 		return TEE_ERROR_OUT_OF_MEMORY;
1675 
1676 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
1677 			    attrs);
1678 	if (res != TEE_SUCCESS)
1679 		goto out;
1680 
1681 	res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
1682 				      attrs, attr_count);
1683 	if (res != TEE_SUCCESS)
1684 		goto out;
1685 
1686 	res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
1687 	if (res == TEE_SUCCESS)
1688 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1689 
1690 out:
1691 	free_wipe(attrs);
1692 	return res;
1693 }
1694 
1695 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src)
1696 {
1697 	struct ts_session *sess = ts_get_current_session();
1698 	TEE_Result res = TEE_SUCCESS;
1699 	struct tee_obj *dst_o = NULL;
1700 	struct tee_obj *src_o = NULL;
1701 
1702 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1703 			  uref_to_vaddr(dst), &dst_o);
1704 	if (res != TEE_SUCCESS)
1705 		return res;
1706 
1707 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1708 			  uref_to_vaddr(src), &src_o);
1709 	if (res != TEE_SUCCESS)
1710 		return res;
1711 
1712 	if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1713 		return TEE_ERROR_BAD_PARAMETERS;
1714 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1715 		return TEE_ERROR_BAD_PARAMETERS;
1716 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1717 		return TEE_ERROR_BAD_PARAMETERS;
1718 
1719 	res = tee_obj_attr_copy_from(dst_o, src_o);
1720 	if (res != TEE_SUCCESS)
1721 		return res;
1722 
1723 	dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1724 	dst_o->info.keySize = src_o->info.keySize;
1725 	dst_o->info.objectUsage = src_o->info.objectUsage;
1726 	return TEE_SUCCESS;
1727 }
1728 
1729 static TEE_Result check_pub_rsa_key(struct bignum *e)
1730 {
1731 	size_t n = crypto_bignum_num_bytes(e);
1732 	uint8_t bin_key[256 / 8] = { 0 };
1733 
1734 	/*
1735 	 * NIST SP800-56B requires public RSA key to be an odd integer in
1736 	 * the range 65537 <= e < 2^256.
1737 	 */
1738 
1739 	if (n > sizeof(bin_key) || n < 3)
1740 		return TEE_ERROR_BAD_PARAMETERS;
1741 
1742 	crypto_bignum_bn2bin(e, bin_key);
1743 
1744 	if (!(bin_key[n - 1] & 1)) /* key must be odd */
1745 		return TEE_ERROR_BAD_PARAMETERS;
1746 
1747 	if (n == 3) {
1748 		uint32_t key = 0;
1749 
1750 		for (n = 0; n < 3; n++) {
1751 			key <<= 8;
1752 			key |= bin_key[n];
1753 		}
1754 
1755 		if (key < 65537)
1756 			return TEE_ERROR_BAD_PARAMETERS;
1757 	}
1758 
1759 	/* key is larger than 65537 */
1760 	return TEE_SUCCESS;
1761 }
1762 
1763 static TEE_Result tee_svc_obj_generate_key_rsa(
1764 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1765 	uint32_t key_size,
1766 	const TEE_Attribute *params, uint32_t param_count)
1767 {
1768 	TEE_Result res = TEE_SUCCESS;
1769 	struct rsa_keypair *key = o->attr;
1770 	uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537);
1771 
1772 	/* Copy the present attributes into the obj before starting */
1773 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1774 					     param_count);
1775 	if (res != TEE_SUCCESS)
1776 		return res;
1777 	if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) {
1778 		res = check_pub_rsa_key(key->e);
1779 		if (res)
1780 			return res;
1781 	} else {
1782 		crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e);
1783 	}
1784 	res = crypto_acipher_gen_rsa_key(key, key_size);
1785 	if (res != TEE_SUCCESS)
1786 		return res;
1787 
1788 	/* Set bits for all known attributes for this object type */
1789 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1790 
1791 	return TEE_SUCCESS;
1792 }
1793 
1794 static TEE_Result tee_svc_obj_generate_key_dsa(
1795 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1796 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1797 {
1798 	TEE_Result res;
1799 
1800 	/* Copy the present attributes into the obj before starting */
1801 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1802 					     param_count);
1803 	if (res != TEE_SUCCESS)
1804 		return res;
1805 
1806 	res = crypto_acipher_gen_dsa_key(o->attr, key_size);
1807 	if (res != TEE_SUCCESS)
1808 		return res;
1809 
1810 	/* Set bits for all known attributes for this object type */
1811 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1812 
1813 	return TEE_SUCCESS;
1814 }
1815 
1816 static TEE_Result tee_svc_obj_generate_key_dh(
1817 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1818 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1819 {
1820 	TEE_Result res;
1821 	struct dh_keypair *tee_dh_key;
1822 	struct bignum *dh_q = NULL;
1823 	uint32_t dh_xbits = 0;
1824 
1825 	/* Copy the present attributes into the obj before starting */
1826 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1827 					     param_count);
1828 	if (res != TEE_SUCCESS)
1829 		return res;
1830 
1831 	tee_dh_key = (struct dh_keypair *)o->attr;
1832 
1833 	if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME))
1834 		dh_q = tee_dh_key->q;
1835 	if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS))
1836 		dh_xbits = tee_dh_key->xbits;
1837 	res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size);
1838 	if (res != TEE_SUCCESS)
1839 		return res;
1840 
1841 	/* Set bits for the generated public and private key */
1842 	set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE);
1843 	set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE);
1844 	set_attribute(o, type_props, TEE_ATTR_DH_X_BITS);
1845 	return TEE_SUCCESS;
1846 }
1847 
1848 static TEE_Result tee_svc_obj_generate_key_ecc(
1849 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1850 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1851 {
1852 	TEE_Result res;
1853 	struct ecc_keypair *tee_ecc_key;
1854 
1855 	/* Copy the present attributes into the obj before starting */
1856 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1857 					     param_count);
1858 	if (res != TEE_SUCCESS)
1859 		return res;
1860 
1861 	tee_ecc_key = (struct ecc_keypair *)o->attr;
1862 
1863 	res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size);
1864 	if (res != TEE_SUCCESS)
1865 		return res;
1866 
1867 	/* Set bits for the generated public and private key */
1868 	set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE);
1869 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X);
1870 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y);
1871 	set_attribute(o, type_props, TEE_ATTR_ECC_CURVE);
1872 	return TEE_SUCCESS;
1873 }
1874 
1875 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size,
1876 			const struct utee_attribute *usr_params,
1877 			unsigned long param_count)
1878 {
1879 	struct ts_session *sess = ts_get_current_session();
1880 	TEE_Result res = TEE_SUCCESS;
1881 	const struct tee_cryp_obj_type_props *type_props = NULL;
1882 	struct tee_obj *o = NULL;
1883 	struct tee_cryp_obj_secret *key = NULL;
1884 	size_t byte_size = 0;
1885 	TEE_Attribute *params = NULL;
1886 	size_t alloc_size = 0;
1887 
1888 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1889 	if (res != TEE_SUCCESS)
1890 		return res;
1891 
1892 	/* Must be a transient object */
1893 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1894 		return TEE_ERROR_BAD_STATE;
1895 
1896 	/* Must not be initialized already */
1897 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1898 		return TEE_ERROR_BAD_STATE;
1899 
1900 	/* Find description of object */
1901 	type_props = tee_svc_find_type_props(o->info.objectType);
1902 	if (!type_props)
1903 		return TEE_ERROR_NOT_SUPPORTED;
1904 
1905 	/* Check that key_size follows restrictions */
1906 	res = check_key_size(type_props, key_size);
1907 	if (res)
1908 		return res;
1909 
1910 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
1911 		return TEE_ERROR_OVERFLOW;
1912 
1913 	params = malloc(alloc_size);
1914 	if (!params)
1915 		return TEE_ERROR_OUT_OF_MEMORY;
1916 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count,
1917 			    params);
1918 	if (res != TEE_SUCCESS)
1919 		goto out;
1920 
1921 	res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props,
1922 				      params, param_count);
1923 	if (res != TEE_SUCCESS)
1924 		goto out;
1925 
1926 	switch (o->info.objectType) {
1927 	case TEE_TYPE_AES:
1928 	case TEE_TYPE_DES:
1929 	case TEE_TYPE_DES3:
1930 	case TEE_TYPE_SM4:
1931 	case TEE_TYPE_HMAC_MD5:
1932 	case TEE_TYPE_HMAC_SHA1:
1933 	case TEE_TYPE_HMAC_SHA224:
1934 	case TEE_TYPE_HMAC_SHA256:
1935 	case TEE_TYPE_HMAC_SHA384:
1936 	case TEE_TYPE_HMAC_SHA512:
1937 	case TEE_TYPE_HMAC_SM3:
1938 	case TEE_TYPE_GENERIC_SECRET:
1939 		byte_size = key_size / 8;
1940 
1941 		/*
1942 		 * In GP Internal API Specification 1.0 the partity bits
1943 		 * aren't counted when telling the size of the key in bits.
1944 		 */
1945 		if (is_gp_legacy_des_key_size(o->info.objectType, key_size))
1946 			byte_size = (key_size + key_size / 7) / 8;
1947 
1948 		key = (struct tee_cryp_obj_secret *)o->attr;
1949 		if (byte_size > key->alloc_size) {
1950 			res = TEE_ERROR_EXCESS_DATA;
1951 			goto out;
1952 		}
1953 
1954 		res = crypto_rng_read((void *)(key + 1), byte_size);
1955 		if (res != TEE_SUCCESS)
1956 			goto out;
1957 
1958 		key->key_size = byte_size;
1959 
1960 		/* Set bits for all known attributes for this object type */
1961 		o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1962 
1963 		break;
1964 
1965 	case TEE_TYPE_RSA_KEYPAIR:
1966 		res = tee_svc_obj_generate_key_rsa(o, type_props, key_size,
1967 						   params, param_count);
1968 		if (res != TEE_SUCCESS)
1969 			goto out;
1970 		break;
1971 
1972 	case TEE_TYPE_DSA_KEYPAIR:
1973 		res = tee_svc_obj_generate_key_dsa(o, type_props, key_size,
1974 						   params, param_count);
1975 		if (res != TEE_SUCCESS)
1976 			goto out;
1977 		break;
1978 
1979 	case TEE_TYPE_DH_KEYPAIR:
1980 		res = tee_svc_obj_generate_key_dh(o, type_props, key_size,
1981 						  params, param_count);
1982 		if (res != TEE_SUCCESS)
1983 			goto out;
1984 		break;
1985 
1986 	case TEE_TYPE_ECDSA_KEYPAIR:
1987 	case TEE_TYPE_ECDH_KEYPAIR:
1988 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1989 		res = tee_svc_obj_generate_key_ecc(o, type_props, key_size,
1990 						  params, param_count);
1991 		if (res != TEE_SUCCESS)
1992 			goto out;
1993 		break;
1994 
1995 	default:
1996 		res = TEE_ERROR_BAD_FORMAT;
1997 	}
1998 
1999 out:
2000 	free_wipe(params);
2001 	if (res == TEE_SUCCESS) {
2002 		o->info.keySize = key_size;
2003 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2004 	}
2005 	return res;
2006 }
2007 
2008 static TEE_Result tee_svc_cryp_get_state(struct ts_session *sess,
2009 					 vaddr_t state_id,
2010 					 struct tee_cryp_state **state)
2011 {
2012 	struct tee_cryp_state *s;
2013 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2014 
2015 	TAILQ_FOREACH(s, &utc->cryp_states, link) {
2016 		if (state_id == (vaddr_t)s) {
2017 			*state = s;
2018 			return TEE_SUCCESS;
2019 		}
2020 	}
2021 	return TEE_ERROR_BAD_PARAMETERS;
2022 }
2023 
2024 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs)
2025 {
2026 	struct tee_obj *o;
2027 
2028 	if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS)
2029 		tee_obj_close(utc, o);
2030 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS)
2031 		tee_obj_close(utc, o);
2032 
2033 	TAILQ_REMOVE(&utc->cryp_states, cs, link);
2034 	if (cs->ctx_finalize != NULL)
2035 		cs->ctx_finalize(cs->ctx);
2036 
2037 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2038 	case TEE_OPERATION_CIPHER:
2039 		crypto_cipher_free_ctx(cs->ctx);
2040 		break;
2041 	case TEE_OPERATION_AE:
2042 		crypto_authenc_free_ctx(cs->ctx);
2043 		break;
2044 	case TEE_OPERATION_DIGEST:
2045 		crypto_hash_free_ctx(cs->ctx);
2046 		break;
2047 	case TEE_OPERATION_MAC:
2048 		crypto_mac_free_ctx(cs->ctx);
2049 		break;
2050 	default:
2051 		assert(!cs->ctx);
2052 	}
2053 
2054 	free(cs);
2055 }
2056 
2057 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o,
2058 					      uint32_t algo,
2059 					      TEE_OperationMode mode)
2060 {
2061 	uint32_t req_key_type;
2062 	uint32_t req_key_type2 = 0;
2063 
2064 	switch (TEE_ALG_GET_MAIN_ALG(algo)) {
2065 	case TEE_MAIN_ALGO_MD5:
2066 		req_key_type = TEE_TYPE_HMAC_MD5;
2067 		break;
2068 	case TEE_MAIN_ALGO_SHA1:
2069 		req_key_type = TEE_TYPE_HMAC_SHA1;
2070 		break;
2071 	case TEE_MAIN_ALGO_SHA224:
2072 		req_key_type = TEE_TYPE_HMAC_SHA224;
2073 		break;
2074 	case TEE_MAIN_ALGO_SHA256:
2075 		req_key_type = TEE_TYPE_HMAC_SHA256;
2076 		break;
2077 	case TEE_MAIN_ALGO_SHA384:
2078 		req_key_type = TEE_TYPE_HMAC_SHA384;
2079 		break;
2080 	case TEE_MAIN_ALGO_SHA512:
2081 		req_key_type = TEE_TYPE_HMAC_SHA512;
2082 		break;
2083 	case TEE_MAIN_ALGO_SM3:
2084 		req_key_type = TEE_TYPE_HMAC_SM3;
2085 		break;
2086 	case TEE_MAIN_ALGO_AES:
2087 		req_key_type = TEE_TYPE_AES;
2088 		break;
2089 	case TEE_MAIN_ALGO_DES:
2090 		req_key_type = TEE_TYPE_DES;
2091 		break;
2092 	case TEE_MAIN_ALGO_DES3:
2093 		req_key_type = TEE_TYPE_DES3;
2094 		break;
2095 	case TEE_MAIN_ALGO_SM4:
2096 		req_key_type = TEE_TYPE_SM4;
2097 		break;
2098 	case TEE_MAIN_ALGO_RSA:
2099 		req_key_type = TEE_TYPE_RSA_KEYPAIR;
2100 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2101 			req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY;
2102 		break;
2103 	case TEE_MAIN_ALGO_DSA:
2104 		req_key_type = TEE_TYPE_DSA_KEYPAIR;
2105 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2106 			req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY;
2107 		break;
2108 	case TEE_MAIN_ALGO_DH:
2109 		req_key_type = TEE_TYPE_DH_KEYPAIR;
2110 		break;
2111 	case TEE_MAIN_ALGO_ECDSA:
2112 		req_key_type = TEE_TYPE_ECDSA_KEYPAIR;
2113 		if (mode == TEE_MODE_VERIFY)
2114 			req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY;
2115 		break;
2116 	case TEE_MAIN_ALGO_ECDH:
2117 		req_key_type = TEE_TYPE_ECDH_KEYPAIR;
2118 		break;
2119 	case TEE_MAIN_ALGO_SM2_PKE:
2120 		if (mode == TEE_MODE_ENCRYPT)
2121 			req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY;
2122 		else
2123 			req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR;
2124 		break;
2125 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
2126 		if (mode == TEE_MODE_VERIFY)
2127 			req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY;
2128 		else
2129 			req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR;
2130 		break;
2131 #if defined(CFG_CRYPTO_SM2_KEP)
2132 	case TEE_MAIN_ALGO_SM2_KEP:
2133 		req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR;
2134 		req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY;
2135 		break;
2136 #endif
2137 #if defined(CFG_CRYPTO_HKDF)
2138 	case TEE_MAIN_ALGO_HKDF:
2139 		req_key_type = TEE_TYPE_HKDF_IKM;
2140 		break;
2141 #endif
2142 #if defined(CFG_CRYPTO_CONCAT_KDF)
2143 	case TEE_MAIN_ALGO_CONCAT_KDF:
2144 		req_key_type = TEE_TYPE_CONCAT_KDF_Z;
2145 		break;
2146 #endif
2147 #if defined(CFG_CRYPTO_PBKDF2)
2148 	case TEE_MAIN_ALGO_PBKDF2:
2149 		req_key_type = TEE_TYPE_PBKDF2_PASSWORD;
2150 		break;
2151 #endif
2152 	default:
2153 		return TEE_ERROR_BAD_PARAMETERS;
2154 	}
2155 
2156 	if (req_key_type != o->info.objectType &&
2157 	    req_key_type2 != o->info.objectType)
2158 		return TEE_ERROR_BAD_PARAMETERS;
2159 	return TEE_SUCCESS;
2160 }
2161 
2162 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode,
2163 			unsigned long key1, unsigned long key2,
2164 			uint32_t *state)
2165 {
2166 	struct ts_session *sess = ts_get_current_session();
2167 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2168 	TEE_Result res = TEE_SUCCESS;
2169 	struct tee_cryp_state *cs = NULL;
2170 	struct tee_obj *o1 = NULL;
2171 	struct tee_obj *o2 = NULL;
2172 
2173 	if (key1 != 0) {
2174 		res = tee_obj_get(utc, uref_to_vaddr(key1), &o1);
2175 		if (res != TEE_SUCCESS)
2176 			return res;
2177 		if (o1->busy)
2178 			return TEE_ERROR_BAD_PARAMETERS;
2179 		res = tee_svc_cryp_check_key_type(o1, algo, mode);
2180 		if (res != TEE_SUCCESS)
2181 			return res;
2182 	}
2183 	if (key2 != 0) {
2184 		res = tee_obj_get(utc, uref_to_vaddr(key2), &o2);
2185 		if (res != TEE_SUCCESS)
2186 			return res;
2187 		if (o2->busy)
2188 			return TEE_ERROR_BAD_PARAMETERS;
2189 		res = tee_svc_cryp_check_key_type(o2, algo, mode);
2190 		if (res != TEE_SUCCESS)
2191 			return res;
2192 	}
2193 
2194 	cs = calloc(1, sizeof(struct tee_cryp_state));
2195 	if (!cs)
2196 		return TEE_ERROR_OUT_OF_MEMORY;
2197 	TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link);
2198 	cs->algo = algo;
2199 	cs->mode = mode;
2200 	cs->state = CRYP_STATE_UNINITIALIZED;
2201 
2202 	switch (TEE_ALG_GET_CLASS(algo)) {
2203 	case TEE_OPERATION_CIPHER:
2204 		if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) ||
2205 		    (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) {
2206 			res = TEE_ERROR_BAD_PARAMETERS;
2207 		} else {
2208 			res = crypto_cipher_alloc_ctx(&cs->ctx, algo);
2209 			if (res != TEE_SUCCESS)
2210 				break;
2211 		}
2212 		break;
2213 	case TEE_OPERATION_AE:
2214 		if (key1 == 0 || key2 != 0) {
2215 			res = TEE_ERROR_BAD_PARAMETERS;
2216 		} else {
2217 			res = crypto_authenc_alloc_ctx(&cs->ctx, algo);
2218 			if (res != TEE_SUCCESS)
2219 				break;
2220 		}
2221 		break;
2222 	case TEE_OPERATION_MAC:
2223 		if (key1 == 0 || key2 != 0) {
2224 			res = TEE_ERROR_BAD_PARAMETERS;
2225 		} else {
2226 			res = crypto_mac_alloc_ctx(&cs->ctx, algo);
2227 			if (res != TEE_SUCCESS)
2228 				break;
2229 		}
2230 		break;
2231 	case TEE_OPERATION_DIGEST:
2232 		if (key1 != 0 || key2 != 0) {
2233 			res = TEE_ERROR_BAD_PARAMETERS;
2234 		} else {
2235 			res = crypto_hash_alloc_ctx(&cs->ctx, algo);
2236 			if (res != TEE_SUCCESS)
2237 				break;
2238 		}
2239 		break;
2240 	case TEE_OPERATION_ASYMMETRIC_CIPHER:
2241 	case TEE_OPERATION_ASYMMETRIC_SIGNATURE:
2242 		if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 &&
2243 		    !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) {
2244 			res = TEE_ERROR_NOT_SUPPORTED;
2245 			break;
2246 		}
2247 		if (key1 == 0 || key2 != 0)
2248 			res = TEE_ERROR_BAD_PARAMETERS;
2249 		break;
2250 	case TEE_OPERATION_KEY_DERIVATION:
2251 		if (algo == TEE_ALG_SM2_KEP) {
2252 			if (key1 == 0 || key2 == 0)
2253 				res = TEE_ERROR_BAD_PARAMETERS;
2254 		} else {
2255 			if (key1 == 0 || key2 != 0)
2256 				res = TEE_ERROR_BAD_PARAMETERS;
2257 		}
2258 		break;
2259 	default:
2260 		res = TEE_ERROR_NOT_SUPPORTED;
2261 		break;
2262 	}
2263 	if (res != TEE_SUCCESS)
2264 		goto out;
2265 
2266 	res = copy_kaddr_to_uref(state, cs);
2267 	if (res != TEE_SUCCESS)
2268 		goto out;
2269 
2270 	/* Register keys */
2271 	if (o1 != NULL) {
2272 		o1->busy = true;
2273 		cs->key1 = (vaddr_t)o1;
2274 	}
2275 	if (o2 != NULL) {
2276 		o2->busy = true;
2277 		cs->key2 = (vaddr_t)o2;
2278 	}
2279 
2280 out:
2281 	if (res != TEE_SUCCESS)
2282 		cryp_state_free(utc, cs);
2283 	return res;
2284 }
2285 
2286 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src)
2287 {
2288 	struct ts_session *sess = ts_get_current_session();
2289 	TEE_Result res = TEE_SUCCESS;
2290 	struct tee_cryp_state *cs_dst = NULL;
2291 	struct tee_cryp_state *cs_src = NULL;
2292 
2293 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst);
2294 	if (res != TEE_SUCCESS)
2295 		return res;
2296 
2297 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src);
2298 	if (res != TEE_SUCCESS)
2299 		return res;
2300 	if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode)
2301 		return TEE_ERROR_BAD_PARAMETERS;
2302 
2303 	switch (TEE_ALG_GET_CLASS(cs_src->algo)) {
2304 	case TEE_OPERATION_CIPHER:
2305 		crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx);
2306 		break;
2307 	case TEE_OPERATION_AE:
2308 		crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx);
2309 		break;
2310 	case TEE_OPERATION_DIGEST:
2311 		crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx);
2312 		break;
2313 	case TEE_OPERATION_MAC:
2314 		crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx);
2315 		break;
2316 	default:
2317 		return TEE_ERROR_BAD_STATE;
2318 	}
2319 
2320 	cs_dst->state = cs_src->state;
2321 	cs_dst->ctx_finalize = cs_src->ctx_finalize;
2322 
2323 	return TEE_SUCCESS;
2324 }
2325 
2326 void tee_svc_cryp_free_states(struct user_ta_ctx *utc)
2327 {
2328 	struct tee_cryp_state_head *states = &utc->cryp_states;
2329 
2330 	while (!TAILQ_EMPTY(states))
2331 		cryp_state_free(utc, TAILQ_FIRST(states));
2332 }
2333 
2334 TEE_Result syscall_cryp_state_free(unsigned long state)
2335 {
2336 	struct ts_session *sess = ts_get_current_session();
2337 	TEE_Result res = TEE_SUCCESS;
2338 	struct tee_cryp_state *cs = NULL;
2339 
2340 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2341 	if (res != TEE_SUCCESS)
2342 		return res;
2343 	cryp_state_free(to_user_ta_ctx(sess->ctx), cs);
2344 	return TEE_SUCCESS;
2345 }
2346 
2347 TEE_Result syscall_hash_init(unsigned long state,
2348 			     const void *iv __maybe_unused,
2349 			     size_t iv_len __maybe_unused)
2350 {
2351 	struct ts_session *sess = ts_get_current_session();
2352 	TEE_Result res = TEE_SUCCESS;
2353 	struct tee_cryp_state *cs = NULL;
2354 
2355 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2356 	if (res != TEE_SUCCESS)
2357 		return res;
2358 
2359 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2360 	case TEE_OPERATION_DIGEST:
2361 		res = crypto_hash_init(cs->ctx);
2362 		if (res != TEE_SUCCESS)
2363 			return res;
2364 		break;
2365 	case TEE_OPERATION_MAC:
2366 		{
2367 			struct tee_obj *o;
2368 			struct tee_cryp_obj_secret *key;
2369 
2370 			res = tee_obj_get(to_user_ta_ctx(sess->ctx),
2371 					  cs->key1, &o);
2372 			if (res != TEE_SUCCESS)
2373 				return res;
2374 			if ((o->info.handleFlags &
2375 			     TEE_HANDLE_FLAG_INITIALIZED) == 0)
2376 				return TEE_ERROR_BAD_PARAMETERS;
2377 
2378 			key = (struct tee_cryp_obj_secret *)o->attr;
2379 			res = crypto_mac_init(cs->ctx, (void *)(key + 1),
2380 					      key->key_size);
2381 			if (res != TEE_SUCCESS)
2382 				return res;
2383 			break;
2384 		}
2385 	default:
2386 		return TEE_ERROR_BAD_PARAMETERS;
2387 	}
2388 
2389 	cs->state = CRYP_STATE_INITIALIZED;
2390 
2391 	return TEE_SUCCESS;
2392 }
2393 
2394 TEE_Result syscall_hash_update(unsigned long state, const void *chunk,
2395 			size_t chunk_size)
2396 {
2397 	struct ts_session *sess = ts_get_current_session();
2398 	struct tee_cryp_state *cs = NULL;
2399 	TEE_Result res = TEE_SUCCESS;
2400 
2401 	/* No data, but size provided isn't valid parameters. */
2402 	if (!chunk && chunk_size)
2403 		return TEE_ERROR_BAD_PARAMETERS;
2404 
2405 	/* Zero length hash is valid, but nothing we need to do. */
2406 	if (!chunk_size)
2407 		return TEE_SUCCESS;
2408 
2409 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2410 				     TEE_MEMORY_ACCESS_READ |
2411 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2412 				     (uaddr_t)chunk, chunk_size);
2413 	if (res != TEE_SUCCESS)
2414 		return res;
2415 
2416 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2417 	if (res != TEE_SUCCESS)
2418 		return res;
2419 
2420 	if (cs->state != CRYP_STATE_INITIALIZED)
2421 		return TEE_ERROR_BAD_STATE;
2422 
2423 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2424 	case TEE_OPERATION_DIGEST:
2425 		res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2426 		if (res != TEE_SUCCESS)
2427 			return res;
2428 		break;
2429 	case TEE_OPERATION_MAC:
2430 		res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2431 		if (res != TEE_SUCCESS)
2432 			return res;
2433 		break;
2434 	default:
2435 		return TEE_ERROR_BAD_PARAMETERS;
2436 	}
2437 
2438 	return TEE_SUCCESS;
2439 }
2440 
2441 TEE_Result syscall_hash_final(unsigned long state, const void *chunk,
2442 			size_t chunk_size, void *hash, uint64_t *hash_len)
2443 {
2444 	struct ts_session *sess = ts_get_current_session();
2445 	struct tee_cryp_state *cs = NULL;
2446 	TEE_Result res2 = TEE_SUCCESS;
2447 	TEE_Result res = TEE_SUCCESS;
2448 	size_t hash_size = 0;
2449 	size_t hlen = 0;
2450 
2451 	/* No data, but size provided isn't valid parameters. */
2452 	if (!chunk && chunk_size)
2453 		return TEE_ERROR_BAD_PARAMETERS;
2454 
2455 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2456 				     TEE_MEMORY_ACCESS_READ |
2457 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2458 				     (uaddr_t)chunk, chunk_size);
2459 	if (res != TEE_SUCCESS)
2460 		return res;
2461 
2462 	res = get_user_u64_as_size_t(&hlen, hash_len);
2463 	if (res != TEE_SUCCESS)
2464 		return res;
2465 
2466 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2467 				     TEE_MEMORY_ACCESS_READ |
2468 				     TEE_MEMORY_ACCESS_WRITE |
2469 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2470 				     (uaddr_t)hash, hlen);
2471 	if (res != TEE_SUCCESS)
2472 		return res;
2473 
2474 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2475 	if (res != TEE_SUCCESS)
2476 		return res;
2477 
2478 	if (cs->state != CRYP_STATE_INITIALIZED)
2479 		return TEE_ERROR_BAD_STATE;
2480 
2481 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2482 	case TEE_OPERATION_DIGEST:
2483 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2484 		if (res != TEE_SUCCESS)
2485 			return res;
2486 		if (hlen < hash_size) {
2487 			res = TEE_ERROR_SHORT_BUFFER;
2488 			goto out;
2489 		}
2490 
2491 		if (chunk_size) {
2492 			res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2493 			if (res != TEE_SUCCESS)
2494 				return res;
2495 		}
2496 
2497 		res = crypto_hash_final(cs->ctx, hash, hash_size);
2498 		if (res != TEE_SUCCESS)
2499 			return res;
2500 		break;
2501 
2502 	case TEE_OPERATION_MAC:
2503 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2504 		if (res != TEE_SUCCESS)
2505 			return res;
2506 		if (hlen < hash_size) {
2507 			res = TEE_ERROR_SHORT_BUFFER;
2508 			goto out;
2509 		}
2510 
2511 		if (chunk_size) {
2512 			res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2513 			if (res != TEE_SUCCESS)
2514 				return res;
2515 		}
2516 
2517 		res = crypto_mac_final(cs->ctx, hash, hash_size);
2518 		if (res != TEE_SUCCESS)
2519 			return res;
2520 		break;
2521 
2522 	default:
2523 		return TEE_ERROR_BAD_PARAMETERS;
2524 	}
2525 out:
2526 	res2 = put_user_u64(hash_len, hash_size);
2527 	if (res2 != TEE_SUCCESS)
2528 		return res2;
2529 	return res;
2530 }
2531 
2532 TEE_Result syscall_cipher_init(unsigned long state, const void *iv,
2533 			size_t iv_len)
2534 {
2535 	struct ts_session *sess = ts_get_current_session();
2536 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2537 	struct tee_cryp_obj_secret *key1 = NULL;
2538 	struct tee_cryp_state *cs = NULL;
2539 	TEE_Result res = TEE_SUCCESS;
2540 	struct tee_obj *o = NULL;
2541 
2542 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2543 	if (res != TEE_SUCCESS)
2544 		return res;
2545 
2546 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER)
2547 		return TEE_ERROR_BAD_STATE;
2548 
2549 	res = vm_check_access_rights(&utc->uctx,
2550 				     TEE_MEMORY_ACCESS_READ |
2551 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2552 				     (uaddr_t)iv, iv_len);
2553 	if (res != TEE_SUCCESS)
2554 		return res;
2555 
2556 	res = tee_obj_get(utc, cs->key1, &o);
2557 	if (res != TEE_SUCCESS)
2558 		return res;
2559 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2560 		return TEE_ERROR_BAD_PARAMETERS;
2561 
2562 	key1 = o->attr;
2563 
2564 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) {
2565 		struct tee_cryp_obj_secret *key2 = o->attr;
2566 
2567 		if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2568 			return TEE_ERROR_BAD_PARAMETERS;
2569 
2570 		res = crypto_cipher_init(cs->ctx, cs->mode,
2571 					 (uint8_t *)(key1 + 1), key1->key_size,
2572 					 (uint8_t *)(key2 + 1), key2->key_size,
2573 					 iv, iv_len);
2574 	} else {
2575 		res = crypto_cipher_init(cs->ctx, cs->mode,
2576 					 (uint8_t *)(key1 + 1), key1->key_size,
2577 					 NULL, 0, iv, iv_len);
2578 	}
2579 	if (res != TEE_SUCCESS)
2580 		return res;
2581 
2582 	cs->ctx_finalize = crypto_cipher_final;
2583 	cs->state = CRYP_STATE_INITIALIZED;
2584 
2585 	return TEE_SUCCESS;
2586 }
2587 
2588 static TEE_Result tee_svc_cipher_update_helper(unsigned long state,
2589 			bool last_block, const void *src, size_t src_len,
2590 			void *dst, uint64_t *dst_len)
2591 {
2592 	struct ts_session *sess = ts_get_current_session();
2593 	struct tee_cryp_state *cs = NULL;
2594 	TEE_Result res = TEE_SUCCESS;
2595 	size_t dlen = 0;
2596 
2597 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2598 	if (res != TEE_SUCCESS)
2599 		return res;
2600 
2601 	if (cs->state != CRYP_STATE_INITIALIZED)
2602 		return TEE_ERROR_BAD_STATE;
2603 
2604 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2605 				     TEE_MEMORY_ACCESS_READ |
2606 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2607 				     (uaddr_t)src, src_len);
2608 	if (res != TEE_SUCCESS)
2609 		return res;
2610 
2611 	if (!dst_len) {
2612 		dlen = 0;
2613 	} else {
2614 		struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
2615 		uint32_t flags = TEE_MEMORY_ACCESS_READ |
2616 				 TEE_MEMORY_ACCESS_WRITE |
2617 				 TEE_MEMORY_ACCESS_ANY_OWNER;
2618 
2619 		res = get_user_u64_as_size_t(&dlen, dst_len);
2620 		if (res != TEE_SUCCESS)
2621 			return res;
2622 
2623 		res = vm_check_access_rights(uctx, flags, (uaddr_t)dst, dlen);
2624 		if (res != TEE_SUCCESS)
2625 			return res;
2626 	}
2627 
2628 	if (dlen < src_len) {
2629 		res = TEE_ERROR_SHORT_BUFFER;
2630 		goto out;
2631 	}
2632 
2633 	if (src_len > 0) {
2634 		/* Permit src_len == 0 to finalize the operation */
2635 		res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode,
2636 					   last_block, src, src_len, dst);
2637 	}
2638 
2639 	if (last_block && cs->ctx_finalize != NULL) {
2640 		cs->ctx_finalize(cs->ctx);
2641 		cs->ctx_finalize = NULL;
2642 	}
2643 
2644 out:
2645 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
2646 	    dst_len != NULL) {
2647 		TEE_Result res2;
2648 
2649 		res2 = put_user_u64(dst_len, src_len);
2650 		if (res2 != TEE_SUCCESS)
2651 			res = res2;
2652 	}
2653 
2654 	return res;
2655 }
2656 
2657 TEE_Result syscall_cipher_update(unsigned long state, const void *src,
2658 			size_t src_len, void *dst, uint64_t *dst_len)
2659 {
2660 	return tee_svc_cipher_update_helper(state, false /* last_block */,
2661 					    src, src_len, dst, dst_len);
2662 }
2663 
2664 TEE_Result syscall_cipher_final(unsigned long state, const void *src,
2665 			size_t src_len, void *dst, uint64_t *dst_len)
2666 {
2667 	return tee_svc_cipher_update_helper(state, true /* last_block */,
2668 					    src, src_len, dst, dst_len);
2669 }
2670 
2671 #if defined(CFG_CRYPTO_HKDF)
2672 static TEE_Result get_hkdf_params(const TEE_Attribute *params,
2673 				  uint32_t param_count,
2674 				  void **salt, size_t *salt_len, void **info,
2675 				  size_t *info_len, size_t *okm_len)
2676 {
2677 	size_t n;
2678 	enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 };
2679 	uint8_t found = 0;
2680 
2681 	*salt = *info = NULL;
2682 	*salt_len = *info_len = *okm_len = 0;
2683 
2684 	for (n = 0; n < param_count; n++) {
2685 		switch (params[n].attributeID) {
2686 		case TEE_ATTR_HKDF_SALT:
2687 			if (!(found & SALT)) {
2688 				*salt = params[n].content.ref.buffer;
2689 				*salt_len = params[n].content.ref.length;
2690 				found |= SALT;
2691 			}
2692 			break;
2693 		case TEE_ATTR_HKDF_OKM_LENGTH:
2694 			if (!(found & LENGTH)) {
2695 				*okm_len = params[n].content.value.a;
2696 				found |= LENGTH;
2697 			}
2698 			break;
2699 		case TEE_ATTR_HKDF_INFO:
2700 			if (!(found & INFO)) {
2701 				*info = params[n].content.ref.buffer;
2702 				*info_len = params[n].content.ref.length;
2703 				found |= INFO;
2704 			}
2705 			break;
2706 		default:
2707 			/* Unexpected attribute */
2708 			return TEE_ERROR_BAD_PARAMETERS;
2709 		}
2710 
2711 	}
2712 
2713 	if (!(found & LENGTH))
2714 		return TEE_ERROR_BAD_PARAMETERS;
2715 
2716 	return TEE_SUCCESS;
2717 }
2718 #endif
2719 
2720 #if defined(CFG_CRYPTO_CONCAT_KDF)
2721 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params,
2722 					uint32_t param_count,
2723 					void **other_info,
2724 					size_t *other_info_len,
2725 					size_t *derived_key_len)
2726 {
2727 	size_t n;
2728 	enum { LENGTH = 0x1, INFO = 0x2 };
2729 	uint8_t found = 0;
2730 
2731 	*other_info = NULL;
2732 	*other_info_len = *derived_key_len = 0;
2733 
2734 	for (n = 0; n < param_count; n++) {
2735 		switch (params[n].attributeID) {
2736 		case TEE_ATTR_CONCAT_KDF_OTHER_INFO:
2737 			if (!(found & INFO)) {
2738 				*other_info = params[n].content.ref.buffer;
2739 				*other_info_len = params[n].content.ref.length;
2740 				found |= INFO;
2741 			}
2742 			break;
2743 		case TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
2744 			if (!(found & LENGTH)) {
2745 				*derived_key_len = params[n].content.value.a;
2746 				found |= LENGTH;
2747 			}
2748 			break;
2749 		default:
2750 			/* Unexpected attribute */
2751 			return TEE_ERROR_BAD_PARAMETERS;
2752 		}
2753 	}
2754 
2755 	if (!(found & LENGTH))
2756 		return TEE_ERROR_BAD_PARAMETERS;
2757 
2758 	return TEE_SUCCESS;
2759 }
2760 #endif
2761 
2762 #if defined(CFG_CRYPTO_PBKDF2)
2763 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params,
2764 				   uint32_t param_count, void **salt,
2765 				   size_t *salt_len, size_t *derived_key_len,
2766 				   size_t *iteration_count)
2767 {
2768 	size_t n;
2769 	enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 };
2770 	uint8_t found = 0;
2771 
2772 	*salt = NULL;
2773 	*salt_len = *derived_key_len = *iteration_count = 0;
2774 
2775 	for (n = 0; n < param_count; n++) {
2776 		switch (params[n].attributeID) {
2777 		case TEE_ATTR_PBKDF2_SALT:
2778 			if (!(found & SALT)) {
2779 				*salt = params[n].content.ref.buffer;
2780 				*salt_len = params[n].content.ref.length;
2781 				found |= SALT;
2782 			}
2783 			break;
2784 		case TEE_ATTR_PBKDF2_DKM_LENGTH:
2785 			if (!(found & LENGTH)) {
2786 				*derived_key_len = params[n].content.value.a;
2787 				found |= LENGTH;
2788 			}
2789 			break;
2790 		case TEE_ATTR_PBKDF2_ITERATION_COUNT:
2791 			if (!(found & COUNT)) {
2792 				*iteration_count = params[n].content.value.a;
2793 				found |= COUNT;
2794 			}
2795 			break;
2796 		default:
2797 			/* Unexpected attribute */
2798 			return TEE_ERROR_BAD_PARAMETERS;
2799 		}
2800 	}
2801 
2802 	if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT))
2803 		return TEE_ERROR_BAD_PARAMETERS;
2804 
2805 	return TEE_SUCCESS;
2806 }
2807 #endif
2808 
2809 #if defined(CFG_CRYPTO_SM2_KEP)
2810 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params,
2811 				     uint32_t param_count,
2812 				     struct ecc_public_key *peer_key,
2813 				     struct ecc_public_key *peer_eph_key,
2814 				     struct sm2_kep_parms *kep_parms)
2815 {
2816 	TEE_Result res = TEE_ERROR_GENERIC;
2817 	size_t n;
2818 	enum {
2819 		IS_INITIATOR,
2820 		PEER_KEY_X,
2821 		PEER_KEY_Y,
2822 		PEER_EPH_KEY_X,
2823 		PEER_EPH_KEY_Y,
2824 		INITIATOR_ID,
2825 		RESPONDER_ID,
2826 	};
2827 	uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) |
2828 		BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) |
2829 		BIT(INITIATOR_ID) | BIT(RESPONDER_ID);
2830 	uint8_t found = 0;
2831 
2832 	res = crypto_acipher_alloc_ecc_public_key(peer_key,
2833 						  TEE_TYPE_SM2_KEP_PUBLIC_KEY,
2834 						  256);
2835 	if (res)
2836 		return res;
2837 
2838 	res = crypto_acipher_alloc_ecc_public_key(peer_eph_key,
2839 						  TEE_TYPE_SM2_KEP_PUBLIC_KEY,
2840 						  256);
2841 	if (res)
2842 		goto out_p;
2843 
2844 	peer_key->curve = TEE_ECC_CURVE_SM2;
2845 	peer_eph_key->curve = TEE_ECC_CURVE_SM2;
2846 
2847 	for (n = 0; n < param_count; n++) {
2848 		const TEE_Attribute *p = &params[n];
2849 
2850 		switch (p->attributeID) {
2851 		case TEE_ATTR_SM2_KEP_USER:
2852 			kep_parms->is_initiator = !p->content.value.a;
2853 			found |= BIT(IS_INITIATOR);
2854 			break;
2855 		case TEE_ATTR_ECC_PUBLIC_VALUE_X:
2856 			crypto_bignum_bin2bn(p->content.ref.buffer,
2857 					     p->content.ref.length,
2858 					     peer_key->x);
2859 			found |= BIT(PEER_KEY_X);
2860 			break;
2861 		case TEE_ATTR_ECC_PUBLIC_VALUE_Y:
2862 			crypto_bignum_bin2bn(p->content.ref.buffer,
2863 					     p->content.ref.length,
2864 					     peer_key->y);
2865 			found |= BIT(PEER_KEY_Y);
2866 			break;
2867 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X:
2868 			crypto_bignum_bin2bn(p->content.ref.buffer,
2869 					     p->content.ref.length,
2870 					     peer_eph_key->x);
2871 			found |= BIT(PEER_EPH_KEY_X);
2872 			break;
2873 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y:
2874 			crypto_bignum_bin2bn(p->content.ref.buffer,
2875 					     p->content.ref.length,
2876 					     peer_eph_key->y);
2877 			found |= BIT(PEER_EPH_KEY_Y);
2878 			break;
2879 		case TEE_ATTR_SM2_ID_INITIATOR:
2880 			kep_parms->initiator_id = p->content.ref.buffer;
2881 			kep_parms->initiator_id_len = p->content.ref.length;
2882 			found |= BIT(INITIATOR_ID);
2883 			break;
2884 		case TEE_ATTR_SM2_ID_RESPONDER:
2885 			kep_parms->responder_id = p->content.ref.buffer;
2886 			kep_parms->responder_id_len = p->content.ref.length;
2887 			found |= BIT(RESPONDER_ID);
2888 			break;
2889 		case TEE_ATTR_SM2_KEP_CONFIRMATION_IN:
2890 			kep_parms->conf_in = p->content.ref.buffer;
2891 			kep_parms->conf_in_len = p->content.ref.length;
2892 			break;
2893 		case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT:
2894 			kep_parms->conf_out = p->content.ref.buffer;
2895 			kep_parms->conf_out_len = p->content.ref.length;
2896 			break;
2897 		default:
2898 			/* Unexpected attribute */
2899 			res = TEE_ERROR_BAD_PARAMETERS;
2900 			goto out;
2901 		}
2902 	}
2903 
2904 	if ((found & mandatory) != mandatory) {
2905 		res = TEE_ERROR_BAD_PARAMETERS;
2906 		goto out;
2907 	}
2908 
2909 	return TEE_SUCCESS;
2910 out:
2911 	crypto_acipher_free_ecc_public_key(peer_eph_key);
2912 out_p:
2913 	crypto_acipher_free_ecc_public_key(peer_key);
2914 	return res;
2915 }
2916 #endif
2917 
2918 TEE_Result syscall_cryp_derive_key(unsigned long state,
2919 			const struct utee_attribute *usr_params,
2920 			unsigned long param_count, unsigned long derived_key)
2921 {
2922 	struct ts_session *sess = ts_get_current_session();
2923 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2924 	TEE_Result res = TEE_ERROR_NOT_SUPPORTED;
2925 	struct tee_obj *ko = NULL;
2926 	struct tee_obj *so = NULL;
2927 	struct tee_cryp_state *cs = NULL;
2928 	struct tee_cryp_obj_secret *sk = NULL;
2929 	const struct tee_cryp_obj_type_props *type_props = NULL;
2930 	TEE_Attribute *params = NULL;
2931 	size_t alloc_size = 0;
2932 
2933 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2934 	if (res != TEE_SUCCESS)
2935 		return res;
2936 
2937 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
2938 		return TEE_ERROR_OVERFLOW;
2939 
2940 	params = malloc(alloc_size);
2941 	if (!params)
2942 		return TEE_ERROR_OUT_OF_MEMORY;
2943 	res = copy_in_attrs(utc, usr_params, param_count, params);
2944 	if (res != TEE_SUCCESS)
2945 		goto out;
2946 
2947 	/* Get key set in operation */
2948 	res = tee_obj_get(utc, cs->key1, &ko);
2949 	if (res != TEE_SUCCESS)
2950 		goto out;
2951 
2952 	res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so);
2953 	if (res != TEE_SUCCESS)
2954 		goto out;
2955 
2956 	/* Find information needed about the object to initialize */
2957 	sk = so->attr;
2958 
2959 	/* Find description of object */
2960 	type_props = tee_svc_find_type_props(so->info.objectType);
2961 	if (!type_props) {
2962 		res = TEE_ERROR_NOT_SUPPORTED;
2963 		goto out;
2964 	}
2965 
2966 	if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) {
2967 		struct bignum *pub = NULL;
2968 		struct bignum *ss = NULL;
2969 		size_t bin_size = 0;
2970 
2971 		if (param_count != 1 ||
2972 		    params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) {
2973 			res = TEE_ERROR_BAD_PARAMETERS;
2974 			goto out;
2975 		}
2976 
2977 		bin_size = params[0].content.ref.length;
2978 
2979 		if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) {
2980 			res = TEE_ERROR_OVERFLOW;
2981 			goto out;
2982 		}
2983 
2984 		pub = crypto_bignum_allocate(alloc_size);
2985 		ss = crypto_bignum_allocate(alloc_size);
2986 		if (pub && ss) {
2987 			crypto_bignum_bin2bn(params[0].content.ref.buffer,
2988 					     bin_size, pub);
2989 			res = crypto_acipher_dh_shared_secret(ko->attr,
2990 							      pub, ss);
2991 			if (res == TEE_SUCCESS) {
2992 				sk->key_size = crypto_bignum_num_bytes(ss);
2993 				crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1));
2994 				so->info.handleFlags |=
2995 						TEE_HANDLE_FLAG_INITIALIZED;
2996 				set_attribute(so, type_props,
2997 					      TEE_ATTR_SECRET_VALUE);
2998 			}
2999 		} else {
3000 			res = TEE_ERROR_OUT_OF_MEMORY;
3001 		}
3002 		crypto_bignum_free(pub);
3003 		crypto_bignum_free(ss);
3004 	} else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) {
3005 		struct ecc_public_key key_public;
3006 		uint8_t *pt_secret;
3007 		unsigned long pt_secret_len;
3008 		uint32_t key_type = TEE_TYPE_ECDH_PUBLIC_KEY;
3009 
3010 		if (param_count != 2 ||
3011 		    params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X ||
3012 		    params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) {
3013 			res = TEE_ERROR_BAD_PARAMETERS;
3014 			goto out;
3015 		}
3016 
3017 		switch (cs->algo) {
3018 		case TEE_ALG_ECDH_P192:
3019 			alloc_size = 192;
3020 			break;
3021 		case TEE_ALG_ECDH_P224:
3022 			alloc_size = 224;
3023 			break;
3024 		case TEE_ALG_ECDH_P256:
3025 			alloc_size = 256;
3026 			break;
3027 		case TEE_ALG_ECDH_P384:
3028 			alloc_size = 384;
3029 			break;
3030 		case TEE_ALG_ECDH_P521:
3031 			alloc_size = 521;
3032 			break;
3033 		default:
3034 			res = TEE_ERROR_NOT_IMPLEMENTED;
3035 			goto out;
3036 		}
3037 
3038 		/* Create the public key */
3039 		res = crypto_acipher_alloc_ecc_public_key(&key_public, key_type,
3040 							  alloc_size);
3041 		if (res != TEE_SUCCESS)
3042 			goto out;
3043 		key_public.curve = ((struct ecc_keypair *)ko->attr)->curve;
3044 		crypto_bignum_bin2bn(params[0].content.ref.buffer,
3045 				     params[0].content.ref.length,
3046 				     key_public.x);
3047 		crypto_bignum_bin2bn(params[1].content.ref.buffer,
3048 				     params[1].content.ref.length,
3049 				     key_public.y);
3050 
3051 		pt_secret = (uint8_t *)(sk + 1);
3052 		pt_secret_len = sk->alloc_size;
3053 		res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public,
3054 						       pt_secret,
3055 						       &pt_secret_len);
3056 
3057 		if (res == TEE_SUCCESS) {
3058 			sk->key_size = pt_secret_len;
3059 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3060 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3061 		}
3062 
3063 		/* free the public key */
3064 		crypto_acipher_free_ecc_public_key(&key_public);
3065 	}
3066 #if defined(CFG_CRYPTO_HKDF)
3067 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) {
3068 		void *salt, *info;
3069 		size_t salt_len, info_len, okm_len;
3070 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3071 		struct tee_cryp_obj_secret *ik = ko->attr;
3072 		const uint8_t *ikm = (const uint8_t *)(ik + 1);
3073 
3074 		res = get_hkdf_params(params, param_count, &salt, &salt_len,
3075 				      &info, &info_len, &okm_len);
3076 		if (res != TEE_SUCCESS)
3077 			goto out;
3078 
3079 		/* Requested size must fit into the output object's buffer */
3080 		if (okm_len > ik->alloc_size) {
3081 			res = TEE_ERROR_BAD_PARAMETERS;
3082 			goto out;
3083 		}
3084 
3085 		res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len,
3086 				    info, info_len, (uint8_t *)(sk + 1),
3087 				    okm_len);
3088 		if (res == TEE_SUCCESS) {
3089 			sk->key_size = okm_len;
3090 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3091 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3092 		}
3093 	}
3094 #endif
3095 #if defined(CFG_CRYPTO_CONCAT_KDF)
3096 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) {
3097 		void *info;
3098 		size_t info_len, derived_key_len;
3099 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3100 		struct tee_cryp_obj_secret *ss = ko->attr;
3101 		const uint8_t *shared_secret = (const uint8_t *)(ss + 1);
3102 
3103 		res = get_concat_kdf_params(params, param_count, &info,
3104 					    &info_len, &derived_key_len);
3105 		if (res != TEE_SUCCESS)
3106 			goto out;
3107 
3108 		/* Requested size must fit into the output object's buffer */
3109 		if (derived_key_len > ss->alloc_size) {
3110 			res = TEE_ERROR_BAD_PARAMETERS;
3111 			goto out;
3112 		}
3113 
3114 		res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size,
3115 					  info, info_len, (uint8_t *)(sk + 1),
3116 					  derived_key_len);
3117 		if (res == TEE_SUCCESS) {
3118 			sk->key_size = derived_key_len;
3119 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3120 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3121 		}
3122 	}
3123 #endif
3124 #if defined(CFG_CRYPTO_PBKDF2)
3125 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) {
3126 		void *salt;
3127 		size_t salt_len, iteration_count, derived_key_len;
3128 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3129 		struct tee_cryp_obj_secret *ss = ko->attr;
3130 		const uint8_t *password = (const uint8_t *)(ss + 1);
3131 
3132 		res = get_pbkdf2_params(params, param_count, &salt, &salt_len,
3133 					&derived_key_len, &iteration_count);
3134 		if (res != TEE_SUCCESS)
3135 			goto out;
3136 
3137 		/* Requested size must fit into the output object's buffer */
3138 		if (derived_key_len > ss->alloc_size) {
3139 			res = TEE_ERROR_BAD_PARAMETERS;
3140 			goto out;
3141 		}
3142 
3143 		res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt,
3144 				      salt_len, iteration_count,
3145 				      (uint8_t *)(sk + 1), derived_key_len);
3146 		if (res == TEE_SUCCESS) {
3147 			sk->key_size = derived_key_len;
3148 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3149 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3150 		}
3151 	}
3152 #endif
3153 #if defined(CFG_CRYPTO_SM2_KEP)
3154 	else if (cs->algo == TEE_ALG_SM2_KEP) {
3155 		struct ecc_public_key peer_eph_key = { };
3156 		struct ecc_public_key peer_key = { };
3157 		struct sm2_kep_parms kep_parms = {
3158 			.out = (uint8_t *)(sk + 1),
3159 			.out_len = so->info.maxKeySize,
3160 		};
3161 		struct tee_obj *ko2 = NULL;
3162 
3163 		res = tee_obj_get(utc, cs->key2, &ko2);
3164 		if (res != TEE_SUCCESS)
3165 			goto out;
3166 
3167 		res = get_sm2_kep_params(params, param_count, &peer_key,
3168 					 &peer_eph_key, &kep_parms);
3169 		if (res != TEE_SUCCESS)
3170 			goto out;
3171 
3172 		/*
3173 		 * key1 is our private keypair, key2 is our ephemeral public key
3174 		 */
3175 		res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */
3176 						    ko2->attr, /* key2 */
3177 						    &peer_key, &peer_eph_key,
3178 						    &kep_parms);
3179 
3180 		if (res == TEE_SUCCESS) {
3181 			sk->key_size = kep_parms.out_len;
3182 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3183 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3184 		}
3185 		crypto_acipher_free_ecc_public_key(&peer_key);
3186 		crypto_acipher_free_ecc_public_key(&peer_eph_key);
3187 	}
3188 #endif
3189 	else
3190 		res = TEE_ERROR_NOT_SUPPORTED;
3191 
3192 out:
3193 	free_wipe(params);
3194 	return res;
3195 }
3196 
3197 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen)
3198 {
3199 	struct ts_session *sess = ts_get_current_session();
3200 	TEE_Result res = TEE_SUCCESS;
3201 
3202 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3203 				     TEE_MEMORY_ACCESS_WRITE,
3204 				     (uaddr_t)buf, blen);
3205 	if (res != TEE_SUCCESS)
3206 		return res;
3207 
3208 	res = crypto_rng_read(buf, blen);
3209 	if (res != TEE_SUCCESS)
3210 		return res;
3211 
3212 	return res;
3213 }
3214 
3215 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce,
3216 				size_t nonce_len, size_t tag_len,
3217 				size_t aad_len, size_t payload_len)
3218 {
3219 	struct ts_session *sess = ts_get_current_session();
3220 	struct tee_cryp_obj_secret *key = NULL;
3221 	struct tee_cryp_state *cs = NULL;
3222 	TEE_Result res = TEE_SUCCESS;
3223 	struct tee_obj *o = NULL;
3224 
3225 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3226 				     TEE_MEMORY_ACCESS_READ |
3227 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3228 				     (uaddr_t)nonce, nonce_len);
3229 	if (res != TEE_SUCCESS)
3230 		return res;
3231 
3232 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3233 	if (res != TEE_SUCCESS)
3234 		return res;
3235 
3236 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o);
3237 	if (res != TEE_SUCCESS)
3238 		return res;
3239 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
3240 		return TEE_ERROR_BAD_PARAMETERS;
3241 
3242 	key = o->attr;
3243 	res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1),
3244 				  key->key_size, nonce, nonce_len, tag_len,
3245 				  aad_len, payload_len);
3246 	if (res != TEE_SUCCESS)
3247 		return res;
3248 
3249 	cs->ctx_finalize = crypto_authenc_final;
3250 	cs->state = CRYP_STATE_INITIALIZED;
3251 
3252 	return TEE_SUCCESS;
3253 }
3254 
3255 TEE_Result syscall_authenc_update_aad(unsigned long state,
3256 				      const void *aad_data, size_t aad_data_len)
3257 {
3258 	struct ts_session *sess = ts_get_current_session();
3259 	TEE_Result res = TEE_SUCCESS;
3260 	struct tee_cryp_state *cs = NULL;
3261 
3262 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3263 				     TEE_MEMORY_ACCESS_READ |
3264 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3265 				     (uaddr_t)aad_data, aad_data_len);
3266 	if (res != TEE_SUCCESS)
3267 		return res;
3268 
3269 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3270 	if (res != TEE_SUCCESS)
3271 		return res;
3272 
3273 	if (cs->state != CRYP_STATE_INITIALIZED)
3274 		return TEE_ERROR_BAD_STATE;
3275 
3276 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3277 		return TEE_ERROR_BAD_STATE;
3278 
3279 	res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data,
3280 					aad_data_len);
3281 	if (res != TEE_SUCCESS)
3282 		return res;
3283 
3284 	return TEE_SUCCESS;
3285 }
3286 
3287 TEE_Result syscall_authenc_update_payload(unsigned long state,
3288 					  const void *src_data,
3289 					  size_t src_len, void *dst_data,
3290 					  uint64_t *dst_len)
3291 {
3292 	struct ts_session *sess = ts_get_current_session();
3293 	struct tee_cryp_state *cs = NULL;
3294 	TEE_Result res = TEE_SUCCESS;
3295 	size_t dlen = 0;
3296 
3297 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3298 	if (res != TEE_SUCCESS)
3299 		return res;
3300 
3301 	if (cs->state != CRYP_STATE_INITIALIZED)
3302 		return TEE_ERROR_BAD_STATE;
3303 
3304 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3305 		return TEE_ERROR_BAD_STATE;
3306 
3307 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3308 				     TEE_MEMORY_ACCESS_READ |
3309 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3310 				     (uaddr_t)src_data, src_len);
3311 	if (res != TEE_SUCCESS)
3312 		return res;
3313 
3314 	res = get_user_u64_as_size_t(&dlen, dst_len);
3315 	if (res != TEE_SUCCESS)
3316 		return res;
3317 
3318 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3319 				     TEE_MEMORY_ACCESS_READ |
3320 				     TEE_MEMORY_ACCESS_WRITE |
3321 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3322 				     (uaddr_t)dst_data, dlen);
3323 	if (res != TEE_SUCCESS)
3324 		return res;
3325 
3326 	if (dlen < src_len) {
3327 		res = TEE_ERROR_SHORT_BUFFER;
3328 		goto out;
3329 	}
3330 
3331 	res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data,
3332 					    src_len, dst_data, &dlen);
3333 out:
3334 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3335 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3336 
3337 		if (res2 != TEE_SUCCESS)
3338 			res = res2;
3339 	}
3340 
3341 	return res;
3342 }
3343 
3344 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data,
3345 				     size_t src_len, void *dst_data,
3346 				     uint64_t *dst_len, void *tag,
3347 				     uint64_t *tag_len)
3348 {
3349 	struct ts_session *sess = ts_get_current_session();
3350 	struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3351 	struct tee_cryp_state *cs = NULL;
3352 	TEE_Result res = TEE_SUCCESS;
3353 	size_t dlen = 0;
3354 	size_t tlen = 0;
3355 
3356 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3357 	if (res != TEE_SUCCESS)
3358 		return res;
3359 
3360 	if (cs->state != CRYP_STATE_INITIALIZED)
3361 		return TEE_ERROR_BAD_STATE;
3362 
3363 	if (cs->mode != TEE_MODE_ENCRYPT)
3364 		return TEE_ERROR_BAD_PARAMETERS;
3365 
3366 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3367 		return TEE_ERROR_BAD_STATE;
3368 
3369 	res = vm_check_access_rights(uctx,
3370 				     TEE_MEMORY_ACCESS_READ |
3371 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3372 				     (uaddr_t)src_data, src_len);
3373 	if (res != TEE_SUCCESS)
3374 		return res;
3375 
3376 	if (!dst_len) {
3377 		dlen = 0;
3378 	} else {
3379 		res = get_user_u64_as_size_t(&dlen, dst_len);
3380 		if (res != TEE_SUCCESS)
3381 			return res;
3382 
3383 		res = vm_check_access_rights(uctx,
3384 					     TEE_MEMORY_ACCESS_READ |
3385 					     TEE_MEMORY_ACCESS_WRITE |
3386 					     TEE_MEMORY_ACCESS_ANY_OWNER,
3387 					     (uaddr_t)dst_data, dlen);
3388 		if (res != TEE_SUCCESS)
3389 			return res;
3390 	}
3391 
3392 	if (dlen < src_len) {
3393 		res = TEE_ERROR_SHORT_BUFFER;
3394 		goto out;
3395 	}
3396 
3397 	res = get_user_u64_as_size_t(&tlen, tag_len);
3398 	if (res != TEE_SUCCESS)
3399 		return res;
3400 
3401 	res = vm_check_access_rights(uctx,
3402 				     TEE_MEMORY_ACCESS_READ |
3403 				     TEE_MEMORY_ACCESS_WRITE |
3404 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3405 				     (uaddr_t)tag, tlen);
3406 	if (res != TEE_SUCCESS)
3407 		return res;
3408 
3409 	res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data,
3410 				       &dlen, tag, &tlen);
3411 
3412 out:
3413 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3414 		TEE_Result res2 = TEE_SUCCESS;
3415 
3416 		if (dst_len != NULL) {
3417 			res2 = put_user_u64(dst_len, dlen);
3418 			if (res2 != TEE_SUCCESS)
3419 				return res2;
3420 		}
3421 
3422 		res2 = put_user_u64(tag_len, tlen);
3423 		if (res2 != TEE_SUCCESS)
3424 			return res2;
3425 	}
3426 
3427 	return res;
3428 }
3429 
3430 TEE_Result syscall_authenc_dec_final(unsigned long state,
3431 			const void *src_data, size_t src_len, void *dst_data,
3432 			uint64_t *dst_len, const void *tag, size_t tag_len)
3433 {
3434 	struct ts_session *sess = ts_get_current_session();
3435 	struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3436 	struct tee_cryp_state *cs = NULL;
3437 	TEE_Result res = TEE_SUCCESS;
3438 	size_t dlen = 0;
3439 
3440 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3441 	if (res != TEE_SUCCESS)
3442 		return res;
3443 
3444 	if (cs->state != CRYP_STATE_INITIALIZED)
3445 		return TEE_ERROR_BAD_STATE;
3446 
3447 	if (cs->mode != TEE_MODE_DECRYPT)
3448 		return TEE_ERROR_BAD_PARAMETERS;
3449 
3450 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3451 		return TEE_ERROR_BAD_STATE;
3452 
3453 	res = vm_check_access_rights(uctx,
3454 				     TEE_MEMORY_ACCESS_READ |
3455 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3456 				     (uaddr_t)src_data, src_len);
3457 	if (res != TEE_SUCCESS)
3458 		return res;
3459 
3460 	if (!dst_len) {
3461 		dlen = 0;
3462 	} else {
3463 		res = get_user_u64_as_size_t(&dlen, dst_len);
3464 		if (res != TEE_SUCCESS)
3465 			return res;
3466 
3467 		res = vm_check_access_rights(uctx,
3468 					     TEE_MEMORY_ACCESS_READ |
3469 					     TEE_MEMORY_ACCESS_WRITE |
3470 					     TEE_MEMORY_ACCESS_ANY_OWNER,
3471 					     (uaddr_t)dst_data, dlen);
3472 		if (res != TEE_SUCCESS)
3473 			return res;
3474 	}
3475 
3476 	if (dlen < src_len) {
3477 		res = TEE_ERROR_SHORT_BUFFER;
3478 		goto out;
3479 	}
3480 
3481 	res = vm_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ,
3482 				     (uaddr_t)tag, tag_len);
3483 	if (res != TEE_SUCCESS)
3484 		return res;
3485 
3486 	res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data,
3487 				       &dlen, tag, tag_len);
3488 
3489 out:
3490 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
3491 	    dst_len != NULL) {
3492 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3493 
3494 		if (res2 != TEE_SUCCESS)
3495 			return res2;
3496 	}
3497 
3498 	return res;
3499 }
3500 
3501 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params,
3502 			      size_t default_len)
3503 {
3504 	size_t n;
3505 
3506 	assert(default_len < INT_MAX);
3507 
3508 	for (n = 0; n < num_params; n++) {
3509 		if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) {
3510 			if (params[n].content.value.a < INT_MAX)
3511 				return params[n].content.value.a;
3512 			break;
3513 		}
3514 	}
3515 	/*
3516 	 * If salt length isn't provided use the default value which is
3517 	 * the length of the digest.
3518 	 */
3519 	return default_len;
3520 }
3521 
3522 TEE_Result syscall_asymm_operate(unsigned long state,
3523 			const struct utee_attribute *usr_params,
3524 			size_t num_params, const void *src_data, size_t src_len,
3525 			void *dst_data, uint64_t *dst_len)
3526 {
3527 	struct ts_session *sess = ts_get_current_session();
3528 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
3529 	TEE_Result res = TEE_SUCCESS;
3530 	struct tee_cryp_state *cs = NULL;
3531 	size_t dlen = 0;
3532 	struct tee_obj *o = NULL;
3533 	void *label = NULL;
3534 	size_t label_len = 0;
3535 	size_t n = 0;
3536 	int salt_len = 0;
3537 	TEE_Attribute *params = NULL;
3538 	size_t alloc_size = 0;
3539 
3540 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3541 	if (res != TEE_SUCCESS)
3542 		return res;
3543 
3544 	res = vm_check_access_rights(&utc->uctx,
3545 				     TEE_MEMORY_ACCESS_READ |
3546 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3547 				     (uaddr_t)src_data, src_len);
3548 	if (res != TEE_SUCCESS)
3549 		return res;
3550 
3551 	res = get_user_u64_as_size_t(&dlen, dst_len);
3552 	if (res != TEE_SUCCESS)
3553 		return res;
3554 
3555 	res = vm_check_access_rights(&utc->uctx,
3556 				     TEE_MEMORY_ACCESS_READ |
3557 				     TEE_MEMORY_ACCESS_WRITE |
3558 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3559 				     (uaddr_t)dst_data, dlen);
3560 	if (res != TEE_SUCCESS)
3561 		return res;
3562 
3563 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3564 		return TEE_ERROR_OVERFLOW;
3565 
3566 	params = malloc(alloc_size);
3567 	if (!params)
3568 		return TEE_ERROR_OUT_OF_MEMORY;
3569 	res = copy_in_attrs(utc, usr_params, num_params, params);
3570 	if (res != TEE_SUCCESS)
3571 		goto out;
3572 
3573 	res = tee_obj_get(utc, cs->key1, &o);
3574 	if (res != TEE_SUCCESS)
3575 		goto out;
3576 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3577 		res = TEE_ERROR_GENERIC;
3578 		goto out;
3579 	}
3580 
3581 	switch (cs->algo) {
3582 	case TEE_ALG_RSA_NOPAD:
3583 		if (cs->mode == TEE_MODE_ENCRYPT) {
3584 			res = crypto_acipher_rsanopad_encrypt(o->attr, src_data,
3585 							      src_len, dst_data,
3586 							      &dlen);
3587 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3588 			res = crypto_acipher_rsanopad_decrypt(o->attr, src_data,
3589 							      src_len, dst_data,
3590 							      &dlen);
3591 		} else {
3592 			/*
3593 			 * We will panic because "the mode is not compatible
3594 			 * with the function"
3595 			 */
3596 			res = TEE_ERROR_GENERIC;
3597 		}
3598 		break;
3599 
3600 	case TEE_ALG_SM2_PKE:
3601 		if (cs->mode == TEE_MODE_ENCRYPT) {
3602 			res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data,
3603 							     src_len, dst_data,
3604 							     &dlen);
3605 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3606 			res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data,
3607 							     src_len, dst_data,
3608 							     &dlen);
3609 		} else {
3610 			res = TEE_ERROR_GENERIC;
3611 		}
3612 		break;
3613 
3614 	case TEE_ALG_RSAES_PKCS1_V1_5:
3615 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
3616 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
3617 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
3618 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
3619 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
3620 		for (n = 0; n < num_params; n++) {
3621 			if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) {
3622 				label = params[n].content.ref.buffer;
3623 				label_len = params[n].content.ref.length;
3624 				break;
3625 			}
3626 		}
3627 
3628 		if (cs->mode == TEE_MODE_ENCRYPT) {
3629 			res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr,
3630 							   label, label_len,
3631 							   src_data, src_len,
3632 							   dst_data, &dlen);
3633 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3634 			res = crypto_acipher_rsaes_decrypt(
3635 					cs->algo, o->attr, label, label_len,
3636 					src_data, src_len, dst_data, &dlen);
3637 		} else {
3638 			res = TEE_ERROR_BAD_PARAMETERS;
3639 		}
3640 		break;
3641 
3642 #if defined(CFG_CRYPTO_RSASSA_NA1)
3643 	case TEE_ALG_RSASSA_PKCS1_V1_5:
3644 #endif
3645 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
3646 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
3647 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
3648 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
3649 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
3650 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
3651 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
3652 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
3653 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
3654 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
3655 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
3656 		if (cs->mode != TEE_MODE_SIGN) {
3657 			res = TEE_ERROR_BAD_PARAMETERS;
3658 			break;
3659 		}
3660 		salt_len = pkcs1_get_salt_len(params, num_params, src_len);
3661 		res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len,
3662 						 src_data, src_len, dst_data,
3663 						 &dlen);
3664 		break;
3665 
3666 	case TEE_ALG_DSA_SHA1:
3667 	case TEE_ALG_DSA_SHA224:
3668 	case TEE_ALG_DSA_SHA256:
3669 		res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data,
3670 					      src_len, dst_data, &dlen);
3671 		break;
3672 	case TEE_ALG_ECDSA_P192:
3673 	case TEE_ALG_ECDSA_P224:
3674 	case TEE_ALG_ECDSA_P256:
3675 	case TEE_ALG_ECDSA_P384:
3676 	case TEE_ALG_ECDSA_P521:
3677 	case TEE_ALG_SM2_DSA_SM3:
3678 		res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data,
3679 					      src_len, dst_data, &dlen);
3680 		break;
3681 	default:
3682 		res = TEE_ERROR_BAD_PARAMETERS;
3683 		break;
3684 	}
3685 
3686 out:
3687 	free_wipe(params);
3688 
3689 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3690 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3691 
3692 		if (res2 != TEE_SUCCESS)
3693 			return res2;
3694 	}
3695 
3696 	return res;
3697 }
3698 
3699 TEE_Result syscall_asymm_verify(unsigned long state,
3700 			const struct utee_attribute *usr_params,
3701 			size_t num_params, const void *data, size_t data_len,
3702 			const void *sig, size_t sig_len)
3703 {
3704 	struct ts_session *sess = ts_get_current_session();
3705 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
3706 	struct tee_cryp_state *cs = NULL;
3707 	TEE_Result res = TEE_SUCCESS;
3708 	TEE_Attribute *params = NULL;
3709 	struct tee_obj *o = NULL;
3710 	size_t hash_size = 0;
3711 	uint32_t hash_algo = 0;
3712 	int salt_len = 0;
3713 	size_t alloc_size = 0;
3714 
3715 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3716 	if (res != TEE_SUCCESS)
3717 		return res;
3718 
3719 	if (cs->mode != TEE_MODE_VERIFY)
3720 		return TEE_ERROR_BAD_PARAMETERS;
3721 
3722 	res = vm_check_access_rights(&utc->uctx,
3723 				     TEE_MEMORY_ACCESS_READ |
3724 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3725 				     (uaddr_t)data, data_len);
3726 	if (res != TEE_SUCCESS)
3727 		return res;
3728 
3729 	res = vm_check_access_rights(&utc->uctx,
3730 				     TEE_MEMORY_ACCESS_READ |
3731 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3732 				     (uaddr_t)sig, sig_len);
3733 	if (res != TEE_SUCCESS)
3734 		return res;
3735 
3736 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3737 		return TEE_ERROR_OVERFLOW;
3738 
3739 	params = malloc(alloc_size);
3740 	if (!params)
3741 		return TEE_ERROR_OUT_OF_MEMORY;
3742 	res = copy_in_attrs(utc, usr_params, num_params, params);
3743 	if (res != TEE_SUCCESS)
3744 		goto out;
3745 
3746 	res = tee_obj_get(utc, cs->key1, &o);
3747 	if (res != TEE_SUCCESS)
3748 		goto out;
3749 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3750 		res = TEE_ERROR_BAD_PARAMETERS;
3751 		goto out;
3752 	}
3753 
3754 	switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) {
3755 	case TEE_MAIN_ALGO_RSA:
3756 		if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) {
3757 			hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3758 			res = tee_alg_get_digest_size(hash_algo, &hash_size);
3759 			if (res != TEE_SUCCESS)
3760 				break;
3761 			if (data_len != hash_size) {
3762 				res = TEE_ERROR_BAD_PARAMETERS;
3763 				break;
3764 			}
3765 			salt_len = pkcs1_get_salt_len(params, num_params,
3766 						      hash_size);
3767 		}
3768 		res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len,
3769 						   data, data_len, sig,
3770 						   sig_len);
3771 		break;
3772 
3773 	case TEE_MAIN_ALGO_DSA:
3774 		hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3775 		res = tee_alg_get_digest_size(hash_algo, &hash_size);
3776 		if (res != TEE_SUCCESS)
3777 			break;
3778 
3779 		if (data_len != hash_size) {
3780 			struct dsa_public_key *key = o->attr;
3781 
3782 			/*
3783 			 * Depending on the DSA algorithm (NIST), the
3784 			 * digital signature output size may be truncated
3785 			 * to the size of a key pair (Q prime size). Q
3786 			 * prime size must be less or equal than the hash
3787 			 * output length of the hash algorithm involved.
3788 			 *
3789 			 * We're checking here in order to be able to
3790 			 * return this particular error code, which will
3791 			 * cause TEE_AsymmetricVerifyDigest() to panic as
3792 			 * required by GP. crypto_acipher_dsa_verify() is
3793 			 * implemented in the glue layer of the crypto
3794 			 * library and it might be a bit harder to catch
3795 			 * this particular case there or lead to duplicated
3796 			 * code in different crypto glue layers.
3797 			 *
3798 			 * The GP spec says that we SHOULD panic if
3799 			 * data_len != hash_size, but that would break a
3800 			 * few of the DSA tests in xtest where the
3801 			 * hash_size is larger than possible data_len. So
3802 			 * the compromise is in case data_len != hash_size
3803 			 * check that it's not smaller than what makes
3804 			 * sense.
3805 			 */
3806 			if (data_len != crypto_bignum_num_bytes(key->q)) {
3807 				res = TEE_ERROR_BAD_PARAMETERS;
3808 				break;
3809 			}
3810 		}
3811 		res = crypto_acipher_dsa_verify(cs->algo, o->attr, data,
3812 						data_len, sig, sig_len);
3813 		break;
3814 
3815 	case TEE_MAIN_ALGO_ECDSA:
3816 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
3817 		res = crypto_acipher_ecc_verify(cs->algo, o->attr, data,
3818 						data_len, sig, sig_len);
3819 		break;
3820 
3821 	default:
3822 		res = TEE_ERROR_NOT_SUPPORTED;
3823 	}
3824 
3825 out:
3826 	free_wipe(params);
3827 	return res;
3828 }
3829