xref: /optee_os/core/tee/tee_svc_cryp.c (revision a8d59198fdc30b2d06667ea0129b983a89d35b02)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <assert.h>
8 #include <bitstring.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <crypto/crypto.h>
12 #include <kernel/tee_ta_manager.h>
13 #include <kernel/user_access.h>
14 #include <mm/tee_mmu.h>
15 #include <stdlib_ext.h>
16 #include <string_ext.h>
17 #include <string.h>
18 #include <sys/queue.h>
19 #include <tee_api_defines_extensions.h>
20 #include <tee_api_types.h>
21 #include <tee/tee_cryp_utl.h>
22 #include <tee/tee_obj.h>
23 #include <tee/tee_svc_cryp.h>
24 #include <tee/tee_svc.h>
25 #include <trace.h>
26 #include <utee_defines.h>
27 #include <util.h>
28 #if defined(CFG_CRYPTO_HKDF)
29 #include <tee/tee_cryp_hkdf.h>
30 #endif
31 #if defined(CFG_CRYPTO_CONCAT_KDF)
32 #include <tee/tee_cryp_concat_kdf.h>
33 #endif
34 #if defined(CFG_CRYPTO_PBKDF2)
35 #include <tee/tee_cryp_pbkdf2.h>
36 #endif
37 
38 enum cryp_state {
39 	CRYP_STATE_INITIALIZED = 0,
40 	CRYP_STATE_UNINITIALIZED
41 };
42 
43 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx);
44 struct tee_cryp_state {
45 	TAILQ_ENTRY(tee_cryp_state) link;
46 	uint32_t algo;
47 	uint32_t mode;
48 	vaddr_t key1;
49 	vaddr_t key2;
50 	void *ctx;
51 	tee_cryp_ctx_finalize_func_t ctx_finalize;
52 	enum cryp_state state;
53 };
54 
55 struct tee_cryp_obj_secret {
56 	uint32_t key_size;
57 	uint32_t alloc_size;
58 
59 	/*
60 	 * Pseudo code visualize layout of structure
61 	 * Next follows data, such as:
62 	 *	uint8_t data[alloc_size]
63 	 * key_size must never exceed alloc_size
64 	 */
65 };
66 
67 #define TEE_TYPE_ATTR_OPTIONAL		BIT(0)
68 #define TEE_TYPE_ATTR_REQUIRED		BIT(1)
69 #define TEE_TYPE_ATTR_OPTIONAL_GROUP	BIT(2)
70 #define TEE_TYPE_ATTR_SIZE_INDICATOR	BIT(3)
71 #define TEE_TYPE_ATTR_GEN_KEY_OPT	BIT(4)
72 #define TEE_TYPE_ATTR_GEN_KEY_REQ	BIT(5)
73 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS	BIT(6)
74 
75     /* Handle storing of generic secret keys of varying lengths */
76 #define ATTR_OPS_INDEX_SECRET     0
77     /* Convert to/from big-endian byte array and provider-specific bignum */
78 #define ATTR_OPS_INDEX_BIGNUM     1
79     /* Convert to/from value attribute depending on direction */
80 #define ATTR_OPS_INDEX_VALUE      2
81 
82 struct tee_cryp_obj_type_attrs {
83 	uint32_t attr_id;
84 	uint16_t flags;
85 	uint16_t ops_index;
86 	uint16_t raw_offs;
87 	uint16_t raw_size;
88 };
89 
90 #define RAW_DATA(_x, _y)	\
91 	.raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y)
92 
93 static const struct tee_cryp_obj_type_attrs
94 	tee_cryp_obj_secret_value_attrs[] = {
95 	{
96 	.attr_id = TEE_ATTR_SECRET_VALUE,
97 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
98 	.ops_index = ATTR_OPS_INDEX_SECRET,
99 	.raw_offs = 0,
100 	.raw_size = 0
101 	},
102 };
103 
104 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = {
105 	{
106 	.attr_id = TEE_ATTR_RSA_MODULUS,
107 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
108 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
109 	RAW_DATA(struct rsa_public_key, n)
110 	},
111 
112 	{
113 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
114 	.flags = TEE_TYPE_ATTR_REQUIRED,
115 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
116 	RAW_DATA(struct rsa_public_key, e)
117 	},
118 };
119 
120 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = {
121 	{
122 	.attr_id = TEE_ATTR_RSA_MODULUS,
123 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
124 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
125 	RAW_DATA(struct rsa_keypair, n)
126 	},
127 
128 	{
129 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
130 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT,
131 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
132 	RAW_DATA(struct rsa_keypair, e)
133 	},
134 
135 	{
136 	.attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT,
137 	.flags = TEE_TYPE_ATTR_REQUIRED,
138 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
139 	RAW_DATA(struct rsa_keypair, d)
140 	},
141 
142 	{
143 	.attr_id = TEE_ATTR_RSA_PRIME1,
144 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
145 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
146 	RAW_DATA(struct rsa_keypair, p)
147 	},
148 
149 	{
150 	.attr_id = TEE_ATTR_RSA_PRIME2,
151 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
152 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
153 	RAW_DATA(struct rsa_keypair, q)
154 	},
155 
156 	{
157 	.attr_id = TEE_ATTR_RSA_EXPONENT1,
158 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
159 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
160 	RAW_DATA(struct rsa_keypair, dp)
161 	},
162 
163 	{
164 	.attr_id = TEE_ATTR_RSA_EXPONENT2,
165 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
166 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
167 	RAW_DATA(struct rsa_keypair, dq)
168 	},
169 
170 	{
171 	.attr_id = TEE_ATTR_RSA_COEFFICIENT,
172 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
173 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
174 	RAW_DATA(struct rsa_keypair, qp)
175 	},
176 };
177 
178 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = {
179 	{
180 	.attr_id = TEE_ATTR_DSA_PRIME,
181 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
182 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
183 	RAW_DATA(struct dsa_public_key, p)
184 	},
185 
186 	{
187 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
188 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
189 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
190 	RAW_DATA(struct dsa_public_key, q)
191 	},
192 
193 	{
194 	.attr_id = TEE_ATTR_DSA_BASE,
195 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
196 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
197 	RAW_DATA(struct dsa_public_key, g)
198 	},
199 
200 	{
201 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
202 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
203 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
204 	RAW_DATA(struct dsa_public_key, y)
205 	},
206 };
207 
208 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = {
209 	{
210 	.attr_id = TEE_ATTR_DSA_PRIME,
211 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
212 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS,
213 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
214 	RAW_DATA(struct dsa_keypair, p)
215 	},
216 
217 	{
218 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
219 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
220 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
221 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
222 	RAW_DATA(struct dsa_keypair, q)
223 	},
224 
225 	{
226 	.attr_id = TEE_ATTR_DSA_BASE,
227 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
228 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS,
229 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
230 	RAW_DATA(struct dsa_keypair, g)
231 	},
232 
233 	{
234 	.attr_id = TEE_ATTR_DSA_PRIVATE_VALUE,
235 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
236 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
237 	RAW_DATA(struct dsa_keypair, x)
238 	},
239 
240 	{
241 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
242 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
243 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
244 	RAW_DATA(struct dsa_keypair, y)
245 	},
246 };
247 
248 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = {
249 	{
250 	.attr_id = TEE_ATTR_DH_PRIME,
251 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
252 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
253 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
254 	RAW_DATA(struct dh_keypair, p)
255 	},
256 
257 	{
258 	.attr_id = TEE_ATTR_DH_BASE,
259 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
260 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
261 	RAW_DATA(struct dh_keypair, g)
262 	},
263 
264 	{
265 	.attr_id = TEE_ATTR_DH_PUBLIC_VALUE,
266 	.flags = TEE_TYPE_ATTR_REQUIRED,
267 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
268 	RAW_DATA(struct dh_keypair, y)
269 	},
270 
271 	{
272 	.attr_id = TEE_ATTR_DH_PRIVATE_VALUE,
273 	.flags = TEE_TYPE_ATTR_REQUIRED,
274 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
275 	RAW_DATA(struct dh_keypair, x)
276 	},
277 
278 	{
279 	.attr_id = TEE_ATTR_DH_SUBPRIME,
280 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP |	 TEE_TYPE_ATTR_GEN_KEY_OPT,
281 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
282 	RAW_DATA(struct dh_keypair, q)
283 	},
284 
285 	{
286 	.attr_id = TEE_ATTR_DH_X_BITS,
287 	.flags = TEE_TYPE_ATTR_GEN_KEY_OPT,
288 	.ops_index = ATTR_OPS_INDEX_VALUE,
289 	RAW_DATA(struct dh_keypair, xbits)
290 	},
291 };
292 
293 #if defined(CFG_CRYPTO_HKDF)
294 static const struct tee_cryp_obj_type_attrs
295 	tee_cryp_obj_hkdf_ikm_attrs[] = {
296 	{
297 	.attr_id = TEE_ATTR_HKDF_IKM,
298 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
299 	.ops_index = ATTR_OPS_INDEX_SECRET,
300 	.raw_offs = 0,
301 	.raw_size = 0
302 	},
303 };
304 #endif
305 
306 #if defined(CFG_CRYPTO_CONCAT_KDF)
307 static const struct tee_cryp_obj_type_attrs
308 	tee_cryp_obj_concat_kdf_z_attrs[] = {
309 	{
310 	.attr_id = TEE_ATTR_CONCAT_KDF_Z,
311 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
312 	.ops_index = ATTR_OPS_INDEX_SECRET,
313 	.raw_offs = 0,
314 	.raw_size = 0
315 	},
316 };
317 #endif
318 
319 #if defined(CFG_CRYPTO_PBKDF2)
320 static const struct tee_cryp_obj_type_attrs
321 	tee_cryp_obj_pbkdf2_passwd_attrs[] = {
322 	{
323 	.attr_id = TEE_ATTR_PBKDF2_PASSWORD,
324 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
325 	.ops_index = ATTR_OPS_INDEX_SECRET,
326 	.raw_offs = 0,
327 	.raw_size = 0
328 	},
329 };
330 #endif
331 
332 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = {
333 	{
334 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
335 	.flags = TEE_TYPE_ATTR_REQUIRED,
336 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
337 	RAW_DATA(struct ecc_public_key, x)
338 	},
339 
340 	{
341 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
342 	.flags = TEE_TYPE_ATTR_REQUIRED,
343 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
344 	RAW_DATA(struct ecc_public_key, y)
345 	},
346 
347 	{
348 	.attr_id = TEE_ATTR_ECC_CURVE,
349 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
350 	.ops_index = ATTR_OPS_INDEX_VALUE,
351 	RAW_DATA(struct ecc_public_key, curve)
352 	},
353 };
354 
355 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = {
356 	{
357 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
358 	.flags = TEE_TYPE_ATTR_REQUIRED,
359 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
360 	RAW_DATA(struct ecc_keypair, d)
361 	},
362 
363 	{
364 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
365 	.flags = TEE_TYPE_ATTR_REQUIRED,
366 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
367 	RAW_DATA(struct ecc_keypair, x)
368 	},
369 
370 	{
371 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
372 	.flags = TEE_TYPE_ATTR_REQUIRED,
373 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
374 	RAW_DATA(struct ecc_keypair, y)
375 	},
376 
377 	{
378 	.attr_id = TEE_ATTR_ECC_CURVE,
379 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
380 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
381 	.ops_index = ATTR_OPS_INDEX_VALUE,
382 	RAW_DATA(struct ecc_keypair, curve)
383 	},
384 };
385 
386 struct tee_cryp_obj_type_props {
387 	TEE_ObjectType obj_type;
388 	uint16_t min_size;	/* may not be smaller than this */
389 	uint16_t max_size;	/* may not be larger than this */
390 	uint16_t alloc_size;	/* this many bytes are allocated to hold data */
391 	uint8_t quanta;		/* may only be an multiple of this */
392 
393 	uint8_t num_type_attrs;
394 	const struct tee_cryp_obj_type_attrs *type_attrs;
395 };
396 
397 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \
398 		{ (obj_type), (min_size), (max_size), (alloc_size), (quanta), \
399 		  ARRAY_SIZE(type_attrs), (type_attrs) }
400 
401 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = {
402 	PROP(TEE_TYPE_AES, 64, 128, 256,	/* valid sizes 128, 192, 256 */
403 		256 / 8 + sizeof(struct tee_cryp_obj_secret),
404 		tee_cryp_obj_secret_value_attrs),
405 	PROP(TEE_TYPE_DES, 64, 64, 64,
406 	     /* Valid size 64 with parity */
407 	     64 / 8 + sizeof(struct tee_cryp_obj_secret),
408 	     tee_cryp_obj_secret_value_attrs),
409 	PROP(TEE_TYPE_DES3, 64, 128, 192,
410 	     /* Valid sizes 128, 192 with parity */
411 	     192 / 8 + sizeof(struct tee_cryp_obj_secret),
412 	     tee_cryp_obj_secret_value_attrs),
413 	PROP(TEE_TYPE_SM4, 128, 128, 128,
414 		128 / 8 + sizeof(struct tee_cryp_obj_secret),
415 		tee_cryp_obj_secret_value_attrs),
416 	PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512,
417 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
418 		tee_cryp_obj_secret_value_attrs),
419 	PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512,
420 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
421 		tee_cryp_obj_secret_value_attrs),
422 	PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512,
423 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
424 		tee_cryp_obj_secret_value_attrs),
425 	PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024,
426 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
427 		tee_cryp_obj_secret_value_attrs),
428 	PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024,
429 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
430 		tee_cryp_obj_secret_value_attrs),
431 	PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024,
432 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
433 		tee_cryp_obj_secret_value_attrs),
434 	PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024,
435 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
436 		tee_cryp_obj_secret_value_attrs),
437 	PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096,
438 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
439 		tee_cryp_obj_secret_value_attrs),
440 #if defined(CFG_CRYPTO_HKDF)
441 	PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096,
442 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
443 		tee_cryp_obj_hkdf_ikm_attrs),
444 #endif
445 #if defined(CFG_CRYPTO_CONCAT_KDF)
446 	PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096,
447 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
448 		tee_cryp_obj_concat_kdf_z_attrs),
449 #endif
450 #if defined(CFG_CRYPTO_PBKDF2)
451 	PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096,
452 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
453 		tee_cryp_obj_pbkdf2_passwd_attrs),
454 #endif
455 	PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
456 		sizeof(struct rsa_public_key),
457 		tee_cryp_obj_rsa_pub_key_attrs),
458 
459 	PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
460 		sizeof(struct rsa_keypair),
461 		tee_cryp_obj_rsa_keypair_attrs),
462 
463 	PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072,
464 		sizeof(struct dsa_public_key),
465 		tee_cryp_obj_dsa_pub_key_attrs),
466 
467 	PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072,
468 		sizeof(struct dsa_keypair),
469 		tee_cryp_obj_dsa_keypair_attrs),
470 
471 	PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048,
472 		sizeof(struct dh_keypair),
473 		tee_cryp_obj_dh_keypair_attrs),
474 
475 	PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521,
476 		sizeof(struct ecc_public_key),
477 		tee_cryp_obj_ecc_pub_key_attrs),
478 
479 	PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521,
480 		sizeof(struct ecc_keypair),
481 		tee_cryp_obj_ecc_keypair_attrs),
482 
483 	PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521,
484 		sizeof(struct ecc_public_key),
485 		tee_cryp_obj_ecc_pub_key_attrs),
486 
487 	PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521,
488 		sizeof(struct ecc_keypair),
489 		tee_cryp_obj_ecc_keypair_attrs),
490 
491 	PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256,
492 	     sizeof(struct ecc_public_key),
493 	     tee_cryp_obj_ecc_pub_key_attrs),
494 
495 	PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256,
496 	     sizeof(struct ecc_keypair),
497 	     tee_cryp_obj_ecc_keypair_attrs),
498 
499 	PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256,
500 	     sizeof(struct ecc_public_key),
501 	     tee_cryp_obj_ecc_pub_key_attrs),
502 
503 	PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256,
504 	     sizeof(struct ecc_keypair),
505 	     tee_cryp_obj_ecc_keypair_attrs),
506 
507 	PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256,
508 	     sizeof(struct ecc_public_key),
509 	     tee_cryp_obj_ecc_pub_key_attrs),
510 
511 	PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256,
512 	     sizeof(struct ecc_keypair),
513 	     tee_cryp_obj_ecc_keypair_attrs),
514 };
515 
516 struct attr_ops {
517 	TEE_Result (*from_user)(void *attr, const void *buffer, size_t size);
518 	TEE_Result (*to_user)(void *attr, struct tee_ta_session *sess,
519 			      void *buffer, uint64_t *size);
520 	TEE_Result (*to_binary)(void *attr, void *data, size_t data_len,
521 			    size_t *offs);
522 	bool (*from_binary)(void *attr, const void *data, size_t data_len,
523 			    size_t *offs);
524 	TEE_Result (*from_obj)(void *attr, void *src_attr);
525 	void (*free)(void *attr);
526 	void (*clear)(void *attr);
527 };
528 
529 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data,
530 				    size_t data_len, size_t *offs)
531 {
532 	uint32_t field;
533 	size_t next_offs;
534 
535 	if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs))
536 		return TEE_ERROR_OVERFLOW;
537 
538 	if (data && next_offs <= data_len) {
539 		field = TEE_U32_TO_BIG_ENDIAN(v);
540 		memcpy(data + *offs, &field, sizeof(field));
541 	}
542 	(*offs) = next_offs;
543 
544 	return TEE_SUCCESS;
545 }
546 
547 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data,
548 				      size_t data_len, size_t *offs)
549 {
550 	uint32_t field;
551 
552 	if (!data || (*offs + sizeof(field)) > data_len)
553 		return false;
554 
555 	memcpy(&field, data + *offs, sizeof(field));
556 	*v = TEE_U32_FROM_BIG_ENDIAN(field);
557 	(*offs) += sizeof(field);
558 	return true;
559 }
560 
561 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer,
562 						 size_t size)
563 {
564 	struct tee_cryp_obj_secret *key = attr;
565 
566 	/* Data size has to fit in allocated buffer */
567 	if (size > key->alloc_size)
568 		return TEE_ERROR_SECURITY;
569 	memcpy(key + 1, buffer, size);
570 	key->key_size = size;
571 	return TEE_SUCCESS;
572 }
573 
574 static TEE_Result op_attr_secret_value_to_user(void *attr,
575 			struct tee_ta_session *sess __unused,
576 			void *buffer, uint64_t *size)
577 {
578 	TEE_Result res;
579 	struct tee_cryp_obj_secret *key = attr;
580 	uint64_t s;
581 	uint64_t key_size;
582 
583 	res = copy_from_user(&s, size, sizeof(s));
584 	if (res != TEE_SUCCESS)
585 		return res;
586 
587 	key_size = key->key_size;
588 	res = copy_to_user(size, &key_size, sizeof(key_size));
589 	if (res != TEE_SUCCESS)
590 		return res;
591 
592 	if (s < key->key_size || !buffer)
593 		return TEE_ERROR_SHORT_BUFFER;
594 
595 	return copy_to_user(buffer, key + 1, key->key_size);
596 }
597 
598 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data,
599 					   size_t data_len, size_t *offs)
600 {
601 	TEE_Result res;
602 	struct tee_cryp_obj_secret *key = attr;
603 	size_t next_offs;
604 
605 	res = op_u32_to_binary_helper(key->key_size, data, data_len, offs);
606 	if (res != TEE_SUCCESS)
607 		return res;
608 
609 	if (ADD_OVERFLOW(*offs, key->key_size, &next_offs))
610 		return TEE_ERROR_OVERFLOW;
611 
612 	if (data && next_offs <= data_len)
613 		memcpy((uint8_t *)data + *offs, key + 1, key->key_size);
614 	(*offs) = next_offs;
615 
616 	return TEE_SUCCESS;
617 }
618 
619 static bool op_attr_secret_value_from_binary(void *attr, const void *data,
620 					     size_t data_len, size_t *offs)
621 {
622 	struct tee_cryp_obj_secret *key = attr;
623 	uint32_t s;
624 
625 	if (!op_u32_from_binary_helper(&s, data, data_len, offs))
626 		return false;
627 
628 	if ((*offs + s) > data_len)
629 		return false;
630 
631 	/* Data size has to fit in allocated buffer */
632 	if (s > key->alloc_size)
633 		return false;
634 	key->key_size = s;
635 	memcpy(key + 1, (const uint8_t *)data + *offs, s);
636 	(*offs) += s;
637 	return true;
638 }
639 
640 
641 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr)
642 {
643 	struct tee_cryp_obj_secret *key = attr;
644 	struct tee_cryp_obj_secret *src_key = src_attr;
645 
646 	if (src_key->key_size > key->alloc_size)
647 		return TEE_ERROR_BAD_STATE;
648 	memcpy(key + 1, src_key + 1, src_key->key_size);
649 	key->key_size = src_key->key_size;
650 	return TEE_SUCCESS;
651 }
652 
653 static void op_attr_secret_value_clear(void *attr)
654 {
655 	struct tee_cryp_obj_secret *key = attr;
656 
657 	key->key_size = 0;
658 	memset(key + 1, 0, key->alloc_size);
659 }
660 
661 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer,
662 					   size_t size)
663 {
664 	struct bignum **bn = attr;
665 
666 	return crypto_bignum_bin2bn(buffer, size, *bn);
667 }
668 
669 static TEE_Result op_attr_bignum_to_user(void *attr,
670 					 struct tee_ta_session *sess,
671 					 void *buffer, uint64_t *size)
672 {
673 	TEE_Result res = TEE_SUCCESS;
674 	struct bignum **bn = attr;
675 	uint64_t req_size = 0;
676 	uint64_t s = 0;
677 
678 	res = copy_from_user(&s, size, sizeof(s));
679 	if (res != TEE_SUCCESS)
680 		return res;
681 
682 	req_size = crypto_bignum_num_bytes(*bn);
683 	res = copy_to_user(size, &req_size, sizeof(req_size));
684 	if (res != TEE_SUCCESS)
685 		return res;
686 	if (!req_size)
687 		return TEE_SUCCESS;
688 	if (s < req_size || !buffer)
689 		return TEE_ERROR_SHORT_BUFFER;
690 
691 	/* Check we can access data using supplied user mode pointer */
692 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
693 					  TEE_MEMORY_ACCESS_READ |
694 					  TEE_MEMORY_ACCESS_WRITE |
695 					  TEE_MEMORY_ACCESS_ANY_OWNER,
696 					  (uaddr_t)buffer, req_size);
697 	if (res != TEE_SUCCESS)
698 		return res;
699 	/*
700 	* Write the bignum (wich raw data points to) into an array of
701 	* bytes (stored in buffer)
702 	*/
703 	crypto_bignum_bn2bin(*bn, buffer);
704 	return TEE_SUCCESS;
705 }
706 
707 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data,
708 					   size_t data_len, size_t *offs)
709 {
710 	TEE_Result res;
711 	struct bignum **bn = attr;
712 	uint32_t n = crypto_bignum_num_bytes(*bn);
713 	size_t next_offs;
714 
715 	res = op_u32_to_binary_helper(n, data, data_len, offs);
716 	if (res != TEE_SUCCESS)
717 		return res;
718 
719 	if (ADD_OVERFLOW(*offs, n, &next_offs))
720 		return TEE_ERROR_OVERFLOW;
721 
722 	if (data && next_offs <= data_len)
723 		crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs);
724 	(*offs) = next_offs;
725 
726 	return TEE_SUCCESS;
727 }
728 
729 static bool op_attr_bignum_from_binary(void *attr, const void *data,
730 				       size_t data_len, size_t *offs)
731 {
732 	struct bignum **bn = attr;
733 	uint32_t n;
734 
735 	if (!op_u32_from_binary_helper(&n, data, data_len, offs))
736 		return false;
737 
738 	if ((*offs + n) > data_len)
739 		return false;
740 	if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn))
741 		return false;
742 	(*offs) += n;
743 	return true;
744 }
745 
746 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr)
747 {
748 	struct bignum **bn = attr;
749 	struct bignum **src_bn = src_attr;
750 
751 	crypto_bignum_copy(*bn, *src_bn);
752 	return TEE_SUCCESS;
753 }
754 
755 static void op_attr_bignum_clear(void *attr)
756 {
757 	struct bignum **bn = attr;
758 
759 	crypto_bignum_clear(*bn);
760 }
761 
762 static void op_attr_bignum_free(void *attr)
763 {
764 	struct bignum **bn = attr;
765 
766 	crypto_bignum_free(*bn);
767 	*bn = NULL;
768 }
769 
770 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer,
771 					  size_t size)
772 {
773 	uint32_t *v = attr;
774 
775 	if (size != sizeof(uint32_t) * 2)
776 		return TEE_ERROR_GENERIC; /* "can't happen */
777 
778 	/* Note that only the first value is copied */
779 	memcpy(v, buffer, sizeof(uint32_t));
780 	return TEE_SUCCESS;
781 }
782 
783 static TEE_Result op_attr_value_to_user(void *attr,
784 					struct tee_ta_session *sess __unused,
785 					void *buffer, uint64_t *size)
786 {
787 	TEE_Result res;
788 	uint32_t *v = attr;
789 	uint64_t s;
790 	uint32_t value[2] = { *v };
791 	uint64_t req_size = sizeof(value);
792 
793 	res = copy_from_user(&s, size, sizeof(s));
794 	if (res != TEE_SUCCESS)
795 		return res;
796 
797 	if (s < req_size || !buffer)
798 		return TEE_ERROR_SHORT_BUFFER;
799 
800 	return copy_to_user(buffer, value, req_size);
801 }
802 
803 static TEE_Result op_attr_value_to_binary(void *attr, void *data,
804 					  size_t data_len, size_t *offs)
805 {
806 	uint32_t *v = attr;
807 
808 	return op_u32_to_binary_helper(*v, data, data_len, offs);
809 }
810 
811 static bool op_attr_value_from_binary(void *attr, const void *data,
812 				      size_t data_len, size_t *offs)
813 {
814 	uint32_t *v = attr;
815 
816 	return op_u32_from_binary_helper(v, data, data_len, offs);
817 }
818 
819 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr)
820 {
821 	uint32_t *v = attr;
822 	uint32_t *src_v = src_attr;
823 
824 	*v = *src_v;
825 	return TEE_SUCCESS;
826 }
827 
828 static void op_attr_value_clear(void *attr)
829 {
830 	uint32_t *v = attr;
831 
832 	*v = 0;
833 }
834 
835 static const struct attr_ops attr_ops[] = {
836 	[ATTR_OPS_INDEX_SECRET] = {
837 		.from_user = op_attr_secret_value_from_user,
838 		.to_user = op_attr_secret_value_to_user,
839 		.to_binary = op_attr_secret_value_to_binary,
840 		.from_binary = op_attr_secret_value_from_binary,
841 		.from_obj = op_attr_secret_value_from_obj,
842 		.free = op_attr_secret_value_clear, /* not a typo */
843 		.clear = op_attr_secret_value_clear,
844 	},
845 	[ATTR_OPS_INDEX_BIGNUM] = {
846 		.from_user = op_attr_bignum_from_user,
847 		.to_user = op_attr_bignum_to_user,
848 		.to_binary = op_attr_bignum_to_binary,
849 		.from_binary = op_attr_bignum_from_binary,
850 		.from_obj = op_attr_bignum_from_obj,
851 		.free = op_attr_bignum_free,
852 		.clear = op_attr_bignum_clear,
853 	},
854 	[ATTR_OPS_INDEX_VALUE] = {
855 		.from_user = op_attr_value_from_user,
856 		.to_user = op_attr_value_to_user,
857 		.to_binary = op_attr_value_to_binary,
858 		.from_binary = op_attr_value_from_binary,
859 		.from_obj = op_attr_value_from_obj,
860 		.free = op_attr_value_clear, /* not a typo */
861 		.clear = op_attr_value_clear,
862 	},
863 };
864 
865 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src)
866 {
867 	uint64_t d = 0;
868 	TEE_Result res = copy_from_user(&d, src, sizeof(d));
869 
870 	/*
871 	 * On 32-bit systems a size_t can't hold a uint64_t so we need to
872 	 * check that the value isn't too large.
873 	 */
874 	if (!res && ADD_OVERFLOW(0, d, dst))
875 		return TEE_ERROR_OVERFLOW;
876 
877 	return res;
878 }
879 
880 static TEE_Result put_user_u64(uint64_t *dst, size_t value)
881 {
882 	uint64_t v = value;
883 
884 	return copy_to_user(dst, &v, sizeof(v));
885 }
886 
887 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info)
888 {
889 	TEE_Result res;
890 	struct tee_ta_session *sess;
891 	struct tee_obj *o;
892 
893 	res = tee_ta_get_current_session(&sess);
894 	if (res != TEE_SUCCESS)
895 		goto exit;
896 
897 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
898 			  uref_to_vaddr(obj), &o);
899 	if (res != TEE_SUCCESS)
900 		goto exit;
901 
902 	res = copy_to_user_private(info, &o->info, sizeof(o->info));
903 
904 exit:
905 	return res;
906 }
907 
908 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj,
909 			unsigned long usage)
910 {
911 	TEE_Result res;
912 	struct tee_ta_session *sess;
913 	struct tee_obj *o;
914 
915 	res = tee_ta_get_current_session(&sess);
916 	if (res != TEE_SUCCESS)
917 		goto exit;
918 
919 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
920 	if (res != TEE_SUCCESS)
921 		goto exit;
922 
923 	o->info.objectUsage &= usage;
924 
925 exit:
926 	return res;
927 }
928 
929 static int tee_svc_cryp_obj_find_type_attr_idx(
930 		uint32_t attr_id,
931 		const struct tee_cryp_obj_type_props *type_props)
932 {
933 	size_t n;
934 
935 	for (n = 0; n < type_props->num_type_attrs; n++) {
936 		if (attr_id == type_props->type_attrs[n].attr_id)
937 			return n;
938 	}
939 	return -1;
940 }
941 
942 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props(
943 		TEE_ObjectType obj_type)
944 {
945 	size_t n;
946 
947 	for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) {
948 		if (tee_cryp_obj_props[n].obj_type == obj_type)
949 			return tee_cryp_obj_props + n;
950 	}
951 
952 	return NULL;
953 }
954 
955 /* Set an attribute on an object */
956 static void set_attribute(struct tee_obj *o,
957 			  const struct tee_cryp_obj_type_props *props,
958 			  uint32_t attr)
959 {
960 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
961 
962 	if (idx < 0)
963 		return;
964 	o->have_attrs |= BIT(idx);
965 }
966 
967 /* Get an attribute on an object */
968 static uint32_t get_attribute(const struct tee_obj *o,
969 			      const struct tee_cryp_obj_type_props *props,
970 			      uint32_t attr)
971 {
972 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
973 
974 	if (idx < 0)
975 		return 0;
976 	return o->have_attrs & BIT(idx);
977 }
978 
979 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id,
980 			void *buffer, uint64_t *size)
981 {
982 	TEE_Result res;
983 	struct tee_ta_session *sess;
984 	struct tee_obj *o;
985 	const struct tee_cryp_obj_type_props *type_props;
986 	int idx;
987 	const struct attr_ops *ops;
988 	void *attr;
989 
990 	res = tee_ta_get_current_session(&sess);
991 	if (res != TEE_SUCCESS)
992 		return res;
993 
994 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
995 	if (res != TEE_SUCCESS)
996 		return TEE_ERROR_ITEM_NOT_FOUND;
997 
998 	/* Check that the object is initialized */
999 	if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED))
1000 		return TEE_ERROR_BAD_PARAMETERS;
1001 
1002 	/* Check that getting the attribute is allowed */
1003 	if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) &&
1004 	    !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE))
1005 		return TEE_ERROR_BAD_PARAMETERS;
1006 
1007 	type_props = tee_svc_find_type_props(o->info.objectType);
1008 	if (!type_props) {
1009 		/* Unknown object type, "can't happen" */
1010 		return TEE_ERROR_BAD_STATE;
1011 	}
1012 
1013 	idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props);
1014 	if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0))
1015 		return TEE_ERROR_ITEM_NOT_FOUND;
1016 
1017 	ops = attr_ops + type_props->type_attrs[idx].ops_index;
1018 	attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs;
1019 	return ops->to_user(attr, sess, buffer, size);
1020 }
1021 
1022 void tee_obj_attr_free(struct tee_obj *o)
1023 {
1024 	const struct tee_cryp_obj_type_props *tp;
1025 	size_t n;
1026 
1027 	if (!o->attr)
1028 		return;
1029 	tp = tee_svc_find_type_props(o->info.objectType);
1030 	if (!tp)
1031 		return;
1032 
1033 	for (n = 0; n < tp->num_type_attrs; n++) {
1034 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1035 
1036 		attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs);
1037 	}
1038 }
1039 
1040 void tee_obj_attr_clear(struct tee_obj *o)
1041 {
1042 	const struct tee_cryp_obj_type_props *tp;
1043 	size_t n;
1044 
1045 	if (!o->attr)
1046 		return;
1047 	tp = tee_svc_find_type_props(o->info.objectType);
1048 	if (!tp)
1049 		return;
1050 
1051 	for (n = 0; n < tp->num_type_attrs; n++) {
1052 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1053 
1054 		attr_ops[ta->ops_index].clear((uint8_t *)o->attr +
1055 					      ta->raw_offs);
1056 	}
1057 }
1058 
1059 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data,
1060 				  size_t *data_len)
1061 {
1062 	const struct tee_cryp_obj_type_props *tp;
1063 	size_t n;
1064 	size_t offs = 0;
1065 	size_t len = data ? *data_len : 0;
1066 	TEE_Result res;
1067 
1068 	if (o->info.objectType == TEE_TYPE_DATA) {
1069 		*data_len = 0;
1070 		return TEE_SUCCESS; /* pure data object */
1071 	}
1072 	if (!o->attr)
1073 		return TEE_ERROR_BAD_STATE;
1074 	tp = tee_svc_find_type_props(o->info.objectType);
1075 	if (!tp)
1076 		return TEE_ERROR_BAD_STATE;
1077 
1078 	for (n = 0; n < tp->num_type_attrs; n++) {
1079 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1080 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1081 
1082 		res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs);
1083 		if (res != TEE_SUCCESS)
1084 			return res;
1085 	}
1086 
1087 	*data_len = offs;
1088 	if (data && offs > len)
1089 		return TEE_ERROR_SHORT_BUFFER;
1090 	return TEE_SUCCESS;
1091 }
1092 
1093 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data,
1094 				    size_t data_len)
1095 {
1096 	const struct tee_cryp_obj_type_props *tp;
1097 	size_t n;
1098 	size_t offs = 0;
1099 
1100 	if (o->info.objectType == TEE_TYPE_DATA)
1101 		return TEE_SUCCESS; /* pure data object */
1102 	if (!o->attr)
1103 		return TEE_ERROR_BAD_STATE;
1104 	tp = tee_svc_find_type_props(o->info.objectType);
1105 	if (!tp)
1106 		return TEE_ERROR_BAD_STATE;
1107 
1108 	for (n = 0; n < tp->num_type_attrs; n++) {
1109 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1110 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1111 
1112 		if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len,
1113 							 &offs))
1114 			return TEE_ERROR_CORRUPT_OBJECT;
1115 	}
1116 	return TEE_SUCCESS;
1117 }
1118 
1119 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src)
1120 {
1121 	TEE_Result res;
1122 	const struct tee_cryp_obj_type_props *tp;
1123 	const struct tee_cryp_obj_type_attrs *ta;
1124 	size_t n;
1125 	uint32_t have_attrs = 0;
1126 	void *attr;
1127 	void *src_attr;
1128 
1129 	if (o->info.objectType == TEE_TYPE_DATA)
1130 		return TEE_SUCCESS; /* pure data object */
1131 	if (!o->attr)
1132 		return TEE_ERROR_BAD_STATE;
1133 	tp = tee_svc_find_type_props(o->info.objectType);
1134 	if (!tp)
1135 		return TEE_ERROR_BAD_STATE;
1136 
1137 	if (o->info.objectType == src->info.objectType) {
1138 		have_attrs = src->have_attrs;
1139 		for (n = 0; n < tp->num_type_attrs; n++) {
1140 			ta = tp->type_attrs + n;
1141 			attr = (uint8_t *)o->attr + ta->raw_offs;
1142 			src_attr = (uint8_t *)src->attr + ta->raw_offs;
1143 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1144 			if (res != TEE_SUCCESS)
1145 				return res;
1146 		}
1147 	} else {
1148 		const struct tee_cryp_obj_type_props *tp_src;
1149 		int idx;
1150 
1151 		if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) {
1152 			if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR)
1153 				return TEE_ERROR_BAD_PARAMETERS;
1154 		} else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) {
1155 			if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR)
1156 				return TEE_ERROR_BAD_PARAMETERS;
1157 		} else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) {
1158 			if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR)
1159 				return TEE_ERROR_BAD_PARAMETERS;
1160 		} else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) {
1161 			if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR)
1162 				return TEE_ERROR_BAD_PARAMETERS;
1163 		} else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) {
1164 			if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR)
1165 				return TEE_ERROR_BAD_PARAMETERS;
1166 		} else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) {
1167 			if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR)
1168 				return TEE_ERROR_BAD_PARAMETERS;
1169 		} else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) {
1170 			if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR)
1171 				return TEE_ERROR_BAD_PARAMETERS;
1172 		} else {
1173 			return TEE_ERROR_BAD_PARAMETERS;
1174 		}
1175 
1176 		tp_src = tee_svc_find_type_props(src->info.objectType);
1177 		if (!tp_src)
1178 			return TEE_ERROR_BAD_STATE;
1179 
1180 		have_attrs = BIT32(tp->num_type_attrs) - 1;
1181 		for (n = 0; n < tp->num_type_attrs; n++) {
1182 			ta = tp->type_attrs + n;
1183 
1184 			idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id,
1185 								  tp_src);
1186 			if (idx < 0)
1187 				return TEE_ERROR_BAD_STATE;
1188 
1189 			attr = (uint8_t *)o->attr + ta->raw_offs;
1190 			src_attr = (uint8_t *)src->attr +
1191 				   tp_src->type_attrs[idx].raw_offs;
1192 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1193 			if (res != TEE_SUCCESS)
1194 				return res;
1195 		}
1196 	}
1197 
1198 	o->have_attrs = have_attrs;
1199 	return TEE_SUCCESS;
1200 }
1201 
1202 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz)
1203 {
1204 	return IS_ENABLED(CFG_COMPAT_GP10_DES) &&
1205 	       ((type == TEE_TYPE_DES && sz == 56) ||
1206 		(type == TEE_TYPE_DES3 && (sz == 112 || sz == 168)));
1207 }
1208 
1209 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props,
1210 				 size_t key_size)
1211 {
1212 	size_t sz = key_size;
1213 
1214 	/*
1215 	 * In GP Internal API Specification 1.0 the partity bits aren't
1216 	 * counted when telling the size of the key in bits so add them
1217 	 * here if missing.
1218 	 */
1219 	if (is_gp_legacy_des_key_size(props->obj_type, sz))
1220 		sz += sz / 7;
1221 
1222 	if (sz % props->quanta != 0)
1223 		return TEE_ERROR_NOT_SUPPORTED;
1224 	if (sz < props->min_size)
1225 		return TEE_ERROR_NOT_SUPPORTED;
1226 	if (sz > props->max_size)
1227 		return TEE_ERROR_NOT_SUPPORTED;
1228 
1229 	return TEE_SUCCESS;
1230 }
1231 
1232 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type,
1233 			    size_t max_key_size)
1234 {
1235 	TEE_Result res = TEE_SUCCESS;
1236 	const struct tee_cryp_obj_type_props *type_props;
1237 
1238 	/* Can only set type for newly allocated objs */
1239 	if (o->attr)
1240 		return TEE_ERROR_BAD_STATE;
1241 
1242 	/*
1243 	 * Verify that maxKeySize is supported and find out how
1244 	 * much should be allocated.
1245 	 */
1246 
1247 	if (obj_type == TEE_TYPE_DATA) {
1248 		if (max_key_size)
1249 			return TEE_ERROR_NOT_SUPPORTED;
1250 	} else {
1251 		/* Find description of object */
1252 		type_props = tee_svc_find_type_props(obj_type);
1253 		if (!type_props)
1254 			return TEE_ERROR_NOT_SUPPORTED;
1255 
1256 		/* Check that max_key_size follows restrictions */
1257 		res = check_key_size(type_props, max_key_size);
1258 		if (res)
1259 			return res;
1260 
1261 		o->attr = calloc(1, type_props->alloc_size);
1262 		if (!o->attr)
1263 			return TEE_ERROR_OUT_OF_MEMORY;
1264 	}
1265 
1266 	/* If we have a key structure, pre-allocate the bignums inside */
1267 	switch (obj_type) {
1268 	case TEE_TYPE_RSA_PUBLIC_KEY:
1269 		res = crypto_acipher_alloc_rsa_public_key(o->attr,
1270 							  max_key_size);
1271 		break;
1272 	case TEE_TYPE_RSA_KEYPAIR:
1273 		res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size);
1274 		break;
1275 	case TEE_TYPE_DSA_PUBLIC_KEY:
1276 		res = crypto_acipher_alloc_dsa_public_key(o->attr,
1277 							  max_key_size);
1278 		break;
1279 	case TEE_TYPE_DSA_KEYPAIR:
1280 		res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size);
1281 		break;
1282 	case TEE_TYPE_DH_KEYPAIR:
1283 		res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size);
1284 		break;
1285 	case TEE_TYPE_ECDSA_PUBLIC_KEY:
1286 	case TEE_TYPE_ECDH_PUBLIC_KEY:
1287 	case TEE_TYPE_SM2_DSA_PUBLIC_KEY:
1288 	case TEE_TYPE_SM2_PKE_PUBLIC_KEY:
1289 	case TEE_TYPE_SM2_KEP_PUBLIC_KEY:
1290 		res = crypto_acipher_alloc_ecc_public_key(o->attr,
1291 							  max_key_size);
1292 		break;
1293 	case TEE_TYPE_ECDSA_KEYPAIR:
1294 	case TEE_TYPE_ECDH_KEYPAIR:
1295 	case TEE_TYPE_SM2_DSA_KEYPAIR:
1296 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1297 	case TEE_TYPE_SM2_KEP_KEYPAIR:
1298 		res = crypto_acipher_alloc_ecc_keypair(o->attr, max_key_size);
1299 		break;
1300 	default:
1301 		if (obj_type != TEE_TYPE_DATA) {
1302 			struct tee_cryp_obj_secret *key = o->attr;
1303 
1304 			key->alloc_size = type_props->alloc_size -
1305 					  sizeof(*key);
1306 		}
1307 		break;
1308 	}
1309 
1310 	if (res != TEE_SUCCESS)
1311 		return res;
1312 
1313 	o->info.objectType = obj_type;
1314 	o->info.maxKeySize = max_key_size;
1315 	o->info.objectUsage = TEE_USAGE_DEFAULT;
1316 
1317 	return TEE_SUCCESS;
1318 }
1319 
1320 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type,
1321 			unsigned long max_key_size, uint32_t *obj)
1322 {
1323 	TEE_Result res;
1324 	struct tee_ta_session *sess;
1325 	struct tee_obj *o;
1326 
1327 	res = tee_ta_get_current_session(&sess);
1328 	if (res != TEE_SUCCESS)
1329 		return res;
1330 
1331 	o = tee_obj_alloc();
1332 	if (!o)
1333 		return TEE_ERROR_OUT_OF_MEMORY;
1334 
1335 	res = tee_obj_set_type(o, obj_type, max_key_size);
1336 	if (res != TEE_SUCCESS) {
1337 		tee_obj_free(o);
1338 		return res;
1339 	}
1340 
1341 	tee_obj_add(to_user_ta_ctx(sess->ctx), o);
1342 
1343 	res = copy_kaddr_to_uref(obj, o);
1344 	if (res != TEE_SUCCESS)
1345 		tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1346 	return res;
1347 }
1348 
1349 TEE_Result syscall_cryp_obj_close(unsigned long obj)
1350 {
1351 	TEE_Result res;
1352 	struct tee_ta_session *sess;
1353 	struct tee_obj *o;
1354 
1355 	res = tee_ta_get_current_session(&sess);
1356 	if (res != TEE_SUCCESS)
1357 		return res;
1358 
1359 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1360 	if (res != TEE_SUCCESS)
1361 		return res;
1362 
1363 	/*
1364 	 * If it's busy it's used by an operation, a client should never have
1365 	 * this handle.
1366 	 */
1367 	if (o->busy)
1368 		return TEE_ERROR_ITEM_NOT_FOUND;
1369 
1370 	tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1371 	return TEE_SUCCESS;
1372 }
1373 
1374 TEE_Result syscall_cryp_obj_reset(unsigned long obj)
1375 {
1376 	TEE_Result res;
1377 	struct tee_ta_session *sess;
1378 	struct tee_obj *o;
1379 
1380 	res = tee_ta_get_current_session(&sess);
1381 	if (res != TEE_SUCCESS)
1382 		return res;
1383 
1384 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1385 	if (res != TEE_SUCCESS)
1386 		return res;
1387 
1388 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) {
1389 		tee_obj_attr_clear(o);
1390 		o->info.keySize = 0;
1391 		o->info.objectUsage = TEE_USAGE_DEFAULT;
1392 	} else {
1393 		return TEE_ERROR_BAD_PARAMETERS;
1394 	}
1395 
1396 	/* the object is no more initialized */
1397 	o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;
1398 
1399 	return TEE_SUCCESS;
1400 }
1401 
1402 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,
1403 			const struct utee_attribute *usr_attrs,
1404 			uint32_t attr_count, TEE_Attribute *attrs)
1405 {
1406 	TEE_Result res = TEE_SUCCESS;
1407 	size_t size = 0;
1408 	uint32_t n = 0;
1409 
1410 	if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size))
1411 		return TEE_ERROR_OVERFLOW;
1412 
1413 	res = tee_mmu_check_access_rights(&utc->uctx,
1414 					  TEE_MEMORY_ACCESS_READ |
1415 					  TEE_MEMORY_ACCESS_ANY_OWNER,
1416 					  (uaddr_t)usr_attrs, size);
1417 	if (res != TEE_SUCCESS)
1418 		return res;
1419 
1420 	for (n = 0; n < attr_count; n++) {
1421 		attrs[n].attributeID = usr_attrs[n].attribute_id;
1422 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) {
1423 			attrs[n].content.value.a = usr_attrs[n].a;
1424 			attrs[n].content.value.b = usr_attrs[n].b;
1425 		} else {
1426 			uintptr_t buf = usr_attrs[n].a;
1427 			size_t len = usr_attrs[n].b;
1428 			uint32_t flags = TEE_MEMORY_ACCESS_READ |
1429 					 TEE_MEMORY_ACCESS_ANY_OWNER;
1430 
1431 			res = tee_mmu_check_access_rights(&utc->uctx, flags,
1432 							  buf, len);
1433 			if (res != TEE_SUCCESS)
1434 				return res;
1435 			attrs[n].content.ref.buffer = (void *)buf;
1436 			attrs[n].content.ref.length = len;
1437 		}
1438 	}
1439 
1440 	return TEE_SUCCESS;
1441 }
1442 
1443 enum attr_usage {
1444 	ATTR_USAGE_POPULATE,
1445 	ATTR_USAGE_GENERATE_KEY
1446 };
1447 
1448 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage,
1449 					  const struct tee_cryp_obj_type_props
1450 						*type_props,
1451 					  const TEE_Attribute *attrs,
1452 					  uint32_t attr_count)
1453 {
1454 	uint32_t required_flag = 0;
1455 	uint32_t opt_flag = 0;
1456 	bool all_opt_needed = false;
1457 	uint32_t req_attrs = 0;
1458 	uint32_t opt_grp_attrs = 0;
1459 	uint32_t attrs_found = 0;
1460 	size_t n = 0;
1461 	uint32_t bit = 0;
1462 	uint32_t flags = 0;
1463 	int idx = 0;
1464 
1465 	if (usage == ATTR_USAGE_POPULATE) {
1466 		required_flag = TEE_TYPE_ATTR_REQUIRED;
1467 		opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP;
1468 		all_opt_needed = true;
1469 	} else {
1470 		required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ;
1471 		opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT;
1472 		all_opt_needed = false;
1473 	}
1474 
1475 	/*
1476 	 * First find out which attributes are required and which belong to
1477 	 * the optional group
1478 	 */
1479 	for (n = 0; n < type_props->num_type_attrs; n++) {
1480 		bit = 1 << n;
1481 		flags = type_props->type_attrs[n].flags;
1482 
1483 		if (flags & required_flag)
1484 			req_attrs |= bit;
1485 		else if (flags & opt_flag)
1486 			opt_grp_attrs |= bit;
1487 	}
1488 
1489 	/*
1490 	 * Verify that all required attributes are in place and
1491 	 * that the same attribute isn't repeated.
1492 	 */
1493 	for (n = 0; n < attr_count; n++) {
1494 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1495 							attrs[n].attributeID,
1496 							type_props);
1497 
1498 		/* attribute not defined in current object type */
1499 		if (idx < 0)
1500 			return TEE_ERROR_ITEM_NOT_FOUND;
1501 
1502 		bit = 1 << idx;
1503 
1504 		/* attribute not repeated */
1505 		if ((attrs_found & bit) != 0)
1506 			return TEE_ERROR_ITEM_NOT_FOUND;
1507 
1508 		/*
1509 		 * Attribute not defined in current object type for this
1510 		 * usage.
1511 		 */
1512 		if (!(bit & (req_attrs | opt_grp_attrs)))
1513 			return TEE_ERROR_ITEM_NOT_FOUND;
1514 
1515 		attrs_found |= bit;
1516 	}
1517 	/* Required attribute missing */
1518 	if ((attrs_found & req_attrs) != req_attrs)
1519 		return TEE_ERROR_ITEM_NOT_FOUND;
1520 
1521 	/*
1522 	 * If the flag says that "if one of the optional attributes are included
1523 	 * all of them has to be included" this must be checked.
1524 	 */
1525 	if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 &&
1526 	    (attrs_found & opt_grp_attrs) != opt_grp_attrs)
1527 		return TEE_ERROR_ITEM_NOT_FOUND;
1528 
1529 	return TEE_SUCCESS;
1530 }
1531 
1532 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size)
1533 {
1534 	switch (curve) {
1535 	case TEE_ECC_CURVE_NIST_P192:
1536 		*key_size = 192;
1537 		break;
1538 	case TEE_ECC_CURVE_NIST_P224:
1539 		*key_size = 224;
1540 		break;
1541 	case TEE_ECC_CURVE_NIST_P256:
1542 		*key_size = 256;
1543 		break;
1544 	case TEE_ECC_CURVE_NIST_P384:
1545 		*key_size = 384;
1546 		break;
1547 	case TEE_ECC_CURVE_NIST_P521:
1548 		*key_size = 521;
1549 		break;
1550 	case TEE_ECC_CURVE_SM2:
1551 		*key_size = 256;
1552 		break;
1553 	default:
1554 		return TEE_ERROR_NOT_SUPPORTED;
1555 	}
1556 
1557 	return TEE_SUCCESS;
1558 }
1559 
1560 static size_t get_used_bits(const TEE_Attribute *a)
1561 {
1562 	int nbits = a->content.ref.length * 8;
1563 	int v = 0;
1564 
1565 	bit_ffs(a->content.ref.buffer, nbits, &v);
1566 	return nbits - v;
1567 }
1568 
1569 static TEE_Result tee_svc_cryp_obj_populate_type(
1570 		struct tee_obj *o,
1571 		const struct tee_cryp_obj_type_props *type_props,
1572 		const TEE_Attribute *attrs,
1573 		uint32_t attr_count)
1574 {
1575 	TEE_Result res = TEE_SUCCESS;
1576 	uint32_t have_attrs = 0;
1577 	size_t obj_size = 0;
1578 	size_t n = 0;
1579 	int idx = 0;
1580 	const struct attr_ops *ops = NULL;
1581 	void *attr = NULL;
1582 
1583 	for (n = 0; n < attr_count; n++) {
1584 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1585 							attrs[n].attributeID,
1586 							type_props);
1587 		/* attribute not defined in current object type */
1588 		if (idx < 0)
1589 			return TEE_ERROR_ITEM_NOT_FOUND;
1590 
1591 		have_attrs |= BIT32(idx);
1592 		ops = attr_ops + type_props->type_attrs[idx].ops_index;
1593 		attr = (uint8_t *)o->attr +
1594 		       type_props->type_attrs[idx].raw_offs;
1595 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE)
1596 			res = ops->from_user(attr, &attrs[n].content.value,
1597 					     sizeof(attrs[n].content.value));
1598 		else
1599 			res = ops->from_user(attr, attrs[n].content.ref.buffer,
1600 					     attrs[n].content.ref.length);
1601 		if (res != TEE_SUCCESS)
1602 			return res;
1603 
1604 		/*
1605 		 * The attribute that gives the size of the object is
1606 		 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR.
1607 		 */
1608 		if (type_props->type_attrs[idx].flags &
1609 		    TEE_TYPE_ATTR_SIZE_INDICATOR) {
1610 			/* There should be only one */
1611 			if (obj_size)
1612 				return TEE_ERROR_BAD_STATE;
1613 
1614 			/*
1615 			 * For ECDSA/ECDH we need to translate curve into
1616 			 * object size
1617 			 */
1618 			if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) {
1619 				res = get_ec_key_size(attrs[n].content.value.a,
1620 						      &obj_size);
1621 				if (res != TEE_SUCCESS)
1622 					return res;
1623 			} else {
1624 				TEE_ObjectType obj_type = o->info.objectType;
1625 				size_t sz = o->info.maxKeySize;
1626 
1627 				obj_size = attrs[n].content.ref.length * 8;
1628 				/* Drop the parity bits for legacy objects */
1629 				if (is_gp_legacy_des_key_size(obj_type, sz))
1630 					obj_size -= obj_size / 8;
1631 			}
1632 			if (obj_size > o->info.maxKeySize)
1633 				return TEE_ERROR_BAD_STATE;
1634 		}
1635 
1636 		/*
1637 		 * Bignum attributes limited by the number of bits in
1638 		 * o->info.keySize are flagged with
1639 		 * TEE_TYPE_ATTR_BIGNUM_MAXBITS.
1640 		 */
1641 		if (type_props->type_attrs[idx].flags &
1642 		    TEE_TYPE_ATTR_BIGNUM_MAXBITS) {
1643 			if (get_used_bits(attrs + n) > o->info.maxKeySize)
1644 				return TEE_ERROR_BAD_STATE;
1645 		}
1646 	}
1647 
1648 	o->have_attrs = have_attrs;
1649 	o->info.keySize = obj_size;
1650 	/*
1651 	 * In GP Internal API Specification 1.0 the partity bits aren't
1652 	 * counted when telling the size of the key in bits so remove the
1653 	 * parity bits here.
1654 	 */
1655 	if (is_gp_legacy_des_key_size(o->info.objectType, o->info.maxKeySize))
1656 		o->info.keySize -= o->info.keySize / 8;
1657 
1658 	return TEE_SUCCESS;
1659 }
1660 
1661 TEE_Result syscall_cryp_obj_populate(unsigned long obj,
1662 			struct utee_attribute *usr_attrs,
1663 			unsigned long attr_count)
1664 {
1665 	TEE_Result res;
1666 	struct tee_ta_session *sess;
1667 	struct tee_obj *o;
1668 	const struct tee_cryp_obj_type_props *type_props;
1669 	TEE_Attribute *attrs = NULL;
1670 
1671 	res = tee_ta_get_current_session(&sess);
1672 	if (res != TEE_SUCCESS)
1673 		return res;
1674 
1675 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1676 	if (res != TEE_SUCCESS)
1677 		return res;
1678 
1679 	/* Must be a transient object */
1680 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1681 		return TEE_ERROR_BAD_PARAMETERS;
1682 
1683 	/* Must not be initialized already */
1684 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1685 		return TEE_ERROR_BAD_PARAMETERS;
1686 
1687 	type_props = tee_svc_find_type_props(o->info.objectType);
1688 	if (!type_props)
1689 		return TEE_ERROR_NOT_IMPLEMENTED;
1690 
1691 	size_t alloc_size = 0;
1692 
1693 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size))
1694 		return TEE_ERROR_OVERFLOW;
1695 
1696 	attrs = malloc(alloc_size);
1697 	if (!attrs)
1698 		return TEE_ERROR_OUT_OF_MEMORY;
1699 
1700 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
1701 			    attrs);
1702 	if (res != TEE_SUCCESS)
1703 		goto out;
1704 
1705 	res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
1706 				      attrs, attr_count);
1707 	if (res != TEE_SUCCESS)
1708 		goto out;
1709 
1710 	res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
1711 	if (res == TEE_SUCCESS)
1712 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1713 
1714 out:
1715 	free_wipe(attrs);
1716 	return res;
1717 }
1718 
1719 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src)
1720 {
1721 	TEE_Result res;
1722 	struct tee_ta_session *sess;
1723 	struct tee_obj *dst_o;
1724 	struct tee_obj *src_o;
1725 
1726 	res = tee_ta_get_current_session(&sess);
1727 	if (res != TEE_SUCCESS)
1728 		return res;
1729 
1730 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1731 			  uref_to_vaddr(dst), &dst_o);
1732 	if (res != TEE_SUCCESS)
1733 		return res;
1734 
1735 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1736 			  uref_to_vaddr(src), &src_o);
1737 	if (res != TEE_SUCCESS)
1738 		return res;
1739 
1740 	if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1741 		return TEE_ERROR_BAD_PARAMETERS;
1742 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1743 		return TEE_ERROR_BAD_PARAMETERS;
1744 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1745 		return TEE_ERROR_BAD_PARAMETERS;
1746 
1747 	res = tee_obj_attr_copy_from(dst_o, src_o);
1748 	if (res != TEE_SUCCESS)
1749 		return res;
1750 
1751 	dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1752 	dst_o->info.keySize = src_o->info.keySize;
1753 	dst_o->info.objectUsage = src_o->info.objectUsage;
1754 	return TEE_SUCCESS;
1755 }
1756 
1757 static TEE_Result check_pub_rsa_key(struct bignum *e)
1758 {
1759 	size_t n = crypto_bignum_num_bytes(e);
1760 	uint8_t bin_key[256 / 8] = { 0 };
1761 
1762 	/*
1763 	 * NIST SP800-56B requires public RSA key to be an odd integer in
1764 	 * the range 65537 <= e < 2^256.
1765 	 */
1766 
1767 	if (n > sizeof(bin_key) || n < 3)
1768 		return TEE_ERROR_BAD_PARAMETERS;
1769 
1770 	crypto_bignum_bn2bin(e, bin_key);
1771 
1772 	if (!(bin_key[0] & 1)) /* key must be odd */
1773 		return TEE_ERROR_BAD_PARAMETERS;
1774 
1775 	if (n == 3) {
1776 		uint32_t key = 0;
1777 
1778 		for (n = 0; n < 3; n++) {
1779 			key <<= 8;
1780 			key |= bin_key[n];
1781 		}
1782 
1783 		if (key < 65537)
1784 			return TEE_ERROR_BAD_PARAMETERS;
1785 	}
1786 
1787 	/* key is larger than 65537 */
1788 	return TEE_SUCCESS;
1789 }
1790 
1791 static TEE_Result tee_svc_obj_generate_key_rsa(
1792 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1793 	uint32_t key_size,
1794 	const TEE_Attribute *params, uint32_t param_count)
1795 {
1796 	TEE_Result res = TEE_SUCCESS;
1797 	struct rsa_keypair *key = o->attr;
1798 	uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537);
1799 
1800 	/* Copy the present attributes into the obj before starting */
1801 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1802 					     param_count);
1803 	if (res != TEE_SUCCESS)
1804 		return res;
1805 	if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) {
1806 		res = check_pub_rsa_key(key->e);
1807 		if (res)
1808 			return res;
1809 	} else {
1810 		crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e);
1811 	}
1812 	res = crypto_acipher_gen_rsa_key(key, key_size);
1813 	if (res != TEE_SUCCESS)
1814 		return res;
1815 
1816 	/* Set bits for all known attributes for this object type */
1817 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1818 
1819 	return TEE_SUCCESS;
1820 }
1821 
1822 static TEE_Result tee_svc_obj_generate_key_dsa(
1823 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1824 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1825 {
1826 	TEE_Result res;
1827 
1828 	/* Copy the present attributes into the obj before starting */
1829 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1830 					     param_count);
1831 	if (res != TEE_SUCCESS)
1832 		return res;
1833 
1834 	res = crypto_acipher_gen_dsa_key(o->attr, key_size);
1835 	if (res != TEE_SUCCESS)
1836 		return res;
1837 
1838 	/* Set bits for all known attributes for this object type */
1839 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1840 
1841 	return TEE_SUCCESS;
1842 }
1843 
1844 static TEE_Result tee_svc_obj_generate_key_dh(
1845 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1846 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1847 {
1848 	TEE_Result res;
1849 	struct dh_keypair *tee_dh_key;
1850 	struct bignum *dh_q = NULL;
1851 	uint32_t dh_xbits = 0;
1852 
1853 	/* Copy the present attributes into the obj before starting */
1854 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1855 					     param_count);
1856 	if (res != TEE_SUCCESS)
1857 		return res;
1858 
1859 	tee_dh_key = (struct dh_keypair *)o->attr;
1860 
1861 	if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME))
1862 		dh_q = tee_dh_key->q;
1863 	if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS))
1864 		dh_xbits = tee_dh_key->xbits;
1865 	res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size);
1866 	if (res != TEE_SUCCESS)
1867 		return res;
1868 
1869 	/* Set bits for the generated public and private key */
1870 	set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE);
1871 	set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE);
1872 	set_attribute(o, type_props, TEE_ATTR_DH_X_BITS);
1873 	return TEE_SUCCESS;
1874 }
1875 
1876 static TEE_Result tee_svc_obj_generate_key_ecc(
1877 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1878 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1879 {
1880 	TEE_Result res;
1881 	struct ecc_keypair *tee_ecc_key;
1882 
1883 	/* Copy the present attributes into the obj before starting */
1884 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1885 					     param_count);
1886 	if (res != TEE_SUCCESS)
1887 		return res;
1888 
1889 	tee_ecc_key = (struct ecc_keypair *)o->attr;
1890 
1891 	res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size);
1892 	if (res != TEE_SUCCESS)
1893 		return res;
1894 
1895 	/* Set bits for the generated public and private key */
1896 	set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE);
1897 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X);
1898 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y);
1899 	set_attribute(o, type_props, TEE_ATTR_ECC_CURVE);
1900 	return TEE_SUCCESS;
1901 }
1902 
1903 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size,
1904 			const struct utee_attribute *usr_params,
1905 			unsigned long param_count)
1906 {
1907 	TEE_Result res;
1908 	struct tee_ta_session *sess;
1909 	const struct tee_cryp_obj_type_props *type_props;
1910 	struct tee_obj *o;
1911 	struct tee_cryp_obj_secret *key;
1912 	size_t byte_size;
1913 	TEE_Attribute *params = NULL;
1914 
1915 	res = tee_ta_get_current_session(&sess);
1916 	if (res != TEE_SUCCESS)
1917 		return res;
1918 
1919 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1920 	if (res != TEE_SUCCESS)
1921 		return res;
1922 
1923 	/* Must be a transient object */
1924 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1925 		return TEE_ERROR_BAD_STATE;
1926 
1927 	/* Must not be initialized already */
1928 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1929 		return TEE_ERROR_BAD_STATE;
1930 
1931 	/* Find description of object */
1932 	type_props = tee_svc_find_type_props(o->info.objectType);
1933 	if (!type_props)
1934 		return TEE_ERROR_NOT_SUPPORTED;
1935 
1936 	/* Check that key_size follows restrictions */
1937 	res = check_key_size(type_props, key_size);
1938 	if (res)
1939 		return res;
1940 
1941 	size_t alloc_size = 0;
1942 
1943 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
1944 		return TEE_ERROR_OVERFLOW;
1945 
1946 	params = malloc(alloc_size);
1947 	if (!params)
1948 		return TEE_ERROR_OUT_OF_MEMORY;
1949 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count,
1950 			    params);
1951 	if (res != TEE_SUCCESS)
1952 		goto out;
1953 
1954 	res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props,
1955 				      params, param_count);
1956 	if (res != TEE_SUCCESS)
1957 		goto out;
1958 
1959 	switch (o->info.objectType) {
1960 	case TEE_TYPE_AES:
1961 	case TEE_TYPE_DES:
1962 	case TEE_TYPE_DES3:
1963 	case TEE_TYPE_SM4:
1964 	case TEE_TYPE_HMAC_MD5:
1965 	case TEE_TYPE_HMAC_SHA1:
1966 	case TEE_TYPE_HMAC_SHA224:
1967 	case TEE_TYPE_HMAC_SHA256:
1968 	case TEE_TYPE_HMAC_SHA384:
1969 	case TEE_TYPE_HMAC_SHA512:
1970 	case TEE_TYPE_HMAC_SM3:
1971 	case TEE_TYPE_GENERIC_SECRET:
1972 		byte_size = key_size / 8;
1973 
1974 		/*
1975 		 * In GP Internal API Specification 1.0 the partity bits
1976 		 * aren't counted when telling the size of the key in bits.
1977 		 */
1978 		if (is_gp_legacy_des_key_size(o->info.objectType, key_size))
1979 			byte_size = (key_size + key_size / 7) / 8;
1980 
1981 		key = (struct tee_cryp_obj_secret *)o->attr;
1982 		if (byte_size > key->alloc_size) {
1983 			res = TEE_ERROR_EXCESS_DATA;
1984 			goto out;
1985 		}
1986 
1987 		res = crypto_rng_read((void *)(key + 1), byte_size);
1988 		if (res != TEE_SUCCESS)
1989 			goto out;
1990 
1991 		key->key_size = byte_size;
1992 
1993 		/* Set bits for all known attributes for this object type */
1994 		o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1995 
1996 		break;
1997 
1998 	case TEE_TYPE_RSA_KEYPAIR:
1999 		res = tee_svc_obj_generate_key_rsa(o, type_props, key_size,
2000 						   params, param_count);
2001 		if (res != TEE_SUCCESS)
2002 			goto out;
2003 		break;
2004 
2005 	case TEE_TYPE_DSA_KEYPAIR:
2006 		res = tee_svc_obj_generate_key_dsa(o, type_props, key_size,
2007 						   params, param_count);
2008 		if (res != TEE_SUCCESS)
2009 			goto out;
2010 		break;
2011 
2012 	case TEE_TYPE_DH_KEYPAIR:
2013 		res = tee_svc_obj_generate_key_dh(o, type_props, key_size,
2014 						  params, param_count);
2015 		if (res != TEE_SUCCESS)
2016 			goto out;
2017 		break;
2018 
2019 	case TEE_TYPE_ECDSA_KEYPAIR:
2020 	case TEE_TYPE_ECDH_KEYPAIR:
2021 	case TEE_TYPE_SM2_PKE_KEYPAIR:
2022 		res = tee_svc_obj_generate_key_ecc(o, type_props, key_size,
2023 						  params, param_count);
2024 		if (res != TEE_SUCCESS)
2025 			goto out;
2026 		break;
2027 
2028 	default:
2029 		res = TEE_ERROR_BAD_FORMAT;
2030 	}
2031 
2032 out:
2033 	free_wipe(params);
2034 	if (res == TEE_SUCCESS) {
2035 		o->info.keySize = key_size;
2036 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2037 	}
2038 	return res;
2039 }
2040 
2041 static TEE_Result tee_svc_cryp_get_state(struct tee_ta_session *sess,
2042 					 vaddr_t state_id,
2043 					 struct tee_cryp_state **state)
2044 {
2045 	struct tee_cryp_state *s;
2046 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2047 
2048 	TAILQ_FOREACH(s, &utc->cryp_states, link) {
2049 		if (state_id == (vaddr_t)s) {
2050 			*state = s;
2051 			return TEE_SUCCESS;
2052 		}
2053 	}
2054 	return TEE_ERROR_BAD_PARAMETERS;
2055 }
2056 
2057 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs)
2058 {
2059 	struct tee_obj *o;
2060 
2061 	if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS)
2062 		tee_obj_close(utc, o);
2063 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS)
2064 		tee_obj_close(utc, o);
2065 
2066 	TAILQ_REMOVE(&utc->cryp_states, cs, link);
2067 	if (cs->ctx_finalize != NULL)
2068 		cs->ctx_finalize(cs->ctx);
2069 
2070 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2071 	case TEE_OPERATION_CIPHER:
2072 		crypto_cipher_free_ctx(cs->ctx);
2073 		break;
2074 	case TEE_OPERATION_AE:
2075 		crypto_authenc_free_ctx(cs->ctx);
2076 		break;
2077 	case TEE_OPERATION_DIGEST:
2078 		crypto_hash_free_ctx(cs->ctx);
2079 		break;
2080 	case TEE_OPERATION_MAC:
2081 		crypto_mac_free_ctx(cs->ctx);
2082 		break;
2083 	default:
2084 		assert(!cs->ctx);
2085 	}
2086 
2087 	free(cs);
2088 }
2089 
2090 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o,
2091 					      uint32_t algo,
2092 					      TEE_OperationMode mode)
2093 {
2094 	uint32_t req_key_type;
2095 	uint32_t req_key_type2 = 0;
2096 
2097 	switch (TEE_ALG_GET_MAIN_ALG(algo)) {
2098 	case TEE_MAIN_ALGO_MD5:
2099 		req_key_type = TEE_TYPE_HMAC_MD5;
2100 		break;
2101 	case TEE_MAIN_ALGO_SHA1:
2102 		req_key_type = TEE_TYPE_HMAC_SHA1;
2103 		break;
2104 	case TEE_MAIN_ALGO_SHA224:
2105 		req_key_type = TEE_TYPE_HMAC_SHA224;
2106 		break;
2107 	case TEE_MAIN_ALGO_SHA256:
2108 		req_key_type = TEE_TYPE_HMAC_SHA256;
2109 		break;
2110 	case TEE_MAIN_ALGO_SHA384:
2111 		req_key_type = TEE_TYPE_HMAC_SHA384;
2112 		break;
2113 	case TEE_MAIN_ALGO_SHA512:
2114 		req_key_type = TEE_TYPE_HMAC_SHA512;
2115 		break;
2116 	case TEE_MAIN_ALGO_SM3:
2117 		req_key_type = TEE_TYPE_HMAC_SM3;
2118 		break;
2119 	case TEE_MAIN_ALGO_AES:
2120 		req_key_type = TEE_TYPE_AES;
2121 		break;
2122 	case TEE_MAIN_ALGO_DES:
2123 		req_key_type = TEE_TYPE_DES;
2124 		break;
2125 	case TEE_MAIN_ALGO_DES3:
2126 		req_key_type = TEE_TYPE_DES3;
2127 		break;
2128 	case TEE_MAIN_ALGO_SM4:
2129 		req_key_type = TEE_TYPE_SM4;
2130 		break;
2131 	case TEE_MAIN_ALGO_RSA:
2132 		req_key_type = TEE_TYPE_RSA_KEYPAIR;
2133 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2134 			req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY;
2135 		break;
2136 	case TEE_MAIN_ALGO_DSA:
2137 		req_key_type = TEE_TYPE_DSA_KEYPAIR;
2138 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2139 			req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY;
2140 		break;
2141 	case TEE_MAIN_ALGO_DH:
2142 		req_key_type = TEE_TYPE_DH_KEYPAIR;
2143 		break;
2144 	case TEE_MAIN_ALGO_ECDSA:
2145 		req_key_type = TEE_TYPE_ECDSA_KEYPAIR;
2146 		if (mode == TEE_MODE_VERIFY)
2147 			req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY;
2148 		break;
2149 	case TEE_MAIN_ALGO_ECDH:
2150 		req_key_type = TEE_TYPE_ECDH_KEYPAIR;
2151 		break;
2152 	case TEE_MAIN_ALGO_SM2_PKE:
2153 		if (mode == TEE_MODE_ENCRYPT)
2154 			req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY;
2155 		else
2156 			req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR;
2157 		break;
2158 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
2159 		if (mode == TEE_MODE_VERIFY)
2160 			req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY;
2161 		else
2162 			req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR;
2163 		break;
2164 #if defined(CFG_CRYPTO_SM2_KEP)
2165 	case TEE_MAIN_ALGO_SM2_KEP:
2166 		req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR;
2167 		req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY;
2168 		break;
2169 #endif
2170 #if defined(CFG_CRYPTO_HKDF)
2171 	case TEE_MAIN_ALGO_HKDF:
2172 		req_key_type = TEE_TYPE_HKDF_IKM;
2173 		break;
2174 #endif
2175 #if defined(CFG_CRYPTO_CONCAT_KDF)
2176 	case TEE_MAIN_ALGO_CONCAT_KDF:
2177 		req_key_type = TEE_TYPE_CONCAT_KDF_Z;
2178 		break;
2179 #endif
2180 #if defined(CFG_CRYPTO_PBKDF2)
2181 	case TEE_MAIN_ALGO_PBKDF2:
2182 		req_key_type = TEE_TYPE_PBKDF2_PASSWORD;
2183 		break;
2184 #endif
2185 	default:
2186 		return TEE_ERROR_BAD_PARAMETERS;
2187 	}
2188 
2189 	if (req_key_type != o->info.objectType &&
2190 	    req_key_type2 != o->info.objectType)
2191 		return TEE_ERROR_BAD_PARAMETERS;
2192 	return TEE_SUCCESS;
2193 }
2194 
2195 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode,
2196 			unsigned long key1, unsigned long key2,
2197 			uint32_t *state)
2198 {
2199 	TEE_Result res;
2200 	struct tee_cryp_state *cs;
2201 	struct tee_ta_session *sess;
2202 	struct tee_obj *o1 = NULL;
2203 	struct tee_obj *o2 = NULL;
2204 	struct user_ta_ctx *utc;
2205 
2206 	res = tee_ta_get_current_session(&sess);
2207 	if (res != TEE_SUCCESS)
2208 		return res;
2209 	utc = to_user_ta_ctx(sess->ctx);
2210 
2211 	if (key1 != 0) {
2212 		res = tee_obj_get(utc, uref_to_vaddr(key1), &o1);
2213 		if (res != TEE_SUCCESS)
2214 			return res;
2215 		if (o1->busy)
2216 			return TEE_ERROR_BAD_PARAMETERS;
2217 		res = tee_svc_cryp_check_key_type(o1, algo, mode);
2218 		if (res != TEE_SUCCESS)
2219 			return res;
2220 	}
2221 	if (key2 != 0) {
2222 		res = tee_obj_get(utc, uref_to_vaddr(key2), &o2);
2223 		if (res != TEE_SUCCESS)
2224 			return res;
2225 		if (o2->busy)
2226 			return TEE_ERROR_BAD_PARAMETERS;
2227 		res = tee_svc_cryp_check_key_type(o2, algo, mode);
2228 		if (res != TEE_SUCCESS)
2229 			return res;
2230 	}
2231 
2232 	cs = calloc(1, sizeof(struct tee_cryp_state));
2233 	if (!cs)
2234 		return TEE_ERROR_OUT_OF_MEMORY;
2235 	TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link);
2236 	cs->algo = algo;
2237 	cs->mode = mode;
2238 	cs->state = CRYP_STATE_UNINITIALIZED;
2239 
2240 	switch (TEE_ALG_GET_CLASS(algo)) {
2241 	case TEE_OPERATION_CIPHER:
2242 		if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) ||
2243 		    (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) {
2244 			res = TEE_ERROR_BAD_PARAMETERS;
2245 		} else {
2246 			res = crypto_cipher_alloc_ctx(&cs->ctx, algo);
2247 			if (res != TEE_SUCCESS)
2248 				break;
2249 		}
2250 		break;
2251 	case TEE_OPERATION_AE:
2252 		if (key1 == 0 || key2 != 0) {
2253 			res = TEE_ERROR_BAD_PARAMETERS;
2254 		} else {
2255 			res = crypto_authenc_alloc_ctx(&cs->ctx, algo);
2256 			if (res != TEE_SUCCESS)
2257 				break;
2258 		}
2259 		break;
2260 	case TEE_OPERATION_MAC:
2261 		if (key1 == 0 || key2 != 0) {
2262 			res = TEE_ERROR_BAD_PARAMETERS;
2263 		} else {
2264 			res = crypto_mac_alloc_ctx(&cs->ctx, algo);
2265 			if (res != TEE_SUCCESS)
2266 				break;
2267 		}
2268 		break;
2269 	case TEE_OPERATION_DIGEST:
2270 		if (key1 != 0 || key2 != 0) {
2271 			res = TEE_ERROR_BAD_PARAMETERS;
2272 		} else {
2273 			res = crypto_hash_alloc_ctx(&cs->ctx, algo);
2274 			if (res != TEE_SUCCESS)
2275 				break;
2276 		}
2277 		break;
2278 	case TEE_OPERATION_ASYMMETRIC_CIPHER:
2279 	case TEE_OPERATION_ASYMMETRIC_SIGNATURE:
2280 		if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 &&
2281 		    !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) {
2282 			res = TEE_ERROR_NOT_SUPPORTED;
2283 			break;
2284 		}
2285 		if (key1 == 0 || key2 != 0)
2286 			res = TEE_ERROR_BAD_PARAMETERS;
2287 		break;
2288 	case TEE_OPERATION_KEY_DERIVATION:
2289 		if (algo == TEE_ALG_SM2_KEP) {
2290 			if (key1 == 0 || key2 == 0)
2291 				res = TEE_ERROR_BAD_PARAMETERS;
2292 		} else {
2293 			if (key1 == 0 || key2 != 0)
2294 				res = TEE_ERROR_BAD_PARAMETERS;
2295 		}
2296 		break;
2297 	default:
2298 		res = TEE_ERROR_NOT_SUPPORTED;
2299 		break;
2300 	}
2301 	if (res != TEE_SUCCESS)
2302 		goto out;
2303 
2304 	res = copy_kaddr_to_uref(state, cs);
2305 	if (res != TEE_SUCCESS)
2306 		goto out;
2307 
2308 	/* Register keys */
2309 	if (o1 != NULL) {
2310 		o1->busy = true;
2311 		cs->key1 = (vaddr_t)o1;
2312 	}
2313 	if (o2 != NULL) {
2314 		o2->busy = true;
2315 		cs->key2 = (vaddr_t)o2;
2316 	}
2317 
2318 out:
2319 	if (res != TEE_SUCCESS)
2320 		cryp_state_free(utc, cs);
2321 	return res;
2322 }
2323 
2324 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src)
2325 {
2326 	TEE_Result res;
2327 	struct tee_cryp_state *cs_dst;
2328 	struct tee_cryp_state *cs_src;
2329 	struct tee_ta_session *sess;
2330 
2331 	res = tee_ta_get_current_session(&sess);
2332 	if (res != TEE_SUCCESS)
2333 		return res;
2334 
2335 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst);
2336 	if (res != TEE_SUCCESS)
2337 		return res;
2338 
2339 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src);
2340 	if (res != TEE_SUCCESS)
2341 		return res;
2342 	if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode)
2343 		return TEE_ERROR_BAD_PARAMETERS;
2344 
2345 	switch (TEE_ALG_GET_CLASS(cs_src->algo)) {
2346 	case TEE_OPERATION_CIPHER:
2347 		crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx);
2348 		break;
2349 	case TEE_OPERATION_AE:
2350 		crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx);
2351 		break;
2352 	case TEE_OPERATION_DIGEST:
2353 		crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx);
2354 		break;
2355 	case TEE_OPERATION_MAC:
2356 		crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx);
2357 		break;
2358 	default:
2359 		return TEE_ERROR_BAD_STATE;
2360 	}
2361 
2362 	cs_dst->state = cs_src->state;
2363 
2364 	return TEE_SUCCESS;
2365 }
2366 
2367 void tee_svc_cryp_free_states(struct user_ta_ctx *utc)
2368 {
2369 	struct tee_cryp_state_head *states = &utc->cryp_states;
2370 
2371 	while (!TAILQ_EMPTY(states))
2372 		cryp_state_free(utc, TAILQ_FIRST(states));
2373 }
2374 
2375 TEE_Result syscall_cryp_state_free(unsigned long state)
2376 {
2377 	TEE_Result res;
2378 	struct tee_cryp_state *cs;
2379 	struct tee_ta_session *sess;
2380 
2381 	res = tee_ta_get_current_session(&sess);
2382 	if (res != TEE_SUCCESS)
2383 		return res;
2384 
2385 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2386 	if (res != TEE_SUCCESS)
2387 		return res;
2388 	cryp_state_free(to_user_ta_ctx(sess->ctx), cs);
2389 	return TEE_SUCCESS;
2390 }
2391 
2392 TEE_Result syscall_hash_init(unsigned long state,
2393 			     const void *iv __maybe_unused,
2394 			     size_t iv_len __maybe_unused)
2395 {
2396 	TEE_Result res;
2397 	struct tee_cryp_state *cs;
2398 	struct tee_ta_session *sess;
2399 
2400 	res = tee_ta_get_current_session(&sess);
2401 	if (res != TEE_SUCCESS)
2402 		return res;
2403 
2404 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2405 	if (res != TEE_SUCCESS)
2406 		return res;
2407 
2408 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2409 	case TEE_OPERATION_DIGEST:
2410 		res = crypto_hash_init(cs->ctx);
2411 		if (res != TEE_SUCCESS)
2412 			return res;
2413 		break;
2414 	case TEE_OPERATION_MAC:
2415 		{
2416 			struct tee_obj *o;
2417 			struct tee_cryp_obj_secret *key;
2418 
2419 			res = tee_obj_get(to_user_ta_ctx(sess->ctx),
2420 					  cs->key1, &o);
2421 			if (res != TEE_SUCCESS)
2422 				return res;
2423 			if ((o->info.handleFlags &
2424 			     TEE_HANDLE_FLAG_INITIALIZED) == 0)
2425 				return TEE_ERROR_BAD_PARAMETERS;
2426 
2427 			key = (struct tee_cryp_obj_secret *)o->attr;
2428 			res = crypto_mac_init(cs->ctx, (void *)(key + 1),
2429 					      key->key_size);
2430 			if (res != TEE_SUCCESS)
2431 				return res;
2432 			break;
2433 		}
2434 	default:
2435 		return TEE_ERROR_BAD_PARAMETERS;
2436 	}
2437 
2438 	cs->state = CRYP_STATE_INITIALIZED;
2439 
2440 	return TEE_SUCCESS;
2441 }
2442 
2443 TEE_Result syscall_hash_update(unsigned long state, const void *chunk,
2444 			size_t chunk_size)
2445 {
2446 	struct tee_ta_session *sess = NULL;
2447 	struct tee_cryp_state *cs = NULL;
2448 	TEE_Result res = TEE_SUCCESS;
2449 
2450 	/* No data, but size provided isn't valid parameters. */
2451 	if (!chunk && chunk_size)
2452 		return TEE_ERROR_BAD_PARAMETERS;
2453 
2454 	/* Zero length hash is valid, but nothing we need to do. */
2455 	if (!chunk_size)
2456 		return TEE_SUCCESS;
2457 
2458 	res = tee_ta_get_current_session(&sess);
2459 	if (res != TEE_SUCCESS)
2460 		return res;
2461 
2462 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2463 					  TEE_MEMORY_ACCESS_READ |
2464 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2465 					  (uaddr_t)chunk, chunk_size);
2466 	if (res != TEE_SUCCESS)
2467 		return res;
2468 
2469 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2470 	if (res != TEE_SUCCESS)
2471 		return res;
2472 
2473 	if (cs->state != CRYP_STATE_INITIALIZED)
2474 		return TEE_ERROR_BAD_STATE;
2475 
2476 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2477 	case TEE_OPERATION_DIGEST:
2478 		res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2479 		if (res != TEE_SUCCESS)
2480 			return res;
2481 		break;
2482 	case TEE_OPERATION_MAC:
2483 		res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2484 		if (res != TEE_SUCCESS)
2485 			return res;
2486 		break;
2487 	default:
2488 		return TEE_ERROR_BAD_PARAMETERS;
2489 	}
2490 
2491 	return TEE_SUCCESS;
2492 }
2493 
2494 TEE_Result syscall_hash_final(unsigned long state, const void *chunk,
2495 			size_t chunk_size, void *hash, uint64_t *hash_len)
2496 {
2497 	struct tee_ta_session *sess = NULL;
2498 	struct tee_cryp_state *cs = NULL;
2499 	TEE_Result res2 = TEE_SUCCESS;
2500 	TEE_Result res = TEE_SUCCESS;
2501 	size_t hash_size = 0;
2502 	size_t hlen = 0;
2503 
2504 	/* No data, but size provided isn't valid parameters. */
2505 	if (!chunk && chunk_size)
2506 		return TEE_ERROR_BAD_PARAMETERS;
2507 
2508 	res = tee_ta_get_current_session(&sess);
2509 	if (res != TEE_SUCCESS)
2510 		return res;
2511 
2512 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2513 					  TEE_MEMORY_ACCESS_READ |
2514 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2515 					  (uaddr_t)chunk, chunk_size);
2516 	if (res != TEE_SUCCESS)
2517 		return res;
2518 
2519 	res = get_user_u64_as_size_t(&hlen, hash_len);
2520 	if (res != TEE_SUCCESS)
2521 		return res;
2522 
2523 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2524 					  TEE_MEMORY_ACCESS_READ |
2525 					  TEE_MEMORY_ACCESS_WRITE |
2526 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2527 					  (uaddr_t)hash, hlen);
2528 	if (res != TEE_SUCCESS)
2529 		return res;
2530 
2531 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2532 	if (res != TEE_SUCCESS)
2533 		return res;
2534 
2535 	if (cs->state != CRYP_STATE_INITIALIZED)
2536 		return TEE_ERROR_BAD_STATE;
2537 
2538 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2539 	case TEE_OPERATION_DIGEST:
2540 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2541 		if (res != TEE_SUCCESS)
2542 			return res;
2543 		if (hlen < hash_size) {
2544 			res = TEE_ERROR_SHORT_BUFFER;
2545 			goto out;
2546 		}
2547 
2548 		if (chunk_size) {
2549 			res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2550 			if (res != TEE_SUCCESS)
2551 				return res;
2552 		}
2553 
2554 		res = crypto_hash_final(cs->ctx, hash, hash_size);
2555 		if (res != TEE_SUCCESS)
2556 			return res;
2557 		break;
2558 
2559 	case TEE_OPERATION_MAC:
2560 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2561 		if (res != TEE_SUCCESS)
2562 			return res;
2563 		if (hlen < hash_size) {
2564 			res = TEE_ERROR_SHORT_BUFFER;
2565 			goto out;
2566 		}
2567 
2568 		if (chunk_size) {
2569 			res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2570 			if (res != TEE_SUCCESS)
2571 				return res;
2572 		}
2573 
2574 		res = crypto_mac_final(cs->ctx, hash, hash_size);
2575 		if (res != TEE_SUCCESS)
2576 			return res;
2577 		break;
2578 
2579 	default:
2580 		return TEE_ERROR_BAD_PARAMETERS;
2581 	}
2582 out:
2583 	res2 = put_user_u64(hash_len, hash_size);
2584 	if (res2 != TEE_SUCCESS)
2585 		return res2;
2586 	return res;
2587 }
2588 
2589 TEE_Result syscall_cipher_init(unsigned long state, const void *iv,
2590 			size_t iv_len)
2591 {
2592 	struct tee_cryp_obj_secret *key1 = NULL;
2593 	struct tee_ta_session *sess = NULL;
2594 	struct tee_cryp_state *cs = NULL;
2595 	struct user_ta_ctx *utc = NULL;
2596 	TEE_Result res = TEE_SUCCESS;
2597 	struct tee_obj *o = NULL;
2598 
2599 	res = tee_ta_get_current_session(&sess);
2600 	if (res != TEE_SUCCESS)
2601 		return res;
2602 	utc = to_user_ta_ctx(sess->ctx);
2603 
2604 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2605 	if (res != TEE_SUCCESS)
2606 		return res;
2607 
2608 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER)
2609 		return TEE_ERROR_BAD_STATE;
2610 
2611 	res = tee_mmu_check_access_rights(&utc->uctx,
2612 					  TEE_MEMORY_ACCESS_READ |
2613 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2614 					  (uaddr_t)iv, iv_len);
2615 	if (res != TEE_SUCCESS)
2616 		return res;
2617 
2618 	res = tee_obj_get(utc, cs->key1, &o);
2619 	if (res != TEE_SUCCESS)
2620 		return res;
2621 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2622 		return TEE_ERROR_BAD_PARAMETERS;
2623 
2624 	key1 = o->attr;
2625 
2626 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) {
2627 		struct tee_cryp_obj_secret *key2 = o->attr;
2628 
2629 		if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2630 			return TEE_ERROR_BAD_PARAMETERS;
2631 
2632 		res = crypto_cipher_init(cs->ctx, cs->mode,
2633 					 (uint8_t *)(key1 + 1), key1->key_size,
2634 					 (uint8_t *)(key2 + 1), key2->key_size,
2635 					 iv, iv_len);
2636 	} else {
2637 		res = crypto_cipher_init(cs->ctx, cs->mode,
2638 					 (uint8_t *)(key1 + 1), key1->key_size,
2639 					 NULL, 0, iv, iv_len);
2640 	}
2641 	if (res != TEE_SUCCESS)
2642 		return res;
2643 
2644 	cs->ctx_finalize = crypto_cipher_final;
2645 	cs->state = CRYP_STATE_INITIALIZED;
2646 
2647 	return TEE_SUCCESS;
2648 }
2649 
2650 static TEE_Result tee_svc_cipher_update_helper(unsigned long state,
2651 			bool last_block, const void *src, size_t src_len,
2652 			void *dst, uint64_t *dst_len)
2653 {
2654 	struct tee_ta_session *sess = NULL;
2655 	struct tee_cryp_state *cs = NULL;
2656 	TEE_Result res = TEE_SUCCESS;
2657 	size_t dlen = 0;
2658 
2659 	res = tee_ta_get_current_session(&sess);
2660 	if (res != TEE_SUCCESS)
2661 		return res;
2662 
2663 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2664 	if (res != TEE_SUCCESS)
2665 		return res;
2666 
2667 	if (cs->state != CRYP_STATE_INITIALIZED)
2668 		return TEE_ERROR_BAD_STATE;
2669 
2670 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2671 					  TEE_MEMORY_ACCESS_READ |
2672 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2673 					  (uaddr_t)src, src_len);
2674 	if (res != TEE_SUCCESS)
2675 		return res;
2676 
2677 	if (!dst_len) {
2678 		dlen = 0;
2679 	} else {
2680 		struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
2681 		uint32_t flags = TEE_MEMORY_ACCESS_READ |
2682 				 TEE_MEMORY_ACCESS_WRITE |
2683 				 TEE_MEMORY_ACCESS_ANY_OWNER;
2684 
2685 		res = get_user_u64_as_size_t(&dlen, dst_len);
2686 		if (res != TEE_SUCCESS)
2687 			return res;
2688 
2689 		res = tee_mmu_check_access_rights(uctx, flags, (uaddr_t)dst,
2690 						  dlen);
2691 		if (res != TEE_SUCCESS)
2692 			return res;
2693 	}
2694 
2695 	if (dlen < src_len) {
2696 		res = TEE_ERROR_SHORT_BUFFER;
2697 		goto out;
2698 	}
2699 
2700 	if (src_len > 0) {
2701 		/* Permit src_len == 0 to finalize the operation */
2702 		res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode,
2703 					   last_block, src, src_len, dst);
2704 	}
2705 
2706 	if (last_block && cs->ctx_finalize != NULL) {
2707 		cs->ctx_finalize(cs->ctx);
2708 		cs->ctx_finalize = NULL;
2709 	}
2710 
2711 out:
2712 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
2713 	    dst_len != NULL) {
2714 		TEE_Result res2;
2715 
2716 		res2 = put_user_u64(dst_len, src_len);
2717 		if (res2 != TEE_SUCCESS)
2718 			res = res2;
2719 	}
2720 
2721 	return res;
2722 }
2723 
2724 TEE_Result syscall_cipher_update(unsigned long state, const void *src,
2725 			size_t src_len, void *dst, uint64_t *dst_len)
2726 {
2727 	return tee_svc_cipher_update_helper(state, false /* last_block */,
2728 					    src, src_len, dst, dst_len);
2729 }
2730 
2731 TEE_Result syscall_cipher_final(unsigned long state, const void *src,
2732 			size_t src_len, void *dst, uint64_t *dst_len)
2733 {
2734 	return tee_svc_cipher_update_helper(state, true /* last_block */,
2735 					    src, src_len, dst, dst_len);
2736 }
2737 
2738 #if defined(CFG_CRYPTO_HKDF)
2739 static TEE_Result get_hkdf_params(const TEE_Attribute *params,
2740 				  uint32_t param_count,
2741 				  void **salt, size_t *salt_len, void **info,
2742 				  size_t *info_len, size_t *okm_len)
2743 {
2744 	size_t n;
2745 	enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 };
2746 	uint8_t found = 0;
2747 
2748 	*salt = *info = NULL;
2749 	*salt_len = *info_len = *okm_len = 0;
2750 
2751 	for (n = 0; n < param_count; n++) {
2752 		switch (params[n].attributeID) {
2753 		case TEE_ATTR_HKDF_SALT:
2754 			if (!(found & SALT)) {
2755 				*salt = params[n].content.ref.buffer;
2756 				*salt_len = params[n].content.ref.length;
2757 				found |= SALT;
2758 			}
2759 			break;
2760 		case TEE_ATTR_HKDF_OKM_LENGTH:
2761 			if (!(found & LENGTH)) {
2762 				*okm_len = params[n].content.value.a;
2763 				found |= LENGTH;
2764 			}
2765 			break;
2766 		case TEE_ATTR_HKDF_INFO:
2767 			if (!(found & INFO)) {
2768 				*info = params[n].content.ref.buffer;
2769 				*info_len = params[n].content.ref.length;
2770 				found |= INFO;
2771 			}
2772 			break;
2773 		default:
2774 			/* Unexpected attribute */
2775 			return TEE_ERROR_BAD_PARAMETERS;
2776 		}
2777 
2778 	}
2779 
2780 	if (!(found & LENGTH))
2781 		return TEE_ERROR_BAD_PARAMETERS;
2782 
2783 	return TEE_SUCCESS;
2784 }
2785 #endif
2786 
2787 #if defined(CFG_CRYPTO_CONCAT_KDF)
2788 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params,
2789 					uint32_t param_count,
2790 					void **other_info,
2791 					size_t *other_info_len,
2792 					size_t *derived_key_len)
2793 {
2794 	size_t n;
2795 	enum { LENGTH = 0x1, INFO = 0x2 };
2796 	uint8_t found = 0;
2797 
2798 	*other_info = NULL;
2799 	*other_info_len = *derived_key_len = 0;
2800 
2801 	for (n = 0; n < param_count; n++) {
2802 		switch (params[n].attributeID) {
2803 		case TEE_ATTR_CONCAT_KDF_OTHER_INFO:
2804 			if (!(found & INFO)) {
2805 				*other_info = params[n].content.ref.buffer;
2806 				*other_info_len = params[n].content.ref.length;
2807 				found |= INFO;
2808 			}
2809 			break;
2810 		case TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
2811 			if (!(found & LENGTH)) {
2812 				*derived_key_len = params[n].content.value.a;
2813 				found |= LENGTH;
2814 			}
2815 			break;
2816 		default:
2817 			/* Unexpected attribute */
2818 			return TEE_ERROR_BAD_PARAMETERS;
2819 		}
2820 	}
2821 
2822 	if (!(found & LENGTH))
2823 		return TEE_ERROR_BAD_PARAMETERS;
2824 
2825 	return TEE_SUCCESS;
2826 }
2827 #endif
2828 
2829 #if defined(CFG_CRYPTO_PBKDF2)
2830 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params,
2831 				   uint32_t param_count, void **salt,
2832 				   size_t *salt_len, size_t *derived_key_len,
2833 				   size_t *iteration_count)
2834 {
2835 	size_t n;
2836 	enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 };
2837 	uint8_t found = 0;
2838 
2839 	*salt = NULL;
2840 	*salt_len = *derived_key_len = *iteration_count = 0;
2841 
2842 	for (n = 0; n < param_count; n++) {
2843 		switch (params[n].attributeID) {
2844 		case TEE_ATTR_PBKDF2_SALT:
2845 			if (!(found & SALT)) {
2846 				*salt = params[n].content.ref.buffer;
2847 				*salt_len = params[n].content.ref.length;
2848 				found |= SALT;
2849 			}
2850 			break;
2851 		case TEE_ATTR_PBKDF2_DKM_LENGTH:
2852 			if (!(found & LENGTH)) {
2853 				*derived_key_len = params[n].content.value.a;
2854 				found |= LENGTH;
2855 			}
2856 			break;
2857 		case TEE_ATTR_PBKDF2_ITERATION_COUNT:
2858 			if (!(found & COUNT)) {
2859 				*iteration_count = params[n].content.value.a;
2860 				found |= COUNT;
2861 			}
2862 			break;
2863 		default:
2864 			/* Unexpected attribute */
2865 			return TEE_ERROR_BAD_PARAMETERS;
2866 		}
2867 	}
2868 
2869 	if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT))
2870 		return TEE_ERROR_BAD_PARAMETERS;
2871 
2872 	return TEE_SUCCESS;
2873 }
2874 #endif
2875 
2876 #if defined(CFG_CRYPTO_SM2_KEP)
2877 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params,
2878 				     uint32_t param_count,
2879 				     struct ecc_public_key *peer_key,
2880 				     struct ecc_public_key *peer_eph_key,
2881 				     struct sm2_kep_parms *kep_parms)
2882 {
2883 	TEE_Result res = TEE_ERROR_GENERIC;
2884 	size_t n;
2885 	enum {
2886 		IS_INITIATOR,
2887 		PEER_KEY_X,
2888 		PEER_KEY_Y,
2889 		PEER_EPH_KEY_X,
2890 		PEER_EPH_KEY_Y,
2891 		INITIATOR_ID,
2892 		RESPONDER_ID,
2893 	};
2894 	uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) |
2895 		BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) |
2896 		BIT(INITIATOR_ID) | BIT(RESPONDER_ID);
2897 	uint8_t found = 0;
2898 
2899 	res = crypto_acipher_alloc_ecc_public_key(peer_key, 256);
2900 	if (res)
2901 		goto out;
2902 
2903 	res = crypto_acipher_alloc_ecc_public_key(peer_eph_key, 256);
2904 	if (res)
2905 		goto out;
2906 
2907 	peer_key->curve = TEE_ECC_CURVE_SM2;
2908 	peer_eph_key->curve = TEE_ECC_CURVE_SM2;
2909 
2910 	for (n = 0; n < param_count; n++) {
2911 		const TEE_Attribute *p = &params[n];
2912 
2913 		switch (p->attributeID) {
2914 		case TEE_ATTR_SM2_KEP_USER:
2915 			kep_parms->is_initiator = !p->content.value.a;
2916 			found |= BIT(IS_INITIATOR);
2917 			break;
2918 		case TEE_ATTR_ECC_PUBLIC_VALUE_X:
2919 			crypto_bignum_bin2bn(p->content.ref.buffer,
2920 					     p->content.ref.length,
2921 					     peer_key->x);
2922 			found |= BIT(PEER_KEY_X);
2923 			break;
2924 		case TEE_ATTR_ECC_PUBLIC_VALUE_Y:
2925 			crypto_bignum_bin2bn(p->content.ref.buffer,
2926 					     p->content.ref.length,
2927 					     peer_key->y);
2928 			found |= BIT(PEER_KEY_Y);
2929 			break;
2930 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X:
2931 			crypto_bignum_bin2bn(p->content.ref.buffer,
2932 					     p->content.ref.length,
2933 					     peer_eph_key->x);
2934 			found |= BIT(PEER_EPH_KEY_X);
2935 			break;
2936 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y:
2937 			crypto_bignum_bin2bn(p->content.ref.buffer,
2938 					     p->content.ref.length,
2939 					     peer_eph_key->y);
2940 			found |= BIT(PEER_EPH_KEY_Y);
2941 			break;
2942 		case TEE_ATTR_SM2_ID_INITIATOR:
2943 			kep_parms->initiator_id = p->content.ref.buffer;
2944 			kep_parms->initiator_id_len = p->content.ref.length;
2945 			found |= BIT(INITIATOR_ID);
2946 			break;
2947 		case TEE_ATTR_SM2_ID_RESPONDER:
2948 			kep_parms->responder_id = p->content.ref.buffer;
2949 			kep_parms->responder_id_len = p->content.ref.length;
2950 			found |= BIT(RESPONDER_ID);
2951 			break;
2952 		case TEE_ATTR_SM2_KEP_CONFIRMATION_IN:
2953 			kep_parms->conf_in = p->content.ref.buffer;
2954 			kep_parms->conf_in_len = p->content.ref.length;
2955 			break;
2956 		case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT:
2957 			kep_parms->conf_out = p->content.ref.buffer;
2958 			kep_parms->conf_out_len = p->content.ref.length;
2959 			break;
2960 		default:
2961 			/* Unexpected attribute */
2962 			res = TEE_ERROR_BAD_PARAMETERS;
2963 			goto out;
2964 		}
2965 	}
2966 
2967 	if ((found & mandatory) != mandatory) {
2968 		res = TEE_ERROR_BAD_PARAMETERS;
2969 		goto out;
2970 	}
2971 
2972 	return TEE_SUCCESS;
2973 out:
2974 	crypto_acipher_free_ecc_public_key(peer_key);
2975 	crypto_acipher_free_ecc_public_key(peer_eph_key);
2976 	return res;
2977 }
2978 #endif
2979 
2980 TEE_Result syscall_cryp_derive_key(unsigned long state,
2981 			const struct utee_attribute *usr_params,
2982 			unsigned long param_count, unsigned long derived_key)
2983 {
2984 	TEE_Result res = TEE_ERROR_NOT_SUPPORTED;
2985 	struct tee_ta_session *sess;
2986 	struct tee_obj *ko;
2987 	struct tee_obj *so;
2988 	struct tee_cryp_state *cs;
2989 	struct tee_cryp_obj_secret *sk;
2990 	const struct tee_cryp_obj_type_props *type_props;
2991 	TEE_Attribute *params = NULL;
2992 	struct user_ta_ctx *utc;
2993 
2994 	res = tee_ta_get_current_session(&sess);
2995 	if (res != TEE_SUCCESS)
2996 		return res;
2997 	utc = to_user_ta_ctx(sess->ctx);
2998 
2999 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3000 	if (res != TEE_SUCCESS)
3001 		return res;
3002 
3003 	size_t alloc_size = 0;
3004 
3005 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
3006 		return TEE_ERROR_OVERFLOW;
3007 
3008 	params = malloc(alloc_size);
3009 	if (!params)
3010 		return TEE_ERROR_OUT_OF_MEMORY;
3011 	res = copy_in_attrs(utc, usr_params, param_count, params);
3012 	if (res != TEE_SUCCESS)
3013 		goto out;
3014 
3015 	/* Get key set in operation */
3016 	res = tee_obj_get(utc, cs->key1, &ko);
3017 	if (res != TEE_SUCCESS)
3018 		goto out;
3019 
3020 	res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so);
3021 	if (res != TEE_SUCCESS)
3022 		goto out;
3023 
3024 	/* Find information needed about the object to initialize */
3025 	sk = so->attr;
3026 
3027 	/* Find description of object */
3028 	type_props = tee_svc_find_type_props(so->info.objectType);
3029 	if (!type_props) {
3030 		res = TEE_ERROR_NOT_SUPPORTED;
3031 		goto out;
3032 	}
3033 
3034 	if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) {
3035 		struct bignum *pub;
3036 		struct bignum *ss;
3037 
3038 		if (param_count != 1 ||
3039 		    params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) {
3040 			res = TEE_ERROR_BAD_PARAMETERS;
3041 			goto out;
3042 		}
3043 
3044 		size_t bin_size = params[0].content.ref.length;
3045 
3046 		if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) {
3047 			res = TEE_ERROR_OVERFLOW;
3048 			goto out;
3049 		}
3050 
3051 		pub = crypto_bignum_allocate(alloc_size);
3052 		ss = crypto_bignum_allocate(alloc_size);
3053 		if (pub && ss) {
3054 			crypto_bignum_bin2bn(params[0].content.ref.buffer,
3055 					     bin_size, pub);
3056 			res = crypto_acipher_dh_shared_secret(ko->attr,
3057 							      pub, ss);
3058 			if (res == TEE_SUCCESS) {
3059 				sk->key_size = crypto_bignum_num_bytes(ss);
3060 				crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1));
3061 				so->info.handleFlags |=
3062 						TEE_HANDLE_FLAG_INITIALIZED;
3063 				set_attribute(so, type_props,
3064 					      TEE_ATTR_SECRET_VALUE);
3065 			}
3066 		} else {
3067 			res = TEE_ERROR_OUT_OF_MEMORY;
3068 		}
3069 		crypto_bignum_free(pub);
3070 		crypto_bignum_free(ss);
3071 	} else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) {
3072 		struct ecc_public_key key_public;
3073 		uint8_t *pt_secret;
3074 		unsigned long pt_secret_len;
3075 
3076 		if (param_count != 2 ||
3077 		    params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X ||
3078 		    params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) {
3079 			res = TEE_ERROR_BAD_PARAMETERS;
3080 			goto out;
3081 		}
3082 
3083 		switch (cs->algo) {
3084 		case TEE_ALG_ECDH_P192:
3085 			alloc_size = 192;
3086 			break;
3087 		case TEE_ALG_ECDH_P224:
3088 			alloc_size = 224;
3089 			break;
3090 		case TEE_ALG_ECDH_P256:
3091 			alloc_size = 256;
3092 			break;
3093 		case TEE_ALG_ECDH_P384:
3094 			alloc_size = 384;
3095 			break;
3096 		case TEE_ALG_ECDH_P521:
3097 			alloc_size = 521;
3098 			break;
3099 		default:
3100 			res = TEE_ERROR_NOT_IMPLEMENTED;
3101 			goto out;
3102 		}
3103 
3104 		/* Create the public key */
3105 		res = crypto_acipher_alloc_ecc_public_key(&key_public,
3106 							  alloc_size);
3107 		if (res != TEE_SUCCESS)
3108 			goto out;
3109 		key_public.curve = ((struct ecc_keypair *)ko->attr)->curve;
3110 		crypto_bignum_bin2bn(params[0].content.ref.buffer,
3111 				     params[0].content.ref.length,
3112 				     key_public.x);
3113 		crypto_bignum_bin2bn(params[1].content.ref.buffer,
3114 				     params[1].content.ref.length,
3115 				     key_public.y);
3116 
3117 		pt_secret = (uint8_t *)(sk + 1);
3118 		pt_secret_len = sk->alloc_size;
3119 		res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public,
3120 						       pt_secret,
3121 						       &pt_secret_len);
3122 
3123 		if (res == TEE_SUCCESS) {
3124 			sk->key_size = pt_secret_len;
3125 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3126 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3127 		}
3128 
3129 		/* free the public key */
3130 		crypto_acipher_free_ecc_public_key(&key_public);
3131 	}
3132 #if defined(CFG_CRYPTO_HKDF)
3133 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) {
3134 		void *salt, *info;
3135 		size_t salt_len, info_len, okm_len;
3136 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3137 		struct tee_cryp_obj_secret *ik = ko->attr;
3138 		const uint8_t *ikm = (const uint8_t *)(ik + 1);
3139 
3140 		res = get_hkdf_params(params, param_count, &salt, &salt_len,
3141 				      &info, &info_len, &okm_len);
3142 		if (res != TEE_SUCCESS)
3143 			goto out;
3144 
3145 		/* Requested size must fit into the output object's buffer */
3146 		if (okm_len > ik->alloc_size) {
3147 			res = TEE_ERROR_BAD_PARAMETERS;
3148 			goto out;
3149 		}
3150 
3151 		res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len,
3152 				    info, info_len, (uint8_t *)(sk + 1),
3153 				    okm_len);
3154 		if (res == TEE_SUCCESS) {
3155 			sk->key_size = okm_len;
3156 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3157 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3158 		}
3159 	}
3160 #endif
3161 #if defined(CFG_CRYPTO_CONCAT_KDF)
3162 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) {
3163 		void *info;
3164 		size_t info_len, derived_key_len;
3165 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3166 		struct tee_cryp_obj_secret *ss = ko->attr;
3167 		const uint8_t *shared_secret = (const uint8_t *)(ss + 1);
3168 
3169 		res = get_concat_kdf_params(params, param_count, &info,
3170 					    &info_len, &derived_key_len);
3171 		if (res != TEE_SUCCESS)
3172 			goto out;
3173 
3174 		/* Requested size must fit into the output object's buffer */
3175 		if (derived_key_len > ss->alloc_size) {
3176 			res = TEE_ERROR_BAD_PARAMETERS;
3177 			goto out;
3178 		}
3179 
3180 		res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size,
3181 					  info, info_len, (uint8_t *)(sk + 1),
3182 					  derived_key_len);
3183 		if (res == TEE_SUCCESS) {
3184 			sk->key_size = derived_key_len;
3185 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3186 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3187 		}
3188 	}
3189 #endif
3190 #if defined(CFG_CRYPTO_PBKDF2)
3191 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) {
3192 		void *salt;
3193 		size_t salt_len, iteration_count, derived_key_len;
3194 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3195 		struct tee_cryp_obj_secret *ss = ko->attr;
3196 		const uint8_t *password = (const uint8_t *)(ss + 1);
3197 
3198 		res = get_pbkdf2_params(params, param_count, &salt, &salt_len,
3199 					&derived_key_len, &iteration_count);
3200 		if (res != TEE_SUCCESS)
3201 			goto out;
3202 
3203 		/* Requested size must fit into the output object's buffer */
3204 		if (derived_key_len > ss->alloc_size) {
3205 			res = TEE_ERROR_BAD_PARAMETERS;
3206 			goto out;
3207 		}
3208 
3209 		res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt,
3210 				      salt_len, iteration_count,
3211 				      (uint8_t *)(sk + 1), derived_key_len);
3212 		if (res == TEE_SUCCESS) {
3213 			sk->key_size = derived_key_len;
3214 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3215 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3216 		}
3217 	}
3218 #endif
3219 #if defined(CFG_CRYPTO_SM2_KEP)
3220 	else if (cs->algo == TEE_ALG_SM2_KEP) {
3221 		struct ecc_public_key peer_eph_key = { };
3222 		struct ecc_public_key peer_key = { };
3223 		struct sm2_kep_parms kep_parms = {
3224 			.out = (uint8_t *)(sk + 1),
3225 			.out_len = so->info.maxKeySize,
3226 		};
3227 		struct tee_obj *ko2 = NULL;
3228 
3229 		res = tee_obj_get(utc, cs->key2, &ko2);
3230 		if (res != TEE_SUCCESS)
3231 			goto out;
3232 
3233 		res = get_sm2_kep_params(params, param_count, &peer_key,
3234 					 &peer_eph_key, &kep_parms);
3235 		if (res != TEE_SUCCESS)
3236 			goto out;
3237 
3238 		/*
3239 		 * key1 is our private keypair, key2 is our ephemeral public key
3240 		 */
3241 		res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */
3242 						    ko2->attr, /* key2 */
3243 						    &peer_key, &peer_eph_key,
3244 						    &kep_parms);
3245 
3246 		if (res == TEE_SUCCESS) {
3247 			sk->key_size = kep_parms.out_len;
3248 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3249 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3250 		}
3251 		crypto_acipher_free_ecc_public_key(&peer_key);
3252 		crypto_acipher_free_ecc_public_key(&peer_eph_key);
3253 	}
3254 #endif
3255 	else
3256 		res = TEE_ERROR_NOT_SUPPORTED;
3257 
3258 out:
3259 	free_wipe(params);
3260 	return res;
3261 }
3262 
3263 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen)
3264 {
3265 	struct tee_ta_session *sess = NULL;
3266 	TEE_Result res = TEE_SUCCESS;
3267 
3268 	res = tee_ta_get_current_session(&sess);
3269 	if (res != TEE_SUCCESS)
3270 		return res;
3271 
3272 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3273 					  TEE_MEMORY_ACCESS_WRITE,
3274 					  (uaddr_t)buf, blen);
3275 	if (res != TEE_SUCCESS)
3276 		return res;
3277 
3278 	res = crypto_rng_read(buf, blen);
3279 	if (res != TEE_SUCCESS)
3280 		return res;
3281 
3282 	return res;
3283 }
3284 
3285 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce,
3286 				size_t nonce_len, size_t tag_len,
3287 				size_t aad_len, size_t payload_len)
3288 {
3289 	struct tee_cryp_obj_secret *key = NULL;
3290 	struct tee_ta_session *sess = NULL;
3291 	struct tee_cryp_state *cs = NULL;
3292 	TEE_Result res = TEE_SUCCESS;
3293 	struct tee_obj *o = NULL;
3294 
3295 	res = tee_ta_get_current_session(&sess);
3296 	if (res != TEE_SUCCESS)
3297 		return res;
3298 
3299 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3300 					  TEE_MEMORY_ACCESS_READ |
3301 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3302 					  (uaddr_t)nonce, nonce_len);
3303 	if (res != TEE_SUCCESS)
3304 		return res;
3305 
3306 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3307 	if (res != TEE_SUCCESS)
3308 		return res;
3309 
3310 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o);
3311 	if (res != TEE_SUCCESS)
3312 		return res;
3313 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
3314 		return TEE_ERROR_BAD_PARAMETERS;
3315 
3316 	key = o->attr;
3317 	res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1),
3318 				  key->key_size, nonce, nonce_len, tag_len,
3319 				  aad_len, payload_len);
3320 	if (res != TEE_SUCCESS)
3321 		return res;
3322 
3323 	cs->ctx_finalize = crypto_authenc_final;
3324 	cs->state = CRYP_STATE_INITIALIZED;
3325 
3326 	return TEE_SUCCESS;
3327 }
3328 
3329 TEE_Result syscall_authenc_update_aad(unsigned long state,
3330 				      const void *aad_data, size_t aad_data_len)
3331 {
3332 	TEE_Result res = TEE_SUCCESS;
3333 	struct tee_cryp_state *cs;
3334 	struct tee_ta_session *sess;
3335 
3336 	res = tee_ta_get_current_session(&sess);
3337 	if (res != TEE_SUCCESS)
3338 		return res;
3339 
3340 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3341 					  TEE_MEMORY_ACCESS_READ |
3342 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3343 					  (uaddr_t) aad_data,
3344 					  aad_data_len);
3345 	if (res != TEE_SUCCESS)
3346 		return res;
3347 
3348 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3349 	if (res != TEE_SUCCESS)
3350 		return res;
3351 
3352 	if (cs->state != CRYP_STATE_INITIALIZED)
3353 		return TEE_ERROR_BAD_STATE;
3354 
3355 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3356 		return TEE_ERROR_BAD_STATE;
3357 
3358 	res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data,
3359 					aad_data_len);
3360 	if (res != TEE_SUCCESS)
3361 		return res;
3362 
3363 	return TEE_SUCCESS;
3364 }
3365 
3366 TEE_Result syscall_authenc_update_payload(unsigned long state,
3367 					  const void *src_data,
3368 					  size_t src_len, void *dst_data,
3369 					  uint64_t *dst_len)
3370 {
3371 	struct tee_ta_session *sess = NULL;
3372 	struct tee_cryp_state *cs = NULL;
3373 	TEE_Result res = TEE_SUCCESS;
3374 	size_t dlen = 0;
3375 
3376 	res = tee_ta_get_current_session(&sess);
3377 	if (res != TEE_SUCCESS)
3378 		return res;
3379 
3380 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3381 	if (res != TEE_SUCCESS)
3382 		return res;
3383 
3384 	if (cs->state != CRYP_STATE_INITIALIZED)
3385 		return TEE_ERROR_BAD_STATE;
3386 
3387 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3388 		return TEE_ERROR_BAD_STATE;
3389 
3390 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3391 					  TEE_MEMORY_ACCESS_READ |
3392 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3393 					  (uaddr_t)src_data, src_len);
3394 	if (res != TEE_SUCCESS)
3395 		return res;
3396 
3397 	res = get_user_u64_as_size_t(&dlen, dst_len);
3398 	if (res != TEE_SUCCESS)
3399 		return res;
3400 
3401 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3402 					  TEE_MEMORY_ACCESS_READ |
3403 					  TEE_MEMORY_ACCESS_WRITE |
3404 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3405 					  (uaddr_t)dst_data, dlen);
3406 	if (res != TEE_SUCCESS)
3407 		return res;
3408 
3409 	if (dlen < src_len) {
3410 		res = TEE_ERROR_SHORT_BUFFER;
3411 		goto out;
3412 	}
3413 
3414 	res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data,
3415 					    src_len, dst_data, &dlen);
3416 out:
3417 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3418 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3419 
3420 		if (res2 != TEE_SUCCESS)
3421 			res = res2;
3422 	}
3423 
3424 	return res;
3425 }
3426 
3427 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data,
3428 				     size_t src_len, void *dst_data,
3429 				     uint64_t *dst_len, void *tag,
3430 				     uint64_t *tag_len)
3431 {
3432 	struct tee_ta_session *sess = NULL;
3433 	struct user_mode_ctx *uctx = NULL;
3434 	struct tee_cryp_state *cs = NULL;
3435 	TEE_Result res = TEE_SUCCESS;
3436 	size_t dlen = 0;
3437 	size_t tlen = 0;
3438 
3439 	res = tee_ta_get_current_session(&sess);
3440 	if (res != TEE_SUCCESS)
3441 		return res;
3442 
3443 	uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3444 
3445 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3446 	if (res != TEE_SUCCESS)
3447 		return res;
3448 
3449 	if (cs->state != CRYP_STATE_INITIALIZED)
3450 		return TEE_ERROR_BAD_STATE;
3451 
3452 	if (cs->mode != TEE_MODE_ENCRYPT)
3453 		return TEE_ERROR_BAD_PARAMETERS;
3454 
3455 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3456 		return TEE_ERROR_BAD_STATE;
3457 
3458 	res = tee_mmu_check_access_rights(uctx,
3459 					  TEE_MEMORY_ACCESS_READ |
3460 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3461 					  (uaddr_t)src_data, src_len);
3462 	if (res != TEE_SUCCESS)
3463 		return res;
3464 
3465 	if (!dst_len) {
3466 		dlen = 0;
3467 	} else {
3468 		res = get_user_u64_as_size_t(&dlen, dst_len);
3469 		if (res != TEE_SUCCESS)
3470 			return res;
3471 
3472 		res = tee_mmu_check_access_rights(uctx,
3473 						  TEE_MEMORY_ACCESS_READ |
3474 						  TEE_MEMORY_ACCESS_WRITE |
3475 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3476 						  (uaddr_t)dst_data, dlen);
3477 		if (res != TEE_SUCCESS)
3478 			return res;
3479 	}
3480 
3481 	if (dlen < src_len) {
3482 		res = TEE_ERROR_SHORT_BUFFER;
3483 		goto out;
3484 	}
3485 
3486 	res = get_user_u64_as_size_t(&tlen, tag_len);
3487 	if (res != TEE_SUCCESS)
3488 		return res;
3489 
3490 	res = tee_mmu_check_access_rights(uctx,
3491 					  TEE_MEMORY_ACCESS_READ |
3492 					  TEE_MEMORY_ACCESS_WRITE |
3493 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3494 					  (uaddr_t)tag, tlen);
3495 	if (res != TEE_SUCCESS)
3496 		return res;
3497 
3498 	res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data,
3499 				       &dlen, tag, &tlen);
3500 
3501 out:
3502 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3503 		TEE_Result res2 = TEE_SUCCESS;
3504 
3505 		if (dst_len != NULL) {
3506 			res2 = put_user_u64(dst_len, dlen);
3507 			if (res2 != TEE_SUCCESS)
3508 				return res2;
3509 		}
3510 
3511 		res2 = put_user_u64(tag_len, tlen);
3512 		if (res2 != TEE_SUCCESS)
3513 			return res2;
3514 	}
3515 
3516 	return res;
3517 }
3518 
3519 TEE_Result syscall_authenc_dec_final(unsigned long state,
3520 			const void *src_data, size_t src_len, void *dst_data,
3521 			uint64_t *dst_len, const void *tag, size_t tag_len)
3522 {
3523 	struct tee_ta_session *sess = NULL;
3524 	struct user_mode_ctx *uctx = NULL;
3525 	struct tee_cryp_state *cs = NULL;
3526 	TEE_Result res = TEE_SUCCESS;
3527 	size_t dlen = 0;
3528 
3529 	res = tee_ta_get_current_session(&sess);
3530 	if (res != TEE_SUCCESS)
3531 		return res;
3532 
3533 	uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3534 
3535 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3536 	if (res != TEE_SUCCESS)
3537 		return res;
3538 
3539 	if (cs->state != CRYP_STATE_INITIALIZED)
3540 		return TEE_ERROR_BAD_STATE;
3541 
3542 	if (cs->mode != TEE_MODE_DECRYPT)
3543 		return TEE_ERROR_BAD_PARAMETERS;
3544 
3545 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3546 		return TEE_ERROR_BAD_STATE;
3547 
3548 	res = tee_mmu_check_access_rights(uctx,
3549 					  TEE_MEMORY_ACCESS_READ |
3550 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3551 					  (uaddr_t)src_data, src_len);
3552 	if (res != TEE_SUCCESS)
3553 		return res;
3554 
3555 	if (!dst_len) {
3556 		dlen = 0;
3557 	} else {
3558 		res = get_user_u64_as_size_t(&dlen, dst_len);
3559 		if (res != TEE_SUCCESS)
3560 			return res;
3561 
3562 		res = tee_mmu_check_access_rights(uctx,
3563 						  TEE_MEMORY_ACCESS_READ |
3564 						  TEE_MEMORY_ACCESS_WRITE |
3565 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3566 						  (uaddr_t)dst_data, dlen);
3567 		if (res != TEE_SUCCESS)
3568 			return res;
3569 	}
3570 
3571 	if (dlen < src_len) {
3572 		res = TEE_ERROR_SHORT_BUFFER;
3573 		goto out;
3574 	}
3575 
3576 	res = tee_mmu_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ,
3577 					  (uaddr_t)tag, tag_len);
3578 	if (res != TEE_SUCCESS)
3579 		return res;
3580 
3581 	res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data,
3582 				       &dlen, tag, tag_len);
3583 
3584 out:
3585 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
3586 	    dst_len != NULL) {
3587 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3588 
3589 		if (res2 != TEE_SUCCESS)
3590 			return res2;
3591 	}
3592 
3593 	return res;
3594 }
3595 
3596 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params,
3597 			      size_t default_len)
3598 {
3599 	size_t n;
3600 
3601 	assert(default_len < INT_MAX);
3602 
3603 	for (n = 0; n < num_params; n++) {
3604 		if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) {
3605 			if (params[n].content.value.a < INT_MAX)
3606 				return params[n].content.value.a;
3607 			break;
3608 		}
3609 	}
3610 	/*
3611 	 * If salt length isn't provided use the default value which is
3612 	 * the length of the digest.
3613 	 */
3614 	return default_len;
3615 }
3616 
3617 TEE_Result syscall_asymm_operate(unsigned long state,
3618 			const struct utee_attribute *usr_params,
3619 			size_t num_params, const void *src_data, size_t src_len,
3620 			void *dst_data, uint64_t *dst_len)
3621 {
3622 	TEE_Result res;
3623 	struct tee_cryp_state *cs;
3624 	struct tee_ta_session *sess;
3625 	size_t dlen;
3626 	struct tee_obj *o;
3627 	void *label = NULL;
3628 	size_t label_len = 0;
3629 	size_t n;
3630 	int salt_len;
3631 	TEE_Attribute *params = NULL;
3632 	struct user_ta_ctx *utc;
3633 
3634 	res = tee_ta_get_current_session(&sess);
3635 	if (res != TEE_SUCCESS)
3636 		return res;
3637 	utc = to_user_ta_ctx(sess->ctx);
3638 
3639 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3640 	if (res != TEE_SUCCESS)
3641 		return res;
3642 
3643 	res = tee_mmu_check_access_rights(&utc->uctx,
3644 					  TEE_MEMORY_ACCESS_READ |
3645 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3646 					  (uaddr_t)src_data, src_len);
3647 	if (res != TEE_SUCCESS)
3648 		return res;
3649 
3650 	res = get_user_u64_as_size_t(&dlen, dst_len);
3651 	if (res != TEE_SUCCESS)
3652 		return res;
3653 
3654 	res = tee_mmu_check_access_rights(&utc->uctx,
3655 					  TEE_MEMORY_ACCESS_READ |
3656 					  TEE_MEMORY_ACCESS_WRITE |
3657 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3658 					  (uaddr_t)dst_data, dlen);
3659 	if (res != TEE_SUCCESS)
3660 		return res;
3661 
3662 	size_t alloc_size = 0;
3663 
3664 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3665 		return TEE_ERROR_OVERFLOW;
3666 
3667 	params = malloc(alloc_size);
3668 	if (!params)
3669 		return TEE_ERROR_OUT_OF_MEMORY;
3670 	res = copy_in_attrs(utc, usr_params, num_params, params);
3671 	if (res != TEE_SUCCESS)
3672 		goto out;
3673 
3674 	res = tee_obj_get(utc, cs->key1, &o);
3675 	if (res != TEE_SUCCESS)
3676 		goto out;
3677 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3678 		res = TEE_ERROR_GENERIC;
3679 		goto out;
3680 	}
3681 
3682 	switch (cs->algo) {
3683 	case TEE_ALG_RSA_NOPAD:
3684 		if (cs->mode == TEE_MODE_ENCRYPT) {
3685 			res = crypto_acipher_rsanopad_encrypt(o->attr, src_data,
3686 							      src_len, dst_data,
3687 							      &dlen);
3688 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3689 			res = crypto_acipher_rsanopad_decrypt(o->attr, src_data,
3690 							      src_len, dst_data,
3691 							      &dlen);
3692 		} else {
3693 			/*
3694 			 * We will panic because "the mode is not compatible
3695 			 * with the function"
3696 			 */
3697 			res = TEE_ERROR_GENERIC;
3698 		}
3699 		break;
3700 
3701 	case TEE_ALG_SM2_PKE:
3702 		if (cs->mode == TEE_MODE_ENCRYPT) {
3703 			res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data,
3704 							     src_len, dst_data,
3705 							     &dlen);
3706 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3707 			res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data,
3708 							     src_len, dst_data,
3709 							     &dlen);
3710 		} else {
3711 			res = TEE_ERROR_GENERIC;
3712 		}
3713 		break;
3714 
3715 	case TEE_ALG_RSAES_PKCS1_V1_5:
3716 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
3717 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
3718 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
3719 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
3720 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
3721 		for (n = 0; n < num_params; n++) {
3722 			if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) {
3723 				label = params[n].content.ref.buffer;
3724 				label_len = params[n].content.ref.length;
3725 				break;
3726 			}
3727 		}
3728 
3729 		if (cs->mode == TEE_MODE_ENCRYPT) {
3730 			res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr,
3731 							   label, label_len,
3732 							   src_data, src_len,
3733 							   dst_data, &dlen);
3734 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3735 			res = crypto_acipher_rsaes_decrypt(
3736 					cs->algo, o->attr, label, label_len,
3737 					src_data, src_len, dst_data, &dlen);
3738 		} else {
3739 			res = TEE_ERROR_BAD_PARAMETERS;
3740 		}
3741 		break;
3742 
3743 #if defined(CFG_CRYPTO_RSASSA_NA1)
3744 	case TEE_ALG_RSASSA_PKCS1_V1_5:
3745 #endif
3746 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
3747 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
3748 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
3749 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
3750 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
3751 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
3752 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
3753 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
3754 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
3755 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
3756 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
3757 		if (cs->mode != TEE_MODE_SIGN) {
3758 			res = TEE_ERROR_BAD_PARAMETERS;
3759 			break;
3760 		}
3761 		salt_len = pkcs1_get_salt_len(params, num_params, src_len);
3762 		res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len,
3763 						 src_data, src_len, dst_data,
3764 						 &dlen);
3765 		break;
3766 
3767 	case TEE_ALG_DSA_SHA1:
3768 	case TEE_ALG_DSA_SHA224:
3769 	case TEE_ALG_DSA_SHA256:
3770 		res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data,
3771 					      src_len, dst_data, &dlen);
3772 		break;
3773 	case TEE_ALG_ECDSA_P192:
3774 	case TEE_ALG_ECDSA_P224:
3775 	case TEE_ALG_ECDSA_P256:
3776 	case TEE_ALG_ECDSA_P384:
3777 	case TEE_ALG_ECDSA_P521:
3778 		res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data,
3779 					      src_len, dst_data, &dlen);
3780 		break;
3781 	case TEE_ALG_SM2_DSA_SM3:
3782 		res = crypto_acipher_sm2_dsa_sign(cs->algo, o->attr, src_data,
3783 						  src_len, dst_data, &dlen);
3784 		break;
3785 
3786 	default:
3787 		res = TEE_ERROR_BAD_PARAMETERS;
3788 		break;
3789 	}
3790 
3791 out:
3792 	free_wipe(params);
3793 
3794 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3795 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3796 
3797 		if (res2 != TEE_SUCCESS)
3798 			return res2;
3799 	}
3800 
3801 	return res;
3802 }
3803 
3804 TEE_Result syscall_asymm_verify(unsigned long state,
3805 			const struct utee_attribute *usr_params,
3806 			size_t num_params, const void *data, size_t data_len,
3807 			const void *sig, size_t sig_len)
3808 {
3809 	struct tee_ta_session *sess = NULL;
3810 	struct tee_cryp_state *cs = NULL;
3811 	struct user_ta_ctx *utc = NULL;
3812 	TEE_Result res = TEE_SUCCESS;
3813 	TEE_Attribute *params = NULL;
3814 	struct tee_obj *o = NULL;
3815 	size_t hash_size = 0;
3816 	uint32_t hash_algo = 0;
3817 	int salt_len = 0;
3818 
3819 	res = tee_ta_get_current_session(&sess);
3820 	if (res != TEE_SUCCESS)
3821 		return res;
3822 	utc = to_user_ta_ctx(sess->ctx);
3823 
3824 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3825 	if (res != TEE_SUCCESS)
3826 		return res;
3827 
3828 	if (cs->mode != TEE_MODE_VERIFY)
3829 		return TEE_ERROR_BAD_PARAMETERS;
3830 
3831 	res = tee_mmu_check_access_rights(&utc->uctx,
3832 					  TEE_MEMORY_ACCESS_READ |
3833 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3834 					  (uaddr_t)data, data_len);
3835 	if (res != TEE_SUCCESS)
3836 		return res;
3837 
3838 	res = tee_mmu_check_access_rights(&utc->uctx,
3839 					  TEE_MEMORY_ACCESS_READ |
3840 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3841 					  (uaddr_t)sig, sig_len);
3842 	if (res != TEE_SUCCESS)
3843 		return res;
3844 
3845 	size_t alloc_size = 0;
3846 
3847 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3848 		return TEE_ERROR_OVERFLOW;
3849 
3850 	params = malloc(alloc_size);
3851 	if (!params)
3852 		return TEE_ERROR_OUT_OF_MEMORY;
3853 	res = copy_in_attrs(utc, usr_params, num_params, params);
3854 	if (res != TEE_SUCCESS)
3855 		goto out;
3856 
3857 	res = tee_obj_get(utc, cs->key1, &o);
3858 	if (res != TEE_SUCCESS)
3859 		goto out;
3860 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3861 		res = TEE_ERROR_BAD_PARAMETERS;
3862 		goto out;
3863 	}
3864 
3865 	switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) {
3866 	case TEE_MAIN_ALGO_RSA:
3867 		if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) {
3868 			hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3869 			res = tee_alg_get_digest_size(hash_algo, &hash_size);
3870 			if (res != TEE_SUCCESS)
3871 				break;
3872 			if (data_len != hash_size) {
3873 				res = TEE_ERROR_BAD_PARAMETERS;
3874 				break;
3875 			}
3876 			salt_len = pkcs1_get_salt_len(params, num_params,
3877 						      hash_size);
3878 		}
3879 		res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len,
3880 						   data, data_len, sig,
3881 						   sig_len);
3882 		break;
3883 
3884 	case TEE_MAIN_ALGO_DSA:
3885 		hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3886 		res = tee_alg_get_digest_size(hash_algo, &hash_size);
3887 		if (res != TEE_SUCCESS)
3888 			break;
3889 
3890 		if (data_len != hash_size) {
3891 			struct dsa_public_key *key = o->attr;
3892 
3893 			/*
3894 			 * Depending on the DSA algorithm (NIST), the
3895 			 * digital signature output size may be truncated
3896 			 * to the size of a key pair (Q prime size). Q
3897 			 * prime size must be less or equal than the hash
3898 			 * output length of the hash algorithm involved.
3899 			 *
3900 			 * We're checking here in order to be able to
3901 			 * return this particular error code, which will
3902 			 * cause TEE_AsymmetricVerifyDigest() to panic as
3903 			 * required by GP. crypto_acipher_dsa_verify() is
3904 			 * implemented in the glue layer of the crypto
3905 			 * library and it might be a bit harder to catch
3906 			 * this particular case there or lead to duplicated
3907 			 * code in different crypto glue layers.
3908 			 *
3909 			 * The GP spec says that we SHOULD panic if
3910 			 * data_len != hash_size, but that would break a
3911 			 * few of the DSA tests in xtest where the
3912 			 * hash_size is larger than possible data_len. So
3913 			 * the compromise is in case data_len != hash_size
3914 			 * check that it's not smaller than what makes
3915 			 * sense.
3916 			 */
3917 			if (data_len != crypto_bignum_num_bytes(key->q)) {
3918 				res = TEE_ERROR_BAD_PARAMETERS;
3919 				break;
3920 			}
3921 		}
3922 		res = crypto_acipher_dsa_verify(cs->algo, o->attr, data,
3923 						data_len, sig, sig_len);
3924 		break;
3925 
3926 	case TEE_MAIN_ALGO_ECDSA:
3927 		res = crypto_acipher_ecc_verify(cs->algo, o->attr, data,
3928 						data_len, sig, sig_len);
3929 		break;
3930 
3931 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
3932 		res = crypto_acipher_sm2_dsa_verify(cs->algo, o->attr, data,
3933 						    data_len, sig, sig_len);
3934 		break;
3935 
3936 	default:
3937 		res = TEE_ERROR_NOT_SUPPORTED;
3938 	}
3939 
3940 out:
3941 	free_wipe(params);
3942 	return res;
3943 }
3944