xref: /optee_os/core/tee/tee_svc_cryp.c (revision a253662b1063c7bb866fd21afca550eb6d70b8f4)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  */
5 
6 #include <assert.h>
7 #include <compiler.h>
8 #include <crypto/crypto.h>
9 #include <kernel/tee_ta_manager.h>
10 #include <mm/tee_mmu.h>
11 #include <stdlib_ext.h>
12 #include <string_ext.h>
13 #include <string.h>
14 #include <sys/queue.h>
15 #include <tee_api_types.h>
16 #include <tee/tee_cryp_utl.h>
17 #include <tee/tee_obj.h>
18 #include <tee/tee_svc_cryp.h>
19 #include <tee/tee_svc.h>
20 #include <trace.h>
21 #include <utee_defines.h>
22 #include <util.h>
23 #include <tee_api_defines_extensions.h>
24 #if defined(CFG_CRYPTO_HKDF)
25 #include <tee/tee_cryp_hkdf.h>
26 #endif
27 #if defined(CFG_CRYPTO_CONCAT_KDF)
28 #include <tee/tee_cryp_concat_kdf.h>
29 #endif
30 #if defined(CFG_CRYPTO_PBKDF2)
31 #include <tee/tee_cryp_pbkdf2.h>
32 #endif
33 
34 enum cryp_state {
35 	CRYP_STATE_INITIALIZED = 0,
36 	CRYP_STATE_UNINITIALIZED
37 };
38 
39 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx, uint32_t algo);
40 struct tee_cryp_state {
41 	TAILQ_ENTRY(tee_cryp_state) link;
42 	uint32_t algo;
43 	uint32_t mode;
44 	vaddr_t key1;
45 	vaddr_t key2;
46 	void *ctx;
47 	tee_cryp_ctx_finalize_func_t ctx_finalize;
48 	enum cryp_state state;
49 };
50 
51 struct tee_cryp_obj_secret {
52 	uint32_t key_size;
53 	uint32_t alloc_size;
54 
55 	/*
56 	 * Pseudo code visualize layout of structure
57 	 * Next follows data, such as:
58 	 *	uint8_t data[alloc_size]
59 	 * key_size must never exceed alloc_size
60 	 */
61 };
62 
63 #define TEE_TYPE_ATTR_OPTIONAL       0x0
64 #define TEE_TYPE_ATTR_REQUIRED       0x1
65 #define TEE_TYPE_ATTR_OPTIONAL_GROUP 0x2
66 #define TEE_TYPE_ATTR_SIZE_INDICATOR 0x4
67 #define TEE_TYPE_ATTR_GEN_KEY_OPT    0x8
68 #define TEE_TYPE_ATTR_GEN_KEY_REQ    0x10
69 
70     /* Handle storing of generic secret keys of varying lengths */
71 #define ATTR_OPS_INDEX_SECRET     0
72     /* Convert to/from big-endian byte array and provider-specific bignum */
73 #define ATTR_OPS_INDEX_BIGNUM     1
74     /* Convert to/from value attribute depending on direction */
75 #define ATTR_OPS_INDEX_VALUE      2
76 
77 struct tee_cryp_obj_type_attrs {
78 	uint32_t attr_id;
79 	uint16_t flags;
80 	uint16_t ops_index;
81 	uint16_t raw_offs;
82 	uint16_t raw_size;
83 };
84 
85 #define RAW_DATA(_x, _y)	\
86 	.raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y)
87 
88 static const struct tee_cryp_obj_type_attrs
89 	tee_cryp_obj_secret_value_attrs[] = {
90 	{
91 	.attr_id = TEE_ATTR_SECRET_VALUE,
92 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
93 	.ops_index = ATTR_OPS_INDEX_SECRET,
94 	.raw_offs = 0,
95 	.raw_size = 0
96 	},
97 };
98 
99 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = {
100 	{
101 	.attr_id = TEE_ATTR_RSA_MODULUS,
102 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
103 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
104 	RAW_DATA(struct rsa_public_key, n)
105 	},
106 
107 	{
108 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
109 	.flags = TEE_TYPE_ATTR_REQUIRED,
110 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
111 	RAW_DATA(struct rsa_public_key, e)
112 	},
113 };
114 
115 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = {
116 	{
117 	.attr_id = TEE_ATTR_RSA_MODULUS,
118 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
119 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
120 	RAW_DATA(struct rsa_keypair, n)
121 	},
122 
123 	{
124 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
125 	.flags = TEE_TYPE_ATTR_REQUIRED,
126 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
127 	RAW_DATA(struct rsa_keypair, e)
128 	},
129 
130 	{
131 	.attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT,
132 	.flags = TEE_TYPE_ATTR_REQUIRED,
133 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
134 	RAW_DATA(struct rsa_keypair, d)
135 	},
136 
137 	{
138 	.attr_id = TEE_ATTR_RSA_PRIME1,
139 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
140 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
141 	RAW_DATA(struct rsa_keypair, p)
142 	},
143 
144 	{
145 	.attr_id = TEE_ATTR_RSA_PRIME2,
146 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
147 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
148 	RAW_DATA(struct rsa_keypair, q)
149 	},
150 
151 	{
152 	.attr_id = TEE_ATTR_RSA_EXPONENT1,
153 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
154 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
155 	RAW_DATA(struct rsa_keypair, dp)
156 	},
157 
158 	{
159 	.attr_id = TEE_ATTR_RSA_EXPONENT2,
160 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
161 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
162 	RAW_DATA(struct rsa_keypair, dq)
163 	},
164 
165 	{
166 	.attr_id = TEE_ATTR_RSA_COEFFICIENT,
167 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
168 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
169 	RAW_DATA(struct rsa_keypair, qp)
170 	},
171 };
172 
173 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = {
174 	{
175 	.attr_id = TEE_ATTR_DSA_PRIME,
176 	.flags = TEE_TYPE_ATTR_REQUIRED,
177 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
178 	RAW_DATA(struct dsa_public_key, p)
179 	},
180 
181 	{
182 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
183 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
184 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
185 	RAW_DATA(struct dsa_public_key, q)
186 	},
187 
188 	{
189 	.attr_id = TEE_ATTR_DSA_BASE,
190 	.flags = TEE_TYPE_ATTR_REQUIRED,
191 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
192 	RAW_DATA(struct dsa_public_key, g)
193 	},
194 
195 	{
196 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
197 	.flags = TEE_TYPE_ATTR_REQUIRED,
198 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
199 	RAW_DATA(struct dsa_public_key, y)
200 	},
201 };
202 
203 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = {
204 	{
205 	.attr_id = TEE_ATTR_DSA_PRIME,
206 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
207 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
208 	RAW_DATA(struct dsa_keypair, p)
209 	},
210 
211 	{
212 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
213 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
214 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
215 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
216 	RAW_DATA(struct dsa_keypair, q)
217 	},
218 
219 	{
220 	.attr_id = TEE_ATTR_DSA_BASE,
221 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
222 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
223 	RAW_DATA(struct dsa_keypair, g)
224 	},
225 
226 	{
227 	.attr_id = TEE_ATTR_DSA_PRIVATE_VALUE,
228 	.flags = TEE_TYPE_ATTR_REQUIRED,
229 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
230 	RAW_DATA(struct dsa_keypair, x)
231 	},
232 
233 	{
234 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
235 	.flags = TEE_TYPE_ATTR_REQUIRED,
236 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
237 	RAW_DATA(struct dsa_keypair, y)
238 	},
239 };
240 
241 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = {
242 	{
243 	.attr_id = TEE_ATTR_DH_PRIME,
244 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
245 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
246 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
247 	RAW_DATA(struct dh_keypair, p)
248 	},
249 
250 	{
251 	.attr_id = TEE_ATTR_DH_BASE,
252 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
253 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
254 	RAW_DATA(struct dh_keypair, g)
255 	},
256 
257 	{
258 	.attr_id = TEE_ATTR_DH_PUBLIC_VALUE,
259 	.flags = TEE_TYPE_ATTR_REQUIRED,
260 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
261 	RAW_DATA(struct dh_keypair, y)
262 	},
263 
264 	{
265 	.attr_id = TEE_ATTR_DH_PRIVATE_VALUE,
266 	.flags = TEE_TYPE_ATTR_REQUIRED,
267 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
268 	RAW_DATA(struct dh_keypair, x)
269 	},
270 
271 	{
272 	.attr_id = TEE_ATTR_DH_SUBPRIME,
273 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP |	 TEE_TYPE_ATTR_GEN_KEY_OPT,
274 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
275 	RAW_DATA(struct dh_keypair, q)
276 	},
277 
278 	{
279 	.attr_id = TEE_ATTR_DH_X_BITS,
280 	.flags = TEE_TYPE_ATTR_GEN_KEY_OPT,
281 	.ops_index = ATTR_OPS_INDEX_VALUE,
282 	RAW_DATA(struct dh_keypair, xbits)
283 	},
284 };
285 
286 #if defined(CFG_CRYPTO_HKDF)
287 static const struct tee_cryp_obj_type_attrs
288 	tee_cryp_obj_hkdf_ikm_attrs[] = {
289 	{
290 	.attr_id = TEE_ATTR_HKDF_IKM,
291 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
292 	.ops_index = ATTR_OPS_INDEX_SECRET,
293 	.raw_offs = 0,
294 	.raw_size = 0
295 	},
296 };
297 #endif
298 
299 #if defined(CFG_CRYPTO_CONCAT_KDF)
300 static const struct tee_cryp_obj_type_attrs
301 	tee_cryp_obj_concat_kdf_z_attrs[] = {
302 	{
303 	.attr_id = TEE_ATTR_CONCAT_KDF_Z,
304 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
305 	.ops_index = ATTR_OPS_INDEX_SECRET,
306 	.raw_offs = 0,
307 	.raw_size = 0
308 	},
309 };
310 #endif
311 
312 #if defined(CFG_CRYPTO_PBKDF2)
313 static const struct tee_cryp_obj_type_attrs
314 	tee_cryp_obj_pbkdf2_passwd_attrs[] = {
315 	{
316 	.attr_id = TEE_ATTR_PBKDF2_PASSWORD,
317 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
318 	.ops_index = ATTR_OPS_INDEX_SECRET,
319 	.raw_offs = 0,
320 	.raw_size = 0
321 	},
322 };
323 #endif
324 
325 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = {
326 	{
327 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
328 	.flags = TEE_TYPE_ATTR_REQUIRED,
329 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
330 	RAW_DATA(struct ecc_public_key, x)
331 	},
332 
333 	{
334 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
335 	.flags = TEE_TYPE_ATTR_REQUIRED,
336 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
337 	RAW_DATA(struct ecc_public_key, y)
338 	},
339 
340 	{
341 	.attr_id = TEE_ATTR_ECC_CURVE,
342 	.flags = TEE_TYPE_ATTR_REQUIRED,
343 	.ops_index = ATTR_OPS_INDEX_VALUE,
344 	RAW_DATA(struct ecc_public_key, curve)
345 	},
346 };
347 
348 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = {
349 	{
350 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
351 	.flags = TEE_TYPE_ATTR_REQUIRED,
352 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
353 	RAW_DATA(struct ecc_keypair, d)
354 	},
355 
356 	{
357 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
358 	.flags = TEE_TYPE_ATTR_REQUIRED,
359 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
360 	RAW_DATA(struct ecc_keypair, x)
361 	},
362 
363 	{
364 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
365 	.flags = TEE_TYPE_ATTR_REQUIRED,
366 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
367 	RAW_DATA(struct ecc_keypair, y)
368 	},
369 
370 	{
371 	.attr_id = TEE_ATTR_ECC_CURVE,
372 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
373 	.ops_index = ATTR_OPS_INDEX_VALUE,
374 	RAW_DATA(struct ecc_keypair, curve)
375 	},
376 };
377 
378 struct tee_cryp_obj_type_props {
379 	TEE_ObjectType obj_type;
380 	uint16_t min_size;	/* may not be smaller than this */
381 	uint16_t max_size;	/* may not be larger than this */
382 	uint16_t alloc_size;	/* this many bytes are allocated to hold data */
383 	uint8_t quanta;		/* may only be an multiple of this */
384 
385 	uint8_t num_type_attrs;
386 	const struct tee_cryp_obj_type_attrs *type_attrs;
387 };
388 
389 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \
390 		{ (obj_type), (min_size), (max_size), (alloc_size), (quanta), \
391 		  ARRAY_SIZE(type_attrs), (type_attrs) }
392 
393 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = {
394 	PROP(TEE_TYPE_AES, 64, 128, 256,	/* valid sizes 128, 192, 256 */
395 		256 / 8 + sizeof(struct tee_cryp_obj_secret),
396 		tee_cryp_obj_secret_value_attrs),
397 	PROP(TEE_TYPE_DES, 56, 56, 56,
398 		/*
399 		* Valid size 56 without parity, note that we still allocate
400 		* for 64 bits since the key is supplied with parity.
401 		*/
402 		64 / 8 + sizeof(struct tee_cryp_obj_secret),
403 		tee_cryp_obj_secret_value_attrs),
404 	PROP(TEE_TYPE_DES3, 56, 112, 168,
405 		/*
406 		* Valid sizes 112, 168 without parity, note that we still
407 		* allocate for with space for the parity since the key is
408 		* supplied with parity.
409 		*/
410 		192 / 8 + sizeof(struct tee_cryp_obj_secret),
411 		tee_cryp_obj_secret_value_attrs),
412 	PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512,
413 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
414 		tee_cryp_obj_secret_value_attrs),
415 	PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512,
416 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
417 		tee_cryp_obj_secret_value_attrs),
418 	PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512,
419 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
420 		tee_cryp_obj_secret_value_attrs),
421 	PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024,
422 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
423 		tee_cryp_obj_secret_value_attrs),
424 	PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024,
425 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
426 		tee_cryp_obj_secret_value_attrs),
427 	PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024,
428 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
429 		tee_cryp_obj_secret_value_attrs),
430 	PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096,
431 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
432 		tee_cryp_obj_secret_value_attrs),
433 #if defined(CFG_CRYPTO_HKDF)
434 	PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096,
435 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
436 		tee_cryp_obj_hkdf_ikm_attrs),
437 #endif
438 #if defined(CFG_CRYPTO_CONCAT_KDF)
439 	PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096,
440 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
441 		tee_cryp_obj_concat_kdf_z_attrs),
442 #endif
443 #if defined(CFG_CRYPTO_PBKDF2)
444 	PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096,
445 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
446 		tee_cryp_obj_pbkdf2_passwd_attrs),
447 #endif
448 	PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
449 		sizeof(struct rsa_public_key),
450 		tee_cryp_obj_rsa_pub_key_attrs),
451 
452 	PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
453 		sizeof(struct rsa_keypair),
454 		tee_cryp_obj_rsa_keypair_attrs),
455 
456 	PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072,
457 		sizeof(struct dsa_public_key),
458 		tee_cryp_obj_dsa_pub_key_attrs),
459 
460 	PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072,
461 		sizeof(struct dsa_keypair),
462 		tee_cryp_obj_dsa_keypair_attrs),
463 
464 	PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048,
465 		sizeof(struct dh_keypair),
466 		tee_cryp_obj_dh_keypair_attrs),
467 
468 	PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521,
469 		sizeof(struct ecc_public_key),
470 		tee_cryp_obj_ecc_pub_key_attrs),
471 
472 	PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521,
473 		sizeof(struct ecc_keypair),
474 		tee_cryp_obj_ecc_keypair_attrs),
475 
476 	PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521,
477 		sizeof(struct ecc_public_key),
478 		tee_cryp_obj_ecc_pub_key_attrs),
479 
480 	PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521,
481 		sizeof(struct ecc_keypair),
482 		tee_cryp_obj_ecc_keypair_attrs),
483 };
484 
485 struct attr_ops {
486 	TEE_Result (*from_user)(void *attr, const void *buffer, size_t size);
487 	TEE_Result (*to_user)(void *attr, struct tee_ta_session *sess,
488 			      void *buffer, uint64_t *size);
489 	TEE_Result (*to_binary)(void *attr, void *data, size_t data_len,
490 			    size_t *offs);
491 	bool (*from_binary)(void *attr, const void *data, size_t data_len,
492 			    size_t *offs);
493 	TEE_Result (*from_obj)(void *attr, void *src_attr);
494 	void (*free)(void *attr);
495 	void (*clear)(void *attr);
496 };
497 
498 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data,
499 				    size_t data_len, size_t *offs)
500 {
501 	uint32_t field;
502 	size_t next_offs;
503 
504 	if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs))
505 		return TEE_ERROR_OVERFLOW;
506 
507 	if (data && next_offs <= data_len) {
508 		field = TEE_U32_TO_BIG_ENDIAN(v);
509 		memcpy(data + *offs, &field, sizeof(field));
510 	}
511 	(*offs) = next_offs;
512 
513 	return TEE_SUCCESS;
514 }
515 
516 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data,
517 				      size_t data_len, size_t *offs)
518 {
519 	uint32_t field;
520 
521 	if (!data || (*offs + sizeof(field)) > data_len)
522 		return false;
523 
524 	memcpy(&field, data + *offs, sizeof(field));
525 	*v = TEE_U32_FROM_BIG_ENDIAN(field);
526 	(*offs) += sizeof(field);
527 	return true;
528 }
529 
530 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer,
531 						 size_t size)
532 {
533 	struct tee_cryp_obj_secret *key = attr;
534 
535 	/* Data size has to fit in allocated buffer */
536 	if (size > key->alloc_size)
537 		return TEE_ERROR_SECURITY;
538 	memcpy(key + 1, buffer, size);
539 	key->key_size = size;
540 	return TEE_SUCCESS;
541 }
542 
543 static TEE_Result op_attr_secret_value_to_user(void *attr,
544 			struct tee_ta_session *sess __unused,
545 			void *buffer, uint64_t *size)
546 {
547 	TEE_Result res;
548 	struct tee_cryp_obj_secret *key = attr;
549 	uint64_t s;
550 	uint64_t key_size;
551 
552 	res = tee_svc_copy_from_user(&s, size, sizeof(s));
553 	if (res != TEE_SUCCESS)
554 		return res;
555 
556 	key_size = key->key_size;
557 	res = tee_svc_copy_to_user(size, &key_size, sizeof(key_size));
558 	if (res != TEE_SUCCESS)
559 		return res;
560 
561 	if (s < key->key_size || !buffer)
562 		return TEE_ERROR_SHORT_BUFFER;
563 
564 	return tee_svc_copy_to_user(buffer, key + 1, key->key_size);
565 }
566 
567 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data,
568 					   size_t data_len, size_t *offs)
569 {
570 	TEE_Result res;
571 	struct tee_cryp_obj_secret *key = attr;
572 	size_t next_offs;
573 
574 	res = op_u32_to_binary_helper(key->key_size, data, data_len, offs);
575 	if (res != TEE_SUCCESS)
576 		return res;
577 
578 	if (ADD_OVERFLOW(*offs, key->key_size, &next_offs))
579 		return TEE_ERROR_OVERFLOW;
580 
581 	if (data && next_offs <= data_len)
582 		memcpy((uint8_t *)data + *offs, key + 1, key->key_size);
583 	(*offs) = next_offs;
584 
585 	return TEE_SUCCESS;
586 }
587 
588 static bool op_attr_secret_value_from_binary(void *attr, const void *data,
589 					     size_t data_len, size_t *offs)
590 {
591 	struct tee_cryp_obj_secret *key = attr;
592 	uint32_t s;
593 
594 	if (!op_u32_from_binary_helper(&s, data, data_len, offs))
595 		return false;
596 
597 	if ((*offs + s) > data_len)
598 		return false;
599 
600 	/* Data size has to fit in allocated buffer */
601 	if (s > key->alloc_size)
602 		return false;
603 	key->key_size = s;
604 	memcpy(key + 1, (const uint8_t *)data + *offs, s);
605 	(*offs) += s;
606 	return true;
607 }
608 
609 
610 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr)
611 {
612 	struct tee_cryp_obj_secret *key = attr;
613 	struct tee_cryp_obj_secret *src_key = src_attr;
614 
615 	if (src_key->key_size > key->alloc_size)
616 		return TEE_ERROR_BAD_STATE;
617 	memcpy(key + 1, src_key + 1, src_key->key_size);
618 	key->key_size = src_key->key_size;
619 	return TEE_SUCCESS;
620 }
621 
622 static void op_attr_secret_value_clear(void *attr)
623 {
624 	struct tee_cryp_obj_secret *key = attr;
625 
626 	key->key_size = 0;
627 	memset(key + 1, 0, key->alloc_size);
628 }
629 
630 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer,
631 					   size_t size)
632 {
633 	struct bignum **bn = attr;
634 
635 	return crypto_bignum_bin2bn(buffer, size, *bn);
636 }
637 
638 static TEE_Result op_attr_bignum_to_user(void *attr,
639 					 struct tee_ta_session *sess,
640 					 void *buffer, uint64_t *size)
641 {
642 	TEE_Result res;
643 	struct bignum **bn = attr;
644 	uint64_t req_size;
645 	uint64_t s;
646 
647 	res = tee_svc_copy_from_user(&s, size, sizeof(s));
648 	if (res != TEE_SUCCESS)
649 		return res;
650 
651 	req_size = crypto_bignum_num_bytes(*bn);
652 	res = tee_svc_copy_to_user(size, &req_size, sizeof(req_size));
653 	if (res != TEE_SUCCESS)
654 		return res;
655 	if (!req_size)
656 		return TEE_SUCCESS;
657 	if (s < req_size || !buffer)
658 		return TEE_ERROR_SHORT_BUFFER;
659 
660 	/* Check we can access data using supplied user mode pointer */
661 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
662 					  TEE_MEMORY_ACCESS_READ |
663 					  TEE_MEMORY_ACCESS_WRITE |
664 					  TEE_MEMORY_ACCESS_ANY_OWNER,
665 					  (uaddr_t)buffer, req_size);
666 	if (res != TEE_SUCCESS)
667 		return res;
668 	/*
669 	* Write the bignum (wich raw data points to) into an array of
670 	* bytes (stored in buffer)
671 	*/
672 	crypto_bignum_bn2bin(*bn, buffer);
673 	return TEE_SUCCESS;
674 }
675 
676 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data,
677 					   size_t data_len, size_t *offs)
678 {
679 	TEE_Result res;
680 	struct bignum **bn = attr;
681 	uint32_t n = crypto_bignum_num_bytes(*bn);
682 	size_t next_offs;
683 
684 	res = op_u32_to_binary_helper(n, data, data_len, offs);
685 	if (res != TEE_SUCCESS)
686 		return res;
687 
688 	if (ADD_OVERFLOW(*offs, n, &next_offs))
689 		return TEE_ERROR_OVERFLOW;
690 
691 	if (data && next_offs <= data_len)
692 		crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs);
693 	(*offs) = next_offs;
694 
695 	return TEE_SUCCESS;
696 }
697 
698 static bool op_attr_bignum_from_binary(void *attr, const void *data,
699 				       size_t data_len, size_t *offs)
700 {
701 	struct bignum **bn = attr;
702 	uint32_t n;
703 
704 	if (!op_u32_from_binary_helper(&n, data, data_len, offs))
705 		return false;
706 
707 	if ((*offs + n) > data_len)
708 		return false;
709 	if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn))
710 		return false;
711 	(*offs) += n;
712 	return true;
713 }
714 
715 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr)
716 {
717 	struct bignum **bn = attr;
718 	struct bignum **src_bn = src_attr;
719 
720 	crypto_bignum_copy(*bn, *src_bn);
721 	return TEE_SUCCESS;
722 }
723 
724 static void op_attr_bignum_clear(void *attr)
725 {
726 	struct bignum **bn = attr;
727 
728 	crypto_bignum_clear(*bn);
729 }
730 
731 static void op_attr_bignum_free(void *attr)
732 {
733 	struct bignum **bn = attr;
734 
735 	crypto_bignum_free(*bn);
736 	*bn = NULL;
737 }
738 
739 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer,
740 					  size_t size)
741 {
742 	uint32_t *v = attr;
743 
744 	if (size != sizeof(uint32_t) * 2)
745 		return TEE_ERROR_GENERIC; /* "can't happen */
746 
747 	/* Note that only the first value is copied */
748 	memcpy(v, buffer, sizeof(uint32_t));
749 	return TEE_SUCCESS;
750 }
751 
752 static TEE_Result op_attr_value_to_user(void *attr,
753 					struct tee_ta_session *sess __unused,
754 					void *buffer, uint64_t *size)
755 {
756 	TEE_Result res;
757 	uint32_t *v = attr;
758 	uint64_t s;
759 	uint32_t value[2] = { *v };
760 	uint64_t req_size = sizeof(value);
761 
762 	res = tee_svc_copy_from_user(&s, size, sizeof(s));
763 	if (res != TEE_SUCCESS)
764 		return res;
765 
766 	if (s < req_size || !buffer)
767 		return TEE_ERROR_SHORT_BUFFER;
768 
769 	return tee_svc_copy_to_user(buffer, value, req_size);
770 }
771 
772 static TEE_Result op_attr_value_to_binary(void *attr, void *data,
773 					  size_t data_len, size_t *offs)
774 {
775 	uint32_t *v = attr;
776 
777 	return op_u32_to_binary_helper(*v, data, data_len, offs);
778 }
779 
780 static bool op_attr_value_from_binary(void *attr, const void *data,
781 				      size_t data_len, size_t *offs)
782 {
783 	uint32_t *v = attr;
784 
785 	return op_u32_from_binary_helper(v, data, data_len, offs);
786 }
787 
788 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr)
789 {
790 	uint32_t *v = attr;
791 	uint32_t *src_v = src_attr;
792 
793 	*v = *src_v;
794 	return TEE_SUCCESS;
795 }
796 
797 static void op_attr_value_clear(void *attr)
798 {
799 	uint32_t *v = attr;
800 
801 	*v = 0;
802 }
803 
804 static const struct attr_ops attr_ops[] = {
805 	[ATTR_OPS_INDEX_SECRET] = {
806 		.from_user = op_attr_secret_value_from_user,
807 		.to_user = op_attr_secret_value_to_user,
808 		.to_binary = op_attr_secret_value_to_binary,
809 		.from_binary = op_attr_secret_value_from_binary,
810 		.from_obj = op_attr_secret_value_from_obj,
811 		.free = op_attr_secret_value_clear, /* not a typo */
812 		.clear = op_attr_secret_value_clear,
813 	},
814 	[ATTR_OPS_INDEX_BIGNUM] = {
815 		.from_user = op_attr_bignum_from_user,
816 		.to_user = op_attr_bignum_to_user,
817 		.to_binary = op_attr_bignum_to_binary,
818 		.from_binary = op_attr_bignum_from_binary,
819 		.from_obj = op_attr_bignum_from_obj,
820 		.free = op_attr_bignum_free,
821 		.clear = op_attr_bignum_clear,
822 	},
823 	[ATTR_OPS_INDEX_VALUE] = {
824 		.from_user = op_attr_value_from_user,
825 		.to_user = op_attr_value_to_user,
826 		.to_binary = op_attr_value_to_binary,
827 		.from_binary = op_attr_value_from_binary,
828 		.from_obj = op_attr_value_from_obj,
829 		.free = op_attr_value_clear, /* not a typo */
830 		.clear = op_attr_value_clear,
831 	},
832 };
833 
834 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src)
835 {
836 	uint64_t d = 0;
837 	TEE_Result res = tee_svc_copy_from_user(&d, src, sizeof(d));
838 
839 	/*
840 	 * On 32-bit systems a size_t can't hold a uint64_t so we need to
841 	 * check that the value isn't too large.
842 	 */
843 	if (!res && ADD_OVERFLOW(0, d, dst))
844 		return TEE_ERROR_OVERFLOW;
845 
846 	return res;
847 }
848 
849 static TEE_Result put_user_u64(uint64_t *dst, size_t value)
850 {
851 	uint64_t v = value;
852 
853 	return tee_svc_copy_to_user(dst, &v, sizeof(v));
854 }
855 
856 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info)
857 {
858 	TEE_Result res;
859 	struct tee_ta_session *sess;
860 	struct tee_obj *o;
861 
862 	res = tee_ta_get_current_session(&sess);
863 	if (res != TEE_SUCCESS)
864 		goto exit;
865 
866 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
867 			  tee_svc_uref_to_vaddr(obj), &o);
868 	if (res != TEE_SUCCESS)
869 		goto exit;
870 
871 	res = tee_svc_copy_to_user(info, &o->info, sizeof(o->info));
872 
873 exit:
874 	return res;
875 }
876 
877 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj,
878 			unsigned long usage)
879 {
880 	TEE_Result res;
881 	struct tee_ta_session *sess;
882 	struct tee_obj *o;
883 
884 	res = tee_ta_get_current_session(&sess);
885 	if (res != TEE_SUCCESS)
886 		goto exit;
887 
888 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
889 			  tee_svc_uref_to_vaddr(obj), &o);
890 	if (res != TEE_SUCCESS)
891 		goto exit;
892 
893 	o->info.objectUsage &= usage;
894 
895 exit:
896 	return res;
897 }
898 
899 static int tee_svc_cryp_obj_find_type_attr_idx(
900 		uint32_t attr_id,
901 		const struct tee_cryp_obj_type_props *type_props)
902 {
903 	size_t n;
904 
905 	for (n = 0; n < type_props->num_type_attrs; n++) {
906 		if (attr_id == type_props->type_attrs[n].attr_id)
907 			return n;
908 	}
909 	return -1;
910 }
911 
912 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props(
913 		TEE_ObjectType obj_type)
914 {
915 	size_t n;
916 
917 	for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) {
918 		if (tee_cryp_obj_props[n].obj_type == obj_type)
919 			return tee_cryp_obj_props + n;
920 	}
921 
922 	return NULL;
923 }
924 
925 /* Set an attribute on an object */
926 static void set_attribute(struct tee_obj *o,
927 			  const struct tee_cryp_obj_type_props *props,
928 			  uint32_t attr)
929 {
930 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
931 
932 	if (idx < 0)
933 		return;
934 	o->have_attrs |= BIT(idx);
935 }
936 
937 /* Get an attribute on an object */
938 static uint32_t get_attribute(const struct tee_obj *o,
939 			      const struct tee_cryp_obj_type_props *props,
940 			      uint32_t attr)
941 {
942 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
943 
944 	if (idx < 0)
945 		return 0;
946 	return o->have_attrs & BIT(idx);
947 }
948 
949 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id,
950 			void *buffer, uint64_t *size)
951 {
952 	TEE_Result res;
953 	struct tee_ta_session *sess;
954 	struct tee_obj *o;
955 	const struct tee_cryp_obj_type_props *type_props;
956 	int idx;
957 	const struct attr_ops *ops;
958 	void *attr;
959 
960 	res = tee_ta_get_current_session(&sess);
961 	if (res != TEE_SUCCESS)
962 		return res;
963 
964 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
965 			  tee_svc_uref_to_vaddr(obj), &o);
966 	if (res != TEE_SUCCESS)
967 		return TEE_ERROR_ITEM_NOT_FOUND;
968 
969 	/* Check that the object is initialized */
970 	if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED))
971 		return TEE_ERROR_BAD_PARAMETERS;
972 
973 	/* Check that getting the attribute is allowed */
974 	if (!(attr_id & TEE_ATTR_BIT_PROTECTED) &&
975 	    !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE))
976 		return TEE_ERROR_BAD_PARAMETERS;
977 
978 	type_props = tee_svc_find_type_props(o->info.objectType);
979 	if (!type_props) {
980 		/* Unknown object type, "can't happen" */
981 		return TEE_ERROR_BAD_STATE;
982 	}
983 
984 	idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props);
985 	if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0))
986 		return TEE_ERROR_ITEM_NOT_FOUND;
987 
988 	ops = attr_ops + type_props->type_attrs[idx].ops_index;
989 	attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs;
990 	return ops->to_user(attr, sess, buffer, size);
991 }
992 
993 void tee_obj_attr_free(struct tee_obj *o)
994 {
995 	const struct tee_cryp_obj_type_props *tp;
996 	size_t n;
997 
998 	if (!o->attr)
999 		return;
1000 	tp = tee_svc_find_type_props(o->info.objectType);
1001 	if (!tp)
1002 		return;
1003 
1004 	for (n = 0; n < tp->num_type_attrs; n++) {
1005 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1006 
1007 		attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs);
1008 	}
1009 }
1010 
1011 void tee_obj_attr_clear(struct tee_obj *o)
1012 {
1013 	const struct tee_cryp_obj_type_props *tp;
1014 	size_t n;
1015 
1016 	if (!o->attr)
1017 		return;
1018 	tp = tee_svc_find_type_props(o->info.objectType);
1019 	if (!tp)
1020 		return;
1021 
1022 	for (n = 0; n < tp->num_type_attrs; n++) {
1023 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1024 
1025 		attr_ops[ta->ops_index].clear((uint8_t *)o->attr +
1026 					      ta->raw_offs);
1027 	}
1028 }
1029 
1030 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data,
1031 				  size_t *data_len)
1032 {
1033 	const struct tee_cryp_obj_type_props *tp;
1034 	size_t n;
1035 	size_t offs = 0;
1036 	size_t len = data ? *data_len : 0;
1037 	TEE_Result res;
1038 
1039 	if (o->info.objectType == TEE_TYPE_DATA) {
1040 		*data_len = 0;
1041 		return TEE_SUCCESS; /* pure data object */
1042 	}
1043 	if (!o->attr)
1044 		return TEE_ERROR_BAD_STATE;
1045 	tp = tee_svc_find_type_props(o->info.objectType);
1046 	if (!tp)
1047 		return TEE_ERROR_BAD_STATE;
1048 
1049 	for (n = 0; n < tp->num_type_attrs; n++) {
1050 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1051 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1052 
1053 		res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs);
1054 		if (res != TEE_SUCCESS)
1055 			return res;
1056 	}
1057 
1058 	*data_len = offs;
1059 	if (data && offs > len)
1060 		return TEE_ERROR_SHORT_BUFFER;
1061 	return TEE_SUCCESS;
1062 }
1063 
1064 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data,
1065 				    size_t data_len)
1066 {
1067 	const struct tee_cryp_obj_type_props *tp;
1068 	size_t n;
1069 	size_t offs = 0;
1070 
1071 	if (o->info.objectType == TEE_TYPE_DATA)
1072 		return TEE_SUCCESS; /* pure data object */
1073 	if (!o->attr)
1074 		return TEE_ERROR_BAD_STATE;
1075 	tp = tee_svc_find_type_props(o->info.objectType);
1076 	if (!tp)
1077 		return TEE_ERROR_BAD_STATE;
1078 
1079 	for (n = 0; n < tp->num_type_attrs; n++) {
1080 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1081 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1082 
1083 		if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len,
1084 							 &offs))
1085 			return TEE_ERROR_CORRUPT_OBJECT;
1086 	}
1087 	return TEE_SUCCESS;
1088 }
1089 
1090 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src)
1091 {
1092 	TEE_Result res;
1093 	const struct tee_cryp_obj_type_props *tp;
1094 	const struct tee_cryp_obj_type_attrs *ta;
1095 	size_t n;
1096 	uint32_t have_attrs = 0;
1097 	void *attr;
1098 	void *src_attr;
1099 
1100 	if (o->info.objectType == TEE_TYPE_DATA)
1101 		return TEE_SUCCESS; /* pure data object */
1102 	if (!o->attr)
1103 		return TEE_ERROR_BAD_STATE;
1104 	tp = tee_svc_find_type_props(o->info.objectType);
1105 	if (!tp)
1106 		return TEE_ERROR_BAD_STATE;
1107 
1108 	if (o->info.objectType == src->info.objectType) {
1109 		have_attrs = src->have_attrs;
1110 		for (n = 0; n < tp->num_type_attrs; n++) {
1111 			ta = tp->type_attrs + n;
1112 			attr = (uint8_t *)o->attr + ta->raw_offs;
1113 			src_attr = (uint8_t *)src->attr + ta->raw_offs;
1114 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1115 			if (res != TEE_SUCCESS)
1116 				return res;
1117 		}
1118 	} else {
1119 		const struct tee_cryp_obj_type_props *tp_src;
1120 		int idx;
1121 
1122 		if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) {
1123 			if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR)
1124 				return TEE_ERROR_BAD_PARAMETERS;
1125 		} else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) {
1126 			if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR)
1127 				return TEE_ERROR_BAD_PARAMETERS;
1128 		} else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) {
1129 			if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR)
1130 				return TEE_ERROR_BAD_PARAMETERS;
1131 		} else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) {
1132 			if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR)
1133 				return TEE_ERROR_BAD_PARAMETERS;
1134 		} else {
1135 			return TEE_ERROR_BAD_PARAMETERS;
1136 		}
1137 
1138 		tp_src = tee_svc_find_type_props(src->info.objectType);
1139 		if (!tp_src)
1140 			return TEE_ERROR_BAD_STATE;
1141 
1142 		have_attrs = BIT32(tp->num_type_attrs) - 1;
1143 		for (n = 0; n < tp->num_type_attrs; n++) {
1144 			ta = tp->type_attrs + n;
1145 
1146 			idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id,
1147 								  tp_src);
1148 			if (idx < 0)
1149 				return TEE_ERROR_BAD_STATE;
1150 
1151 			attr = (uint8_t *)o->attr + ta->raw_offs;
1152 			src_attr = (uint8_t *)src->attr +
1153 				   tp_src->type_attrs[idx].raw_offs;
1154 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1155 			if (res != TEE_SUCCESS)
1156 				return res;
1157 		}
1158 	}
1159 
1160 	o->have_attrs = have_attrs;
1161 	return TEE_SUCCESS;
1162 }
1163 
1164 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type,
1165 			    size_t max_key_size)
1166 {
1167 	TEE_Result res = TEE_SUCCESS;
1168 	const struct tee_cryp_obj_type_props *type_props;
1169 
1170 	/* Can only set type for newly allocated objs */
1171 	if (o->attr)
1172 		return TEE_ERROR_BAD_STATE;
1173 
1174 	/*
1175 	 * Verify that maxKeySize is supported and find out how
1176 	 * much should be allocated.
1177 	 */
1178 
1179 	if (obj_type == TEE_TYPE_DATA) {
1180 		if (max_key_size)
1181 			return TEE_ERROR_NOT_SUPPORTED;
1182 	} else {
1183 		/* Find description of object */
1184 		type_props = tee_svc_find_type_props(obj_type);
1185 		if (!type_props)
1186 			return TEE_ERROR_NOT_SUPPORTED;
1187 
1188 		/* Check that maxKeySize follows restrictions */
1189 		if (max_key_size % type_props->quanta != 0)
1190 			return TEE_ERROR_NOT_SUPPORTED;
1191 		if (max_key_size < type_props->min_size)
1192 			return TEE_ERROR_NOT_SUPPORTED;
1193 		if (max_key_size > type_props->max_size)
1194 			return TEE_ERROR_NOT_SUPPORTED;
1195 
1196 		o->attr = calloc(1, type_props->alloc_size);
1197 		if (!o->attr)
1198 			return TEE_ERROR_OUT_OF_MEMORY;
1199 	}
1200 
1201 	/* If we have a key structure, pre-allocate the bignums inside */
1202 	switch (obj_type) {
1203 	case TEE_TYPE_RSA_PUBLIC_KEY:
1204 		res = crypto_acipher_alloc_rsa_public_key(o->attr,
1205 							  max_key_size);
1206 		break;
1207 	case TEE_TYPE_RSA_KEYPAIR:
1208 		res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size);
1209 		break;
1210 	case TEE_TYPE_DSA_PUBLIC_KEY:
1211 		res = crypto_acipher_alloc_dsa_public_key(o->attr,
1212 							  max_key_size);
1213 		break;
1214 	case TEE_TYPE_DSA_KEYPAIR:
1215 		res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size);
1216 		break;
1217 	case TEE_TYPE_DH_KEYPAIR:
1218 		res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size);
1219 		break;
1220 	case TEE_TYPE_ECDSA_PUBLIC_KEY:
1221 	case TEE_TYPE_ECDH_PUBLIC_KEY:
1222 		res = crypto_acipher_alloc_ecc_public_key(o->attr,
1223 							  max_key_size);
1224 		break;
1225 	case TEE_TYPE_ECDSA_KEYPAIR:
1226 	case TEE_TYPE_ECDH_KEYPAIR:
1227 		res = crypto_acipher_alloc_ecc_keypair(o->attr, max_key_size);
1228 		break;
1229 	default:
1230 		if (obj_type != TEE_TYPE_DATA) {
1231 			struct tee_cryp_obj_secret *key = o->attr;
1232 
1233 			key->alloc_size = type_props->alloc_size -
1234 					  sizeof(*key);
1235 		}
1236 		break;
1237 	}
1238 
1239 	if (res != TEE_SUCCESS)
1240 		return res;
1241 
1242 	o->info.objectType = obj_type;
1243 	o->info.maxKeySize = max_key_size;
1244 	o->info.objectUsage = TEE_USAGE_DEFAULT;
1245 
1246 	return TEE_SUCCESS;
1247 }
1248 
1249 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type,
1250 			unsigned long max_key_size, uint32_t *obj)
1251 {
1252 	TEE_Result res;
1253 	struct tee_ta_session *sess;
1254 	struct tee_obj *o;
1255 
1256 	if (obj_type == TEE_TYPE_DATA)
1257 		return TEE_ERROR_NOT_SUPPORTED;
1258 
1259 	res = tee_ta_get_current_session(&sess);
1260 	if (res != TEE_SUCCESS)
1261 		return res;
1262 
1263 	o = tee_obj_alloc();
1264 	if (!o)
1265 		return TEE_ERROR_OUT_OF_MEMORY;
1266 
1267 	res = tee_obj_set_type(o, obj_type, max_key_size);
1268 	if (res != TEE_SUCCESS) {
1269 		tee_obj_free(o);
1270 		return res;
1271 	}
1272 
1273 	tee_obj_add(to_user_ta_ctx(sess->ctx), o);
1274 
1275 	res = tee_svc_copy_kaddr_to_uref(obj, o);
1276 	if (res != TEE_SUCCESS)
1277 		tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1278 	return res;
1279 }
1280 
1281 TEE_Result syscall_cryp_obj_close(unsigned long obj)
1282 {
1283 	TEE_Result res;
1284 	struct tee_ta_session *sess;
1285 	struct tee_obj *o;
1286 
1287 	res = tee_ta_get_current_session(&sess);
1288 	if (res != TEE_SUCCESS)
1289 		return res;
1290 
1291 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1292 			  tee_svc_uref_to_vaddr(obj), &o);
1293 	if (res != TEE_SUCCESS)
1294 		return res;
1295 
1296 	/*
1297 	 * If it's busy it's used by an operation, a client should never have
1298 	 * this handle.
1299 	 */
1300 	if (o->busy)
1301 		return TEE_ERROR_ITEM_NOT_FOUND;
1302 
1303 	tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1304 	return TEE_SUCCESS;
1305 }
1306 
1307 TEE_Result syscall_cryp_obj_reset(unsigned long obj)
1308 {
1309 	TEE_Result res;
1310 	struct tee_ta_session *sess;
1311 	struct tee_obj *o;
1312 
1313 	res = tee_ta_get_current_session(&sess);
1314 	if (res != TEE_SUCCESS)
1315 		return res;
1316 
1317 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1318 			  tee_svc_uref_to_vaddr(obj), &o);
1319 	if (res != TEE_SUCCESS)
1320 		return res;
1321 
1322 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) {
1323 		tee_obj_attr_clear(o);
1324 		o->info.keySize = 0;
1325 		o->info.objectUsage = TEE_USAGE_DEFAULT;
1326 	} else {
1327 		return TEE_ERROR_BAD_PARAMETERS;
1328 	}
1329 
1330 	/* the object is no more initialized */
1331 	o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;
1332 
1333 	return TEE_SUCCESS;
1334 }
1335 
1336 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,
1337 			const struct utee_attribute *usr_attrs,
1338 			uint32_t attr_count, TEE_Attribute *attrs)
1339 {
1340 	TEE_Result res;
1341 	uint32_t n;
1342 	size_t size = 0;
1343 
1344 	if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size))
1345 		return TEE_ERROR_OVERFLOW;
1346 
1347 	res = tee_mmu_check_access_rights(utc,
1348 			TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER,
1349 			(uaddr_t)usr_attrs, size);
1350 	if (res != TEE_SUCCESS)
1351 		return res;
1352 
1353 	for (n = 0; n < attr_count; n++) {
1354 		attrs[n].attributeID = usr_attrs[n].attribute_id;
1355 		if (attrs[n].attributeID & TEE_ATTR_BIT_VALUE) {
1356 			attrs[n].content.value.a = usr_attrs[n].a;
1357 			attrs[n].content.value.b = usr_attrs[n].b;
1358 		} else {
1359 			uintptr_t buf = usr_attrs[n].a;
1360 			size_t len = usr_attrs[n].b;
1361 
1362 			res = tee_mmu_check_access_rights(utc,
1363 				TEE_MEMORY_ACCESS_READ |
1364 				TEE_MEMORY_ACCESS_ANY_OWNER, buf, len);
1365 			if (res != TEE_SUCCESS)
1366 				return res;
1367 			attrs[n].content.ref.buffer = (void *)buf;
1368 			attrs[n].content.ref.length = len;
1369 		}
1370 	}
1371 
1372 	return TEE_SUCCESS;
1373 }
1374 
1375 enum attr_usage {
1376 	ATTR_USAGE_POPULATE,
1377 	ATTR_USAGE_GENERATE_KEY
1378 };
1379 
1380 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage,
1381 					  const struct tee_cryp_obj_type_props
1382 						*type_props,
1383 					  const TEE_Attribute *attrs,
1384 					  uint32_t attr_count)
1385 {
1386 	uint32_t required_flag;
1387 	uint32_t opt_flag;
1388 	bool all_opt_needed;
1389 	uint32_t req_attrs = 0;
1390 	uint32_t opt_grp_attrs = 0;
1391 	uint32_t attrs_found = 0;
1392 	size_t n;
1393 	uint32_t bit;
1394 	uint32_t flags;
1395 	int idx;
1396 
1397 	if (usage == ATTR_USAGE_POPULATE) {
1398 		required_flag = TEE_TYPE_ATTR_REQUIRED;
1399 		opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP;
1400 		all_opt_needed = true;
1401 	} else {
1402 		required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ;
1403 		opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT;
1404 		all_opt_needed = false;
1405 	}
1406 
1407 	/*
1408 	 * First find out which attributes are required and which belong to
1409 	 * the optional group
1410 	 */
1411 	for (n = 0; n < type_props->num_type_attrs; n++) {
1412 		bit = 1 << n;
1413 		flags = type_props->type_attrs[n].flags;
1414 
1415 		if (flags & required_flag)
1416 			req_attrs |= bit;
1417 		else if (flags & opt_flag)
1418 			opt_grp_attrs |= bit;
1419 	}
1420 
1421 	/*
1422 	 * Verify that all required attributes are in place and
1423 	 * that the same attribute isn't repeated.
1424 	 */
1425 	for (n = 0; n < attr_count; n++) {
1426 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1427 							attrs[n].attributeID,
1428 							type_props);
1429 
1430 		/* attribute not defined in current object type */
1431 		if (idx < 0)
1432 			return TEE_ERROR_ITEM_NOT_FOUND;
1433 
1434 		bit = 1 << idx;
1435 
1436 		/* attribute not repeated */
1437 		if ((attrs_found & bit) != 0)
1438 			return TEE_ERROR_ITEM_NOT_FOUND;
1439 
1440 		attrs_found |= bit;
1441 	}
1442 	/* Required attribute missing */
1443 	if ((attrs_found & req_attrs) != req_attrs)
1444 		return TEE_ERROR_ITEM_NOT_FOUND;
1445 
1446 	/*
1447 	 * If the flag says that "if one of the optional attributes are included
1448 	 * all of them has to be included" this must be checked.
1449 	 */
1450 	if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 &&
1451 	    (attrs_found & opt_grp_attrs) != opt_grp_attrs)
1452 		return TEE_ERROR_ITEM_NOT_FOUND;
1453 
1454 	return TEE_SUCCESS;
1455 }
1456 
1457 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size)
1458 {
1459 	switch (curve) {
1460 	case TEE_ECC_CURVE_NIST_P192:
1461 		*key_size = 192;
1462 		break;
1463 	case TEE_ECC_CURVE_NIST_P224:
1464 		*key_size = 224;
1465 		break;
1466 	case TEE_ECC_CURVE_NIST_P256:
1467 		*key_size = 256;
1468 		break;
1469 	case TEE_ECC_CURVE_NIST_P384:
1470 		*key_size = 384;
1471 		break;
1472 	case TEE_ECC_CURVE_NIST_P521:
1473 		*key_size = 521;
1474 		break;
1475 	default:
1476 		return TEE_ERROR_NOT_SUPPORTED;
1477 	}
1478 
1479 	return TEE_SUCCESS;
1480 }
1481 
1482 static TEE_Result tee_svc_cryp_obj_populate_type(
1483 		struct tee_obj *o,
1484 		const struct tee_cryp_obj_type_props *type_props,
1485 		const TEE_Attribute *attrs,
1486 		uint32_t attr_count)
1487 {
1488 	TEE_Result res;
1489 	uint32_t have_attrs = 0;
1490 	size_t obj_size = 0;
1491 	size_t n;
1492 	int idx;
1493 	const struct attr_ops *ops;
1494 	void *attr;
1495 
1496 	for (n = 0; n < attr_count; n++) {
1497 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1498 							attrs[n].attributeID,
1499 							type_props);
1500 		/* attribute not defined in current object type */
1501 		if (idx < 0)
1502 			return TEE_ERROR_ITEM_NOT_FOUND;
1503 
1504 		have_attrs |= BIT32(idx);
1505 		ops = attr_ops + type_props->type_attrs[idx].ops_index;
1506 		attr = (uint8_t *)o->attr +
1507 		       type_props->type_attrs[idx].raw_offs;
1508 		if (attrs[n].attributeID & TEE_ATTR_BIT_VALUE)
1509 			res = ops->from_user(attr, &attrs[n].content.value,
1510 					     sizeof(attrs[n].content.value));
1511 		else
1512 			res = ops->from_user(attr, attrs[n].content.ref.buffer,
1513 					     attrs[n].content.ref.length);
1514 		if (res != TEE_SUCCESS)
1515 			return res;
1516 
1517 		/*
1518 		 * First attr_idx signifies the attribute that gives the size
1519 		 * of the object
1520 		 */
1521 		if (type_props->type_attrs[idx].flags &
1522 		    TEE_TYPE_ATTR_SIZE_INDICATOR) {
1523 			/*
1524 			 * For ECDSA/ECDH we need to translate curve into
1525 			 * object size
1526 			 */
1527 			if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) {
1528 				res = get_ec_key_size(attrs[n].content.value.a,
1529 						      &obj_size);
1530 				if (res != TEE_SUCCESS)
1531 					return res;
1532 			} else {
1533 				obj_size += (attrs[n].content.ref.length * 8);
1534 			}
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * We have to do it like this because the parity bits aren't counted
1540 	 * when telling the size of the key in bits.
1541 	 */
1542 	if (o->info.objectType == TEE_TYPE_DES ||
1543 	    o->info.objectType == TEE_TYPE_DES3)
1544 		obj_size -= obj_size / 8; /* Exclude parity in size of key */
1545 
1546 	o->have_attrs = have_attrs;
1547 	o->info.keySize = obj_size;
1548 
1549 	return TEE_SUCCESS;
1550 }
1551 
1552 TEE_Result syscall_cryp_obj_populate(unsigned long obj,
1553 			struct utee_attribute *usr_attrs,
1554 			unsigned long attr_count)
1555 {
1556 	TEE_Result res;
1557 	struct tee_ta_session *sess;
1558 	struct tee_obj *o;
1559 	const struct tee_cryp_obj_type_props *type_props;
1560 	TEE_Attribute *attrs = NULL;
1561 
1562 	res = tee_ta_get_current_session(&sess);
1563 	if (res != TEE_SUCCESS)
1564 		return res;
1565 
1566 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1567 			  tee_svc_uref_to_vaddr(obj), &o);
1568 	if (res != TEE_SUCCESS)
1569 		return res;
1570 
1571 	/* Must be a transient object */
1572 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1573 		return TEE_ERROR_BAD_PARAMETERS;
1574 
1575 	/* Must not be initialized already */
1576 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1577 		return TEE_ERROR_BAD_PARAMETERS;
1578 
1579 	type_props = tee_svc_find_type_props(o->info.objectType);
1580 	if (!type_props)
1581 		return TEE_ERROR_NOT_IMPLEMENTED;
1582 
1583 	size_t alloc_size = 0;
1584 
1585 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size))
1586 		return TEE_ERROR_OVERFLOW;
1587 
1588 	attrs = malloc(alloc_size);
1589 	if (!attrs)
1590 		return TEE_ERROR_OUT_OF_MEMORY;
1591 
1592 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
1593 			    attrs);
1594 	if (res != TEE_SUCCESS)
1595 		goto out;
1596 
1597 	res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
1598 				      attrs, attr_count);
1599 	if (res != TEE_SUCCESS)
1600 		goto out;
1601 
1602 	res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
1603 	if (res == TEE_SUCCESS)
1604 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1605 
1606 out:
1607 	free_wipe(attrs);
1608 	return res;
1609 }
1610 
1611 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src)
1612 {
1613 	TEE_Result res;
1614 	struct tee_ta_session *sess;
1615 	struct tee_obj *dst_o;
1616 	struct tee_obj *src_o;
1617 
1618 	res = tee_ta_get_current_session(&sess);
1619 	if (res != TEE_SUCCESS)
1620 		return res;
1621 
1622 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1623 			  tee_svc_uref_to_vaddr(dst), &dst_o);
1624 	if (res != TEE_SUCCESS)
1625 		return res;
1626 
1627 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1628 			  tee_svc_uref_to_vaddr(src), &src_o);
1629 	if (res != TEE_SUCCESS)
1630 		return res;
1631 
1632 	if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1633 		return TEE_ERROR_BAD_PARAMETERS;
1634 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1635 		return TEE_ERROR_BAD_PARAMETERS;
1636 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1637 		return TEE_ERROR_BAD_PARAMETERS;
1638 
1639 	res = tee_obj_attr_copy_from(dst_o, src_o);
1640 	if (res != TEE_SUCCESS)
1641 		return res;
1642 
1643 	dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1644 	dst_o->info.keySize = src_o->info.keySize;
1645 	dst_o->info.objectUsage = src_o->info.objectUsage;
1646 	return TEE_SUCCESS;
1647 }
1648 
1649 static TEE_Result tee_svc_obj_generate_key_rsa(
1650 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1651 	uint32_t key_size,
1652 	const TEE_Attribute *params, uint32_t param_count)
1653 {
1654 	TEE_Result res;
1655 	struct rsa_keypair *key = o->attr;
1656 	uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537);
1657 
1658 	/* Copy the present attributes into the obj before starting */
1659 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1660 					     param_count);
1661 	if (res != TEE_SUCCESS)
1662 		return res;
1663 	if (!get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT))
1664 		crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e);
1665 	res = crypto_acipher_gen_rsa_key(key, key_size);
1666 	if (res != TEE_SUCCESS)
1667 		return res;
1668 
1669 	/* Set bits for all known attributes for this object type */
1670 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1671 
1672 	return TEE_SUCCESS;
1673 }
1674 
1675 static TEE_Result tee_svc_obj_generate_key_dsa(
1676 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1677 	uint32_t key_size)
1678 {
1679 	TEE_Result res;
1680 
1681 	res = crypto_acipher_gen_dsa_key(o->attr, key_size);
1682 	if (res != TEE_SUCCESS)
1683 		return res;
1684 
1685 	/* Set bits for all known attributes for this object type */
1686 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1687 
1688 	return TEE_SUCCESS;
1689 }
1690 
1691 static TEE_Result tee_svc_obj_generate_key_dh(
1692 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1693 	uint32_t key_size __unused,
1694 	const TEE_Attribute *params, uint32_t param_count)
1695 {
1696 	TEE_Result res;
1697 	struct dh_keypair *tee_dh_key;
1698 	struct bignum *dh_q = NULL;
1699 	uint32_t dh_xbits = 0;
1700 
1701 	/* Copy the present attributes into the obj before starting */
1702 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1703 					     param_count);
1704 	if (res != TEE_SUCCESS)
1705 		return res;
1706 
1707 	tee_dh_key = (struct dh_keypair *)o->attr;
1708 
1709 	if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME))
1710 		dh_q = tee_dh_key->q;
1711 	if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS))
1712 		dh_xbits = tee_dh_key->xbits;
1713 	res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits);
1714 	if (res != TEE_SUCCESS)
1715 		return res;
1716 
1717 	/* Set bits for the generated public and private key */
1718 	set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE);
1719 	set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE);
1720 	set_attribute(o, type_props, TEE_ATTR_DH_X_BITS);
1721 	return TEE_SUCCESS;
1722 }
1723 
1724 static TEE_Result tee_svc_obj_generate_key_ecc(
1725 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1726 	uint32_t key_size __unused,
1727 	const TEE_Attribute *params, uint32_t param_count)
1728 {
1729 	TEE_Result res;
1730 	struct ecc_keypair *tee_ecc_key;
1731 
1732 	/* Copy the present attributes into the obj before starting */
1733 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1734 					     param_count);
1735 	if (res != TEE_SUCCESS)
1736 		return res;
1737 
1738 	tee_ecc_key = (struct ecc_keypair *)o->attr;
1739 
1740 	res = crypto_acipher_gen_ecc_key(tee_ecc_key);
1741 	if (res != TEE_SUCCESS)
1742 		return res;
1743 
1744 	/* Set bits for the generated public and private key */
1745 	set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE);
1746 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X);
1747 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y);
1748 	set_attribute(o, type_props, TEE_ATTR_ECC_CURVE);
1749 	return TEE_SUCCESS;
1750 }
1751 
1752 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size,
1753 			const struct utee_attribute *usr_params,
1754 			unsigned long param_count)
1755 {
1756 	TEE_Result res;
1757 	struct tee_ta_session *sess;
1758 	const struct tee_cryp_obj_type_props *type_props;
1759 	struct tee_obj *o;
1760 	struct tee_cryp_obj_secret *key;
1761 	size_t byte_size;
1762 	TEE_Attribute *params = NULL;
1763 
1764 	res = tee_ta_get_current_session(&sess);
1765 	if (res != TEE_SUCCESS)
1766 		return res;
1767 
1768 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1769 			  tee_svc_uref_to_vaddr(obj), &o);
1770 	if (res != TEE_SUCCESS)
1771 		return res;
1772 
1773 	/* Must be a transient object */
1774 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1775 		return TEE_ERROR_BAD_STATE;
1776 
1777 	/* Must not be initialized already */
1778 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1779 		return TEE_ERROR_BAD_STATE;
1780 
1781 	/* Find description of object */
1782 	type_props = tee_svc_find_type_props(o->info.objectType);
1783 	if (!type_props)
1784 		return TEE_ERROR_NOT_SUPPORTED;
1785 
1786 	/* Check that maxKeySize follows restrictions */
1787 	if (key_size % type_props->quanta != 0)
1788 		return TEE_ERROR_NOT_SUPPORTED;
1789 	if (key_size < type_props->min_size)
1790 		return TEE_ERROR_NOT_SUPPORTED;
1791 	if (key_size > type_props->max_size)
1792 		return TEE_ERROR_NOT_SUPPORTED;
1793 
1794 	size_t alloc_size = 0;
1795 
1796 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
1797 		return TEE_ERROR_OVERFLOW;
1798 
1799 	params = malloc(alloc_size);
1800 	if (!params)
1801 		return TEE_ERROR_OUT_OF_MEMORY;
1802 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count,
1803 			    params);
1804 	if (res != TEE_SUCCESS)
1805 		goto out;
1806 
1807 	res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props,
1808 				      params, param_count);
1809 	if (res != TEE_SUCCESS)
1810 		goto out;
1811 
1812 	switch (o->info.objectType) {
1813 	case TEE_TYPE_AES:
1814 	case TEE_TYPE_DES:
1815 	case TEE_TYPE_DES3:
1816 	case TEE_TYPE_HMAC_MD5:
1817 	case TEE_TYPE_HMAC_SHA1:
1818 	case TEE_TYPE_HMAC_SHA224:
1819 	case TEE_TYPE_HMAC_SHA256:
1820 	case TEE_TYPE_HMAC_SHA384:
1821 	case TEE_TYPE_HMAC_SHA512:
1822 	case TEE_TYPE_GENERIC_SECRET:
1823 		byte_size = key_size / 8;
1824 
1825 		/*
1826 		 * We have to do it like this because the parity bits aren't
1827 		 * counted when telling the size of the key in bits.
1828 		 */
1829 		if (o->info.objectType == TEE_TYPE_DES ||
1830 		    o->info.objectType == TEE_TYPE_DES3) {
1831 			byte_size = (key_size + key_size / 7) / 8;
1832 		}
1833 
1834 		key = (struct tee_cryp_obj_secret *)o->attr;
1835 		if (byte_size > key->alloc_size) {
1836 			res = TEE_ERROR_EXCESS_DATA;
1837 			goto out;
1838 		}
1839 
1840 		res = crypto_rng_read((void *)(key + 1), byte_size);
1841 		if (res != TEE_SUCCESS)
1842 			goto out;
1843 
1844 		key->key_size = byte_size;
1845 
1846 		/* Set bits for all known attributes for this object type */
1847 		o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1848 
1849 		break;
1850 
1851 	case TEE_TYPE_RSA_KEYPAIR:
1852 		res = tee_svc_obj_generate_key_rsa(o, type_props, key_size,
1853 						   params, param_count);
1854 		if (res != TEE_SUCCESS)
1855 			goto out;
1856 		break;
1857 
1858 	case TEE_TYPE_DSA_KEYPAIR:
1859 		res = tee_svc_obj_generate_key_dsa(o, type_props, key_size);
1860 		if (res != TEE_SUCCESS)
1861 			goto out;
1862 		break;
1863 
1864 	case TEE_TYPE_DH_KEYPAIR:
1865 		res = tee_svc_obj_generate_key_dh(o, type_props, key_size,
1866 						  params, param_count);
1867 		if (res != TEE_SUCCESS)
1868 			goto out;
1869 		break;
1870 
1871 	case TEE_TYPE_ECDSA_KEYPAIR:
1872 	case TEE_TYPE_ECDH_KEYPAIR:
1873 		res = tee_svc_obj_generate_key_ecc(o, type_props, key_size,
1874 						  params, param_count);
1875 		if (res != TEE_SUCCESS)
1876 			goto out;
1877 		break;
1878 
1879 	default:
1880 		res = TEE_ERROR_BAD_FORMAT;
1881 	}
1882 
1883 out:
1884 	free_wipe(params);
1885 	if (res == TEE_SUCCESS) {
1886 		o->info.keySize = key_size;
1887 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1888 	}
1889 	return res;
1890 }
1891 
1892 static TEE_Result tee_svc_cryp_get_state(struct tee_ta_session *sess,
1893 					 uint32_t state_id,
1894 					 struct tee_cryp_state **state)
1895 {
1896 	struct tee_cryp_state *s;
1897 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
1898 
1899 	TAILQ_FOREACH(s, &utc->cryp_states, link) {
1900 		if (state_id == (vaddr_t)s) {
1901 			*state = s;
1902 			return TEE_SUCCESS;
1903 		}
1904 	}
1905 	return TEE_ERROR_BAD_PARAMETERS;
1906 }
1907 
1908 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs)
1909 {
1910 	struct tee_obj *o;
1911 
1912 	if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS)
1913 		tee_obj_close(utc, o);
1914 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS)
1915 		tee_obj_close(utc, o);
1916 
1917 	TAILQ_REMOVE(&utc->cryp_states, cs, link);
1918 	if (cs->ctx_finalize != NULL)
1919 		cs->ctx_finalize(cs->ctx, cs->algo);
1920 
1921 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
1922 	case TEE_OPERATION_CIPHER:
1923 		crypto_cipher_free_ctx(cs->ctx, cs->algo);
1924 		break;
1925 	case TEE_OPERATION_AE:
1926 		crypto_authenc_free_ctx(cs->ctx, cs->algo);
1927 		break;
1928 	case TEE_OPERATION_DIGEST:
1929 		crypto_hash_free_ctx(cs->ctx, cs->algo);
1930 		break;
1931 	case TEE_OPERATION_MAC:
1932 		crypto_mac_free_ctx(cs->ctx, cs->algo);
1933 		break;
1934 	default:
1935 		assert(!cs->ctx);
1936 	}
1937 
1938 	free(cs);
1939 }
1940 
1941 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o,
1942 					      uint32_t algo,
1943 					      TEE_OperationMode mode)
1944 {
1945 	uint32_t req_key_type;
1946 	uint32_t req_key_type2 = 0;
1947 
1948 	switch (TEE_ALG_GET_MAIN_ALG(algo)) {
1949 	case TEE_MAIN_ALGO_MD5:
1950 		req_key_type = TEE_TYPE_HMAC_MD5;
1951 		break;
1952 	case TEE_MAIN_ALGO_SHA1:
1953 		req_key_type = TEE_TYPE_HMAC_SHA1;
1954 		break;
1955 	case TEE_MAIN_ALGO_SHA224:
1956 		req_key_type = TEE_TYPE_HMAC_SHA224;
1957 		break;
1958 	case TEE_MAIN_ALGO_SHA256:
1959 		req_key_type = TEE_TYPE_HMAC_SHA256;
1960 		break;
1961 	case TEE_MAIN_ALGO_SHA384:
1962 		req_key_type = TEE_TYPE_HMAC_SHA384;
1963 		break;
1964 	case TEE_MAIN_ALGO_SHA512:
1965 		req_key_type = TEE_TYPE_HMAC_SHA512;
1966 		break;
1967 	case TEE_MAIN_ALGO_AES:
1968 		req_key_type = TEE_TYPE_AES;
1969 		break;
1970 	case TEE_MAIN_ALGO_DES:
1971 		req_key_type = TEE_TYPE_DES;
1972 		break;
1973 	case TEE_MAIN_ALGO_DES3:
1974 		req_key_type = TEE_TYPE_DES3;
1975 		break;
1976 	case TEE_MAIN_ALGO_RSA:
1977 		req_key_type = TEE_TYPE_RSA_KEYPAIR;
1978 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
1979 			req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY;
1980 		break;
1981 	case TEE_MAIN_ALGO_DSA:
1982 		req_key_type = TEE_TYPE_DSA_KEYPAIR;
1983 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
1984 			req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY;
1985 		break;
1986 	case TEE_MAIN_ALGO_DH:
1987 		req_key_type = TEE_TYPE_DH_KEYPAIR;
1988 		break;
1989 	case TEE_MAIN_ALGO_ECDSA:
1990 		req_key_type = TEE_TYPE_ECDSA_KEYPAIR;
1991 		if (mode == TEE_MODE_VERIFY)
1992 			req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY;
1993 		break;
1994 	case TEE_MAIN_ALGO_ECDH:
1995 		req_key_type = TEE_TYPE_ECDH_KEYPAIR;
1996 		break;
1997 #if defined(CFG_CRYPTO_HKDF)
1998 	case TEE_MAIN_ALGO_HKDF:
1999 		req_key_type = TEE_TYPE_HKDF_IKM;
2000 		break;
2001 #endif
2002 #if defined(CFG_CRYPTO_CONCAT_KDF)
2003 	case TEE_MAIN_ALGO_CONCAT_KDF:
2004 		req_key_type = TEE_TYPE_CONCAT_KDF_Z;
2005 		break;
2006 #endif
2007 #if defined(CFG_CRYPTO_PBKDF2)
2008 	case TEE_MAIN_ALGO_PBKDF2:
2009 		req_key_type = TEE_TYPE_PBKDF2_PASSWORD;
2010 		break;
2011 #endif
2012 	default:
2013 		return TEE_ERROR_BAD_PARAMETERS;
2014 	}
2015 
2016 	if (req_key_type != o->info.objectType &&
2017 	    req_key_type2 != o->info.objectType)
2018 		return TEE_ERROR_BAD_PARAMETERS;
2019 	return TEE_SUCCESS;
2020 }
2021 
2022 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode,
2023 			unsigned long key1, unsigned long key2,
2024 			uint32_t *state)
2025 {
2026 	TEE_Result res;
2027 	struct tee_cryp_state *cs;
2028 	struct tee_ta_session *sess;
2029 	struct tee_obj *o1 = NULL;
2030 	struct tee_obj *o2 = NULL;
2031 	struct user_ta_ctx *utc;
2032 
2033 	res = tee_ta_get_current_session(&sess);
2034 	if (res != TEE_SUCCESS)
2035 		return res;
2036 	utc = to_user_ta_ctx(sess->ctx);
2037 
2038 	if (key1 != 0) {
2039 		res = tee_obj_get(utc, tee_svc_uref_to_vaddr(key1), &o1);
2040 		if (res != TEE_SUCCESS)
2041 			return res;
2042 		if (o1->busy)
2043 			return TEE_ERROR_BAD_PARAMETERS;
2044 		res = tee_svc_cryp_check_key_type(o1, algo, mode);
2045 		if (res != TEE_SUCCESS)
2046 			return res;
2047 	}
2048 	if (key2 != 0) {
2049 		res = tee_obj_get(utc, tee_svc_uref_to_vaddr(key2), &o2);
2050 		if (res != TEE_SUCCESS)
2051 			return res;
2052 		if (o2->busy)
2053 			return TEE_ERROR_BAD_PARAMETERS;
2054 		res = tee_svc_cryp_check_key_type(o2, algo, mode);
2055 		if (res != TEE_SUCCESS)
2056 			return res;
2057 	}
2058 
2059 	cs = calloc(1, sizeof(struct tee_cryp_state));
2060 	if (!cs)
2061 		return TEE_ERROR_OUT_OF_MEMORY;
2062 	TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link);
2063 	cs->algo = algo;
2064 	cs->mode = mode;
2065 	cs->state = CRYP_STATE_UNINITIALIZED;
2066 
2067 	switch (TEE_ALG_GET_CLASS(algo)) {
2068 	case TEE_OPERATION_EXTENSION:
2069 #ifdef CFG_CRYPTO_RSASSA_NA1
2070 		if (algo == TEE_ALG_RSASSA_PKCS1_V1_5)
2071 			goto rsassa_na1;
2072 #endif
2073 		res = TEE_ERROR_NOT_SUPPORTED;
2074 		break;
2075 	case TEE_OPERATION_CIPHER:
2076 		if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) ||
2077 		    (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) {
2078 			res = TEE_ERROR_BAD_PARAMETERS;
2079 		} else {
2080 			res = crypto_cipher_alloc_ctx(&cs->ctx, algo);
2081 			if (res != TEE_SUCCESS)
2082 				break;
2083 		}
2084 		break;
2085 	case TEE_OPERATION_AE:
2086 		if (key1 == 0 || key2 != 0) {
2087 			res = TEE_ERROR_BAD_PARAMETERS;
2088 		} else {
2089 			res = crypto_authenc_alloc_ctx(&cs->ctx, algo);
2090 			if (res != TEE_SUCCESS)
2091 				break;
2092 		}
2093 		break;
2094 	case TEE_OPERATION_MAC:
2095 		if (key1 == 0 || key2 != 0) {
2096 			res = TEE_ERROR_BAD_PARAMETERS;
2097 		} else {
2098 			res = crypto_mac_alloc_ctx(&cs->ctx, algo);
2099 			if (res != TEE_SUCCESS)
2100 				break;
2101 		}
2102 		break;
2103 	case TEE_OPERATION_DIGEST:
2104 		if (key1 != 0 || key2 != 0) {
2105 			res = TEE_ERROR_BAD_PARAMETERS;
2106 		} else {
2107 			res = crypto_hash_alloc_ctx(&cs->ctx, algo);
2108 			if (res != TEE_SUCCESS)
2109 				break;
2110 		}
2111 		break;
2112 	case TEE_OPERATION_ASYMMETRIC_CIPHER:
2113 	case TEE_OPERATION_ASYMMETRIC_SIGNATURE:
2114 rsassa_na1: __maybe_unused
2115 		if (key1 == 0 || key2 != 0)
2116 			res = TEE_ERROR_BAD_PARAMETERS;
2117 		break;
2118 	case TEE_OPERATION_KEY_DERIVATION:
2119 		if (key1 == 0 || key2 != 0)
2120 			res = TEE_ERROR_BAD_PARAMETERS;
2121 		break;
2122 	default:
2123 		res = TEE_ERROR_NOT_SUPPORTED;
2124 		break;
2125 	}
2126 	if (res != TEE_SUCCESS)
2127 		goto out;
2128 
2129 	res = tee_svc_copy_kaddr_to_uref(state, cs);
2130 	if (res != TEE_SUCCESS)
2131 		goto out;
2132 
2133 	/* Register keys */
2134 	if (o1 != NULL) {
2135 		o1->busy = true;
2136 		cs->key1 = (vaddr_t)o1;
2137 	}
2138 	if (o2 != NULL) {
2139 		o2->busy = true;
2140 		cs->key2 = (vaddr_t)o2;
2141 	}
2142 
2143 out:
2144 	if (res != TEE_SUCCESS)
2145 		cryp_state_free(utc, cs);
2146 	return res;
2147 }
2148 
2149 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src)
2150 {
2151 	TEE_Result res;
2152 	struct tee_cryp_state *cs_dst;
2153 	struct tee_cryp_state *cs_src;
2154 	struct tee_ta_session *sess;
2155 
2156 	res = tee_ta_get_current_session(&sess);
2157 	if (res != TEE_SUCCESS)
2158 		return res;
2159 
2160 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(dst), &cs_dst);
2161 	if (res != TEE_SUCCESS)
2162 		return res;
2163 
2164 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(src), &cs_src);
2165 	if (res != TEE_SUCCESS)
2166 		return res;
2167 	if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode)
2168 		return TEE_ERROR_BAD_PARAMETERS;
2169 
2170 	switch (TEE_ALG_GET_CLASS(cs_src->algo)) {
2171 	case TEE_OPERATION_CIPHER:
2172 		crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx,
2173 					 cs_src->algo);
2174 		break;
2175 	case TEE_OPERATION_AE:
2176 		crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx,
2177 					  cs_src->algo);
2178 		break;
2179 	case TEE_OPERATION_DIGEST:
2180 		crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx, cs_src->algo);
2181 		break;
2182 	case TEE_OPERATION_MAC:
2183 		crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx, cs_src->algo);
2184 		break;
2185 	default:
2186 		return TEE_ERROR_BAD_STATE;
2187 	}
2188 
2189 	cs_dst->state = cs_src->state;
2190 
2191 	return TEE_SUCCESS;
2192 }
2193 
2194 void tee_svc_cryp_free_states(struct user_ta_ctx *utc)
2195 {
2196 	struct tee_cryp_state_head *states = &utc->cryp_states;
2197 
2198 	while (!TAILQ_EMPTY(states))
2199 		cryp_state_free(utc, TAILQ_FIRST(states));
2200 }
2201 
2202 TEE_Result syscall_cryp_state_free(unsigned long state)
2203 {
2204 	TEE_Result res;
2205 	struct tee_cryp_state *cs;
2206 	struct tee_ta_session *sess;
2207 
2208 	res = tee_ta_get_current_session(&sess);
2209 	if (res != TEE_SUCCESS)
2210 		return res;
2211 
2212 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2213 	if (res != TEE_SUCCESS)
2214 		return res;
2215 	cryp_state_free(to_user_ta_ctx(sess->ctx), cs);
2216 	return TEE_SUCCESS;
2217 }
2218 
2219 TEE_Result syscall_hash_init(unsigned long state,
2220 			     const void *iv __maybe_unused,
2221 			     size_t iv_len __maybe_unused)
2222 {
2223 	TEE_Result res;
2224 	struct tee_cryp_state *cs;
2225 	struct tee_ta_session *sess;
2226 
2227 	res = tee_ta_get_current_session(&sess);
2228 	if (res != TEE_SUCCESS)
2229 		return res;
2230 
2231 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2232 	if (res != TEE_SUCCESS)
2233 		return res;
2234 
2235 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2236 	case TEE_OPERATION_DIGEST:
2237 		res = crypto_hash_init(cs->ctx, cs->algo);
2238 		if (res != TEE_SUCCESS)
2239 			return res;
2240 		break;
2241 	case TEE_OPERATION_MAC:
2242 		{
2243 			struct tee_obj *o;
2244 			struct tee_cryp_obj_secret *key;
2245 
2246 			res = tee_obj_get(to_user_ta_ctx(sess->ctx),
2247 					  cs->key1, &o);
2248 			if (res != TEE_SUCCESS)
2249 				return res;
2250 			if ((o->info.handleFlags &
2251 			     TEE_HANDLE_FLAG_INITIALIZED) == 0)
2252 				return TEE_ERROR_BAD_PARAMETERS;
2253 
2254 			key = (struct tee_cryp_obj_secret *)o->attr;
2255 			res = crypto_mac_init(cs->ctx, cs->algo,
2256 					      (void *)(key + 1), key->key_size);
2257 			if (res != TEE_SUCCESS)
2258 				return res;
2259 			break;
2260 		}
2261 	default:
2262 		return TEE_ERROR_BAD_PARAMETERS;
2263 	}
2264 
2265 	cs->state = CRYP_STATE_INITIALIZED;
2266 
2267 	return TEE_SUCCESS;
2268 }
2269 
2270 TEE_Result syscall_hash_update(unsigned long state, const void *chunk,
2271 			size_t chunk_size)
2272 {
2273 	TEE_Result res;
2274 	struct tee_cryp_state *cs;
2275 	struct tee_ta_session *sess;
2276 
2277 	/* No data, but size provided isn't valid parameters. */
2278 	if (!chunk && chunk_size)
2279 		return TEE_ERROR_BAD_PARAMETERS;
2280 
2281 	/* Zero length hash is valid, but nothing we need to do. */
2282 	if (!chunk_size)
2283 		return TEE_SUCCESS;
2284 
2285 	res = tee_ta_get_current_session(&sess);
2286 	if (res != TEE_SUCCESS)
2287 		return res;
2288 
2289 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
2290 					  TEE_MEMORY_ACCESS_READ |
2291 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2292 					  (uaddr_t)chunk, chunk_size);
2293 	if (res != TEE_SUCCESS)
2294 		return res;
2295 
2296 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2297 	if (res != TEE_SUCCESS)
2298 		return res;
2299 
2300 	if (cs->state != CRYP_STATE_INITIALIZED)
2301 		return TEE_ERROR_BAD_STATE;
2302 
2303 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2304 	case TEE_OPERATION_DIGEST:
2305 		res = crypto_hash_update(cs->ctx, cs->algo, chunk, chunk_size);
2306 		if (res != TEE_SUCCESS)
2307 			return res;
2308 		break;
2309 	case TEE_OPERATION_MAC:
2310 		res = crypto_mac_update(cs->ctx, cs->algo, chunk, chunk_size);
2311 		if (res != TEE_SUCCESS)
2312 			return res;
2313 		break;
2314 	default:
2315 		return TEE_ERROR_BAD_PARAMETERS;
2316 	}
2317 
2318 	return TEE_SUCCESS;
2319 }
2320 
2321 TEE_Result syscall_hash_final(unsigned long state, const void *chunk,
2322 			size_t chunk_size, void *hash, uint64_t *hash_len)
2323 {
2324 	TEE_Result res, res2;
2325 	size_t hash_size;
2326 	size_t hlen = 0;
2327 	struct tee_cryp_state *cs;
2328 	struct tee_ta_session *sess;
2329 
2330 	/* No data, but size provided isn't valid parameters. */
2331 	if (!chunk && chunk_size)
2332 		return TEE_ERROR_BAD_PARAMETERS;
2333 
2334 	res = tee_ta_get_current_session(&sess);
2335 	if (res != TEE_SUCCESS)
2336 		return res;
2337 
2338 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
2339 					  TEE_MEMORY_ACCESS_READ |
2340 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2341 					  (uaddr_t)chunk, chunk_size);
2342 	if (res != TEE_SUCCESS)
2343 		return res;
2344 
2345 	res = get_user_u64_as_size_t(&hlen, hash_len);
2346 	if (res != TEE_SUCCESS)
2347 		return res;
2348 
2349 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
2350 					  TEE_MEMORY_ACCESS_READ |
2351 					  TEE_MEMORY_ACCESS_WRITE |
2352 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2353 					  (uaddr_t)hash, hlen);
2354 	if (res != TEE_SUCCESS)
2355 		return res;
2356 
2357 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2358 	if (res != TEE_SUCCESS)
2359 		return res;
2360 
2361 	if (cs->state != CRYP_STATE_INITIALIZED)
2362 		return TEE_ERROR_BAD_STATE;
2363 
2364 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2365 	case TEE_OPERATION_DIGEST:
2366 		res = tee_hash_get_digest_size(cs->algo, &hash_size);
2367 		if (res != TEE_SUCCESS)
2368 			return res;
2369 		if (hlen < hash_size) {
2370 			res = TEE_ERROR_SHORT_BUFFER;
2371 			goto out;
2372 		}
2373 
2374 		if (chunk_size) {
2375 			res = crypto_hash_update(cs->ctx, cs->algo, chunk,
2376 						 chunk_size);
2377 			if (res != TEE_SUCCESS)
2378 				return res;
2379 		}
2380 
2381 		res = crypto_hash_final(cs->ctx, cs->algo, hash, hash_size);
2382 		if (res != TEE_SUCCESS)
2383 			return res;
2384 		break;
2385 
2386 	case TEE_OPERATION_MAC:
2387 		res = tee_mac_get_digest_size(cs->algo, &hash_size);
2388 		if (res != TEE_SUCCESS)
2389 			return res;
2390 		if (hlen < hash_size) {
2391 			res = TEE_ERROR_SHORT_BUFFER;
2392 			goto out;
2393 		}
2394 
2395 		if (chunk_size) {
2396 			res = crypto_mac_update(cs->ctx, cs->algo, chunk,
2397 						chunk_size);
2398 			if (res != TEE_SUCCESS)
2399 				return res;
2400 		}
2401 
2402 		res = crypto_mac_final(cs->ctx, cs->algo, hash, hash_size);
2403 		if (res != TEE_SUCCESS)
2404 			return res;
2405 		break;
2406 
2407 	default:
2408 		return TEE_ERROR_BAD_PARAMETERS;
2409 	}
2410 out:
2411 	res2 = put_user_u64(hash_len, hash_size);
2412 	if (res2 != TEE_SUCCESS)
2413 		return res2;
2414 	return res;
2415 }
2416 
2417 TEE_Result syscall_cipher_init(unsigned long state, const void *iv,
2418 			size_t iv_len)
2419 {
2420 	TEE_Result res;
2421 	struct tee_cryp_state *cs;
2422 	struct tee_ta_session *sess;
2423 	struct tee_obj *o;
2424 	struct tee_cryp_obj_secret *key1;
2425 	struct user_ta_ctx *utc;
2426 
2427 	res = tee_ta_get_current_session(&sess);
2428 	if (res != TEE_SUCCESS)
2429 		return res;
2430 	utc = to_user_ta_ctx(sess->ctx);
2431 
2432 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2433 	if (res != TEE_SUCCESS)
2434 		return res;
2435 
2436 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER)
2437 		return TEE_ERROR_BAD_STATE;
2438 
2439 	res = tee_mmu_check_access_rights(utc,
2440 					  TEE_MEMORY_ACCESS_READ |
2441 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2442 					  (uaddr_t) iv, iv_len);
2443 	if (res != TEE_SUCCESS)
2444 		return res;
2445 
2446 	res = tee_obj_get(utc, cs->key1, &o);
2447 	if (res != TEE_SUCCESS)
2448 		return res;
2449 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2450 		return TEE_ERROR_BAD_PARAMETERS;
2451 
2452 	key1 = o->attr;
2453 
2454 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) {
2455 		struct tee_cryp_obj_secret *key2 = o->attr;
2456 
2457 		if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2458 			return TEE_ERROR_BAD_PARAMETERS;
2459 
2460 		res = crypto_cipher_init(cs->ctx, cs->algo, cs->mode,
2461 					 (uint8_t *)(key1 + 1), key1->key_size,
2462 					 (uint8_t *)(key2 + 1), key2->key_size,
2463 					 iv, iv_len);
2464 	} else {
2465 		res = crypto_cipher_init(cs->ctx, cs->algo, cs->mode,
2466 					 (uint8_t *)(key1 + 1), key1->key_size,
2467 					 NULL, 0, iv, iv_len);
2468 	}
2469 	if (res != TEE_SUCCESS)
2470 		return res;
2471 
2472 	cs->ctx_finalize = crypto_cipher_final;
2473 	cs->state = CRYP_STATE_INITIALIZED;
2474 
2475 	return TEE_SUCCESS;
2476 }
2477 
2478 static TEE_Result tee_svc_cipher_update_helper(unsigned long state,
2479 			bool last_block, const void *src, size_t src_len,
2480 			void *dst, uint64_t *dst_len)
2481 {
2482 	TEE_Result res;
2483 	struct tee_cryp_state *cs;
2484 	struct tee_ta_session *sess;
2485 	size_t dlen = 0;
2486 
2487 	res = tee_ta_get_current_session(&sess);
2488 	if (res != TEE_SUCCESS)
2489 		return res;
2490 
2491 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2492 	if (res != TEE_SUCCESS)
2493 		return res;
2494 
2495 	if (cs->state != CRYP_STATE_INITIALIZED)
2496 		return TEE_ERROR_BAD_STATE;
2497 
2498 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
2499 					  TEE_MEMORY_ACCESS_READ |
2500 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2501 					  (uaddr_t)src, src_len);
2502 	if (res != TEE_SUCCESS)
2503 		return res;
2504 
2505 	if (!dst_len) {
2506 		dlen = 0;
2507 	} else {
2508 		res = get_user_u64_as_size_t(&dlen, dst_len);
2509 		if (res != TEE_SUCCESS)
2510 			return res;
2511 
2512 		res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
2513 						  TEE_MEMORY_ACCESS_READ |
2514 						  TEE_MEMORY_ACCESS_WRITE |
2515 						  TEE_MEMORY_ACCESS_ANY_OWNER,
2516 						  (uaddr_t)dst, dlen);
2517 		if (res != TEE_SUCCESS)
2518 			return res;
2519 	}
2520 
2521 	if (dlen < src_len) {
2522 		res = TEE_ERROR_SHORT_BUFFER;
2523 		goto out;
2524 	}
2525 
2526 	if (src_len > 0) {
2527 		/* Permit src_len == 0 to finalize the operation */
2528 		res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode,
2529 					   last_block, src, src_len, dst);
2530 	}
2531 
2532 	if (last_block && cs->ctx_finalize != NULL) {
2533 		cs->ctx_finalize(cs->ctx, cs->algo);
2534 		cs->ctx_finalize = NULL;
2535 	}
2536 
2537 out:
2538 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
2539 	    dst_len != NULL) {
2540 		TEE_Result res2;
2541 
2542 		res2 = put_user_u64(dst_len, src_len);
2543 		if (res2 != TEE_SUCCESS)
2544 			res = res2;
2545 	}
2546 
2547 	return res;
2548 }
2549 
2550 TEE_Result syscall_cipher_update(unsigned long state, const void *src,
2551 			size_t src_len, void *dst, uint64_t *dst_len)
2552 {
2553 	return tee_svc_cipher_update_helper(state, false /* last_block */,
2554 					    src, src_len, dst, dst_len);
2555 }
2556 
2557 TEE_Result syscall_cipher_final(unsigned long state, const void *src,
2558 			size_t src_len, void *dst, uint64_t *dst_len)
2559 {
2560 	return tee_svc_cipher_update_helper(state, true /* last_block */,
2561 					    src, src_len, dst, dst_len);
2562 }
2563 
2564 #if defined(CFG_CRYPTO_HKDF)
2565 static TEE_Result get_hkdf_params(const TEE_Attribute *params,
2566 				  uint32_t param_count,
2567 				  void **salt, size_t *salt_len, void **info,
2568 				  size_t *info_len, size_t *okm_len)
2569 {
2570 	size_t n;
2571 	enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 };
2572 	uint8_t found = 0;
2573 
2574 	*salt = *info = NULL;
2575 	*salt_len = *info_len = *okm_len = 0;
2576 
2577 	for (n = 0; n < param_count; n++) {
2578 		switch (params[n].attributeID) {
2579 		case TEE_ATTR_HKDF_SALT:
2580 			if (!(found & SALT)) {
2581 				*salt = params[n].content.ref.buffer;
2582 				*salt_len = params[n].content.ref.length;
2583 				found |= SALT;
2584 			}
2585 			break;
2586 		case TEE_ATTR_HKDF_OKM_LENGTH:
2587 			if (!(found & LENGTH)) {
2588 				*okm_len = params[n].content.value.a;
2589 				found |= LENGTH;
2590 			}
2591 			break;
2592 		case TEE_ATTR_HKDF_INFO:
2593 			if (!(found & INFO)) {
2594 				*info = params[n].content.ref.buffer;
2595 				*info_len = params[n].content.ref.length;
2596 				found |= INFO;
2597 			}
2598 			break;
2599 		default:
2600 			/* Unexpected attribute */
2601 			return TEE_ERROR_BAD_PARAMETERS;
2602 		}
2603 
2604 	}
2605 
2606 	if (!(found & LENGTH))
2607 		return TEE_ERROR_BAD_PARAMETERS;
2608 
2609 	return TEE_SUCCESS;
2610 }
2611 #endif
2612 
2613 #if defined(CFG_CRYPTO_CONCAT_KDF)
2614 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params,
2615 					uint32_t param_count,
2616 					void **other_info,
2617 					size_t *other_info_len,
2618 					size_t *derived_key_len)
2619 {
2620 	size_t n;
2621 	enum { LENGTH = 0x1, INFO = 0x2 };
2622 	uint8_t found = 0;
2623 
2624 	*other_info = NULL;
2625 	*other_info_len = *derived_key_len = 0;
2626 
2627 	for (n = 0; n < param_count; n++) {
2628 		switch (params[n].attributeID) {
2629 		case TEE_ATTR_CONCAT_KDF_OTHER_INFO:
2630 			if (!(found & INFO)) {
2631 				*other_info = params[n].content.ref.buffer;
2632 				*other_info_len = params[n].content.ref.length;
2633 				found |= INFO;
2634 			}
2635 			break;
2636 		case TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
2637 			if (!(found & LENGTH)) {
2638 				*derived_key_len = params[n].content.value.a;
2639 				found |= LENGTH;
2640 			}
2641 			break;
2642 		default:
2643 			/* Unexpected attribute */
2644 			return TEE_ERROR_BAD_PARAMETERS;
2645 		}
2646 	}
2647 
2648 	if (!(found & LENGTH))
2649 		return TEE_ERROR_BAD_PARAMETERS;
2650 
2651 	return TEE_SUCCESS;
2652 }
2653 #endif
2654 
2655 #if defined(CFG_CRYPTO_PBKDF2)
2656 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params,
2657 				   uint32_t param_count, void **salt,
2658 				   size_t *salt_len, size_t *derived_key_len,
2659 				   size_t *iteration_count)
2660 {
2661 	size_t n;
2662 	enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 };
2663 	uint8_t found = 0;
2664 
2665 	*salt = NULL;
2666 	*salt_len = *derived_key_len = *iteration_count = 0;
2667 
2668 	for (n = 0; n < param_count; n++) {
2669 		switch (params[n].attributeID) {
2670 		case TEE_ATTR_PBKDF2_SALT:
2671 			if (!(found & SALT)) {
2672 				*salt = params[n].content.ref.buffer;
2673 				*salt_len = params[n].content.ref.length;
2674 				found |= SALT;
2675 			}
2676 			break;
2677 		case TEE_ATTR_PBKDF2_DKM_LENGTH:
2678 			if (!(found & LENGTH)) {
2679 				*derived_key_len = params[n].content.value.a;
2680 				found |= LENGTH;
2681 			}
2682 			break;
2683 		case TEE_ATTR_PBKDF2_ITERATION_COUNT:
2684 			if (!(found & COUNT)) {
2685 				*iteration_count = params[n].content.value.a;
2686 				found |= COUNT;
2687 			}
2688 			break;
2689 		default:
2690 			/* Unexpected attribute */
2691 			return TEE_ERROR_BAD_PARAMETERS;
2692 		}
2693 	}
2694 
2695 	if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT))
2696 		return TEE_ERROR_BAD_PARAMETERS;
2697 
2698 	return TEE_SUCCESS;
2699 }
2700 #endif
2701 
2702 TEE_Result syscall_cryp_derive_key(unsigned long state,
2703 			const struct utee_attribute *usr_params,
2704 			unsigned long param_count, unsigned long derived_key)
2705 {
2706 	TEE_Result res = TEE_ERROR_NOT_SUPPORTED;
2707 	struct tee_ta_session *sess;
2708 	struct tee_obj *ko;
2709 	struct tee_obj *so;
2710 	struct tee_cryp_state *cs;
2711 	struct tee_cryp_obj_secret *sk;
2712 	const struct tee_cryp_obj_type_props *type_props;
2713 	TEE_Attribute *params = NULL;
2714 	struct user_ta_ctx *utc;
2715 
2716 	res = tee_ta_get_current_session(&sess);
2717 	if (res != TEE_SUCCESS)
2718 		return res;
2719 	utc = to_user_ta_ctx(sess->ctx);
2720 
2721 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2722 	if (res != TEE_SUCCESS)
2723 		return res;
2724 
2725 	size_t alloc_size = 0;
2726 
2727 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
2728 		return TEE_ERROR_OVERFLOW;
2729 
2730 	params = malloc(alloc_size);
2731 	if (!params)
2732 		return TEE_ERROR_OUT_OF_MEMORY;
2733 	res = copy_in_attrs(utc, usr_params, param_count, params);
2734 	if (res != TEE_SUCCESS)
2735 		goto out;
2736 
2737 	/* Get key set in operation */
2738 	res = tee_obj_get(utc, cs->key1, &ko);
2739 	if (res != TEE_SUCCESS)
2740 		goto out;
2741 
2742 	res = tee_obj_get(utc, tee_svc_uref_to_vaddr(derived_key), &so);
2743 	if (res != TEE_SUCCESS)
2744 		goto out;
2745 
2746 	/* Find information needed about the object to initialize */
2747 	sk = so->attr;
2748 
2749 	/* Find description of object */
2750 	type_props = tee_svc_find_type_props(so->info.objectType);
2751 	if (!type_props) {
2752 		res = TEE_ERROR_NOT_SUPPORTED;
2753 		goto out;
2754 	}
2755 
2756 	if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) {
2757 		struct bignum *pub;
2758 		struct bignum *ss;
2759 
2760 		if (param_count != 1 ||
2761 		    params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) {
2762 			res = TEE_ERROR_BAD_PARAMETERS;
2763 			goto out;
2764 		}
2765 
2766 		size_t bin_size = params[0].content.ref.length;
2767 
2768 		if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) {
2769 			res = TEE_ERROR_OVERFLOW;
2770 			goto out;
2771 		}
2772 
2773 		pub = crypto_bignum_allocate(alloc_size);
2774 		ss = crypto_bignum_allocate(alloc_size);
2775 		if (pub && ss) {
2776 			crypto_bignum_bin2bn(params[0].content.ref.buffer,
2777 					     bin_size, pub);
2778 			res = crypto_acipher_dh_shared_secret(ko->attr,
2779 							      pub, ss);
2780 			if (res == TEE_SUCCESS) {
2781 				sk->key_size = crypto_bignum_num_bytes(ss);
2782 				crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1));
2783 				so->info.handleFlags |=
2784 						TEE_HANDLE_FLAG_INITIALIZED;
2785 				set_attribute(so, type_props,
2786 					      TEE_ATTR_SECRET_VALUE);
2787 			}
2788 		} else {
2789 			res = TEE_ERROR_OUT_OF_MEMORY;
2790 		}
2791 		crypto_bignum_free(pub);
2792 		crypto_bignum_free(ss);
2793 	} else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) {
2794 		struct ecc_public_key key_public;
2795 		uint8_t *pt_secret;
2796 		unsigned long pt_secret_len;
2797 
2798 		if (param_count != 2 ||
2799 		    params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X ||
2800 		    params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) {
2801 			res = TEE_ERROR_BAD_PARAMETERS;
2802 			goto out;
2803 		}
2804 
2805 		switch (cs->algo) {
2806 		case TEE_ALG_ECDH_P192:
2807 			alloc_size = 192;
2808 			break;
2809 		case TEE_ALG_ECDH_P224:
2810 			alloc_size = 224;
2811 			break;
2812 		case TEE_ALG_ECDH_P256:
2813 			alloc_size = 256;
2814 			break;
2815 		case TEE_ALG_ECDH_P384:
2816 			alloc_size = 384;
2817 			break;
2818 		case TEE_ALG_ECDH_P521:
2819 			alloc_size = 521;
2820 			break;
2821 		default:
2822 			res = TEE_ERROR_NOT_IMPLEMENTED;
2823 			goto out;
2824 		}
2825 
2826 		/* Create the public key */
2827 		res = crypto_acipher_alloc_ecc_public_key(&key_public,
2828 							  alloc_size);
2829 		if (res != TEE_SUCCESS)
2830 			goto out;
2831 		key_public.curve = ((struct ecc_keypair *)ko->attr)->curve;
2832 		crypto_bignum_bin2bn(params[0].content.ref.buffer,
2833 				     params[0].content.ref.length,
2834 				     key_public.x);
2835 		crypto_bignum_bin2bn(params[1].content.ref.buffer,
2836 				     params[1].content.ref.length,
2837 				     key_public.y);
2838 
2839 		pt_secret = (uint8_t *)(sk + 1);
2840 		pt_secret_len = sk->alloc_size;
2841 		res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public,
2842 						       pt_secret,
2843 						       &pt_secret_len);
2844 
2845 		if (res == TEE_SUCCESS) {
2846 			sk->key_size = pt_secret_len;
2847 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2848 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
2849 		}
2850 
2851 		/* free the public key */
2852 		crypto_acipher_free_ecc_public_key(&key_public);
2853 	}
2854 #if defined(CFG_CRYPTO_HKDF)
2855 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) {
2856 		void *salt, *info;
2857 		size_t salt_len, info_len, okm_len;
2858 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
2859 		struct tee_cryp_obj_secret *ik = ko->attr;
2860 		const uint8_t *ikm = (const uint8_t *)(ik + 1);
2861 
2862 		res = get_hkdf_params(params, param_count, &salt, &salt_len,
2863 				      &info, &info_len, &okm_len);
2864 		if (res != TEE_SUCCESS)
2865 			goto out;
2866 
2867 		/* Requested size must fit into the output object's buffer */
2868 		if (okm_len > ik->alloc_size) {
2869 			res = TEE_ERROR_BAD_PARAMETERS;
2870 			goto out;
2871 		}
2872 
2873 		res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len,
2874 				    info, info_len, (uint8_t *)(sk + 1),
2875 				    okm_len);
2876 		if (res == TEE_SUCCESS) {
2877 			sk->key_size = okm_len;
2878 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2879 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
2880 		}
2881 	}
2882 #endif
2883 #if defined(CFG_CRYPTO_CONCAT_KDF)
2884 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) {
2885 		void *info;
2886 		size_t info_len, derived_key_len;
2887 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
2888 		struct tee_cryp_obj_secret *ss = ko->attr;
2889 		const uint8_t *shared_secret = (const uint8_t *)(ss + 1);
2890 
2891 		res = get_concat_kdf_params(params, param_count, &info,
2892 					    &info_len, &derived_key_len);
2893 		if (res != TEE_SUCCESS)
2894 			goto out;
2895 
2896 		/* Requested size must fit into the output object's buffer */
2897 		if (derived_key_len > ss->alloc_size) {
2898 			res = TEE_ERROR_BAD_PARAMETERS;
2899 			goto out;
2900 		}
2901 
2902 		res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size,
2903 					  info, info_len, (uint8_t *)(sk + 1),
2904 					  derived_key_len);
2905 		if (res == TEE_SUCCESS) {
2906 			sk->key_size = derived_key_len;
2907 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2908 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
2909 		}
2910 	}
2911 #endif
2912 #if defined(CFG_CRYPTO_PBKDF2)
2913 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) {
2914 		void *salt;
2915 		size_t salt_len, iteration_count, derived_key_len;
2916 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
2917 		struct tee_cryp_obj_secret *ss = ko->attr;
2918 		const uint8_t *password = (const uint8_t *)(ss + 1);
2919 
2920 		res = get_pbkdf2_params(params, param_count, &salt, &salt_len,
2921 					&derived_key_len, &iteration_count);
2922 		if (res != TEE_SUCCESS)
2923 			goto out;
2924 
2925 		/* Requested size must fit into the output object's buffer */
2926 		if (derived_key_len > ss->alloc_size) {
2927 			res = TEE_ERROR_BAD_PARAMETERS;
2928 			goto out;
2929 		}
2930 
2931 		res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt,
2932 				      salt_len, iteration_count,
2933 				      (uint8_t *)(sk + 1), derived_key_len);
2934 		if (res == TEE_SUCCESS) {
2935 			sk->key_size = derived_key_len;
2936 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2937 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
2938 		}
2939 	}
2940 #endif
2941 	else
2942 		res = TEE_ERROR_NOT_SUPPORTED;
2943 
2944 out:
2945 	free_wipe(params);
2946 	return res;
2947 }
2948 
2949 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen)
2950 {
2951 	TEE_Result res;
2952 	struct tee_ta_session *sess;
2953 
2954 	res = tee_ta_get_current_session(&sess);
2955 	if (res != TEE_SUCCESS)
2956 		return res;
2957 
2958 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
2959 					  TEE_MEMORY_ACCESS_WRITE |
2960 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2961 					  (uaddr_t)buf, blen);
2962 	if (res != TEE_SUCCESS)
2963 		return res;
2964 
2965 	res = crypto_rng_read(buf, blen);
2966 	if (res != TEE_SUCCESS)
2967 		return res;
2968 
2969 	return res;
2970 }
2971 
2972 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce,
2973 			size_t nonce_len, size_t tag_len,
2974 			size_t aad_len, size_t payload_len)
2975 {
2976 	TEE_Result res;
2977 	struct tee_cryp_state *cs;
2978 	struct tee_ta_session *sess;
2979 	struct tee_obj *o;
2980 	struct tee_cryp_obj_secret *key;
2981 
2982 	res = tee_ta_get_current_session(&sess);
2983 	if (res != TEE_SUCCESS)
2984 		return res;
2985 
2986 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
2987 					  TEE_MEMORY_ACCESS_READ |
2988 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2989 					  (uaddr_t)nonce, nonce_len);
2990 	if (res != TEE_SUCCESS)
2991 		return res;
2992 
2993 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
2994 	if (res != TEE_SUCCESS)
2995 		return res;
2996 
2997 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o);
2998 	if (res != TEE_SUCCESS)
2999 		return res;
3000 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
3001 		return TEE_ERROR_BAD_PARAMETERS;
3002 
3003 	key = o->attr;
3004 	res = crypto_authenc_init(cs->ctx, cs->algo, cs->mode,
3005 				  (uint8_t *)(key + 1), key->key_size,
3006 				  nonce, nonce_len, tag_len, aad_len,
3007 				  payload_len);
3008 	if (res != TEE_SUCCESS)
3009 		return res;
3010 
3011 	cs->ctx_finalize = (tee_cryp_ctx_finalize_func_t)crypto_authenc_final;
3012 	cs->state = CRYP_STATE_INITIALIZED;
3013 
3014 	return TEE_SUCCESS;
3015 }
3016 
3017 TEE_Result syscall_authenc_update_aad(unsigned long state,
3018 			const void *aad_data, size_t aad_data_len)
3019 {
3020 	TEE_Result res;
3021 	struct tee_cryp_state *cs;
3022 	struct tee_ta_session *sess;
3023 
3024 	res = tee_ta_get_current_session(&sess);
3025 	if (res != TEE_SUCCESS)
3026 		return res;
3027 
3028 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3029 					  TEE_MEMORY_ACCESS_READ |
3030 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3031 					  (uaddr_t) aad_data,
3032 					  aad_data_len);
3033 	if (res != TEE_SUCCESS)
3034 		return res;
3035 
3036 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
3037 	if (res != TEE_SUCCESS)
3038 		return res;
3039 
3040 	if (cs->state != CRYP_STATE_INITIALIZED)
3041 		return TEE_ERROR_BAD_STATE;
3042 
3043 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3044 		return TEE_ERROR_BAD_STATE;
3045 
3046 	res = crypto_authenc_update_aad(cs->ctx, cs->algo, cs->mode,
3047 					aad_data, aad_data_len);
3048 	if (res != TEE_SUCCESS)
3049 		return res;
3050 
3051 	return TEE_SUCCESS;
3052 }
3053 
3054 TEE_Result syscall_authenc_update_payload(unsigned long state,
3055 			const void *src_data, size_t src_len, void *dst_data,
3056 			uint64_t *dst_len)
3057 {
3058 	TEE_Result res;
3059 	struct tee_cryp_state *cs;
3060 	struct tee_ta_session *sess;
3061 	size_t dlen = 0;
3062 
3063 	res = tee_ta_get_current_session(&sess);
3064 	if (res != TEE_SUCCESS)
3065 		return res;
3066 
3067 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
3068 	if (res != TEE_SUCCESS)
3069 		return res;
3070 
3071 	if (cs->state != CRYP_STATE_INITIALIZED)
3072 		return TEE_ERROR_BAD_STATE;
3073 
3074 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3075 		return TEE_ERROR_BAD_STATE;
3076 
3077 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3078 					  TEE_MEMORY_ACCESS_READ |
3079 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3080 					  (uaddr_t) src_data, src_len);
3081 	if (res != TEE_SUCCESS)
3082 		return res;
3083 
3084 	res = get_user_u64_as_size_t(&dlen, dst_len);
3085 	if (res != TEE_SUCCESS)
3086 		return res;
3087 
3088 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3089 					  TEE_MEMORY_ACCESS_READ |
3090 					  TEE_MEMORY_ACCESS_WRITE |
3091 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3092 					  (uaddr_t)dst_data, dlen);
3093 	if (res != TEE_SUCCESS)
3094 		return res;
3095 
3096 	if (dlen < src_len) {
3097 		res = TEE_ERROR_SHORT_BUFFER;
3098 		goto out;
3099 	}
3100 
3101 	res = crypto_authenc_update_payload(cs->ctx, cs->algo, cs->mode,
3102 					    src_data, src_len, dst_data,
3103 					    &dlen);
3104 out:
3105 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3106 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3107 
3108 		if (res2 != TEE_SUCCESS)
3109 			res = res2;
3110 	}
3111 
3112 	return res;
3113 }
3114 
3115 TEE_Result syscall_authenc_enc_final(unsigned long state,
3116 			const void *src_data, size_t src_len, void *dst_data,
3117 			uint64_t *dst_len, void *tag, uint64_t *tag_len)
3118 {
3119 	TEE_Result res;
3120 	struct tee_cryp_state *cs;
3121 	struct tee_ta_session *sess;
3122 	size_t dlen = 0;
3123 	size_t tlen = 0;
3124 
3125 	res = tee_ta_get_current_session(&sess);
3126 	if (res != TEE_SUCCESS)
3127 		return res;
3128 
3129 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
3130 	if (res != TEE_SUCCESS)
3131 		return res;
3132 
3133 	if (cs->state != CRYP_STATE_INITIALIZED)
3134 		return TEE_ERROR_BAD_STATE;
3135 
3136 	if (cs->mode != TEE_MODE_ENCRYPT)
3137 		return TEE_ERROR_BAD_PARAMETERS;
3138 
3139 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3140 		return TEE_ERROR_BAD_STATE;
3141 
3142 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3143 					  TEE_MEMORY_ACCESS_READ |
3144 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3145 					  (uaddr_t)src_data, src_len);
3146 	if (res != TEE_SUCCESS)
3147 		return res;
3148 
3149 	if (!dst_len) {
3150 		dlen = 0;
3151 	} else {
3152 		res = get_user_u64_as_size_t(&dlen, dst_len);
3153 		if (res != TEE_SUCCESS)
3154 			return res;
3155 
3156 		res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3157 						  TEE_MEMORY_ACCESS_READ |
3158 						  TEE_MEMORY_ACCESS_WRITE |
3159 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3160 						  (uaddr_t)dst_data, dlen);
3161 		if (res != TEE_SUCCESS)
3162 			return res;
3163 	}
3164 
3165 	if (dlen < src_len) {
3166 		res = TEE_ERROR_SHORT_BUFFER;
3167 		goto out;
3168 	}
3169 
3170 	res = get_user_u64_as_size_t(&tlen, tag_len);
3171 	if (res != TEE_SUCCESS)
3172 		return res;
3173 
3174 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3175 					  TEE_MEMORY_ACCESS_READ |
3176 					  TEE_MEMORY_ACCESS_WRITE |
3177 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3178 					  (uaddr_t)tag, tlen);
3179 	if (res != TEE_SUCCESS)
3180 		return res;
3181 
3182 	res = crypto_authenc_enc_final(cs->ctx, cs->algo, src_data,
3183 				       src_len, dst_data, &dlen, tag, &tlen);
3184 
3185 out:
3186 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3187 		TEE_Result res2;
3188 
3189 		if (dst_len != NULL) {
3190 			res2 = put_user_u64(dst_len, dlen);
3191 			if (res2 != TEE_SUCCESS)
3192 				return res2;
3193 		}
3194 
3195 		res2 = put_user_u64(tag_len, tlen);
3196 		if (res2 != TEE_SUCCESS)
3197 			return res2;
3198 	}
3199 
3200 	return res;
3201 }
3202 
3203 TEE_Result syscall_authenc_dec_final(unsigned long state,
3204 			const void *src_data, size_t src_len, void *dst_data,
3205 			uint64_t *dst_len, const void *tag, size_t tag_len)
3206 {
3207 	TEE_Result res;
3208 	struct tee_cryp_state *cs;
3209 	struct tee_ta_session *sess;
3210 	size_t dlen = 0;
3211 
3212 	res = tee_ta_get_current_session(&sess);
3213 	if (res != TEE_SUCCESS)
3214 		return res;
3215 
3216 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
3217 	if (res != TEE_SUCCESS)
3218 		return res;
3219 
3220 	if (cs->state != CRYP_STATE_INITIALIZED)
3221 		return TEE_ERROR_BAD_STATE;
3222 
3223 	if (cs->mode != TEE_MODE_DECRYPT)
3224 		return TEE_ERROR_BAD_PARAMETERS;
3225 
3226 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3227 		return TEE_ERROR_BAD_STATE;
3228 
3229 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3230 					  TEE_MEMORY_ACCESS_READ |
3231 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3232 					  (uaddr_t)src_data, src_len);
3233 	if (res != TEE_SUCCESS)
3234 		return res;
3235 
3236 	if (!dst_len) {
3237 		dlen = 0;
3238 	} else {
3239 		res = get_user_u64_as_size_t(&dlen, dst_len);
3240 		if (res != TEE_SUCCESS)
3241 			return res;
3242 
3243 		res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3244 						  TEE_MEMORY_ACCESS_READ |
3245 						  TEE_MEMORY_ACCESS_WRITE |
3246 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3247 						  (uaddr_t)dst_data, dlen);
3248 		if (res != TEE_SUCCESS)
3249 			return res;
3250 	}
3251 
3252 	if (dlen < src_len) {
3253 		res = TEE_ERROR_SHORT_BUFFER;
3254 		goto out;
3255 	}
3256 
3257 	res = tee_mmu_check_access_rights(to_user_ta_ctx(sess->ctx),
3258 					  TEE_MEMORY_ACCESS_READ |
3259 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3260 					  (uaddr_t)tag, tag_len);
3261 	if (res != TEE_SUCCESS)
3262 		return res;
3263 
3264 	res = crypto_authenc_dec_final(cs->ctx, cs->algo, src_data, src_len,
3265 				       dst_data, &dlen, tag, tag_len);
3266 
3267 out:
3268 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
3269 	    dst_len != NULL) {
3270 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3271 
3272 		if (res2 != TEE_SUCCESS)
3273 			return res2;
3274 	}
3275 
3276 	return res;
3277 }
3278 
3279 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params,
3280 			      size_t default_len)
3281 {
3282 	size_t n;
3283 
3284 	assert(default_len < INT_MAX);
3285 
3286 	for (n = 0; n < num_params; n++) {
3287 		if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) {
3288 			if (params[n].content.value.a < INT_MAX)
3289 				return params[n].content.value.a;
3290 			break;
3291 		}
3292 	}
3293 	/*
3294 	 * If salt length isn't provided use the default value which is
3295 	 * the length of the digest.
3296 	 */
3297 	return default_len;
3298 }
3299 
3300 TEE_Result syscall_asymm_operate(unsigned long state,
3301 			const struct utee_attribute *usr_params,
3302 			size_t num_params, const void *src_data, size_t src_len,
3303 			void *dst_data, uint64_t *dst_len)
3304 {
3305 	TEE_Result res;
3306 	struct tee_cryp_state *cs;
3307 	struct tee_ta_session *sess;
3308 	size_t dlen;
3309 	struct tee_obj *o;
3310 	void *label = NULL;
3311 	size_t label_len = 0;
3312 	size_t n;
3313 	int salt_len;
3314 	TEE_Attribute *params = NULL;
3315 	struct user_ta_ctx *utc;
3316 
3317 	res = tee_ta_get_current_session(&sess);
3318 	if (res != TEE_SUCCESS)
3319 		return res;
3320 	utc = to_user_ta_ctx(sess->ctx);
3321 
3322 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
3323 	if (res != TEE_SUCCESS)
3324 		return res;
3325 
3326 	res = tee_mmu_check_access_rights(
3327 		utc,
3328 		TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER,
3329 		(uaddr_t) src_data, src_len);
3330 	if (res != TEE_SUCCESS)
3331 		return res;
3332 
3333 	res = get_user_u64_as_size_t(&dlen, dst_len);
3334 	if (res != TEE_SUCCESS)
3335 		return res;
3336 
3337 	res = tee_mmu_check_access_rights(
3338 		utc,
3339 		TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE |
3340 			TEE_MEMORY_ACCESS_ANY_OWNER,
3341 		(uaddr_t) dst_data, dlen);
3342 	if (res != TEE_SUCCESS)
3343 		return res;
3344 
3345 	size_t alloc_size = 0;
3346 
3347 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3348 		return TEE_ERROR_OVERFLOW;
3349 
3350 	params = malloc(alloc_size);
3351 	if (!params)
3352 		return TEE_ERROR_OUT_OF_MEMORY;
3353 	res = copy_in_attrs(utc, usr_params, num_params, params);
3354 	if (res != TEE_SUCCESS)
3355 		goto out;
3356 
3357 	res = tee_obj_get(utc, cs->key1, &o);
3358 	if (res != TEE_SUCCESS)
3359 		goto out;
3360 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3361 		res = TEE_ERROR_GENERIC;
3362 		goto out;
3363 	}
3364 
3365 	switch (cs->algo) {
3366 	case TEE_ALG_RSA_NOPAD:
3367 		if (cs->mode == TEE_MODE_ENCRYPT) {
3368 			res = crypto_acipher_rsanopad_encrypt(o->attr, src_data,
3369 							      src_len, dst_data,
3370 							      &dlen);
3371 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3372 			res = crypto_acipher_rsanopad_decrypt(o->attr, src_data,
3373 							      src_len, dst_data,
3374 							      &dlen);
3375 		} else {
3376 			/*
3377 			 * We will panic because "the mode is not compatible
3378 			 * with the function"
3379 			 */
3380 			res = TEE_ERROR_GENERIC;
3381 		}
3382 		break;
3383 
3384 	case TEE_ALG_RSAES_PKCS1_V1_5:
3385 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
3386 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
3387 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
3388 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
3389 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
3390 		for (n = 0; n < num_params; n++) {
3391 			if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) {
3392 				label = params[n].content.ref.buffer;
3393 				label_len = params[n].content.ref.length;
3394 				break;
3395 			}
3396 		}
3397 
3398 		if (cs->mode == TEE_MODE_ENCRYPT) {
3399 			res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr,
3400 							   label, label_len,
3401 							   src_data, src_len,
3402 							   dst_data, &dlen);
3403 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3404 			res = crypto_acipher_rsaes_decrypt(
3405 					cs->algo, o->attr, label, label_len,
3406 					src_data, src_len, dst_data, &dlen);
3407 		} else {
3408 			res = TEE_ERROR_BAD_PARAMETERS;
3409 		}
3410 		break;
3411 
3412 #if defined(CFG_CRYPTO_RSASSA_NA1)
3413 	case TEE_ALG_RSASSA_PKCS1_V1_5:
3414 #endif
3415 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
3416 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
3417 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
3418 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
3419 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
3420 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
3421 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
3422 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
3423 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
3424 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
3425 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
3426 		if (cs->mode != TEE_MODE_SIGN) {
3427 			res = TEE_ERROR_BAD_PARAMETERS;
3428 			break;
3429 		}
3430 		salt_len = pkcs1_get_salt_len(params, num_params, src_len);
3431 		res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len,
3432 						 src_data, src_len, dst_data,
3433 						 &dlen);
3434 		break;
3435 
3436 	case TEE_ALG_DSA_SHA1:
3437 	case TEE_ALG_DSA_SHA224:
3438 	case TEE_ALG_DSA_SHA256:
3439 		res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data,
3440 					      src_len, dst_data, &dlen);
3441 		break;
3442 	case TEE_ALG_ECDSA_P192:
3443 	case TEE_ALG_ECDSA_P224:
3444 	case TEE_ALG_ECDSA_P256:
3445 	case TEE_ALG_ECDSA_P384:
3446 	case TEE_ALG_ECDSA_P521:
3447 		res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data,
3448 					      src_len, dst_data, &dlen);
3449 		break;
3450 
3451 	default:
3452 		res = TEE_ERROR_BAD_PARAMETERS;
3453 		break;
3454 	}
3455 
3456 out:
3457 	free_wipe(params);
3458 
3459 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3460 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3461 
3462 		if (res2 != TEE_SUCCESS)
3463 			return res2;
3464 	}
3465 
3466 	return res;
3467 }
3468 
3469 TEE_Result syscall_asymm_verify(unsigned long state,
3470 			const struct utee_attribute *usr_params,
3471 			size_t num_params, const void *data, size_t data_len,
3472 			const void *sig, size_t sig_len)
3473 {
3474 	TEE_Result res;
3475 	struct tee_cryp_state *cs;
3476 	struct tee_ta_session *sess;
3477 	struct tee_obj *o;
3478 	size_t hash_size;
3479 	int salt_len = 0;
3480 	TEE_Attribute *params = NULL;
3481 	uint32_t hash_algo;
3482 	struct user_ta_ctx *utc;
3483 
3484 	res = tee_ta_get_current_session(&sess);
3485 	if (res != TEE_SUCCESS)
3486 		return res;
3487 	utc = to_user_ta_ctx(sess->ctx);
3488 
3489 	res = tee_svc_cryp_get_state(sess, tee_svc_uref_to_vaddr(state), &cs);
3490 	if (res != TEE_SUCCESS)
3491 		return res;
3492 
3493 	if (cs->mode != TEE_MODE_VERIFY)
3494 		return TEE_ERROR_BAD_PARAMETERS;
3495 
3496 	res = tee_mmu_check_access_rights(utc,
3497 					  TEE_MEMORY_ACCESS_READ |
3498 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3499 					  (uaddr_t)data, data_len);
3500 	if (res != TEE_SUCCESS)
3501 		return res;
3502 
3503 	res = tee_mmu_check_access_rights(utc,
3504 					  TEE_MEMORY_ACCESS_READ |
3505 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3506 					  (uaddr_t)sig, sig_len);
3507 	if (res != TEE_SUCCESS)
3508 		return res;
3509 
3510 	size_t alloc_size = 0;
3511 
3512 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3513 		return TEE_ERROR_OVERFLOW;
3514 
3515 	params = malloc(alloc_size);
3516 	if (!params)
3517 		return TEE_ERROR_OUT_OF_MEMORY;
3518 	res = copy_in_attrs(utc, usr_params, num_params, params);
3519 	if (res != TEE_SUCCESS)
3520 		goto out;
3521 
3522 	res = tee_obj_get(utc, cs->key1, &o);
3523 	if (res != TEE_SUCCESS)
3524 		goto out;
3525 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3526 		res = TEE_ERROR_BAD_PARAMETERS;
3527 		goto out;
3528 	}
3529 
3530 	switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) {
3531 	case TEE_MAIN_ALGO_RSA:
3532 		if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) {
3533 			hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3534 			res = tee_hash_get_digest_size(hash_algo, &hash_size);
3535 			if (res != TEE_SUCCESS)
3536 				break;
3537 			if (data_len != hash_size) {
3538 				res = TEE_ERROR_BAD_PARAMETERS;
3539 				break;
3540 			}
3541 			salt_len = pkcs1_get_salt_len(params, num_params,
3542 						      hash_size);
3543 		}
3544 		res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len,
3545 						   data, data_len, sig,
3546 						   sig_len);
3547 		break;
3548 
3549 	case TEE_MAIN_ALGO_DSA:
3550 		hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3551 		res = tee_hash_get_digest_size(hash_algo, &hash_size);
3552 		if (res != TEE_SUCCESS)
3553 			break;
3554 		/*
3555 		 * Depending on the DSA algorithm (NIST), the digital signature
3556 		 * output size may be truncated to the size of a key pair
3557 		 * (Q prime size). Q prime size must be less or equal than the
3558 		 * hash output length of the hash algorithm involved.
3559 		 */
3560 		if (data_len > hash_size) {
3561 			res = TEE_ERROR_BAD_PARAMETERS;
3562 			break;
3563 		}
3564 		res = crypto_acipher_dsa_verify(cs->algo, o->attr, data,
3565 						data_len, sig, sig_len);
3566 		break;
3567 
3568 	case TEE_MAIN_ALGO_ECDSA:
3569 		res = crypto_acipher_ecc_verify(cs->algo, o->attr, data,
3570 						data_len, sig, sig_len);
3571 		break;
3572 
3573 	default:
3574 		res = TEE_ERROR_NOT_SUPPORTED;
3575 	}
3576 
3577 out:
3578 	free_wipe(params);
3579 	return res;
3580 }
3581