1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * Copyright (c) 2020, Linaro Limited 5 */ 6 7 #include <assert.h> 8 #include <bitstring.h> 9 #include <compiler.h> 10 #include <config.h> 11 #include <crypto/crypto.h> 12 #include <kernel/tee_ta_manager.h> 13 #include <kernel/user_access.h> 14 #include <mm/vm.h> 15 #include <stdlib_ext.h> 16 #include <string_ext.h> 17 #include <string.h> 18 #include <sys/queue.h> 19 #include <tee_api_defines_extensions.h> 20 #include <tee_api_types.h> 21 #include <tee/tee_cryp_utl.h> 22 #include <tee/tee_obj.h> 23 #include <tee/tee_svc_cryp.h> 24 #include <tee/tee_svc.h> 25 #include <trace.h> 26 #include <utee_defines.h> 27 #include <util.h> 28 #if defined(CFG_CRYPTO_HKDF) 29 #include <tee/tee_cryp_hkdf.h> 30 #endif 31 #if defined(CFG_CRYPTO_CONCAT_KDF) 32 #include <tee/tee_cryp_concat_kdf.h> 33 #endif 34 #if defined(CFG_CRYPTO_PBKDF2) 35 #include <tee/tee_cryp_pbkdf2.h> 36 #endif 37 38 enum cryp_state { 39 CRYP_STATE_INITIALIZED = 0, 40 CRYP_STATE_UNINITIALIZED 41 }; 42 43 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx); 44 struct tee_cryp_state { 45 TAILQ_ENTRY(tee_cryp_state) link; 46 uint32_t algo; 47 uint32_t mode; 48 vaddr_t key1; 49 vaddr_t key2; 50 void *ctx; 51 tee_cryp_ctx_finalize_func_t ctx_finalize; 52 enum cryp_state state; 53 }; 54 55 struct tee_cryp_obj_secret { 56 uint32_t key_size; 57 uint32_t alloc_size; 58 59 /* 60 * Pseudo code visualize layout of structure 61 * Next follows data, such as: 62 * uint8_t data[alloc_size] 63 * key_size must never exceed alloc_size 64 */ 65 }; 66 67 #define TEE_TYPE_ATTR_OPTIONAL BIT(0) 68 #define TEE_TYPE_ATTR_REQUIRED BIT(1) 69 #define TEE_TYPE_ATTR_OPTIONAL_GROUP BIT(2) 70 #define TEE_TYPE_ATTR_SIZE_INDICATOR BIT(3) 71 #define TEE_TYPE_ATTR_GEN_KEY_OPT BIT(4) 72 #define TEE_TYPE_ATTR_GEN_KEY_REQ BIT(5) 73 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS BIT(6) 74 75 /* Handle storing of generic secret keys of varying lengths */ 76 #define ATTR_OPS_INDEX_SECRET 0 77 /* Convert to/from big-endian byte array and provider-specific bignum */ 78 #define ATTR_OPS_INDEX_BIGNUM 1 79 /* Convert to/from value attribute depending on direction */ 80 #define ATTR_OPS_INDEX_VALUE 2 81 82 struct tee_cryp_obj_type_attrs { 83 uint32_t attr_id; 84 uint16_t flags; 85 uint16_t ops_index; 86 uint16_t raw_offs; 87 uint16_t raw_size; 88 }; 89 90 #define RAW_DATA(_x, _y) \ 91 .raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y) 92 93 static const struct tee_cryp_obj_type_attrs 94 tee_cryp_obj_secret_value_attrs[] = { 95 { 96 .attr_id = TEE_ATTR_SECRET_VALUE, 97 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 98 .ops_index = ATTR_OPS_INDEX_SECRET, 99 .raw_offs = 0, 100 .raw_size = 0 101 }, 102 }; 103 104 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = { 105 { 106 .attr_id = TEE_ATTR_RSA_MODULUS, 107 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 108 .ops_index = ATTR_OPS_INDEX_BIGNUM, 109 RAW_DATA(struct rsa_public_key, n) 110 }, 111 112 { 113 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 114 .flags = TEE_TYPE_ATTR_REQUIRED, 115 .ops_index = ATTR_OPS_INDEX_BIGNUM, 116 RAW_DATA(struct rsa_public_key, e) 117 }, 118 }; 119 120 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = { 121 { 122 .attr_id = TEE_ATTR_RSA_MODULUS, 123 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 124 .ops_index = ATTR_OPS_INDEX_BIGNUM, 125 RAW_DATA(struct rsa_keypair, n) 126 }, 127 128 { 129 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 130 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT, 131 .ops_index = ATTR_OPS_INDEX_BIGNUM, 132 RAW_DATA(struct rsa_keypair, e) 133 }, 134 135 { 136 .attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT, 137 .flags = TEE_TYPE_ATTR_REQUIRED, 138 .ops_index = ATTR_OPS_INDEX_BIGNUM, 139 RAW_DATA(struct rsa_keypair, d) 140 }, 141 142 { 143 .attr_id = TEE_ATTR_RSA_PRIME1, 144 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 145 .ops_index = ATTR_OPS_INDEX_BIGNUM, 146 RAW_DATA(struct rsa_keypair, p) 147 }, 148 149 { 150 .attr_id = TEE_ATTR_RSA_PRIME2, 151 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 152 .ops_index = ATTR_OPS_INDEX_BIGNUM, 153 RAW_DATA(struct rsa_keypair, q) 154 }, 155 156 { 157 .attr_id = TEE_ATTR_RSA_EXPONENT1, 158 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 159 .ops_index = ATTR_OPS_INDEX_BIGNUM, 160 RAW_DATA(struct rsa_keypair, dp) 161 }, 162 163 { 164 .attr_id = TEE_ATTR_RSA_EXPONENT2, 165 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 166 .ops_index = ATTR_OPS_INDEX_BIGNUM, 167 RAW_DATA(struct rsa_keypair, dq) 168 }, 169 170 { 171 .attr_id = TEE_ATTR_RSA_COEFFICIENT, 172 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 173 .ops_index = ATTR_OPS_INDEX_BIGNUM, 174 RAW_DATA(struct rsa_keypair, qp) 175 }, 176 }; 177 178 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = { 179 { 180 .attr_id = TEE_ATTR_DSA_PRIME, 181 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 182 .ops_index = ATTR_OPS_INDEX_BIGNUM, 183 RAW_DATA(struct dsa_public_key, p) 184 }, 185 186 { 187 .attr_id = TEE_ATTR_DSA_SUBPRIME, 188 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 189 .ops_index = ATTR_OPS_INDEX_BIGNUM, 190 RAW_DATA(struct dsa_public_key, q) 191 }, 192 193 { 194 .attr_id = TEE_ATTR_DSA_BASE, 195 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 196 .ops_index = ATTR_OPS_INDEX_BIGNUM, 197 RAW_DATA(struct dsa_public_key, g) 198 }, 199 200 { 201 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 202 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 203 .ops_index = ATTR_OPS_INDEX_BIGNUM, 204 RAW_DATA(struct dsa_public_key, y) 205 }, 206 }; 207 208 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = { 209 { 210 .attr_id = TEE_ATTR_DSA_PRIME, 211 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 212 TEE_TYPE_ATTR_BIGNUM_MAXBITS, 213 .ops_index = ATTR_OPS_INDEX_BIGNUM, 214 RAW_DATA(struct dsa_keypair, p) 215 }, 216 217 { 218 .attr_id = TEE_ATTR_DSA_SUBPRIME, 219 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 220 TEE_TYPE_ATTR_GEN_KEY_REQ, 221 .ops_index = ATTR_OPS_INDEX_BIGNUM, 222 RAW_DATA(struct dsa_keypair, q) 223 }, 224 225 { 226 .attr_id = TEE_ATTR_DSA_BASE, 227 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 228 TEE_TYPE_ATTR_BIGNUM_MAXBITS, 229 .ops_index = ATTR_OPS_INDEX_BIGNUM, 230 RAW_DATA(struct dsa_keypair, g) 231 }, 232 233 { 234 .attr_id = TEE_ATTR_DSA_PRIVATE_VALUE, 235 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 236 .ops_index = ATTR_OPS_INDEX_BIGNUM, 237 RAW_DATA(struct dsa_keypair, x) 238 }, 239 240 { 241 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 242 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 243 .ops_index = ATTR_OPS_INDEX_BIGNUM, 244 RAW_DATA(struct dsa_keypair, y) 245 }, 246 }; 247 248 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = { 249 { 250 .attr_id = TEE_ATTR_DH_PRIME, 251 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 252 TEE_TYPE_ATTR_GEN_KEY_REQ, 253 .ops_index = ATTR_OPS_INDEX_BIGNUM, 254 RAW_DATA(struct dh_keypair, p) 255 }, 256 257 { 258 .attr_id = TEE_ATTR_DH_BASE, 259 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, 260 .ops_index = ATTR_OPS_INDEX_BIGNUM, 261 RAW_DATA(struct dh_keypair, g) 262 }, 263 264 { 265 .attr_id = TEE_ATTR_DH_PUBLIC_VALUE, 266 .flags = TEE_TYPE_ATTR_REQUIRED, 267 .ops_index = ATTR_OPS_INDEX_BIGNUM, 268 RAW_DATA(struct dh_keypair, y) 269 }, 270 271 { 272 .attr_id = TEE_ATTR_DH_PRIVATE_VALUE, 273 .flags = TEE_TYPE_ATTR_REQUIRED, 274 .ops_index = ATTR_OPS_INDEX_BIGNUM, 275 RAW_DATA(struct dh_keypair, x) 276 }, 277 278 { 279 .attr_id = TEE_ATTR_DH_SUBPRIME, 280 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP | TEE_TYPE_ATTR_GEN_KEY_OPT, 281 .ops_index = ATTR_OPS_INDEX_BIGNUM, 282 RAW_DATA(struct dh_keypair, q) 283 }, 284 285 { 286 .attr_id = TEE_ATTR_DH_X_BITS, 287 .flags = TEE_TYPE_ATTR_GEN_KEY_OPT, 288 .ops_index = ATTR_OPS_INDEX_VALUE, 289 RAW_DATA(struct dh_keypair, xbits) 290 }, 291 }; 292 293 #if defined(CFG_CRYPTO_HKDF) 294 static const struct tee_cryp_obj_type_attrs 295 tee_cryp_obj_hkdf_ikm_attrs[] = { 296 { 297 .attr_id = TEE_ATTR_HKDF_IKM, 298 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 299 .ops_index = ATTR_OPS_INDEX_SECRET, 300 .raw_offs = 0, 301 .raw_size = 0 302 }, 303 }; 304 #endif 305 306 #if defined(CFG_CRYPTO_CONCAT_KDF) 307 static const struct tee_cryp_obj_type_attrs 308 tee_cryp_obj_concat_kdf_z_attrs[] = { 309 { 310 .attr_id = TEE_ATTR_CONCAT_KDF_Z, 311 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 312 .ops_index = ATTR_OPS_INDEX_SECRET, 313 .raw_offs = 0, 314 .raw_size = 0 315 }, 316 }; 317 #endif 318 319 #if defined(CFG_CRYPTO_PBKDF2) 320 static const struct tee_cryp_obj_type_attrs 321 tee_cryp_obj_pbkdf2_passwd_attrs[] = { 322 { 323 .attr_id = TEE_ATTR_PBKDF2_PASSWORD, 324 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 325 .ops_index = ATTR_OPS_INDEX_SECRET, 326 .raw_offs = 0, 327 .raw_size = 0 328 }, 329 }; 330 #endif 331 332 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = { 333 { 334 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 335 .flags = TEE_TYPE_ATTR_REQUIRED, 336 .ops_index = ATTR_OPS_INDEX_BIGNUM, 337 RAW_DATA(struct ecc_public_key, x) 338 }, 339 340 { 341 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 342 .flags = TEE_TYPE_ATTR_REQUIRED, 343 .ops_index = ATTR_OPS_INDEX_BIGNUM, 344 RAW_DATA(struct ecc_public_key, y) 345 }, 346 347 { 348 .attr_id = TEE_ATTR_ECC_CURVE, 349 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 350 .ops_index = ATTR_OPS_INDEX_VALUE, 351 RAW_DATA(struct ecc_public_key, curve) 352 }, 353 }; 354 355 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = { 356 { 357 .attr_id = TEE_ATTR_ECC_PRIVATE_VALUE, 358 .flags = TEE_TYPE_ATTR_REQUIRED, 359 .ops_index = ATTR_OPS_INDEX_BIGNUM, 360 RAW_DATA(struct ecc_keypair, d) 361 }, 362 363 { 364 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 365 .flags = TEE_TYPE_ATTR_REQUIRED, 366 .ops_index = ATTR_OPS_INDEX_BIGNUM, 367 RAW_DATA(struct ecc_keypair, x) 368 }, 369 370 { 371 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 372 .flags = TEE_TYPE_ATTR_REQUIRED, 373 .ops_index = ATTR_OPS_INDEX_BIGNUM, 374 RAW_DATA(struct ecc_keypair, y) 375 }, 376 377 { 378 .attr_id = TEE_ATTR_ECC_CURVE, 379 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 380 TEE_TYPE_ATTR_GEN_KEY_REQ, 381 .ops_index = ATTR_OPS_INDEX_VALUE, 382 RAW_DATA(struct ecc_keypair, curve) 383 }, 384 }; 385 386 struct tee_cryp_obj_type_props { 387 TEE_ObjectType obj_type; 388 uint16_t min_size; /* may not be smaller than this */ 389 uint16_t max_size; /* may not be larger than this */ 390 uint16_t alloc_size; /* this many bytes are allocated to hold data */ 391 uint8_t quanta; /* may only be an multiple of this */ 392 393 uint8_t num_type_attrs; 394 const struct tee_cryp_obj_type_attrs *type_attrs; 395 }; 396 397 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \ 398 { (obj_type), (min_size), (max_size), (alloc_size), (quanta), \ 399 ARRAY_SIZE(type_attrs), (type_attrs) } 400 401 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = { 402 PROP(TEE_TYPE_AES, 64, 128, 256, /* valid sizes 128, 192, 256 */ 403 256 / 8 + sizeof(struct tee_cryp_obj_secret), 404 tee_cryp_obj_secret_value_attrs), 405 PROP(TEE_TYPE_DES, 64, 64, 64, 406 /* Valid size 64 with parity */ 407 64 / 8 + sizeof(struct tee_cryp_obj_secret), 408 tee_cryp_obj_secret_value_attrs), 409 PROP(TEE_TYPE_DES3, 64, 128, 192, 410 /* Valid sizes 128, 192 with parity */ 411 192 / 8 + sizeof(struct tee_cryp_obj_secret), 412 tee_cryp_obj_secret_value_attrs), 413 PROP(TEE_TYPE_SM4, 128, 128, 128, 414 128 / 8 + sizeof(struct tee_cryp_obj_secret), 415 tee_cryp_obj_secret_value_attrs), 416 PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512, 417 512 / 8 + sizeof(struct tee_cryp_obj_secret), 418 tee_cryp_obj_secret_value_attrs), 419 PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512, 420 512 / 8 + sizeof(struct tee_cryp_obj_secret), 421 tee_cryp_obj_secret_value_attrs), 422 PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512, 423 512 / 8 + sizeof(struct tee_cryp_obj_secret), 424 tee_cryp_obj_secret_value_attrs), 425 PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024, 426 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 427 tee_cryp_obj_secret_value_attrs), 428 PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024, 429 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 430 tee_cryp_obj_secret_value_attrs), 431 PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024, 432 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 433 tee_cryp_obj_secret_value_attrs), 434 PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024, 435 512 / 8 + sizeof(struct tee_cryp_obj_secret), 436 tee_cryp_obj_secret_value_attrs), 437 PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096, 438 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 439 tee_cryp_obj_secret_value_attrs), 440 #if defined(CFG_CRYPTO_HKDF) 441 PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096, 442 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 443 tee_cryp_obj_hkdf_ikm_attrs), 444 #endif 445 #if defined(CFG_CRYPTO_CONCAT_KDF) 446 PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096, 447 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 448 tee_cryp_obj_concat_kdf_z_attrs), 449 #endif 450 #if defined(CFG_CRYPTO_PBKDF2) 451 PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096, 452 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 453 tee_cryp_obj_pbkdf2_passwd_attrs), 454 #endif 455 PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 456 sizeof(struct rsa_public_key), 457 tee_cryp_obj_rsa_pub_key_attrs), 458 459 PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 460 sizeof(struct rsa_keypair), 461 tee_cryp_obj_rsa_keypair_attrs), 462 463 PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072, 464 sizeof(struct dsa_public_key), 465 tee_cryp_obj_dsa_pub_key_attrs), 466 467 PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072, 468 sizeof(struct dsa_keypair), 469 tee_cryp_obj_dsa_keypair_attrs), 470 471 PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048, 472 sizeof(struct dh_keypair), 473 tee_cryp_obj_dh_keypair_attrs), 474 475 PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521, 476 sizeof(struct ecc_public_key), 477 tee_cryp_obj_ecc_pub_key_attrs), 478 479 PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521, 480 sizeof(struct ecc_keypair), 481 tee_cryp_obj_ecc_keypair_attrs), 482 483 PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521, 484 sizeof(struct ecc_public_key), 485 tee_cryp_obj_ecc_pub_key_attrs), 486 487 PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521, 488 sizeof(struct ecc_keypair), 489 tee_cryp_obj_ecc_keypair_attrs), 490 491 PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256, 492 sizeof(struct ecc_public_key), 493 tee_cryp_obj_ecc_pub_key_attrs), 494 495 PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256, 496 sizeof(struct ecc_keypair), 497 tee_cryp_obj_ecc_keypair_attrs), 498 499 PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256, 500 sizeof(struct ecc_public_key), 501 tee_cryp_obj_ecc_pub_key_attrs), 502 503 PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256, 504 sizeof(struct ecc_keypair), 505 tee_cryp_obj_ecc_keypair_attrs), 506 507 PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256, 508 sizeof(struct ecc_public_key), 509 tee_cryp_obj_ecc_pub_key_attrs), 510 511 PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256, 512 sizeof(struct ecc_keypair), 513 tee_cryp_obj_ecc_keypair_attrs), 514 }; 515 516 struct attr_ops { 517 TEE_Result (*from_user)(void *attr, const void *buffer, size_t size); 518 TEE_Result (*to_user)(void *attr, struct ts_session *sess, 519 void *buffer, uint64_t *size); 520 TEE_Result (*to_binary)(void *attr, void *data, size_t data_len, 521 size_t *offs); 522 bool (*from_binary)(void *attr, const void *data, size_t data_len, 523 size_t *offs); 524 TEE_Result (*from_obj)(void *attr, void *src_attr); 525 void (*free)(void *attr); 526 void (*clear)(void *attr); 527 }; 528 529 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data, 530 size_t data_len, size_t *offs) 531 { 532 uint32_t field; 533 size_t next_offs; 534 535 if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs)) 536 return TEE_ERROR_OVERFLOW; 537 538 if (data && next_offs <= data_len) { 539 field = TEE_U32_TO_BIG_ENDIAN(v); 540 memcpy(data + *offs, &field, sizeof(field)); 541 } 542 (*offs) = next_offs; 543 544 return TEE_SUCCESS; 545 } 546 547 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data, 548 size_t data_len, size_t *offs) 549 { 550 uint32_t field; 551 552 if (!data || (*offs + sizeof(field)) > data_len) 553 return false; 554 555 memcpy(&field, data + *offs, sizeof(field)); 556 *v = TEE_U32_FROM_BIG_ENDIAN(field); 557 (*offs) += sizeof(field); 558 return true; 559 } 560 561 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer, 562 size_t size) 563 { 564 struct tee_cryp_obj_secret *key = attr; 565 566 /* Data size has to fit in allocated buffer */ 567 if (size > key->alloc_size) 568 return TEE_ERROR_SECURITY; 569 memcpy(key + 1, buffer, size); 570 key->key_size = size; 571 return TEE_SUCCESS; 572 } 573 574 static TEE_Result op_attr_secret_value_to_user(void *attr, 575 struct ts_session *sess __unused, 576 void *buffer, uint64_t *size) 577 { 578 TEE_Result res; 579 struct tee_cryp_obj_secret *key = attr; 580 uint64_t s; 581 uint64_t key_size; 582 583 res = copy_from_user(&s, size, sizeof(s)); 584 if (res != TEE_SUCCESS) 585 return res; 586 587 key_size = key->key_size; 588 res = copy_to_user(size, &key_size, sizeof(key_size)); 589 if (res != TEE_SUCCESS) 590 return res; 591 592 if (s < key->key_size || !buffer) 593 return TEE_ERROR_SHORT_BUFFER; 594 595 return copy_to_user(buffer, key + 1, key->key_size); 596 } 597 598 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data, 599 size_t data_len, size_t *offs) 600 { 601 TEE_Result res; 602 struct tee_cryp_obj_secret *key = attr; 603 size_t next_offs; 604 605 res = op_u32_to_binary_helper(key->key_size, data, data_len, offs); 606 if (res != TEE_SUCCESS) 607 return res; 608 609 if (ADD_OVERFLOW(*offs, key->key_size, &next_offs)) 610 return TEE_ERROR_OVERFLOW; 611 612 if (data && next_offs <= data_len) 613 memcpy((uint8_t *)data + *offs, key + 1, key->key_size); 614 (*offs) = next_offs; 615 616 return TEE_SUCCESS; 617 } 618 619 static bool op_attr_secret_value_from_binary(void *attr, const void *data, 620 size_t data_len, size_t *offs) 621 { 622 struct tee_cryp_obj_secret *key = attr; 623 uint32_t s; 624 625 if (!op_u32_from_binary_helper(&s, data, data_len, offs)) 626 return false; 627 628 if ((*offs + s) > data_len) 629 return false; 630 631 /* Data size has to fit in allocated buffer */ 632 if (s > key->alloc_size) 633 return false; 634 key->key_size = s; 635 memcpy(key + 1, (const uint8_t *)data + *offs, s); 636 (*offs) += s; 637 return true; 638 } 639 640 641 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr) 642 { 643 struct tee_cryp_obj_secret *key = attr; 644 struct tee_cryp_obj_secret *src_key = src_attr; 645 646 if (src_key->key_size > key->alloc_size) 647 return TEE_ERROR_BAD_STATE; 648 memcpy(key + 1, src_key + 1, src_key->key_size); 649 key->key_size = src_key->key_size; 650 return TEE_SUCCESS; 651 } 652 653 static void op_attr_secret_value_clear(void *attr) 654 { 655 struct tee_cryp_obj_secret *key = attr; 656 657 key->key_size = 0; 658 memset(key + 1, 0, key->alloc_size); 659 } 660 661 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer, 662 size_t size) 663 { 664 struct bignum **bn = attr; 665 666 return crypto_bignum_bin2bn(buffer, size, *bn); 667 } 668 669 static TEE_Result op_attr_bignum_to_user(void *attr, 670 struct ts_session *sess, 671 void *buffer, uint64_t *size) 672 { 673 TEE_Result res = TEE_SUCCESS; 674 struct bignum **bn = attr; 675 uint64_t req_size = 0; 676 uint64_t s = 0; 677 678 res = copy_from_user(&s, size, sizeof(s)); 679 if (res != TEE_SUCCESS) 680 return res; 681 682 req_size = crypto_bignum_num_bytes(*bn); 683 res = copy_to_user(size, &req_size, sizeof(req_size)); 684 if (res != TEE_SUCCESS) 685 return res; 686 if (!req_size) 687 return TEE_SUCCESS; 688 if (s < req_size || !buffer) 689 return TEE_ERROR_SHORT_BUFFER; 690 691 /* Check we can access data using supplied user mode pointer */ 692 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 693 TEE_MEMORY_ACCESS_READ | 694 TEE_MEMORY_ACCESS_WRITE | 695 TEE_MEMORY_ACCESS_ANY_OWNER, 696 (uaddr_t)buffer, req_size); 697 if (res != TEE_SUCCESS) 698 return res; 699 /* 700 * Write the bignum (wich raw data points to) into an array of 701 * bytes (stored in buffer) 702 */ 703 crypto_bignum_bn2bin(*bn, buffer); 704 return TEE_SUCCESS; 705 } 706 707 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data, 708 size_t data_len, size_t *offs) 709 { 710 TEE_Result res; 711 struct bignum **bn = attr; 712 uint32_t n = crypto_bignum_num_bytes(*bn); 713 size_t next_offs; 714 715 res = op_u32_to_binary_helper(n, data, data_len, offs); 716 if (res != TEE_SUCCESS) 717 return res; 718 719 if (ADD_OVERFLOW(*offs, n, &next_offs)) 720 return TEE_ERROR_OVERFLOW; 721 722 if (data && next_offs <= data_len) 723 crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs); 724 (*offs) = next_offs; 725 726 return TEE_SUCCESS; 727 } 728 729 static bool op_attr_bignum_from_binary(void *attr, const void *data, 730 size_t data_len, size_t *offs) 731 { 732 struct bignum **bn = attr; 733 uint32_t n; 734 735 if (!op_u32_from_binary_helper(&n, data, data_len, offs)) 736 return false; 737 738 if ((*offs + n) > data_len) 739 return false; 740 if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn)) 741 return false; 742 (*offs) += n; 743 return true; 744 } 745 746 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr) 747 { 748 struct bignum **bn = attr; 749 struct bignum **src_bn = src_attr; 750 751 crypto_bignum_copy(*bn, *src_bn); 752 return TEE_SUCCESS; 753 } 754 755 static void op_attr_bignum_clear(void *attr) 756 { 757 struct bignum **bn = attr; 758 759 crypto_bignum_clear(*bn); 760 } 761 762 static void op_attr_bignum_free(void *attr) 763 { 764 struct bignum **bn = attr; 765 766 crypto_bignum_free(*bn); 767 *bn = NULL; 768 } 769 770 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer, 771 size_t size) 772 { 773 uint32_t *v = attr; 774 775 if (size != sizeof(uint32_t) * 2) 776 return TEE_ERROR_GENERIC; /* "can't happen */ 777 778 /* Note that only the first value is copied */ 779 memcpy(v, buffer, sizeof(uint32_t)); 780 return TEE_SUCCESS; 781 } 782 783 static TEE_Result op_attr_value_to_user(void *attr, 784 struct ts_session *sess __unused, 785 void *buffer, uint64_t *size) 786 { 787 TEE_Result res; 788 uint32_t *v = attr; 789 uint64_t s; 790 uint32_t value[2] = { *v }; 791 uint64_t req_size = sizeof(value); 792 793 res = copy_from_user(&s, size, sizeof(s)); 794 if (res != TEE_SUCCESS) 795 return res; 796 797 if (s < req_size || !buffer) 798 return TEE_ERROR_SHORT_BUFFER; 799 800 return copy_to_user(buffer, value, req_size); 801 } 802 803 static TEE_Result op_attr_value_to_binary(void *attr, void *data, 804 size_t data_len, size_t *offs) 805 { 806 uint32_t *v = attr; 807 808 return op_u32_to_binary_helper(*v, data, data_len, offs); 809 } 810 811 static bool op_attr_value_from_binary(void *attr, const void *data, 812 size_t data_len, size_t *offs) 813 { 814 uint32_t *v = attr; 815 816 return op_u32_from_binary_helper(v, data, data_len, offs); 817 } 818 819 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr) 820 { 821 uint32_t *v = attr; 822 uint32_t *src_v = src_attr; 823 824 *v = *src_v; 825 return TEE_SUCCESS; 826 } 827 828 static void op_attr_value_clear(void *attr) 829 { 830 uint32_t *v = attr; 831 832 *v = 0; 833 } 834 835 static const struct attr_ops attr_ops[] = { 836 [ATTR_OPS_INDEX_SECRET] = { 837 .from_user = op_attr_secret_value_from_user, 838 .to_user = op_attr_secret_value_to_user, 839 .to_binary = op_attr_secret_value_to_binary, 840 .from_binary = op_attr_secret_value_from_binary, 841 .from_obj = op_attr_secret_value_from_obj, 842 .free = op_attr_secret_value_clear, /* not a typo */ 843 .clear = op_attr_secret_value_clear, 844 }, 845 [ATTR_OPS_INDEX_BIGNUM] = { 846 .from_user = op_attr_bignum_from_user, 847 .to_user = op_attr_bignum_to_user, 848 .to_binary = op_attr_bignum_to_binary, 849 .from_binary = op_attr_bignum_from_binary, 850 .from_obj = op_attr_bignum_from_obj, 851 .free = op_attr_bignum_free, 852 .clear = op_attr_bignum_clear, 853 }, 854 [ATTR_OPS_INDEX_VALUE] = { 855 .from_user = op_attr_value_from_user, 856 .to_user = op_attr_value_to_user, 857 .to_binary = op_attr_value_to_binary, 858 .from_binary = op_attr_value_from_binary, 859 .from_obj = op_attr_value_from_obj, 860 .free = op_attr_value_clear, /* not a typo */ 861 .clear = op_attr_value_clear, 862 }, 863 }; 864 865 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src) 866 { 867 uint64_t d = 0; 868 TEE_Result res = copy_from_user(&d, src, sizeof(d)); 869 870 /* 871 * On 32-bit systems a size_t can't hold a uint64_t so we need to 872 * check that the value isn't too large. 873 */ 874 if (!res && ADD_OVERFLOW(0, d, dst)) 875 return TEE_ERROR_OVERFLOW; 876 877 return res; 878 } 879 880 static TEE_Result put_user_u64(uint64_t *dst, size_t value) 881 { 882 uint64_t v = value; 883 884 return copy_to_user(dst, &v, sizeof(v)); 885 } 886 887 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info) 888 { 889 struct ts_session *sess = ts_get_current_session(); 890 TEE_Result res = TEE_SUCCESS; 891 struct tee_obj *o = NULL; 892 893 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 894 uref_to_vaddr(obj), &o); 895 if (res != TEE_SUCCESS) 896 goto exit; 897 898 res = copy_to_user_private(info, &o->info, sizeof(o->info)); 899 900 exit: 901 return res; 902 } 903 904 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj, 905 unsigned long usage) 906 { 907 struct ts_session *sess = ts_get_current_session(); 908 TEE_Result res = TEE_SUCCESS; 909 struct tee_obj *o = NULL; 910 911 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 912 if (res != TEE_SUCCESS) 913 goto exit; 914 915 o->info.objectUsage &= usage; 916 917 exit: 918 return res; 919 } 920 921 static int tee_svc_cryp_obj_find_type_attr_idx( 922 uint32_t attr_id, 923 const struct tee_cryp_obj_type_props *type_props) 924 { 925 size_t n; 926 927 for (n = 0; n < type_props->num_type_attrs; n++) { 928 if (attr_id == type_props->type_attrs[n].attr_id) 929 return n; 930 } 931 return -1; 932 } 933 934 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props( 935 TEE_ObjectType obj_type) 936 { 937 size_t n; 938 939 for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) { 940 if (tee_cryp_obj_props[n].obj_type == obj_type) 941 return tee_cryp_obj_props + n; 942 } 943 944 return NULL; 945 } 946 947 /* Set an attribute on an object */ 948 static void set_attribute(struct tee_obj *o, 949 const struct tee_cryp_obj_type_props *props, 950 uint32_t attr) 951 { 952 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 953 954 if (idx < 0) 955 return; 956 o->have_attrs |= BIT(idx); 957 } 958 959 /* Get an attribute on an object */ 960 static uint32_t get_attribute(const struct tee_obj *o, 961 const struct tee_cryp_obj_type_props *props, 962 uint32_t attr) 963 { 964 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 965 966 if (idx < 0) 967 return 0; 968 return o->have_attrs & BIT(idx); 969 } 970 971 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id, 972 void *buffer, uint64_t *size) 973 { 974 struct ts_session *sess = ts_get_current_session(); 975 TEE_Result res = TEE_SUCCESS; 976 struct tee_obj *o = NULL; 977 const struct tee_cryp_obj_type_props *type_props = NULL; 978 int idx = 0; 979 const struct attr_ops *ops = NULL; 980 void *attr = NULL; 981 982 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 983 if (res != TEE_SUCCESS) 984 return TEE_ERROR_ITEM_NOT_FOUND; 985 986 /* Check that the object is initialized */ 987 if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED)) 988 return TEE_ERROR_BAD_PARAMETERS; 989 990 /* Check that getting the attribute is allowed */ 991 if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) && 992 !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE)) 993 return TEE_ERROR_BAD_PARAMETERS; 994 995 type_props = tee_svc_find_type_props(o->info.objectType); 996 if (!type_props) { 997 /* Unknown object type, "can't happen" */ 998 return TEE_ERROR_BAD_STATE; 999 } 1000 1001 idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props); 1002 if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0)) 1003 return TEE_ERROR_ITEM_NOT_FOUND; 1004 1005 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1006 attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs; 1007 return ops->to_user(attr, sess, buffer, size); 1008 } 1009 1010 void tee_obj_attr_free(struct tee_obj *o) 1011 { 1012 const struct tee_cryp_obj_type_props *tp; 1013 size_t n; 1014 1015 if (!o->attr) 1016 return; 1017 tp = tee_svc_find_type_props(o->info.objectType); 1018 if (!tp) 1019 return; 1020 1021 for (n = 0; n < tp->num_type_attrs; n++) { 1022 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1023 1024 attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs); 1025 } 1026 } 1027 1028 void tee_obj_attr_clear(struct tee_obj *o) 1029 { 1030 const struct tee_cryp_obj_type_props *tp; 1031 size_t n; 1032 1033 if (!o->attr) 1034 return; 1035 tp = tee_svc_find_type_props(o->info.objectType); 1036 if (!tp) 1037 return; 1038 1039 for (n = 0; n < tp->num_type_attrs; n++) { 1040 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1041 1042 attr_ops[ta->ops_index].clear((uint8_t *)o->attr + 1043 ta->raw_offs); 1044 } 1045 } 1046 1047 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data, 1048 size_t *data_len) 1049 { 1050 const struct tee_cryp_obj_type_props *tp; 1051 size_t n; 1052 size_t offs = 0; 1053 size_t len = data ? *data_len : 0; 1054 TEE_Result res; 1055 1056 if (o->info.objectType == TEE_TYPE_DATA) { 1057 *data_len = 0; 1058 return TEE_SUCCESS; /* pure data object */ 1059 } 1060 if (!o->attr) 1061 return TEE_ERROR_BAD_STATE; 1062 tp = tee_svc_find_type_props(o->info.objectType); 1063 if (!tp) 1064 return TEE_ERROR_BAD_STATE; 1065 1066 for (n = 0; n < tp->num_type_attrs; n++) { 1067 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1068 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1069 1070 res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs); 1071 if (res != TEE_SUCCESS) 1072 return res; 1073 } 1074 1075 *data_len = offs; 1076 if (data && offs > len) 1077 return TEE_ERROR_SHORT_BUFFER; 1078 return TEE_SUCCESS; 1079 } 1080 1081 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data, 1082 size_t data_len) 1083 { 1084 const struct tee_cryp_obj_type_props *tp; 1085 size_t n; 1086 size_t offs = 0; 1087 1088 if (o->info.objectType == TEE_TYPE_DATA) 1089 return TEE_SUCCESS; /* pure data object */ 1090 if (!o->attr) 1091 return TEE_ERROR_BAD_STATE; 1092 tp = tee_svc_find_type_props(o->info.objectType); 1093 if (!tp) 1094 return TEE_ERROR_BAD_STATE; 1095 1096 for (n = 0; n < tp->num_type_attrs; n++) { 1097 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1098 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1099 1100 if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len, 1101 &offs)) 1102 return TEE_ERROR_CORRUPT_OBJECT; 1103 } 1104 return TEE_SUCCESS; 1105 } 1106 1107 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src) 1108 { 1109 TEE_Result res; 1110 const struct tee_cryp_obj_type_props *tp; 1111 const struct tee_cryp_obj_type_attrs *ta; 1112 size_t n; 1113 uint32_t have_attrs = 0; 1114 void *attr; 1115 void *src_attr; 1116 1117 if (o->info.objectType == TEE_TYPE_DATA) 1118 return TEE_SUCCESS; /* pure data object */ 1119 if (!o->attr) 1120 return TEE_ERROR_BAD_STATE; 1121 tp = tee_svc_find_type_props(o->info.objectType); 1122 if (!tp) 1123 return TEE_ERROR_BAD_STATE; 1124 1125 if (o->info.objectType == src->info.objectType) { 1126 have_attrs = src->have_attrs; 1127 for (n = 0; n < tp->num_type_attrs; n++) { 1128 ta = tp->type_attrs + n; 1129 attr = (uint8_t *)o->attr + ta->raw_offs; 1130 src_attr = (uint8_t *)src->attr + ta->raw_offs; 1131 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1132 if (res != TEE_SUCCESS) 1133 return res; 1134 } 1135 } else { 1136 const struct tee_cryp_obj_type_props *tp_src; 1137 int idx; 1138 1139 if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) { 1140 if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR) 1141 return TEE_ERROR_BAD_PARAMETERS; 1142 } else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) { 1143 if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR) 1144 return TEE_ERROR_BAD_PARAMETERS; 1145 } else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) { 1146 if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR) 1147 return TEE_ERROR_BAD_PARAMETERS; 1148 } else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) { 1149 if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR) 1150 return TEE_ERROR_BAD_PARAMETERS; 1151 } else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) { 1152 if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR) 1153 return TEE_ERROR_BAD_PARAMETERS; 1154 } else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) { 1155 if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR) 1156 return TEE_ERROR_BAD_PARAMETERS; 1157 } else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) { 1158 if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR) 1159 return TEE_ERROR_BAD_PARAMETERS; 1160 } else { 1161 return TEE_ERROR_BAD_PARAMETERS; 1162 } 1163 1164 tp_src = tee_svc_find_type_props(src->info.objectType); 1165 if (!tp_src) 1166 return TEE_ERROR_BAD_STATE; 1167 1168 have_attrs = BIT32(tp->num_type_attrs) - 1; 1169 for (n = 0; n < tp->num_type_attrs; n++) { 1170 ta = tp->type_attrs + n; 1171 1172 idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id, 1173 tp_src); 1174 if (idx < 0) 1175 return TEE_ERROR_BAD_STATE; 1176 1177 attr = (uint8_t *)o->attr + ta->raw_offs; 1178 src_attr = (uint8_t *)src->attr + 1179 tp_src->type_attrs[idx].raw_offs; 1180 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1181 if (res != TEE_SUCCESS) 1182 return res; 1183 } 1184 } 1185 1186 o->have_attrs = have_attrs; 1187 return TEE_SUCCESS; 1188 } 1189 1190 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz) 1191 { 1192 return IS_ENABLED(CFG_COMPAT_GP10_DES) && 1193 ((type == TEE_TYPE_DES && sz == 56) || 1194 (type == TEE_TYPE_DES3 && (sz == 112 || sz == 168))); 1195 } 1196 1197 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props, 1198 size_t key_size) 1199 { 1200 size_t sz = key_size; 1201 1202 /* 1203 * In GP Internal API Specification 1.0 the partity bits aren't 1204 * counted when telling the size of the key in bits so add them 1205 * here if missing. 1206 */ 1207 if (is_gp_legacy_des_key_size(props->obj_type, sz)) 1208 sz += sz / 7; 1209 1210 if (sz % props->quanta != 0) 1211 return TEE_ERROR_NOT_SUPPORTED; 1212 if (sz < props->min_size) 1213 return TEE_ERROR_NOT_SUPPORTED; 1214 if (sz > props->max_size) 1215 return TEE_ERROR_NOT_SUPPORTED; 1216 1217 return TEE_SUCCESS; 1218 } 1219 1220 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type, 1221 size_t max_key_size) 1222 { 1223 TEE_Result res = TEE_SUCCESS; 1224 const struct tee_cryp_obj_type_props *type_props; 1225 1226 /* Can only set type for newly allocated objs */ 1227 if (o->attr) 1228 return TEE_ERROR_BAD_STATE; 1229 1230 /* 1231 * Verify that maxKeySize is supported and find out how 1232 * much should be allocated. 1233 */ 1234 1235 if (obj_type == TEE_TYPE_DATA) { 1236 if (max_key_size) 1237 return TEE_ERROR_NOT_SUPPORTED; 1238 } else { 1239 /* Find description of object */ 1240 type_props = tee_svc_find_type_props(obj_type); 1241 if (!type_props) 1242 return TEE_ERROR_NOT_SUPPORTED; 1243 1244 /* Check that max_key_size follows restrictions */ 1245 res = check_key_size(type_props, max_key_size); 1246 if (res) 1247 return res; 1248 1249 o->attr = calloc(1, type_props->alloc_size); 1250 if (!o->attr) 1251 return TEE_ERROR_OUT_OF_MEMORY; 1252 } 1253 1254 /* If we have a key structure, pre-allocate the bignums inside */ 1255 switch (obj_type) { 1256 case TEE_TYPE_RSA_PUBLIC_KEY: 1257 res = crypto_acipher_alloc_rsa_public_key(o->attr, 1258 max_key_size); 1259 break; 1260 case TEE_TYPE_RSA_KEYPAIR: 1261 res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size); 1262 break; 1263 case TEE_TYPE_DSA_PUBLIC_KEY: 1264 res = crypto_acipher_alloc_dsa_public_key(o->attr, 1265 max_key_size); 1266 break; 1267 case TEE_TYPE_DSA_KEYPAIR: 1268 res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size); 1269 break; 1270 case TEE_TYPE_DH_KEYPAIR: 1271 res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size); 1272 break; 1273 case TEE_TYPE_ECDSA_PUBLIC_KEY: 1274 case TEE_TYPE_ECDH_PUBLIC_KEY: 1275 case TEE_TYPE_SM2_DSA_PUBLIC_KEY: 1276 case TEE_TYPE_SM2_PKE_PUBLIC_KEY: 1277 case TEE_TYPE_SM2_KEP_PUBLIC_KEY: 1278 res = crypto_acipher_alloc_ecc_public_key(o->attr, obj_type, 1279 max_key_size); 1280 break; 1281 case TEE_TYPE_ECDSA_KEYPAIR: 1282 case TEE_TYPE_ECDH_KEYPAIR: 1283 case TEE_TYPE_SM2_DSA_KEYPAIR: 1284 case TEE_TYPE_SM2_PKE_KEYPAIR: 1285 case TEE_TYPE_SM2_KEP_KEYPAIR: 1286 res = crypto_acipher_alloc_ecc_keypair(o->attr, obj_type, 1287 max_key_size); 1288 break; 1289 default: 1290 if (obj_type != TEE_TYPE_DATA) { 1291 struct tee_cryp_obj_secret *key = o->attr; 1292 1293 key->alloc_size = type_props->alloc_size - 1294 sizeof(*key); 1295 } 1296 break; 1297 } 1298 1299 if (res != TEE_SUCCESS) 1300 return res; 1301 1302 o->info.objectType = obj_type; 1303 o->info.maxKeySize = max_key_size; 1304 o->info.objectUsage = TEE_USAGE_DEFAULT; 1305 1306 return TEE_SUCCESS; 1307 } 1308 1309 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type, 1310 unsigned long max_key_size, uint32_t *obj) 1311 { 1312 struct ts_session *sess = ts_get_current_session(); 1313 TEE_Result res = TEE_SUCCESS; 1314 struct tee_obj *o = NULL; 1315 1316 1317 o = tee_obj_alloc(); 1318 if (!o) 1319 return TEE_ERROR_OUT_OF_MEMORY; 1320 1321 res = tee_obj_set_type(o, obj_type, max_key_size); 1322 if (res != TEE_SUCCESS) { 1323 tee_obj_free(o); 1324 return res; 1325 } 1326 1327 tee_obj_add(to_user_ta_ctx(sess->ctx), o); 1328 1329 res = copy_kaddr_to_uref(obj, o); 1330 if (res != TEE_SUCCESS) 1331 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1332 return res; 1333 } 1334 1335 TEE_Result syscall_cryp_obj_close(unsigned long obj) 1336 { 1337 struct ts_session *sess = ts_get_current_session(); 1338 TEE_Result res = TEE_SUCCESS; 1339 struct tee_obj *o = NULL; 1340 1341 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1342 if (res != TEE_SUCCESS) 1343 return res; 1344 1345 /* 1346 * If it's busy it's used by an operation, a client should never have 1347 * this handle. 1348 */ 1349 if (o->busy) 1350 return TEE_ERROR_ITEM_NOT_FOUND; 1351 1352 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1353 return TEE_SUCCESS; 1354 } 1355 1356 TEE_Result syscall_cryp_obj_reset(unsigned long obj) 1357 { 1358 struct ts_session *sess = ts_get_current_session(); 1359 TEE_Result res = TEE_SUCCESS; 1360 struct tee_obj *o = NULL; 1361 1362 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1363 if (res != TEE_SUCCESS) 1364 return res; 1365 1366 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) { 1367 tee_obj_attr_clear(o); 1368 o->info.keySize = 0; 1369 o->info.objectUsage = TEE_USAGE_DEFAULT; 1370 } else { 1371 return TEE_ERROR_BAD_PARAMETERS; 1372 } 1373 1374 /* the object is no more initialized */ 1375 o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED; 1376 1377 return TEE_SUCCESS; 1378 } 1379 1380 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc, 1381 const struct utee_attribute *usr_attrs, 1382 uint32_t attr_count, TEE_Attribute *attrs) 1383 { 1384 TEE_Result res = TEE_SUCCESS; 1385 size_t size = 0; 1386 uint32_t n = 0; 1387 1388 if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size)) 1389 return TEE_ERROR_OVERFLOW; 1390 1391 res = vm_check_access_rights(&utc->uctx, 1392 TEE_MEMORY_ACCESS_READ | 1393 TEE_MEMORY_ACCESS_ANY_OWNER, 1394 (uaddr_t)usr_attrs, size); 1395 if (res != TEE_SUCCESS) 1396 return res; 1397 1398 for (n = 0; n < attr_count; n++) { 1399 attrs[n].attributeID = usr_attrs[n].attribute_id; 1400 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) { 1401 attrs[n].content.value.a = usr_attrs[n].a; 1402 attrs[n].content.value.b = usr_attrs[n].b; 1403 } else { 1404 uintptr_t buf = usr_attrs[n].a; 1405 size_t len = usr_attrs[n].b; 1406 uint32_t flags = TEE_MEMORY_ACCESS_READ | 1407 TEE_MEMORY_ACCESS_ANY_OWNER; 1408 1409 res = vm_check_access_rights(&utc->uctx, flags, buf, 1410 len); 1411 if (res != TEE_SUCCESS) 1412 return res; 1413 attrs[n].content.ref.buffer = (void *)buf; 1414 attrs[n].content.ref.length = len; 1415 } 1416 } 1417 1418 return TEE_SUCCESS; 1419 } 1420 1421 enum attr_usage { 1422 ATTR_USAGE_POPULATE, 1423 ATTR_USAGE_GENERATE_KEY 1424 }; 1425 1426 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage, 1427 const struct tee_cryp_obj_type_props 1428 *type_props, 1429 const TEE_Attribute *attrs, 1430 uint32_t attr_count) 1431 { 1432 uint32_t required_flag = 0; 1433 uint32_t opt_flag = 0; 1434 bool all_opt_needed = false; 1435 uint32_t req_attrs = 0; 1436 uint32_t opt_grp_attrs = 0; 1437 uint32_t attrs_found = 0; 1438 size_t n = 0; 1439 uint32_t bit = 0; 1440 uint32_t flags = 0; 1441 int idx = 0; 1442 1443 if (usage == ATTR_USAGE_POPULATE) { 1444 required_flag = TEE_TYPE_ATTR_REQUIRED; 1445 opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP; 1446 all_opt_needed = true; 1447 } else { 1448 required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ; 1449 opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT; 1450 all_opt_needed = false; 1451 } 1452 1453 /* 1454 * First find out which attributes are required and which belong to 1455 * the optional group 1456 */ 1457 for (n = 0; n < type_props->num_type_attrs; n++) { 1458 bit = 1 << n; 1459 flags = type_props->type_attrs[n].flags; 1460 1461 if (flags & required_flag) 1462 req_attrs |= bit; 1463 else if (flags & opt_flag) 1464 opt_grp_attrs |= bit; 1465 } 1466 1467 /* 1468 * Verify that all required attributes are in place and 1469 * that the same attribute isn't repeated. 1470 */ 1471 for (n = 0; n < attr_count; n++) { 1472 idx = tee_svc_cryp_obj_find_type_attr_idx( 1473 attrs[n].attributeID, 1474 type_props); 1475 1476 /* attribute not defined in current object type */ 1477 if (idx < 0) 1478 return TEE_ERROR_ITEM_NOT_FOUND; 1479 1480 bit = 1 << idx; 1481 1482 /* attribute not repeated */ 1483 if ((attrs_found & bit) != 0) 1484 return TEE_ERROR_ITEM_NOT_FOUND; 1485 1486 /* 1487 * Attribute not defined in current object type for this 1488 * usage. 1489 */ 1490 if (!(bit & (req_attrs | opt_grp_attrs))) 1491 return TEE_ERROR_ITEM_NOT_FOUND; 1492 1493 attrs_found |= bit; 1494 } 1495 /* Required attribute missing */ 1496 if ((attrs_found & req_attrs) != req_attrs) 1497 return TEE_ERROR_ITEM_NOT_FOUND; 1498 1499 /* 1500 * If the flag says that "if one of the optional attributes are included 1501 * all of them has to be included" this must be checked. 1502 */ 1503 if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 && 1504 (attrs_found & opt_grp_attrs) != opt_grp_attrs) 1505 return TEE_ERROR_ITEM_NOT_FOUND; 1506 1507 return TEE_SUCCESS; 1508 } 1509 1510 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size) 1511 { 1512 switch (curve) { 1513 case TEE_ECC_CURVE_NIST_P192: 1514 *key_size = 192; 1515 break; 1516 case TEE_ECC_CURVE_NIST_P224: 1517 *key_size = 224; 1518 break; 1519 case TEE_ECC_CURVE_NIST_P256: 1520 *key_size = 256; 1521 break; 1522 case TEE_ECC_CURVE_NIST_P384: 1523 *key_size = 384; 1524 break; 1525 case TEE_ECC_CURVE_NIST_P521: 1526 *key_size = 521; 1527 break; 1528 case TEE_ECC_CURVE_SM2: 1529 *key_size = 256; 1530 break; 1531 default: 1532 return TEE_ERROR_NOT_SUPPORTED; 1533 } 1534 1535 return TEE_SUCCESS; 1536 } 1537 1538 static size_t get_used_bits(const TEE_Attribute *a) 1539 { 1540 int nbits = a->content.ref.length * 8; 1541 int v = 0; 1542 1543 bit_ffs(a->content.ref.buffer, nbits, &v); 1544 return nbits - v; 1545 } 1546 1547 static TEE_Result tee_svc_cryp_obj_populate_type( 1548 struct tee_obj *o, 1549 const struct tee_cryp_obj_type_props *type_props, 1550 const TEE_Attribute *attrs, 1551 uint32_t attr_count) 1552 { 1553 TEE_Result res = TEE_SUCCESS; 1554 uint32_t have_attrs = 0; 1555 size_t obj_size = 0; 1556 size_t n = 0; 1557 int idx = 0; 1558 const struct attr_ops *ops = NULL; 1559 void *attr = NULL; 1560 1561 for (n = 0; n < attr_count; n++) { 1562 idx = tee_svc_cryp_obj_find_type_attr_idx( 1563 attrs[n].attributeID, 1564 type_props); 1565 /* attribute not defined in current object type */ 1566 if (idx < 0) 1567 return TEE_ERROR_ITEM_NOT_FOUND; 1568 1569 have_attrs |= BIT32(idx); 1570 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1571 attr = (uint8_t *)o->attr + 1572 type_props->type_attrs[idx].raw_offs; 1573 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) 1574 res = ops->from_user(attr, &attrs[n].content.value, 1575 sizeof(attrs[n].content.value)); 1576 else 1577 res = ops->from_user(attr, attrs[n].content.ref.buffer, 1578 attrs[n].content.ref.length); 1579 if (res != TEE_SUCCESS) 1580 return res; 1581 1582 /* 1583 * The attribute that gives the size of the object is 1584 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR. 1585 */ 1586 if (type_props->type_attrs[idx].flags & 1587 TEE_TYPE_ATTR_SIZE_INDICATOR) { 1588 /* There should be only one */ 1589 if (obj_size) 1590 return TEE_ERROR_BAD_STATE; 1591 1592 /* 1593 * For ECDSA/ECDH we need to translate curve into 1594 * object size 1595 */ 1596 if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) { 1597 res = get_ec_key_size(attrs[n].content.value.a, 1598 &obj_size); 1599 if (res != TEE_SUCCESS) 1600 return res; 1601 } else { 1602 TEE_ObjectType obj_type = o->info.objectType; 1603 size_t sz = o->info.maxKeySize; 1604 1605 obj_size = attrs[n].content.ref.length * 8; 1606 /* Drop the parity bits for legacy objects */ 1607 if (is_gp_legacy_des_key_size(obj_type, sz)) 1608 obj_size -= obj_size / 8; 1609 } 1610 if (obj_size > o->info.maxKeySize) 1611 return TEE_ERROR_BAD_STATE; 1612 } 1613 1614 /* 1615 * Bignum attributes limited by the number of bits in 1616 * o->info.keySize are flagged with 1617 * TEE_TYPE_ATTR_BIGNUM_MAXBITS. 1618 */ 1619 if (type_props->type_attrs[idx].flags & 1620 TEE_TYPE_ATTR_BIGNUM_MAXBITS) { 1621 if (get_used_bits(attrs + n) > o->info.maxKeySize) 1622 return TEE_ERROR_BAD_STATE; 1623 } 1624 } 1625 1626 o->have_attrs = have_attrs; 1627 o->info.keySize = obj_size; 1628 /* 1629 * In GP Internal API Specification 1.0 the partity bits aren't 1630 * counted when telling the size of the key in bits so remove the 1631 * parity bits here. 1632 */ 1633 if (is_gp_legacy_des_key_size(o->info.objectType, o->info.maxKeySize)) 1634 o->info.keySize -= o->info.keySize / 8; 1635 1636 return TEE_SUCCESS; 1637 } 1638 1639 TEE_Result syscall_cryp_obj_populate(unsigned long obj, 1640 struct utee_attribute *usr_attrs, 1641 unsigned long attr_count) 1642 { 1643 struct ts_session *sess = ts_get_current_session(); 1644 TEE_Result res = TEE_SUCCESS; 1645 struct tee_obj *o = NULL; 1646 const struct tee_cryp_obj_type_props *type_props = NULL; 1647 TEE_Attribute *attrs = NULL; 1648 1649 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1650 if (res != TEE_SUCCESS) 1651 return res; 1652 1653 /* Must be a transient object */ 1654 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1655 return TEE_ERROR_BAD_PARAMETERS; 1656 1657 /* Must not be initialized already */ 1658 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1659 return TEE_ERROR_BAD_PARAMETERS; 1660 1661 type_props = tee_svc_find_type_props(o->info.objectType); 1662 if (!type_props) 1663 return TEE_ERROR_NOT_IMPLEMENTED; 1664 1665 size_t alloc_size = 0; 1666 1667 if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size)) 1668 return TEE_ERROR_OVERFLOW; 1669 1670 attrs = malloc(alloc_size); 1671 if (!attrs) 1672 return TEE_ERROR_OUT_OF_MEMORY; 1673 1674 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count, 1675 attrs); 1676 if (res != TEE_SUCCESS) 1677 goto out; 1678 1679 res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props, 1680 attrs, attr_count); 1681 if (res != TEE_SUCCESS) 1682 goto out; 1683 1684 res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count); 1685 if (res == TEE_SUCCESS) 1686 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1687 1688 out: 1689 free_wipe(attrs); 1690 return res; 1691 } 1692 1693 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src) 1694 { 1695 struct ts_session *sess = ts_get_current_session(); 1696 TEE_Result res = TEE_SUCCESS; 1697 struct tee_obj *dst_o = NULL; 1698 struct tee_obj *src_o = NULL; 1699 1700 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1701 uref_to_vaddr(dst), &dst_o); 1702 if (res != TEE_SUCCESS) 1703 return res; 1704 1705 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1706 uref_to_vaddr(src), &src_o); 1707 if (res != TEE_SUCCESS) 1708 return res; 1709 1710 if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 1711 return TEE_ERROR_BAD_PARAMETERS; 1712 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1713 return TEE_ERROR_BAD_PARAMETERS; 1714 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1715 return TEE_ERROR_BAD_PARAMETERS; 1716 1717 res = tee_obj_attr_copy_from(dst_o, src_o); 1718 if (res != TEE_SUCCESS) 1719 return res; 1720 1721 dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1722 dst_o->info.keySize = src_o->info.keySize; 1723 dst_o->info.objectUsage = src_o->info.objectUsage; 1724 return TEE_SUCCESS; 1725 } 1726 1727 static TEE_Result check_pub_rsa_key(struct bignum *e) 1728 { 1729 size_t n = crypto_bignum_num_bytes(e); 1730 uint8_t bin_key[256 / 8] = { 0 }; 1731 1732 /* 1733 * NIST SP800-56B requires public RSA key to be an odd integer in 1734 * the range 65537 <= e < 2^256. 1735 */ 1736 1737 if (n > sizeof(bin_key) || n < 3) 1738 return TEE_ERROR_BAD_PARAMETERS; 1739 1740 crypto_bignum_bn2bin(e, bin_key); 1741 1742 if (!(bin_key[0] & 1)) /* key must be odd */ 1743 return TEE_ERROR_BAD_PARAMETERS; 1744 1745 if (n == 3) { 1746 uint32_t key = 0; 1747 1748 for (n = 0; n < 3; n++) { 1749 key <<= 8; 1750 key |= bin_key[n]; 1751 } 1752 1753 if (key < 65537) 1754 return TEE_ERROR_BAD_PARAMETERS; 1755 } 1756 1757 /* key is larger than 65537 */ 1758 return TEE_SUCCESS; 1759 } 1760 1761 static TEE_Result tee_svc_obj_generate_key_rsa( 1762 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1763 uint32_t key_size, 1764 const TEE_Attribute *params, uint32_t param_count) 1765 { 1766 TEE_Result res = TEE_SUCCESS; 1767 struct rsa_keypair *key = o->attr; 1768 uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537); 1769 1770 /* Copy the present attributes into the obj before starting */ 1771 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1772 param_count); 1773 if (res != TEE_SUCCESS) 1774 return res; 1775 if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) { 1776 res = check_pub_rsa_key(key->e); 1777 if (res) 1778 return res; 1779 } else { 1780 crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e); 1781 } 1782 res = crypto_acipher_gen_rsa_key(key, key_size); 1783 if (res != TEE_SUCCESS) 1784 return res; 1785 1786 /* Set bits for all known attributes for this object type */ 1787 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 1788 1789 return TEE_SUCCESS; 1790 } 1791 1792 static TEE_Result tee_svc_obj_generate_key_dsa( 1793 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1794 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 1795 { 1796 TEE_Result res; 1797 1798 /* Copy the present attributes into the obj before starting */ 1799 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1800 param_count); 1801 if (res != TEE_SUCCESS) 1802 return res; 1803 1804 res = crypto_acipher_gen_dsa_key(o->attr, key_size); 1805 if (res != TEE_SUCCESS) 1806 return res; 1807 1808 /* Set bits for all known attributes for this object type */ 1809 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 1810 1811 return TEE_SUCCESS; 1812 } 1813 1814 static TEE_Result tee_svc_obj_generate_key_dh( 1815 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1816 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 1817 { 1818 TEE_Result res; 1819 struct dh_keypair *tee_dh_key; 1820 struct bignum *dh_q = NULL; 1821 uint32_t dh_xbits = 0; 1822 1823 /* Copy the present attributes into the obj before starting */ 1824 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1825 param_count); 1826 if (res != TEE_SUCCESS) 1827 return res; 1828 1829 tee_dh_key = (struct dh_keypair *)o->attr; 1830 1831 if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME)) 1832 dh_q = tee_dh_key->q; 1833 if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS)) 1834 dh_xbits = tee_dh_key->xbits; 1835 res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size); 1836 if (res != TEE_SUCCESS) 1837 return res; 1838 1839 /* Set bits for the generated public and private key */ 1840 set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE); 1841 set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE); 1842 set_attribute(o, type_props, TEE_ATTR_DH_X_BITS); 1843 return TEE_SUCCESS; 1844 } 1845 1846 static TEE_Result tee_svc_obj_generate_key_ecc( 1847 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1848 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 1849 { 1850 TEE_Result res; 1851 struct ecc_keypair *tee_ecc_key; 1852 1853 /* Copy the present attributes into the obj before starting */ 1854 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1855 param_count); 1856 if (res != TEE_SUCCESS) 1857 return res; 1858 1859 tee_ecc_key = (struct ecc_keypair *)o->attr; 1860 1861 res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size); 1862 if (res != TEE_SUCCESS) 1863 return res; 1864 1865 /* Set bits for the generated public and private key */ 1866 set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE); 1867 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X); 1868 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y); 1869 set_attribute(o, type_props, TEE_ATTR_ECC_CURVE); 1870 return TEE_SUCCESS; 1871 } 1872 1873 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size, 1874 const struct utee_attribute *usr_params, 1875 unsigned long param_count) 1876 { 1877 struct ts_session *sess = ts_get_current_session(); 1878 TEE_Result res = TEE_SUCCESS; 1879 const struct tee_cryp_obj_type_props *type_props = NULL; 1880 struct tee_obj *o = NULL; 1881 struct tee_cryp_obj_secret *key = NULL; 1882 size_t byte_size = 0; 1883 TEE_Attribute *params = NULL; 1884 1885 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1886 if (res != TEE_SUCCESS) 1887 return res; 1888 1889 /* Must be a transient object */ 1890 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1891 return TEE_ERROR_BAD_STATE; 1892 1893 /* Must not be initialized already */ 1894 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1895 return TEE_ERROR_BAD_STATE; 1896 1897 /* Find description of object */ 1898 type_props = tee_svc_find_type_props(o->info.objectType); 1899 if (!type_props) 1900 return TEE_ERROR_NOT_SUPPORTED; 1901 1902 /* Check that key_size follows restrictions */ 1903 res = check_key_size(type_props, key_size); 1904 if (res) 1905 return res; 1906 1907 size_t alloc_size = 0; 1908 1909 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 1910 return TEE_ERROR_OVERFLOW; 1911 1912 params = malloc(alloc_size); 1913 if (!params) 1914 return TEE_ERROR_OUT_OF_MEMORY; 1915 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count, 1916 params); 1917 if (res != TEE_SUCCESS) 1918 goto out; 1919 1920 res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props, 1921 params, param_count); 1922 if (res != TEE_SUCCESS) 1923 goto out; 1924 1925 switch (o->info.objectType) { 1926 case TEE_TYPE_AES: 1927 case TEE_TYPE_DES: 1928 case TEE_TYPE_DES3: 1929 case TEE_TYPE_SM4: 1930 case TEE_TYPE_HMAC_MD5: 1931 case TEE_TYPE_HMAC_SHA1: 1932 case TEE_TYPE_HMAC_SHA224: 1933 case TEE_TYPE_HMAC_SHA256: 1934 case TEE_TYPE_HMAC_SHA384: 1935 case TEE_TYPE_HMAC_SHA512: 1936 case TEE_TYPE_HMAC_SM3: 1937 case TEE_TYPE_GENERIC_SECRET: 1938 byte_size = key_size / 8; 1939 1940 /* 1941 * In GP Internal API Specification 1.0 the partity bits 1942 * aren't counted when telling the size of the key in bits. 1943 */ 1944 if (is_gp_legacy_des_key_size(o->info.objectType, key_size)) 1945 byte_size = (key_size + key_size / 7) / 8; 1946 1947 key = (struct tee_cryp_obj_secret *)o->attr; 1948 if (byte_size > key->alloc_size) { 1949 res = TEE_ERROR_EXCESS_DATA; 1950 goto out; 1951 } 1952 1953 res = crypto_rng_read((void *)(key + 1), byte_size); 1954 if (res != TEE_SUCCESS) 1955 goto out; 1956 1957 key->key_size = byte_size; 1958 1959 /* Set bits for all known attributes for this object type */ 1960 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 1961 1962 break; 1963 1964 case TEE_TYPE_RSA_KEYPAIR: 1965 res = tee_svc_obj_generate_key_rsa(o, type_props, key_size, 1966 params, param_count); 1967 if (res != TEE_SUCCESS) 1968 goto out; 1969 break; 1970 1971 case TEE_TYPE_DSA_KEYPAIR: 1972 res = tee_svc_obj_generate_key_dsa(o, type_props, key_size, 1973 params, param_count); 1974 if (res != TEE_SUCCESS) 1975 goto out; 1976 break; 1977 1978 case TEE_TYPE_DH_KEYPAIR: 1979 res = tee_svc_obj_generate_key_dh(o, type_props, key_size, 1980 params, param_count); 1981 if (res != TEE_SUCCESS) 1982 goto out; 1983 break; 1984 1985 case TEE_TYPE_ECDSA_KEYPAIR: 1986 case TEE_TYPE_ECDH_KEYPAIR: 1987 case TEE_TYPE_SM2_PKE_KEYPAIR: 1988 res = tee_svc_obj_generate_key_ecc(o, type_props, key_size, 1989 params, param_count); 1990 if (res != TEE_SUCCESS) 1991 goto out; 1992 break; 1993 1994 default: 1995 res = TEE_ERROR_BAD_FORMAT; 1996 } 1997 1998 out: 1999 free_wipe(params); 2000 if (res == TEE_SUCCESS) { 2001 o->info.keySize = key_size; 2002 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 2003 } 2004 return res; 2005 } 2006 2007 static TEE_Result tee_svc_cryp_get_state(struct ts_session *sess, 2008 vaddr_t state_id, 2009 struct tee_cryp_state **state) 2010 { 2011 struct tee_cryp_state *s; 2012 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2013 2014 TAILQ_FOREACH(s, &utc->cryp_states, link) { 2015 if (state_id == (vaddr_t)s) { 2016 *state = s; 2017 return TEE_SUCCESS; 2018 } 2019 } 2020 return TEE_ERROR_BAD_PARAMETERS; 2021 } 2022 2023 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs) 2024 { 2025 struct tee_obj *o; 2026 2027 if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS) 2028 tee_obj_close(utc, o); 2029 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) 2030 tee_obj_close(utc, o); 2031 2032 TAILQ_REMOVE(&utc->cryp_states, cs, link); 2033 if (cs->ctx_finalize != NULL) 2034 cs->ctx_finalize(cs->ctx); 2035 2036 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2037 case TEE_OPERATION_CIPHER: 2038 crypto_cipher_free_ctx(cs->ctx); 2039 break; 2040 case TEE_OPERATION_AE: 2041 crypto_authenc_free_ctx(cs->ctx); 2042 break; 2043 case TEE_OPERATION_DIGEST: 2044 crypto_hash_free_ctx(cs->ctx); 2045 break; 2046 case TEE_OPERATION_MAC: 2047 crypto_mac_free_ctx(cs->ctx); 2048 break; 2049 default: 2050 assert(!cs->ctx); 2051 } 2052 2053 free(cs); 2054 } 2055 2056 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o, 2057 uint32_t algo, 2058 TEE_OperationMode mode) 2059 { 2060 uint32_t req_key_type; 2061 uint32_t req_key_type2 = 0; 2062 2063 switch (TEE_ALG_GET_MAIN_ALG(algo)) { 2064 case TEE_MAIN_ALGO_MD5: 2065 req_key_type = TEE_TYPE_HMAC_MD5; 2066 break; 2067 case TEE_MAIN_ALGO_SHA1: 2068 req_key_type = TEE_TYPE_HMAC_SHA1; 2069 break; 2070 case TEE_MAIN_ALGO_SHA224: 2071 req_key_type = TEE_TYPE_HMAC_SHA224; 2072 break; 2073 case TEE_MAIN_ALGO_SHA256: 2074 req_key_type = TEE_TYPE_HMAC_SHA256; 2075 break; 2076 case TEE_MAIN_ALGO_SHA384: 2077 req_key_type = TEE_TYPE_HMAC_SHA384; 2078 break; 2079 case TEE_MAIN_ALGO_SHA512: 2080 req_key_type = TEE_TYPE_HMAC_SHA512; 2081 break; 2082 case TEE_MAIN_ALGO_SM3: 2083 req_key_type = TEE_TYPE_HMAC_SM3; 2084 break; 2085 case TEE_MAIN_ALGO_AES: 2086 req_key_type = TEE_TYPE_AES; 2087 break; 2088 case TEE_MAIN_ALGO_DES: 2089 req_key_type = TEE_TYPE_DES; 2090 break; 2091 case TEE_MAIN_ALGO_DES3: 2092 req_key_type = TEE_TYPE_DES3; 2093 break; 2094 case TEE_MAIN_ALGO_SM4: 2095 req_key_type = TEE_TYPE_SM4; 2096 break; 2097 case TEE_MAIN_ALGO_RSA: 2098 req_key_type = TEE_TYPE_RSA_KEYPAIR; 2099 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2100 req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY; 2101 break; 2102 case TEE_MAIN_ALGO_DSA: 2103 req_key_type = TEE_TYPE_DSA_KEYPAIR; 2104 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2105 req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY; 2106 break; 2107 case TEE_MAIN_ALGO_DH: 2108 req_key_type = TEE_TYPE_DH_KEYPAIR; 2109 break; 2110 case TEE_MAIN_ALGO_ECDSA: 2111 req_key_type = TEE_TYPE_ECDSA_KEYPAIR; 2112 if (mode == TEE_MODE_VERIFY) 2113 req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY; 2114 break; 2115 case TEE_MAIN_ALGO_ECDH: 2116 req_key_type = TEE_TYPE_ECDH_KEYPAIR; 2117 break; 2118 case TEE_MAIN_ALGO_SM2_PKE: 2119 if (mode == TEE_MODE_ENCRYPT) 2120 req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY; 2121 else 2122 req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR; 2123 break; 2124 case TEE_MAIN_ALGO_SM2_DSA_SM3: 2125 if (mode == TEE_MODE_VERIFY) 2126 req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY; 2127 else 2128 req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR; 2129 break; 2130 #if defined(CFG_CRYPTO_SM2_KEP) 2131 case TEE_MAIN_ALGO_SM2_KEP: 2132 req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR; 2133 req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY; 2134 break; 2135 #endif 2136 #if defined(CFG_CRYPTO_HKDF) 2137 case TEE_MAIN_ALGO_HKDF: 2138 req_key_type = TEE_TYPE_HKDF_IKM; 2139 break; 2140 #endif 2141 #if defined(CFG_CRYPTO_CONCAT_KDF) 2142 case TEE_MAIN_ALGO_CONCAT_KDF: 2143 req_key_type = TEE_TYPE_CONCAT_KDF_Z; 2144 break; 2145 #endif 2146 #if defined(CFG_CRYPTO_PBKDF2) 2147 case TEE_MAIN_ALGO_PBKDF2: 2148 req_key_type = TEE_TYPE_PBKDF2_PASSWORD; 2149 break; 2150 #endif 2151 default: 2152 return TEE_ERROR_BAD_PARAMETERS; 2153 } 2154 2155 if (req_key_type != o->info.objectType && 2156 req_key_type2 != o->info.objectType) 2157 return TEE_ERROR_BAD_PARAMETERS; 2158 return TEE_SUCCESS; 2159 } 2160 2161 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode, 2162 unsigned long key1, unsigned long key2, 2163 uint32_t *state) 2164 { 2165 struct ts_session *sess = ts_get_current_session(); 2166 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2167 TEE_Result res = TEE_SUCCESS; 2168 struct tee_cryp_state *cs = NULL; 2169 struct tee_obj *o1 = NULL; 2170 struct tee_obj *o2 = NULL; 2171 2172 if (key1 != 0) { 2173 res = tee_obj_get(utc, uref_to_vaddr(key1), &o1); 2174 if (res != TEE_SUCCESS) 2175 return res; 2176 if (o1->busy) 2177 return TEE_ERROR_BAD_PARAMETERS; 2178 res = tee_svc_cryp_check_key_type(o1, algo, mode); 2179 if (res != TEE_SUCCESS) 2180 return res; 2181 } 2182 if (key2 != 0) { 2183 res = tee_obj_get(utc, uref_to_vaddr(key2), &o2); 2184 if (res != TEE_SUCCESS) 2185 return res; 2186 if (o2->busy) 2187 return TEE_ERROR_BAD_PARAMETERS; 2188 res = tee_svc_cryp_check_key_type(o2, algo, mode); 2189 if (res != TEE_SUCCESS) 2190 return res; 2191 } 2192 2193 cs = calloc(1, sizeof(struct tee_cryp_state)); 2194 if (!cs) 2195 return TEE_ERROR_OUT_OF_MEMORY; 2196 TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link); 2197 cs->algo = algo; 2198 cs->mode = mode; 2199 cs->state = CRYP_STATE_UNINITIALIZED; 2200 2201 switch (TEE_ALG_GET_CLASS(algo)) { 2202 case TEE_OPERATION_CIPHER: 2203 if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) || 2204 (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) { 2205 res = TEE_ERROR_BAD_PARAMETERS; 2206 } else { 2207 res = crypto_cipher_alloc_ctx(&cs->ctx, algo); 2208 if (res != TEE_SUCCESS) 2209 break; 2210 } 2211 break; 2212 case TEE_OPERATION_AE: 2213 if (key1 == 0 || key2 != 0) { 2214 res = TEE_ERROR_BAD_PARAMETERS; 2215 } else { 2216 res = crypto_authenc_alloc_ctx(&cs->ctx, algo); 2217 if (res != TEE_SUCCESS) 2218 break; 2219 } 2220 break; 2221 case TEE_OPERATION_MAC: 2222 if (key1 == 0 || key2 != 0) { 2223 res = TEE_ERROR_BAD_PARAMETERS; 2224 } else { 2225 res = crypto_mac_alloc_ctx(&cs->ctx, algo); 2226 if (res != TEE_SUCCESS) 2227 break; 2228 } 2229 break; 2230 case TEE_OPERATION_DIGEST: 2231 if (key1 != 0 || key2 != 0) { 2232 res = TEE_ERROR_BAD_PARAMETERS; 2233 } else { 2234 res = crypto_hash_alloc_ctx(&cs->ctx, algo); 2235 if (res != TEE_SUCCESS) 2236 break; 2237 } 2238 break; 2239 case TEE_OPERATION_ASYMMETRIC_CIPHER: 2240 case TEE_OPERATION_ASYMMETRIC_SIGNATURE: 2241 if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 && 2242 !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) { 2243 res = TEE_ERROR_NOT_SUPPORTED; 2244 break; 2245 } 2246 if (key1 == 0 || key2 != 0) 2247 res = TEE_ERROR_BAD_PARAMETERS; 2248 break; 2249 case TEE_OPERATION_KEY_DERIVATION: 2250 if (algo == TEE_ALG_SM2_KEP) { 2251 if (key1 == 0 || key2 == 0) 2252 res = TEE_ERROR_BAD_PARAMETERS; 2253 } else { 2254 if (key1 == 0 || key2 != 0) 2255 res = TEE_ERROR_BAD_PARAMETERS; 2256 } 2257 break; 2258 default: 2259 res = TEE_ERROR_NOT_SUPPORTED; 2260 break; 2261 } 2262 if (res != TEE_SUCCESS) 2263 goto out; 2264 2265 res = copy_kaddr_to_uref(state, cs); 2266 if (res != TEE_SUCCESS) 2267 goto out; 2268 2269 /* Register keys */ 2270 if (o1 != NULL) { 2271 o1->busy = true; 2272 cs->key1 = (vaddr_t)o1; 2273 } 2274 if (o2 != NULL) { 2275 o2->busy = true; 2276 cs->key2 = (vaddr_t)o2; 2277 } 2278 2279 out: 2280 if (res != TEE_SUCCESS) 2281 cryp_state_free(utc, cs); 2282 return res; 2283 } 2284 2285 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src) 2286 { 2287 struct ts_session *sess = ts_get_current_session(); 2288 TEE_Result res = TEE_SUCCESS; 2289 struct tee_cryp_state *cs_dst = NULL; 2290 struct tee_cryp_state *cs_src = NULL; 2291 2292 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst); 2293 if (res != TEE_SUCCESS) 2294 return res; 2295 2296 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src); 2297 if (res != TEE_SUCCESS) 2298 return res; 2299 if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode) 2300 return TEE_ERROR_BAD_PARAMETERS; 2301 2302 switch (TEE_ALG_GET_CLASS(cs_src->algo)) { 2303 case TEE_OPERATION_CIPHER: 2304 crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx); 2305 break; 2306 case TEE_OPERATION_AE: 2307 crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx); 2308 break; 2309 case TEE_OPERATION_DIGEST: 2310 crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx); 2311 break; 2312 case TEE_OPERATION_MAC: 2313 crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx); 2314 break; 2315 default: 2316 return TEE_ERROR_BAD_STATE; 2317 } 2318 2319 cs_dst->state = cs_src->state; 2320 cs_dst->ctx_finalize = cs_src->ctx_finalize; 2321 2322 return TEE_SUCCESS; 2323 } 2324 2325 void tee_svc_cryp_free_states(struct user_ta_ctx *utc) 2326 { 2327 struct tee_cryp_state_head *states = &utc->cryp_states; 2328 2329 while (!TAILQ_EMPTY(states)) 2330 cryp_state_free(utc, TAILQ_FIRST(states)); 2331 } 2332 2333 TEE_Result syscall_cryp_state_free(unsigned long state) 2334 { 2335 struct ts_session *sess = ts_get_current_session(); 2336 TEE_Result res = TEE_SUCCESS; 2337 struct tee_cryp_state *cs = NULL; 2338 2339 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2340 if (res != TEE_SUCCESS) 2341 return res; 2342 cryp_state_free(to_user_ta_ctx(sess->ctx), cs); 2343 return TEE_SUCCESS; 2344 } 2345 2346 TEE_Result syscall_hash_init(unsigned long state, 2347 const void *iv __maybe_unused, 2348 size_t iv_len __maybe_unused) 2349 { 2350 struct ts_session *sess = ts_get_current_session(); 2351 TEE_Result res = TEE_SUCCESS; 2352 struct tee_cryp_state *cs = NULL; 2353 2354 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2355 if (res != TEE_SUCCESS) 2356 return res; 2357 2358 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2359 case TEE_OPERATION_DIGEST: 2360 res = crypto_hash_init(cs->ctx); 2361 if (res != TEE_SUCCESS) 2362 return res; 2363 break; 2364 case TEE_OPERATION_MAC: 2365 { 2366 struct tee_obj *o; 2367 struct tee_cryp_obj_secret *key; 2368 2369 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 2370 cs->key1, &o); 2371 if (res != TEE_SUCCESS) 2372 return res; 2373 if ((o->info.handleFlags & 2374 TEE_HANDLE_FLAG_INITIALIZED) == 0) 2375 return TEE_ERROR_BAD_PARAMETERS; 2376 2377 key = (struct tee_cryp_obj_secret *)o->attr; 2378 res = crypto_mac_init(cs->ctx, (void *)(key + 1), 2379 key->key_size); 2380 if (res != TEE_SUCCESS) 2381 return res; 2382 break; 2383 } 2384 default: 2385 return TEE_ERROR_BAD_PARAMETERS; 2386 } 2387 2388 cs->state = CRYP_STATE_INITIALIZED; 2389 2390 return TEE_SUCCESS; 2391 } 2392 2393 TEE_Result syscall_hash_update(unsigned long state, const void *chunk, 2394 size_t chunk_size) 2395 { 2396 struct ts_session *sess = ts_get_current_session(); 2397 struct tee_cryp_state *cs = NULL; 2398 TEE_Result res = TEE_SUCCESS; 2399 2400 /* No data, but size provided isn't valid parameters. */ 2401 if (!chunk && chunk_size) 2402 return TEE_ERROR_BAD_PARAMETERS; 2403 2404 /* Zero length hash is valid, but nothing we need to do. */ 2405 if (!chunk_size) 2406 return TEE_SUCCESS; 2407 2408 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2409 TEE_MEMORY_ACCESS_READ | 2410 TEE_MEMORY_ACCESS_ANY_OWNER, 2411 (uaddr_t)chunk, chunk_size); 2412 if (res != TEE_SUCCESS) 2413 return res; 2414 2415 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2416 if (res != TEE_SUCCESS) 2417 return res; 2418 2419 if (cs->state != CRYP_STATE_INITIALIZED) 2420 return TEE_ERROR_BAD_STATE; 2421 2422 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2423 case TEE_OPERATION_DIGEST: 2424 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2425 if (res != TEE_SUCCESS) 2426 return res; 2427 break; 2428 case TEE_OPERATION_MAC: 2429 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2430 if (res != TEE_SUCCESS) 2431 return res; 2432 break; 2433 default: 2434 return TEE_ERROR_BAD_PARAMETERS; 2435 } 2436 2437 return TEE_SUCCESS; 2438 } 2439 2440 TEE_Result syscall_hash_final(unsigned long state, const void *chunk, 2441 size_t chunk_size, void *hash, uint64_t *hash_len) 2442 { 2443 struct ts_session *sess = ts_get_current_session(); 2444 struct tee_cryp_state *cs = NULL; 2445 TEE_Result res2 = TEE_SUCCESS; 2446 TEE_Result res = TEE_SUCCESS; 2447 size_t hash_size = 0; 2448 size_t hlen = 0; 2449 2450 /* No data, but size provided isn't valid parameters. */ 2451 if (!chunk && chunk_size) 2452 return TEE_ERROR_BAD_PARAMETERS; 2453 2454 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2455 TEE_MEMORY_ACCESS_READ | 2456 TEE_MEMORY_ACCESS_ANY_OWNER, 2457 (uaddr_t)chunk, chunk_size); 2458 if (res != TEE_SUCCESS) 2459 return res; 2460 2461 res = get_user_u64_as_size_t(&hlen, hash_len); 2462 if (res != TEE_SUCCESS) 2463 return res; 2464 2465 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2466 TEE_MEMORY_ACCESS_READ | 2467 TEE_MEMORY_ACCESS_WRITE | 2468 TEE_MEMORY_ACCESS_ANY_OWNER, 2469 (uaddr_t)hash, hlen); 2470 if (res != TEE_SUCCESS) 2471 return res; 2472 2473 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2474 if (res != TEE_SUCCESS) 2475 return res; 2476 2477 if (cs->state != CRYP_STATE_INITIALIZED) 2478 return TEE_ERROR_BAD_STATE; 2479 2480 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2481 case TEE_OPERATION_DIGEST: 2482 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2483 if (res != TEE_SUCCESS) 2484 return res; 2485 if (hlen < hash_size) { 2486 res = TEE_ERROR_SHORT_BUFFER; 2487 goto out; 2488 } 2489 2490 if (chunk_size) { 2491 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2492 if (res != TEE_SUCCESS) 2493 return res; 2494 } 2495 2496 res = crypto_hash_final(cs->ctx, hash, hash_size); 2497 if (res != TEE_SUCCESS) 2498 return res; 2499 break; 2500 2501 case TEE_OPERATION_MAC: 2502 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2503 if (res != TEE_SUCCESS) 2504 return res; 2505 if (hlen < hash_size) { 2506 res = TEE_ERROR_SHORT_BUFFER; 2507 goto out; 2508 } 2509 2510 if (chunk_size) { 2511 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2512 if (res != TEE_SUCCESS) 2513 return res; 2514 } 2515 2516 res = crypto_mac_final(cs->ctx, hash, hash_size); 2517 if (res != TEE_SUCCESS) 2518 return res; 2519 break; 2520 2521 default: 2522 return TEE_ERROR_BAD_PARAMETERS; 2523 } 2524 out: 2525 res2 = put_user_u64(hash_len, hash_size); 2526 if (res2 != TEE_SUCCESS) 2527 return res2; 2528 return res; 2529 } 2530 2531 TEE_Result syscall_cipher_init(unsigned long state, const void *iv, 2532 size_t iv_len) 2533 { 2534 struct ts_session *sess = ts_get_current_session(); 2535 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2536 struct tee_cryp_obj_secret *key1 = NULL; 2537 struct tee_cryp_state *cs = NULL; 2538 TEE_Result res = TEE_SUCCESS; 2539 struct tee_obj *o = NULL; 2540 2541 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2542 if (res != TEE_SUCCESS) 2543 return res; 2544 2545 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER) 2546 return TEE_ERROR_BAD_STATE; 2547 2548 res = vm_check_access_rights(&utc->uctx, 2549 TEE_MEMORY_ACCESS_READ | 2550 TEE_MEMORY_ACCESS_ANY_OWNER, 2551 (uaddr_t)iv, iv_len); 2552 if (res != TEE_SUCCESS) 2553 return res; 2554 2555 res = tee_obj_get(utc, cs->key1, &o); 2556 if (res != TEE_SUCCESS) 2557 return res; 2558 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 2559 return TEE_ERROR_BAD_PARAMETERS; 2560 2561 key1 = o->attr; 2562 2563 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) { 2564 struct tee_cryp_obj_secret *key2 = o->attr; 2565 2566 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 2567 return TEE_ERROR_BAD_PARAMETERS; 2568 2569 res = crypto_cipher_init(cs->ctx, cs->mode, 2570 (uint8_t *)(key1 + 1), key1->key_size, 2571 (uint8_t *)(key2 + 1), key2->key_size, 2572 iv, iv_len); 2573 } else { 2574 res = crypto_cipher_init(cs->ctx, cs->mode, 2575 (uint8_t *)(key1 + 1), key1->key_size, 2576 NULL, 0, iv, iv_len); 2577 } 2578 if (res != TEE_SUCCESS) 2579 return res; 2580 2581 cs->ctx_finalize = crypto_cipher_final; 2582 cs->state = CRYP_STATE_INITIALIZED; 2583 2584 return TEE_SUCCESS; 2585 } 2586 2587 static TEE_Result tee_svc_cipher_update_helper(unsigned long state, 2588 bool last_block, const void *src, size_t src_len, 2589 void *dst, uint64_t *dst_len) 2590 { 2591 struct ts_session *sess = ts_get_current_session(); 2592 struct tee_cryp_state *cs = NULL; 2593 TEE_Result res = TEE_SUCCESS; 2594 size_t dlen = 0; 2595 2596 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2597 if (res != TEE_SUCCESS) 2598 return res; 2599 2600 if (cs->state != CRYP_STATE_INITIALIZED) 2601 return TEE_ERROR_BAD_STATE; 2602 2603 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2604 TEE_MEMORY_ACCESS_READ | 2605 TEE_MEMORY_ACCESS_ANY_OWNER, 2606 (uaddr_t)src, src_len); 2607 if (res != TEE_SUCCESS) 2608 return res; 2609 2610 if (!dst_len) { 2611 dlen = 0; 2612 } else { 2613 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 2614 uint32_t flags = TEE_MEMORY_ACCESS_READ | 2615 TEE_MEMORY_ACCESS_WRITE | 2616 TEE_MEMORY_ACCESS_ANY_OWNER; 2617 2618 res = get_user_u64_as_size_t(&dlen, dst_len); 2619 if (res != TEE_SUCCESS) 2620 return res; 2621 2622 res = vm_check_access_rights(uctx, flags, (uaddr_t)dst, dlen); 2623 if (res != TEE_SUCCESS) 2624 return res; 2625 } 2626 2627 if (dlen < src_len) { 2628 res = TEE_ERROR_SHORT_BUFFER; 2629 goto out; 2630 } 2631 2632 if (src_len > 0) { 2633 /* Permit src_len == 0 to finalize the operation */ 2634 res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode, 2635 last_block, src, src_len, dst); 2636 } 2637 2638 if (last_block && cs->ctx_finalize != NULL) { 2639 cs->ctx_finalize(cs->ctx); 2640 cs->ctx_finalize = NULL; 2641 } 2642 2643 out: 2644 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 2645 dst_len != NULL) { 2646 TEE_Result res2; 2647 2648 res2 = put_user_u64(dst_len, src_len); 2649 if (res2 != TEE_SUCCESS) 2650 res = res2; 2651 } 2652 2653 return res; 2654 } 2655 2656 TEE_Result syscall_cipher_update(unsigned long state, const void *src, 2657 size_t src_len, void *dst, uint64_t *dst_len) 2658 { 2659 return tee_svc_cipher_update_helper(state, false /* last_block */, 2660 src, src_len, dst, dst_len); 2661 } 2662 2663 TEE_Result syscall_cipher_final(unsigned long state, const void *src, 2664 size_t src_len, void *dst, uint64_t *dst_len) 2665 { 2666 return tee_svc_cipher_update_helper(state, true /* last_block */, 2667 src, src_len, dst, dst_len); 2668 } 2669 2670 #if defined(CFG_CRYPTO_HKDF) 2671 static TEE_Result get_hkdf_params(const TEE_Attribute *params, 2672 uint32_t param_count, 2673 void **salt, size_t *salt_len, void **info, 2674 size_t *info_len, size_t *okm_len) 2675 { 2676 size_t n; 2677 enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 }; 2678 uint8_t found = 0; 2679 2680 *salt = *info = NULL; 2681 *salt_len = *info_len = *okm_len = 0; 2682 2683 for (n = 0; n < param_count; n++) { 2684 switch (params[n].attributeID) { 2685 case TEE_ATTR_HKDF_SALT: 2686 if (!(found & SALT)) { 2687 *salt = params[n].content.ref.buffer; 2688 *salt_len = params[n].content.ref.length; 2689 found |= SALT; 2690 } 2691 break; 2692 case TEE_ATTR_HKDF_OKM_LENGTH: 2693 if (!(found & LENGTH)) { 2694 *okm_len = params[n].content.value.a; 2695 found |= LENGTH; 2696 } 2697 break; 2698 case TEE_ATTR_HKDF_INFO: 2699 if (!(found & INFO)) { 2700 *info = params[n].content.ref.buffer; 2701 *info_len = params[n].content.ref.length; 2702 found |= INFO; 2703 } 2704 break; 2705 default: 2706 /* Unexpected attribute */ 2707 return TEE_ERROR_BAD_PARAMETERS; 2708 } 2709 2710 } 2711 2712 if (!(found & LENGTH)) 2713 return TEE_ERROR_BAD_PARAMETERS; 2714 2715 return TEE_SUCCESS; 2716 } 2717 #endif 2718 2719 #if defined(CFG_CRYPTO_CONCAT_KDF) 2720 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params, 2721 uint32_t param_count, 2722 void **other_info, 2723 size_t *other_info_len, 2724 size_t *derived_key_len) 2725 { 2726 size_t n; 2727 enum { LENGTH = 0x1, INFO = 0x2 }; 2728 uint8_t found = 0; 2729 2730 *other_info = NULL; 2731 *other_info_len = *derived_key_len = 0; 2732 2733 for (n = 0; n < param_count; n++) { 2734 switch (params[n].attributeID) { 2735 case TEE_ATTR_CONCAT_KDF_OTHER_INFO: 2736 if (!(found & INFO)) { 2737 *other_info = params[n].content.ref.buffer; 2738 *other_info_len = params[n].content.ref.length; 2739 found |= INFO; 2740 } 2741 break; 2742 case TEE_ATTR_CONCAT_KDF_DKM_LENGTH: 2743 if (!(found & LENGTH)) { 2744 *derived_key_len = params[n].content.value.a; 2745 found |= LENGTH; 2746 } 2747 break; 2748 default: 2749 /* Unexpected attribute */ 2750 return TEE_ERROR_BAD_PARAMETERS; 2751 } 2752 } 2753 2754 if (!(found & LENGTH)) 2755 return TEE_ERROR_BAD_PARAMETERS; 2756 2757 return TEE_SUCCESS; 2758 } 2759 #endif 2760 2761 #if defined(CFG_CRYPTO_PBKDF2) 2762 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params, 2763 uint32_t param_count, void **salt, 2764 size_t *salt_len, size_t *derived_key_len, 2765 size_t *iteration_count) 2766 { 2767 size_t n; 2768 enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 }; 2769 uint8_t found = 0; 2770 2771 *salt = NULL; 2772 *salt_len = *derived_key_len = *iteration_count = 0; 2773 2774 for (n = 0; n < param_count; n++) { 2775 switch (params[n].attributeID) { 2776 case TEE_ATTR_PBKDF2_SALT: 2777 if (!(found & SALT)) { 2778 *salt = params[n].content.ref.buffer; 2779 *salt_len = params[n].content.ref.length; 2780 found |= SALT; 2781 } 2782 break; 2783 case TEE_ATTR_PBKDF2_DKM_LENGTH: 2784 if (!(found & LENGTH)) { 2785 *derived_key_len = params[n].content.value.a; 2786 found |= LENGTH; 2787 } 2788 break; 2789 case TEE_ATTR_PBKDF2_ITERATION_COUNT: 2790 if (!(found & COUNT)) { 2791 *iteration_count = params[n].content.value.a; 2792 found |= COUNT; 2793 } 2794 break; 2795 default: 2796 /* Unexpected attribute */ 2797 return TEE_ERROR_BAD_PARAMETERS; 2798 } 2799 } 2800 2801 if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT)) 2802 return TEE_ERROR_BAD_PARAMETERS; 2803 2804 return TEE_SUCCESS; 2805 } 2806 #endif 2807 2808 #if defined(CFG_CRYPTO_SM2_KEP) 2809 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params, 2810 uint32_t param_count, 2811 struct ecc_public_key *peer_key, 2812 struct ecc_public_key *peer_eph_key, 2813 struct sm2_kep_parms *kep_parms) 2814 { 2815 TEE_Result res = TEE_ERROR_GENERIC; 2816 size_t n; 2817 enum { 2818 IS_INITIATOR, 2819 PEER_KEY_X, 2820 PEER_KEY_Y, 2821 PEER_EPH_KEY_X, 2822 PEER_EPH_KEY_Y, 2823 INITIATOR_ID, 2824 RESPONDER_ID, 2825 }; 2826 uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) | 2827 BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) | 2828 BIT(INITIATOR_ID) | BIT(RESPONDER_ID); 2829 uint8_t found = 0; 2830 2831 res = crypto_acipher_alloc_ecc_public_key(peer_key, 2832 TEE_TYPE_SM2_KEP_PUBLIC_KEY, 2833 256); 2834 if (res) 2835 goto out; 2836 2837 res = crypto_acipher_alloc_ecc_public_key(peer_eph_key, 2838 TEE_TYPE_SM2_KEP_PUBLIC_KEY, 2839 256); 2840 if (res) 2841 goto out; 2842 2843 peer_key->curve = TEE_ECC_CURVE_SM2; 2844 peer_eph_key->curve = TEE_ECC_CURVE_SM2; 2845 2846 for (n = 0; n < param_count; n++) { 2847 const TEE_Attribute *p = ¶ms[n]; 2848 2849 switch (p->attributeID) { 2850 case TEE_ATTR_SM2_KEP_USER: 2851 kep_parms->is_initiator = !p->content.value.a; 2852 found |= BIT(IS_INITIATOR); 2853 break; 2854 case TEE_ATTR_ECC_PUBLIC_VALUE_X: 2855 crypto_bignum_bin2bn(p->content.ref.buffer, 2856 p->content.ref.length, 2857 peer_key->x); 2858 found |= BIT(PEER_KEY_X); 2859 break; 2860 case TEE_ATTR_ECC_PUBLIC_VALUE_Y: 2861 crypto_bignum_bin2bn(p->content.ref.buffer, 2862 p->content.ref.length, 2863 peer_key->y); 2864 found |= BIT(PEER_KEY_Y); 2865 break; 2866 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X: 2867 crypto_bignum_bin2bn(p->content.ref.buffer, 2868 p->content.ref.length, 2869 peer_eph_key->x); 2870 found |= BIT(PEER_EPH_KEY_X); 2871 break; 2872 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y: 2873 crypto_bignum_bin2bn(p->content.ref.buffer, 2874 p->content.ref.length, 2875 peer_eph_key->y); 2876 found |= BIT(PEER_EPH_KEY_Y); 2877 break; 2878 case TEE_ATTR_SM2_ID_INITIATOR: 2879 kep_parms->initiator_id = p->content.ref.buffer; 2880 kep_parms->initiator_id_len = p->content.ref.length; 2881 found |= BIT(INITIATOR_ID); 2882 break; 2883 case TEE_ATTR_SM2_ID_RESPONDER: 2884 kep_parms->responder_id = p->content.ref.buffer; 2885 kep_parms->responder_id_len = p->content.ref.length; 2886 found |= BIT(RESPONDER_ID); 2887 break; 2888 case TEE_ATTR_SM2_KEP_CONFIRMATION_IN: 2889 kep_parms->conf_in = p->content.ref.buffer; 2890 kep_parms->conf_in_len = p->content.ref.length; 2891 break; 2892 case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT: 2893 kep_parms->conf_out = p->content.ref.buffer; 2894 kep_parms->conf_out_len = p->content.ref.length; 2895 break; 2896 default: 2897 /* Unexpected attribute */ 2898 res = TEE_ERROR_BAD_PARAMETERS; 2899 goto out; 2900 } 2901 } 2902 2903 if ((found & mandatory) != mandatory) { 2904 res = TEE_ERROR_BAD_PARAMETERS; 2905 goto out; 2906 } 2907 2908 return TEE_SUCCESS; 2909 out: 2910 crypto_acipher_free_ecc_public_key(peer_key); 2911 crypto_acipher_free_ecc_public_key(peer_eph_key); 2912 return res; 2913 } 2914 #endif 2915 2916 TEE_Result syscall_cryp_derive_key(unsigned long state, 2917 const struct utee_attribute *usr_params, 2918 unsigned long param_count, unsigned long derived_key) 2919 { 2920 struct ts_session *sess = ts_get_current_session(); 2921 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2922 TEE_Result res = TEE_ERROR_NOT_SUPPORTED; 2923 struct tee_obj *ko = NULL; 2924 struct tee_obj *so = NULL; 2925 struct tee_cryp_state *cs = NULL; 2926 struct tee_cryp_obj_secret *sk = NULL; 2927 const struct tee_cryp_obj_type_props *type_props = NULL; 2928 TEE_Attribute *params = NULL; 2929 size_t alloc_size = 0; 2930 2931 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2932 if (res != TEE_SUCCESS) 2933 return res; 2934 2935 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 2936 return TEE_ERROR_OVERFLOW; 2937 2938 params = malloc(alloc_size); 2939 if (!params) 2940 return TEE_ERROR_OUT_OF_MEMORY; 2941 res = copy_in_attrs(utc, usr_params, param_count, params); 2942 if (res != TEE_SUCCESS) 2943 goto out; 2944 2945 /* Get key set in operation */ 2946 res = tee_obj_get(utc, cs->key1, &ko); 2947 if (res != TEE_SUCCESS) 2948 goto out; 2949 2950 res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so); 2951 if (res != TEE_SUCCESS) 2952 goto out; 2953 2954 /* Find information needed about the object to initialize */ 2955 sk = so->attr; 2956 2957 /* Find description of object */ 2958 type_props = tee_svc_find_type_props(so->info.objectType); 2959 if (!type_props) { 2960 res = TEE_ERROR_NOT_SUPPORTED; 2961 goto out; 2962 } 2963 2964 if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) { 2965 struct bignum *pub; 2966 struct bignum *ss; 2967 2968 if (param_count != 1 || 2969 params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) { 2970 res = TEE_ERROR_BAD_PARAMETERS; 2971 goto out; 2972 } 2973 2974 size_t bin_size = params[0].content.ref.length; 2975 2976 if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) { 2977 res = TEE_ERROR_OVERFLOW; 2978 goto out; 2979 } 2980 2981 pub = crypto_bignum_allocate(alloc_size); 2982 ss = crypto_bignum_allocate(alloc_size); 2983 if (pub && ss) { 2984 crypto_bignum_bin2bn(params[0].content.ref.buffer, 2985 bin_size, pub); 2986 res = crypto_acipher_dh_shared_secret(ko->attr, 2987 pub, ss); 2988 if (res == TEE_SUCCESS) { 2989 sk->key_size = crypto_bignum_num_bytes(ss); 2990 crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1)); 2991 so->info.handleFlags |= 2992 TEE_HANDLE_FLAG_INITIALIZED; 2993 set_attribute(so, type_props, 2994 TEE_ATTR_SECRET_VALUE); 2995 } 2996 } else { 2997 res = TEE_ERROR_OUT_OF_MEMORY; 2998 } 2999 crypto_bignum_free(pub); 3000 crypto_bignum_free(ss); 3001 } else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) { 3002 struct ecc_public_key key_public; 3003 uint8_t *pt_secret; 3004 unsigned long pt_secret_len; 3005 uint32_t key_type = TEE_TYPE_ECDH_PUBLIC_KEY; 3006 3007 if (param_count != 2 || 3008 params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X || 3009 params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) { 3010 res = TEE_ERROR_BAD_PARAMETERS; 3011 goto out; 3012 } 3013 3014 switch (cs->algo) { 3015 case TEE_ALG_ECDH_P192: 3016 alloc_size = 192; 3017 break; 3018 case TEE_ALG_ECDH_P224: 3019 alloc_size = 224; 3020 break; 3021 case TEE_ALG_ECDH_P256: 3022 alloc_size = 256; 3023 break; 3024 case TEE_ALG_ECDH_P384: 3025 alloc_size = 384; 3026 break; 3027 case TEE_ALG_ECDH_P521: 3028 alloc_size = 521; 3029 break; 3030 default: 3031 res = TEE_ERROR_NOT_IMPLEMENTED; 3032 goto out; 3033 } 3034 3035 /* Create the public key */ 3036 res = crypto_acipher_alloc_ecc_public_key(&key_public, key_type, 3037 alloc_size); 3038 if (res != TEE_SUCCESS) 3039 goto out; 3040 key_public.curve = ((struct ecc_keypair *)ko->attr)->curve; 3041 crypto_bignum_bin2bn(params[0].content.ref.buffer, 3042 params[0].content.ref.length, 3043 key_public.x); 3044 crypto_bignum_bin2bn(params[1].content.ref.buffer, 3045 params[1].content.ref.length, 3046 key_public.y); 3047 3048 pt_secret = (uint8_t *)(sk + 1); 3049 pt_secret_len = sk->alloc_size; 3050 res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public, 3051 pt_secret, 3052 &pt_secret_len); 3053 3054 if (res == TEE_SUCCESS) { 3055 sk->key_size = pt_secret_len; 3056 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3057 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3058 } 3059 3060 /* free the public key */ 3061 crypto_acipher_free_ecc_public_key(&key_public); 3062 } 3063 #if defined(CFG_CRYPTO_HKDF) 3064 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) { 3065 void *salt, *info; 3066 size_t salt_len, info_len, okm_len; 3067 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3068 struct tee_cryp_obj_secret *ik = ko->attr; 3069 const uint8_t *ikm = (const uint8_t *)(ik + 1); 3070 3071 res = get_hkdf_params(params, param_count, &salt, &salt_len, 3072 &info, &info_len, &okm_len); 3073 if (res != TEE_SUCCESS) 3074 goto out; 3075 3076 /* Requested size must fit into the output object's buffer */ 3077 if (okm_len > ik->alloc_size) { 3078 res = TEE_ERROR_BAD_PARAMETERS; 3079 goto out; 3080 } 3081 3082 res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len, 3083 info, info_len, (uint8_t *)(sk + 1), 3084 okm_len); 3085 if (res == TEE_SUCCESS) { 3086 sk->key_size = okm_len; 3087 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3088 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3089 } 3090 } 3091 #endif 3092 #if defined(CFG_CRYPTO_CONCAT_KDF) 3093 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) { 3094 void *info; 3095 size_t info_len, derived_key_len; 3096 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3097 struct tee_cryp_obj_secret *ss = ko->attr; 3098 const uint8_t *shared_secret = (const uint8_t *)(ss + 1); 3099 3100 res = get_concat_kdf_params(params, param_count, &info, 3101 &info_len, &derived_key_len); 3102 if (res != TEE_SUCCESS) 3103 goto out; 3104 3105 /* Requested size must fit into the output object's buffer */ 3106 if (derived_key_len > ss->alloc_size) { 3107 res = TEE_ERROR_BAD_PARAMETERS; 3108 goto out; 3109 } 3110 3111 res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size, 3112 info, info_len, (uint8_t *)(sk + 1), 3113 derived_key_len); 3114 if (res == TEE_SUCCESS) { 3115 sk->key_size = derived_key_len; 3116 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3117 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3118 } 3119 } 3120 #endif 3121 #if defined(CFG_CRYPTO_PBKDF2) 3122 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) { 3123 void *salt; 3124 size_t salt_len, iteration_count, derived_key_len; 3125 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3126 struct tee_cryp_obj_secret *ss = ko->attr; 3127 const uint8_t *password = (const uint8_t *)(ss + 1); 3128 3129 res = get_pbkdf2_params(params, param_count, &salt, &salt_len, 3130 &derived_key_len, &iteration_count); 3131 if (res != TEE_SUCCESS) 3132 goto out; 3133 3134 /* Requested size must fit into the output object's buffer */ 3135 if (derived_key_len > ss->alloc_size) { 3136 res = TEE_ERROR_BAD_PARAMETERS; 3137 goto out; 3138 } 3139 3140 res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt, 3141 salt_len, iteration_count, 3142 (uint8_t *)(sk + 1), derived_key_len); 3143 if (res == TEE_SUCCESS) { 3144 sk->key_size = derived_key_len; 3145 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3146 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3147 } 3148 } 3149 #endif 3150 #if defined(CFG_CRYPTO_SM2_KEP) 3151 else if (cs->algo == TEE_ALG_SM2_KEP) { 3152 struct ecc_public_key peer_eph_key = { }; 3153 struct ecc_public_key peer_key = { }; 3154 struct sm2_kep_parms kep_parms = { 3155 .out = (uint8_t *)(sk + 1), 3156 .out_len = so->info.maxKeySize, 3157 }; 3158 struct tee_obj *ko2 = NULL; 3159 3160 res = tee_obj_get(utc, cs->key2, &ko2); 3161 if (res != TEE_SUCCESS) 3162 goto out; 3163 3164 res = get_sm2_kep_params(params, param_count, &peer_key, 3165 &peer_eph_key, &kep_parms); 3166 if (res != TEE_SUCCESS) 3167 goto out; 3168 3169 /* 3170 * key1 is our private keypair, key2 is our ephemeral public key 3171 */ 3172 res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */ 3173 ko2->attr, /* key2 */ 3174 &peer_key, &peer_eph_key, 3175 &kep_parms); 3176 3177 if (res == TEE_SUCCESS) { 3178 sk->key_size = kep_parms.out_len; 3179 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3180 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3181 } 3182 crypto_acipher_free_ecc_public_key(&peer_key); 3183 crypto_acipher_free_ecc_public_key(&peer_eph_key); 3184 } 3185 #endif 3186 else 3187 res = TEE_ERROR_NOT_SUPPORTED; 3188 3189 out: 3190 free_wipe(params); 3191 return res; 3192 } 3193 3194 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen) 3195 { 3196 struct ts_session *sess = ts_get_current_session(); 3197 TEE_Result res = TEE_SUCCESS; 3198 3199 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3200 TEE_MEMORY_ACCESS_WRITE, 3201 (uaddr_t)buf, blen); 3202 if (res != TEE_SUCCESS) 3203 return res; 3204 3205 res = crypto_rng_read(buf, blen); 3206 if (res != TEE_SUCCESS) 3207 return res; 3208 3209 return res; 3210 } 3211 3212 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce, 3213 size_t nonce_len, size_t tag_len, 3214 size_t aad_len, size_t payload_len) 3215 { 3216 struct ts_session *sess = ts_get_current_session(); 3217 struct tee_cryp_obj_secret *key = NULL; 3218 struct tee_cryp_state *cs = NULL; 3219 TEE_Result res = TEE_SUCCESS; 3220 struct tee_obj *o = NULL; 3221 3222 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3223 TEE_MEMORY_ACCESS_READ | 3224 TEE_MEMORY_ACCESS_ANY_OWNER, 3225 (uaddr_t)nonce, nonce_len); 3226 if (res != TEE_SUCCESS) 3227 return res; 3228 3229 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3230 if (res != TEE_SUCCESS) 3231 return res; 3232 3233 res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o); 3234 if (res != TEE_SUCCESS) 3235 return res; 3236 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 3237 return TEE_ERROR_BAD_PARAMETERS; 3238 3239 key = o->attr; 3240 res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1), 3241 key->key_size, nonce, nonce_len, tag_len, 3242 aad_len, payload_len); 3243 if (res != TEE_SUCCESS) 3244 return res; 3245 3246 cs->ctx_finalize = crypto_authenc_final; 3247 cs->state = CRYP_STATE_INITIALIZED; 3248 3249 return TEE_SUCCESS; 3250 } 3251 3252 TEE_Result syscall_authenc_update_aad(unsigned long state, 3253 const void *aad_data, size_t aad_data_len) 3254 { 3255 struct ts_session *sess = ts_get_current_session(); 3256 TEE_Result res = TEE_SUCCESS; 3257 struct tee_cryp_state *cs = NULL; 3258 3259 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3260 TEE_MEMORY_ACCESS_READ | 3261 TEE_MEMORY_ACCESS_ANY_OWNER, 3262 (uaddr_t)aad_data, aad_data_len); 3263 if (res != TEE_SUCCESS) 3264 return res; 3265 3266 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3267 if (res != TEE_SUCCESS) 3268 return res; 3269 3270 if (cs->state != CRYP_STATE_INITIALIZED) 3271 return TEE_ERROR_BAD_STATE; 3272 3273 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3274 return TEE_ERROR_BAD_STATE; 3275 3276 res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data, 3277 aad_data_len); 3278 if (res != TEE_SUCCESS) 3279 return res; 3280 3281 return TEE_SUCCESS; 3282 } 3283 3284 TEE_Result syscall_authenc_update_payload(unsigned long state, 3285 const void *src_data, 3286 size_t src_len, void *dst_data, 3287 uint64_t *dst_len) 3288 { 3289 struct ts_session *sess = ts_get_current_session(); 3290 struct tee_cryp_state *cs = NULL; 3291 TEE_Result res = TEE_SUCCESS; 3292 size_t dlen = 0; 3293 3294 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3295 if (res != TEE_SUCCESS) 3296 return res; 3297 3298 if (cs->state != CRYP_STATE_INITIALIZED) 3299 return TEE_ERROR_BAD_STATE; 3300 3301 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3302 return TEE_ERROR_BAD_STATE; 3303 3304 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3305 TEE_MEMORY_ACCESS_READ | 3306 TEE_MEMORY_ACCESS_ANY_OWNER, 3307 (uaddr_t)src_data, src_len); 3308 if (res != TEE_SUCCESS) 3309 return res; 3310 3311 res = get_user_u64_as_size_t(&dlen, dst_len); 3312 if (res != TEE_SUCCESS) 3313 return res; 3314 3315 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3316 TEE_MEMORY_ACCESS_READ | 3317 TEE_MEMORY_ACCESS_WRITE | 3318 TEE_MEMORY_ACCESS_ANY_OWNER, 3319 (uaddr_t)dst_data, dlen); 3320 if (res != TEE_SUCCESS) 3321 return res; 3322 3323 if (dlen < src_len) { 3324 res = TEE_ERROR_SHORT_BUFFER; 3325 goto out; 3326 } 3327 3328 res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data, 3329 src_len, dst_data, &dlen); 3330 out: 3331 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3332 TEE_Result res2 = put_user_u64(dst_len, dlen); 3333 3334 if (res2 != TEE_SUCCESS) 3335 res = res2; 3336 } 3337 3338 return res; 3339 } 3340 3341 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data, 3342 size_t src_len, void *dst_data, 3343 uint64_t *dst_len, void *tag, 3344 uint64_t *tag_len) 3345 { 3346 struct ts_session *sess = ts_get_current_session(); 3347 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3348 struct tee_cryp_state *cs = NULL; 3349 TEE_Result res = TEE_SUCCESS; 3350 size_t dlen = 0; 3351 size_t tlen = 0; 3352 3353 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3354 if (res != TEE_SUCCESS) 3355 return res; 3356 3357 if (cs->state != CRYP_STATE_INITIALIZED) 3358 return TEE_ERROR_BAD_STATE; 3359 3360 if (cs->mode != TEE_MODE_ENCRYPT) 3361 return TEE_ERROR_BAD_PARAMETERS; 3362 3363 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3364 return TEE_ERROR_BAD_STATE; 3365 3366 res = vm_check_access_rights(uctx, 3367 TEE_MEMORY_ACCESS_READ | 3368 TEE_MEMORY_ACCESS_ANY_OWNER, 3369 (uaddr_t)src_data, src_len); 3370 if (res != TEE_SUCCESS) 3371 return res; 3372 3373 if (!dst_len) { 3374 dlen = 0; 3375 } else { 3376 res = get_user_u64_as_size_t(&dlen, dst_len); 3377 if (res != TEE_SUCCESS) 3378 return res; 3379 3380 res = vm_check_access_rights(uctx, 3381 TEE_MEMORY_ACCESS_READ | 3382 TEE_MEMORY_ACCESS_WRITE | 3383 TEE_MEMORY_ACCESS_ANY_OWNER, 3384 (uaddr_t)dst_data, dlen); 3385 if (res != TEE_SUCCESS) 3386 return res; 3387 } 3388 3389 if (dlen < src_len) { 3390 res = TEE_ERROR_SHORT_BUFFER; 3391 goto out; 3392 } 3393 3394 res = get_user_u64_as_size_t(&tlen, tag_len); 3395 if (res != TEE_SUCCESS) 3396 return res; 3397 3398 res = vm_check_access_rights(uctx, 3399 TEE_MEMORY_ACCESS_READ | 3400 TEE_MEMORY_ACCESS_WRITE | 3401 TEE_MEMORY_ACCESS_ANY_OWNER, 3402 (uaddr_t)tag, tlen); 3403 if (res != TEE_SUCCESS) 3404 return res; 3405 3406 res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data, 3407 &dlen, tag, &tlen); 3408 3409 out: 3410 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3411 TEE_Result res2 = TEE_SUCCESS; 3412 3413 if (dst_len != NULL) { 3414 res2 = put_user_u64(dst_len, dlen); 3415 if (res2 != TEE_SUCCESS) 3416 return res2; 3417 } 3418 3419 res2 = put_user_u64(tag_len, tlen); 3420 if (res2 != TEE_SUCCESS) 3421 return res2; 3422 } 3423 3424 return res; 3425 } 3426 3427 TEE_Result syscall_authenc_dec_final(unsigned long state, 3428 const void *src_data, size_t src_len, void *dst_data, 3429 uint64_t *dst_len, const void *tag, size_t tag_len) 3430 { 3431 struct ts_session *sess = ts_get_current_session(); 3432 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3433 struct tee_cryp_state *cs = NULL; 3434 TEE_Result res = TEE_SUCCESS; 3435 size_t dlen = 0; 3436 3437 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3438 if (res != TEE_SUCCESS) 3439 return res; 3440 3441 if (cs->state != CRYP_STATE_INITIALIZED) 3442 return TEE_ERROR_BAD_STATE; 3443 3444 if (cs->mode != TEE_MODE_DECRYPT) 3445 return TEE_ERROR_BAD_PARAMETERS; 3446 3447 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3448 return TEE_ERROR_BAD_STATE; 3449 3450 res = vm_check_access_rights(uctx, 3451 TEE_MEMORY_ACCESS_READ | 3452 TEE_MEMORY_ACCESS_ANY_OWNER, 3453 (uaddr_t)src_data, src_len); 3454 if (res != TEE_SUCCESS) 3455 return res; 3456 3457 if (!dst_len) { 3458 dlen = 0; 3459 } else { 3460 res = get_user_u64_as_size_t(&dlen, dst_len); 3461 if (res != TEE_SUCCESS) 3462 return res; 3463 3464 res = vm_check_access_rights(uctx, 3465 TEE_MEMORY_ACCESS_READ | 3466 TEE_MEMORY_ACCESS_WRITE | 3467 TEE_MEMORY_ACCESS_ANY_OWNER, 3468 (uaddr_t)dst_data, dlen); 3469 if (res != TEE_SUCCESS) 3470 return res; 3471 } 3472 3473 if (dlen < src_len) { 3474 res = TEE_ERROR_SHORT_BUFFER; 3475 goto out; 3476 } 3477 3478 res = vm_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ, 3479 (uaddr_t)tag, tag_len); 3480 if (res != TEE_SUCCESS) 3481 return res; 3482 3483 res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data, 3484 &dlen, tag, tag_len); 3485 3486 out: 3487 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 3488 dst_len != NULL) { 3489 TEE_Result res2 = put_user_u64(dst_len, dlen); 3490 3491 if (res2 != TEE_SUCCESS) 3492 return res2; 3493 } 3494 3495 return res; 3496 } 3497 3498 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params, 3499 size_t default_len) 3500 { 3501 size_t n; 3502 3503 assert(default_len < INT_MAX); 3504 3505 for (n = 0; n < num_params; n++) { 3506 if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) { 3507 if (params[n].content.value.a < INT_MAX) 3508 return params[n].content.value.a; 3509 break; 3510 } 3511 } 3512 /* 3513 * If salt length isn't provided use the default value which is 3514 * the length of the digest. 3515 */ 3516 return default_len; 3517 } 3518 3519 TEE_Result syscall_asymm_operate(unsigned long state, 3520 const struct utee_attribute *usr_params, 3521 size_t num_params, const void *src_data, size_t src_len, 3522 void *dst_data, uint64_t *dst_len) 3523 { 3524 struct ts_session *sess = ts_get_current_session(); 3525 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 3526 TEE_Result res = TEE_SUCCESS; 3527 struct tee_cryp_state *cs = NULL; 3528 size_t dlen = 0; 3529 struct tee_obj *o = NULL; 3530 void *label = NULL; 3531 size_t label_len = 0; 3532 size_t n = 0; 3533 int salt_len = 0; 3534 TEE_Attribute *params = NULL; 3535 3536 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3537 if (res != TEE_SUCCESS) 3538 return res; 3539 3540 res = vm_check_access_rights(&utc->uctx, 3541 TEE_MEMORY_ACCESS_READ | 3542 TEE_MEMORY_ACCESS_ANY_OWNER, 3543 (uaddr_t)src_data, src_len); 3544 if (res != TEE_SUCCESS) 3545 return res; 3546 3547 res = get_user_u64_as_size_t(&dlen, dst_len); 3548 if (res != TEE_SUCCESS) 3549 return res; 3550 3551 res = vm_check_access_rights(&utc->uctx, 3552 TEE_MEMORY_ACCESS_READ | 3553 TEE_MEMORY_ACCESS_WRITE | 3554 TEE_MEMORY_ACCESS_ANY_OWNER, 3555 (uaddr_t)dst_data, dlen); 3556 if (res != TEE_SUCCESS) 3557 return res; 3558 3559 size_t alloc_size = 0; 3560 3561 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 3562 return TEE_ERROR_OVERFLOW; 3563 3564 params = malloc(alloc_size); 3565 if (!params) 3566 return TEE_ERROR_OUT_OF_MEMORY; 3567 res = copy_in_attrs(utc, usr_params, num_params, params); 3568 if (res != TEE_SUCCESS) 3569 goto out; 3570 3571 res = tee_obj_get(utc, cs->key1, &o); 3572 if (res != TEE_SUCCESS) 3573 goto out; 3574 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 3575 res = TEE_ERROR_GENERIC; 3576 goto out; 3577 } 3578 3579 switch (cs->algo) { 3580 case TEE_ALG_RSA_NOPAD: 3581 if (cs->mode == TEE_MODE_ENCRYPT) { 3582 res = crypto_acipher_rsanopad_encrypt(o->attr, src_data, 3583 src_len, dst_data, 3584 &dlen); 3585 } else if (cs->mode == TEE_MODE_DECRYPT) { 3586 res = crypto_acipher_rsanopad_decrypt(o->attr, src_data, 3587 src_len, dst_data, 3588 &dlen); 3589 } else { 3590 /* 3591 * We will panic because "the mode is not compatible 3592 * with the function" 3593 */ 3594 res = TEE_ERROR_GENERIC; 3595 } 3596 break; 3597 3598 case TEE_ALG_SM2_PKE: 3599 if (cs->mode == TEE_MODE_ENCRYPT) { 3600 res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data, 3601 src_len, dst_data, 3602 &dlen); 3603 } else if (cs->mode == TEE_MODE_DECRYPT) { 3604 res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data, 3605 src_len, dst_data, 3606 &dlen); 3607 } else { 3608 res = TEE_ERROR_GENERIC; 3609 } 3610 break; 3611 3612 case TEE_ALG_RSAES_PKCS1_V1_5: 3613 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1: 3614 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224: 3615 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256: 3616 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384: 3617 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512: 3618 for (n = 0; n < num_params; n++) { 3619 if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) { 3620 label = params[n].content.ref.buffer; 3621 label_len = params[n].content.ref.length; 3622 break; 3623 } 3624 } 3625 3626 if (cs->mode == TEE_MODE_ENCRYPT) { 3627 res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr, 3628 label, label_len, 3629 src_data, src_len, 3630 dst_data, &dlen); 3631 } else if (cs->mode == TEE_MODE_DECRYPT) { 3632 res = crypto_acipher_rsaes_decrypt( 3633 cs->algo, o->attr, label, label_len, 3634 src_data, src_len, dst_data, &dlen); 3635 } else { 3636 res = TEE_ERROR_BAD_PARAMETERS; 3637 } 3638 break; 3639 3640 #if defined(CFG_CRYPTO_RSASSA_NA1) 3641 case TEE_ALG_RSASSA_PKCS1_V1_5: 3642 #endif 3643 case TEE_ALG_RSASSA_PKCS1_V1_5_MD5: 3644 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1: 3645 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224: 3646 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256: 3647 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384: 3648 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512: 3649 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1: 3650 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224: 3651 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256: 3652 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384: 3653 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512: 3654 if (cs->mode != TEE_MODE_SIGN) { 3655 res = TEE_ERROR_BAD_PARAMETERS; 3656 break; 3657 } 3658 salt_len = pkcs1_get_salt_len(params, num_params, src_len); 3659 res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len, 3660 src_data, src_len, dst_data, 3661 &dlen); 3662 break; 3663 3664 case TEE_ALG_DSA_SHA1: 3665 case TEE_ALG_DSA_SHA224: 3666 case TEE_ALG_DSA_SHA256: 3667 res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data, 3668 src_len, dst_data, &dlen); 3669 break; 3670 case TEE_ALG_ECDSA_P192: 3671 case TEE_ALG_ECDSA_P224: 3672 case TEE_ALG_ECDSA_P256: 3673 case TEE_ALG_ECDSA_P384: 3674 case TEE_ALG_ECDSA_P521: 3675 case TEE_ALG_SM2_DSA_SM3: 3676 res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data, 3677 src_len, dst_data, &dlen); 3678 break; 3679 default: 3680 res = TEE_ERROR_BAD_PARAMETERS; 3681 break; 3682 } 3683 3684 out: 3685 free_wipe(params); 3686 3687 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3688 TEE_Result res2 = put_user_u64(dst_len, dlen); 3689 3690 if (res2 != TEE_SUCCESS) 3691 return res2; 3692 } 3693 3694 return res; 3695 } 3696 3697 TEE_Result syscall_asymm_verify(unsigned long state, 3698 const struct utee_attribute *usr_params, 3699 size_t num_params, const void *data, size_t data_len, 3700 const void *sig, size_t sig_len) 3701 { 3702 struct ts_session *sess = ts_get_current_session(); 3703 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 3704 struct tee_cryp_state *cs = NULL; 3705 TEE_Result res = TEE_SUCCESS; 3706 TEE_Attribute *params = NULL; 3707 struct tee_obj *o = NULL; 3708 size_t hash_size = 0; 3709 uint32_t hash_algo = 0; 3710 int salt_len = 0; 3711 3712 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3713 if (res != TEE_SUCCESS) 3714 return res; 3715 3716 if (cs->mode != TEE_MODE_VERIFY) 3717 return TEE_ERROR_BAD_PARAMETERS; 3718 3719 res = vm_check_access_rights(&utc->uctx, 3720 TEE_MEMORY_ACCESS_READ | 3721 TEE_MEMORY_ACCESS_ANY_OWNER, 3722 (uaddr_t)data, data_len); 3723 if (res != TEE_SUCCESS) 3724 return res; 3725 3726 res = vm_check_access_rights(&utc->uctx, 3727 TEE_MEMORY_ACCESS_READ | 3728 TEE_MEMORY_ACCESS_ANY_OWNER, 3729 (uaddr_t)sig, sig_len); 3730 if (res != TEE_SUCCESS) 3731 return res; 3732 3733 size_t alloc_size = 0; 3734 3735 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 3736 return TEE_ERROR_OVERFLOW; 3737 3738 params = malloc(alloc_size); 3739 if (!params) 3740 return TEE_ERROR_OUT_OF_MEMORY; 3741 res = copy_in_attrs(utc, usr_params, num_params, params); 3742 if (res != TEE_SUCCESS) 3743 goto out; 3744 3745 res = tee_obj_get(utc, cs->key1, &o); 3746 if (res != TEE_SUCCESS) 3747 goto out; 3748 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 3749 res = TEE_ERROR_BAD_PARAMETERS; 3750 goto out; 3751 } 3752 3753 switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) { 3754 case TEE_MAIN_ALGO_RSA: 3755 if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) { 3756 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 3757 res = tee_alg_get_digest_size(hash_algo, &hash_size); 3758 if (res != TEE_SUCCESS) 3759 break; 3760 if (data_len != hash_size) { 3761 res = TEE_ERROR_BAD_PARAMETERS; 3762 break; 3763 } 3764 salt_len = pkcs1_get_salt_len(params, num_params, 3765 hash_size); 3766 } 3767 res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len, 3768 data, data_len, sig, 3769 sig_len); 3770 break; 3771 3772 case TEE_MAIN_ALGO_DSA: 3773 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 3774 res = tee_alg_get_digest_size(hash_algo, &hash_size); 3775 if (res != TEE_SUCCESS) 3776 break; 3777 3778 if (data_len != hash_size) { 3779 struct dsa_public_key *key = o->attr; 3780 3781 /* 3782 * Depending on the DSA algorithm (NIST), the 3783 * digital signature output size may be truncated 3784 * to the size of a key pair (Q prime size). Q 3785 * prime size must be less or equal than the hash 3786 * output length of the hash algorithm involved. 3787 * 3788 * We're checking here in order to be able to 3789 * return this particular error code, which will 3790 * cause TEE_AsymmetricVerifyDigest() to panic as 3791 * required by GP. crypto_acipher_dsa_verify() is 3792 * implemented in the glue layer of the crypto 3793 * library and it might be a bit harder to catch 3794 * this particular case there or lead to duplicated 3795 * code in different crypto glue layers. 3796 * 3797 * The GP spec says that we SHOULD panic if 3798 * data_len != hash_size, but that would break a 3799 * few of the DSA tests in xtest where the 3800 * hash_size is larger than possible data_len. So 3801 * the compromise is in case data_len != hash_size 3802 * check that it's not smaller than what makes 3803 * sense. 3804 */ 3805 if (data_len != crypto_bignum_num_bytes(key->q)) { 3806 res = TEE_ERROR_BAD_PARAMETERS; 3807 break; 3808 } 3809 } 3810 res = crypto_acipher_dsa_verify(cs->algo, o->attr, data, 3811 data_len, sig, sig_len); 3812 break; 3813 3814 case TEE_MAIN_ALGO_ECDSA: 3815 case TEE_MAIN_ALGO_SM2_DSA_SM3: 3816 res = crypto_acipher_ecc_verify(cs->algo, o->attr, data, 3817 data_len, sig, sig_len); 3818 break; 3819 3820 default: 3821 res = TEE_ERROR_NOT_SUPPORTED; 3822 } 3823 3824 out: 3825 free_wipe(params); 3826 return res; 3827 } 3828