xref: /optee_os/core/tee/tee_svc_cryp.c (revision 9760936ca533071c45e14644bb31d73af883a11c)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <assert.h>
8 #include <compiler.h>
9 #include <config.h>
10 #include <crypto/crypto.h>
11 #include <kernel/tee_ta_manager.h>
12 #include <kernel/user_access.h>
13 #include <mm/tee_mmu.h>
14 #include <stdlib_ext.h>
15 #include <string_ext.h>
16 #include <string.h>
17 #include <sys/queue.h>
18 #include <tee_api_defines_extensions.h>
19 #include <tee_api_types.h>
20 #include <tee/tee_cryp_utl.h>
21 #include <tee/tee_obj.h>
22 #include <tee/tee_svc_cryp.h>
23 #include <tee/tee_svc.h>
24 #include <trace.h>
25 #include <utee_defines.h>
26 #include <util.h>
27 #if defined(CFG_CRYPTO_HKDF)
28 #include <tee/tee_cryp_hkdf.h>
29 #endif
30 #if defined(CFG_CRYPTO_CONCAT_KDF)
31 #include <tee/tee_cryp_concat_kdf.h>
32 #endif
33 #if defined(CFG_CRYPTO_PBKDF2)
34 #include <tee/tee_cryp_pbkdf2.h>
35 #endif
36 
37 enum cryp_state {
38 	CRYP_STATE_INITIALIZED = 0,
39 	CRYP_STATE_UNINITIALIZED
40 };
41 
42 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx);
43 struct tee_cryp_state {
44 	TAILQ_ENTRY(tee_cryp_state) link;
45 	uint32_t algo;
46 	uint32_t mode;
47 	vaddr_t key1;
48 	vaddr_t key2;
49 	void *ctx;
50 	tee_cryp_ctx_finalize_func_t ctx_finalize;
51 	enum cryp_state state;
52 };
53 
54 struct tee_cryp_obj_secret {
55 	uint32_t key_size;
56 	uint32_t alloc_size;
57 
58 	/*
59 	 * Pseudo code visualize layout of structure
60 	 * Next follows data, such as:
61 	 *	uint8_t data[alloc_size]
62 	 * key_size must never exceed alloc_size
63 	 */
64 };
65 
66 #define TEE_TYPE_ATTR_OPTIONAL       0x0
67 #define TEE_TYPE_ATTR_REQUIRED       0x1
68 #define TEE_TYPE_ATTR_OPTIONAL_GROUP 0x2
69 #define TEE_TYPE_ATTR_SIZE_INDICATOR 0x4
70 #define TEE_TYPE_ATTR_GEN_KEY_OPT    0x8
71 #define TEE_TYPE_ATTR_GEN_KEY_REQ    0x10
72 
73     /* Handle storing of generic secret keys of varying lengths */
74 #define ATTR_OPS_INDEX_SECRET     0
75     /* Convert to/from big-endian byte array and provider-specific bignum */
76 #define ATTR_OPS_INDEX_BIGNUM     1
77     /* Convert to/from value attribute depending on direction */
78 #define ATTR_OPS_INDEX_VALUE      2
79 
80 struct tee_cryp_obj_type_attrs {
81 	uint32_t attr_id;
82 	uint16_t flags;
83 	uint16_t ops_index;
84 	uint16_t raw_offs;
85 	uint16_t raw_size;
86 };
87 
88 #define RAW_DATA(_x, _y)	\
89 	.raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y)
90 
91 static const struct tee_cryp_obj_type_attrs
92 	tee_cryp_obj_secret_value_attrs[] = {
93 	{
94 	.attr_id = TEE_ATTR_SECRET_VALUE,
95 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
96 	.ops_index = ATTR_OPS_INDEX_SECRET,
97 	.raw_offs = 0,
98 	.raw_size = 0
99 	},
100 };
101 
102 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = {
103 	{
104 	.attr_id = TEE_ATTR_RSA_MODULUS,
105 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
106 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
107 	RAW_DATA(struct rsa_public_key, n)
108 	},
109 
110 	{
111 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
112 	.flags = TEE_TYPE_ATTR_REQUIRED,
113 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
114 	RAW_DATA(struct rsa_public_key, e)
115 	},
116 };
117 
118 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = {
119 	{
120 	.attr_id = TEE_ATTR_RSA_MODULUS,
121 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
122 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
123 	RAW_DATA(struct rsa_keypair, n)
124 	},
125 
126 	{
127 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
128 	.flags = TEE_TYPE_ATTR_REQUIRED,
129 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
130 	RAW_DATA(struct rsa_keypair, e)
131 	},
132 
133 	{
134 	.attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT,
135 	.flags = TEE_TYPE_ATTR_REQUIRED,
136 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
137 	RAW_DATA(struct rsa_keypair, d)
138 	},
139 
140 	{
141 	.attr_id = TEE_ATTR_RSA_PRIME1,
142 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
143 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
144 	RAW_DATA(struct rsa_keypair, p)
145 	},
146 
147 	{
148 	.attr_id = TEE_ATTR_RSA_PRIME2,
149 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
150 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
151 	RAW_DATA(struct rsa_keypair, q)
152 	},
153 
154 	{
155 	.attr_id = TEE_ATTR_RSA_EXPONENT1,
156 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
157 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
158 	RAW_DATA(struct rsa_keypair, dp)
159 	},
160 
161 	{
162 	.attr_id = TEE_ATTR_RSA_EXPONENT2,
163 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
164 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
165 	RAW_DATA(struct rsa_keypair, dq)
166 	},
167 
168 	{
169 	.attr_id = TEE_ATTR_RSA_COEFFICIENT,
170 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
171 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
172 	RAW_DATA(struct rsa_keypair, qp)
173 	},
174 };
175 
176 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = {
177 	{
178 	.attr_id = TEE_ATTR_DSA_PRIME,
179 	.flags = TEE_TYPE_ATTR_REQUIRED,
180 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
181 	RAW_DATA(struct dsa_public_key, p)
182 	},
183 
184 	{
185 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
186 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
187 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
188 	RAW_DATA(struct dsa_public_key, q)
189 	},
190 
191 	{
192 	.attr_id = TEE_ATTR_DSA_BASE,
193 	.flags = TEE_TYPE_ATTR_REQUIRED,
194 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
195 	RAW_DATA(struct dsa_public_key, g)
196 	},
197 
198 	{
199 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
200 	.flags = TEE_TYPE_ATTR_REQUIRED,
201 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
202 	RAW_DATA(struct dsa_public_key, y)
203 	},
204 };
205 
206 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = {
207 	{
208 	.attr_id = TEE_ATTR_DSA_PRIME,
209 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
210 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
211 	RAW_DATA(struct dsa_keypair, p)
212 	},
213 
214 	{
215 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
216 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
217 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
218 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
219 	RAW_DATA(struct dsa_keypair, q)
220 	},
221 
222 	{
223 	.attr_id = TEE_ATTR_DSA_BASE,
224 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
225 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
226 	RAW_DATA(struct dsa_keypair, g)
227 	},
228 
229 	{
230 	.attr_id = TEE_ATTR_DSA_PRIVATE_VALUE,
231 	.flags = TEE_TYPE_ATTR_REQUIRED,
232 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
233 	RAW_DATA(struct dsa_keypair, x)
234 	},
235 
236 	{
237 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
238 	.flags = TEE_TYPE_ATTR_REQUIRED,
239 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
240 	RAW_DATA(struct dsa_keypair, y)
241 	},
242 };
243 
244 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = {
245 	{
246 	.attr_id = TEE_ATTR_DH_PRIME,
247 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
248 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
249 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
250 	RAW_DATA(struct dh_keypair, p)
251 	},
252 
253 	{
254 	.attr_id = TEE_ATTR_DH_BASE,
255 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
256 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
257 	RAW_DATA(struct dh_keypair, g)
258 	},
259 
260 	{
261 	.attr_id = TEE_ATTR_DH_PUBLIC_VALUE,
262 	.flags = TEE_TYPE_ATTR_REQUIRED,
263 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
264 	RAW_DATA(struct dh_keypair, y)
265 	},
266 
267 	{
268 	.attr_id = TEE_ATTR_DH_PRIVATE_VALUE,
269 	.flags = TEE_TYPE_ATTR_REQUIRED,
270 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
271 	RAW_DATA(struct dh_keypair, x)
272 	},
273 
274 	{
275 	.attr_id = TEE_ATTR_DH_SUBPRIME,
276 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP |	 TEE_TYPE_ATTR_GEN_KEY_OPT,
277 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
278 	RAW_DATA(struct dh_keypair, q)
279 	},
280 
281 	{
282 	.attr_id = TEE_ATTR_DH_X_BITS,
283 	.flags = TEE_TYPE_ATTR_GEN_KEY_OPT,
284 	.ops_index = ATTR_OPS_INDEX_VALUE,
285 	RAW_DATA(struct dh_keypair, xbits)
286 	},
287 };
288 
289 #if defined(CFG_CRYPTO_HKDF)
290 static const struct tee_cryp_obj_type_attrs
291 	tee_cryp_obj_hkdf_ikm_attrs[] = {
292 	{
293 	.attr_id = TEE_ATTR_HKDF_IKM,
294 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
295 	.ops_index = ATTR_OPS_INDEX_SECRET,
296 	.raw_offs = 0,
297 	.raw_size = 0
298 	},
299 };
300 #endif
301 
302 #if defined(CFG_CRYPTO_CONCAT_KDF)
303 static const struct tee_cryp_obj_type_attrs
304 	tee_cryp_obj_concat_kdf_z_attrs[] = {
305 	{
306 	.attr_id = TEE_ATTR_CONCAT_KDF_Z,
307 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
308 	.ops_index = ATTR_OPS_INDEX_SECRET,
309 	.raw_offs = 0,
310 	.raw_size = 0
311 	},
312 };
313 #endif
314 
315 #if defined(CFG_CRYPTO_PBKDF2)
316 static const struct tee_cryp_obj_type_attrs
317 	tee_cryp_obj_pbkdf2_passwd_attrs[] = {
318 	{
319 	.attr_id = TEE_ATTR_PBKDF2_PASSWORD,
320 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
321 	.ops_index = ATTR_OPS_INDEX_SECRET,
322 	.raw_offs = 0,
323 	.raw_size = 0
324 	},
325 };
326 #endif
327 
328 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = {
329 	{
330 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
331 	.flags = TEE_TYPE_ATTR_REQUIRED,
332 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
333 	RAW_DATA(struct ecc_public_key, x)
334 	},
335 
336 	{
337 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
338 	.flags = TEE_TYPE_ATTR_REQUIRED,
339 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
340 	RAW_DATA(struct ecc_public_key, y)
341 	},
342 
343 	{
344 	.attr_id = TEE_ATTR_ECC_CURVE,
345 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
346 	.ops_index = ATTR_OPS_INDEX_VALUE,
347 	RAW_DATA(struct ecc_public_key, curve)
348 	},
349 };
350 
351 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = {
352 	{
353 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
354 	.flags = TEE_TYPE_ATTR_REQUIRED,
355 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
356 	RAW_DATA(struct ecc_keypair, d)
357 	},
358 
359 	{
360 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
361 	.flags = TEE_TYPE_ATTR_REQUIRED,
362 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
363 	RAW_DATA(struct ecc_keypair, x)
364 	},
365 
366 	{
367 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
368 	.flags = TEE_TYPE_ATTR_REQUIRED,
369 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
370 	RAW_DATA(struct ecc_keypair, y)
371 	},
372 
373 	{
374 	.attr_id = TEE_ATTR_ECC_CURVE,
375 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
376 	.ops_index = ATTR_OPS_INDEX_VALUE,
377 	RAW_DATA(struct ecc_keypair, curve)
378 	},
379 };
380 
381 struct tee_cryp_obj_type_props {
382 	TEE_ObjectType obj_type;
383 	uint16_t min_size;	/* may not be smaller than this */
384 	uint16_t max_size;	/* may not be larger than this */
385 	uint16_t alloc_size;	/* this many bytes are allocated to hold data */
386 	uint8_t quanta;		/* may only be an multiple of this */
387 
388 	uint8_t num_type_attrs;
389 	const struct tee_cryp_obj_type_attrs *type_attrs;
390 };
391 
392 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \
393 		{ (obj_type), (min_size), (max_size), (alloc_size), (quanta), \
394 		  ARRAY_SIZE(type_attrs), (type_attrs) }
395 
396 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = {
397 	PROP(TEE_TYPE_AES, 64, 128, 256,	/* valid sizes 128, 192, 256 */
398 		256 / 8 + sizeof(struct tee_cryp_obj_secret),
399 		tee_cryp_obj_secret_value_attrs),
400 	PROP(TEE_TYPE_DES, 56, 56, 56,
401 		/*
402 		* Valid size 56 without parity, note that we still allocate
403 		* for 64 bits since the key is supplied with parity.
404 		*/
405 		64 / 8 + sizeof(struct tee_cryp_obj_secret),
406 		tee_cryp_obj_secret_value_attrs),
407 	PROP(TEE_TYPE_DES3, 56, 112, 168,
408 		/*
409 		* Valid sizes 112, 168 without parity, note that we still
410 		* allocate for with space for the parity since the key is
411 		* supplied with parity.
412 		*/
413 		192 / 8 + sizeof(struct tee_cryp_obj_secret),
414 		tee_cryp_obj_secret_value_attrs),
415 	PROP(TEE_TYPE_SM4, 128, 128, 128,
416 		128 / 8 + sizeof(struct tee_cryp_obj_secret),
417 		tee_cryp_obj_secret_value_attrs),
418 	PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512,
419 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
420 		tee_cryp_obj_secret_value_attrs),
421 	PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512,
422 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
423 		tee_cryp_obj_secret_value_attrs),
424 	PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512,
425 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
426 		tee_cryp_obj_secret_value_attrs),
427 	PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024,
428 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
429 		tee_cryp_obj_secret_value_attrs),
430 	PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024,
431 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
432 		tee_cryp_obj_secret_value_attrs),
433 	PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024,
434 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
435 		tee_cryp_obj_secret_value_attrs),
436 	PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024,
437 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
438 		tee_cryp_obj_secret_value_attrs),
439 	PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096,
440 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
441 		tee_cryp_obj_secret_value_attrs),
442 #if defined(CFG_CRYPTO_HKDF)
443 	PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096,
444 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
445 		tee_cryp_obj_hkdf_ikm_attrs),
446 #endif
447 #if defined(CFG_CRYPTO_CONCAT_KDF)
448 	PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096,
449 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
450 		tee_cryp_obj_concat_kdf_z_attrs),
451 #endif
452 #if defined(CFG_CRYPTO_PBKDF2)
453 	PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096,
454 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
455 		tee_cryp_obj_pbkdf2_passwd_attrs),
456 #endif
457 	PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
458 		sizeof(struct rsa_public_key),
459 		tee_cryp_obj_rsa_pub_key_attrs),
460 
461 	PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
462 		sizeof(struct rsa_keypair),
463 		tee_cryp_obj_rsa_keypair_attrs),
464 
465 	PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072,
466 		sizeof(struct dsa_public_key),
467 		tee_cryp_obj_dsa_pub_key_attrs),
468 
469 	PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072,
470 		sizeof(struct dsa_keypair),
471 		tee_cryp_obj_dsa_keypair_attrs),
472 
473 	PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048,
474 		sizeof(struct dh_keypair),
475 		tee_cryp_obj_dh_keypair_attrs),
476 
477 	PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521,
478 		sizeof(struct ecc_public_key),
479 		tee_cryp_obj_ecc_pub_key_attrs),
480 
481 	PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521,
482 		sizeof(struct ecc_keypair),
483 		tee_cryp_obj_ecc_keypair_attrs),
484 
485 	PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521,
486 		sizeof(struct ecc_public_key),
487 		tee_cryp_obj_ecc_pub_key_attrs),
488 
489 	PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521,
490 		sizeof(struct ecc_keypair),
491 		tee_cryp_obj_ecc_keypair_attrs),
492 
493 	PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256,
494 	     sizeof(struct ecc_public_key),
495 	     tee_cryp_obj_ecc_pub_key_attrs),
496 
497 	PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256,
498 	     sizeof(struct ecc_keypair),
499 	     tee_cryp_obj_ecc_keypair_attrs),
500 
501 	PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256,
502 	     sizeof(struct ecc_public_key),
503 	     tee_cryp_obj_ecc_pub_key_attrs),
504 
505 	PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256,
506 	     sizeof(struct ecc_keypair),
507 	     tee_cryp_obj_ecc_keypair_attrs),
508 
509 	PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256,
510 	     sizeof(struct ecc_public_key),
511 	     tee_cryp_obj_ecc_pub_key_attrs),
512 
513 	PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256,
514 	     sizeof(struct ecc_keypair),
515 	     tee_cryp_obj_ecc_keypair_attrs),
516 };
517 
518 struct attr_ops {
519 	TEE_Result (*from_user)(void *attr, const void *buffer, size_t size);
520 	TEE_Result (*to_user)(void *attr, struct tee_ta_session *sess,
521 			      void *buffer, uint64_t *size);
522 	TEE_Result (*to_binary)(void *attr, void *data, size_t data_len,
523 			    size_t *offs);
524 	bool (*from_binary)(void *attr, const void *data, size_t data_len,
525 			    size_t *offs);
526 	TEE_Result (*from_obj)(void *attr, void *src_attr);
527 	void (*free)(void *attr);
528 	void (*clear)(void *attr);
529 };
530 
531 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data,
532 				    size_t data_len, size_t *offs)
533 {
534 	uint32_t field;
535 	size_t next_offs;
536 
537 	if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs))
538 		return TEE_ERROR_OVERFLOW;
539 
540 	if (data && next_offs <= data_len) {
541 		field = TEE_U32_TO_BIG_ENDIAN(v);
542 		memcpy(data + *offs, &field, sizeof(field));
543 	}
544 	(*offs) = next_offs;
545 
546 	return TEE_SUCCESS;
547 }
548 
549 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data,
550 				      size_t data_len, size_t *offs)
551 {
552 	uint32_t field;
553 
554 	if (!data || (*offs + sizeof(field)) > data_len)
555 		return false;
556 
557 	memcpy(&field, data + *offs, sizeof(field));
558 	*v = TEE_U32_FROM_BIG_ENDIAN(field);
559 	(*offs) += sizeof(field);
560 	return true;
561 }
562 
563 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer,
564 						 size_t size)
565 {
566 	struct tee_cryp_obj_secret *key = attr;
567 
568 	/* Data size has to fit in allocated buffer */
569 	if (size > key->alloc_size)
570 		return TEE_ERROR_SECURITY;
571 	memcpy(key + 1, buffer, size);
572 	key->key_size = size;
573 	return TEE_SUCCESS;
574 }
575 
576 static TEE_Result op_attr_secret_value_to_user(void *attr,
577 			struct tee_ta_session *sess __unused,
578 			void *buffer, uint64_t *size)
579 {
580 	TEE_Result res;
581 	struct tee_cryp_obj_secret *key = attr;
582 	uint64_t s;
583 	uint64_t key_size;
584 
585 	res = copy_from_user(&s, size, sizeof(s));
586 	if (res != TEE_SUCCESS)
587 		return res;
588 
589 	key_size = key->key_size;
590 	res = copy_to_user(size, &key_size, sizeof(key_size));
591 	if (res != TEE_SUCCESS)
592 		return res;
593 
594 	if (s < key->key_size || !buffer)
595 		return TEE_ERROR_SHORT_BUFFER;
596 
597 	return copy_to_user(buffer, key + 1, key->key_size);
598 }
599 
600 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data,
601 					   size_t data_len, size_t *offs)
602 {
603 	TEE_Result res;
604 	struct tee_cryp_obj_secret *key = attr;
605 	size_t next_offs;
606 
607 	res = op_u32_to_binary_helper(key->key_size, data, data_len, offs);
608 	if (res != TEE_SUCCESS)
609 		return res;
610 
611 	if (ADD_OVERFLOW(*offs, key->key_size, &next_offs))
612 		return TEE_ERROR_OVERFLOW;
613 
614 	if (data && next_offs <= data_len)
615 		memcpy((uint8_t *)data + *offs, key + 1, key->key_size);
616 	(*offs) = next_offs;
617 
618 	return TEE_SUCCESS;
619 }
620 
621 static bool op_attr_secret_value_from_binary(void *attr, const void *data,
622 					     size_t data_len, size_t *offs)
623 {
624 	struct tee_cryp_obj_secret *key = attr;
625 	uint32_t s;
626 
627 	if (!op_u32_from_binary_helper(&s, data, data_len, offs))
628 		return false;
629 
630 	if ((*offs + s) > data_len)
631 		return false;
632 
633 	/* Data size has to fit in allocated buffer */
634 	if (s > key->alloc_size)
635 		return false;
636 	key->key_size = s;
637 	memcpy(key + 1, (const uint8_t *)data + *offs, s);
638 	(*offs) += s;
639 	return true;
640 }
641 
642 
643 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr)
644 {
645 	struct tee_cryp_obj_secret *key = attr;
646 	struct tee_cryp_obj_secret *src_key = src_attr;
647 
648 	if (src_key->key_size > key->alloc_size)
649 		return TEE_ERROR_BAD_STATE;
650 	memcpy(key + 1, src_key + 1, src_key->key_size);
651 	key->key_size = src_key->key_size;
652 	return TEE_SUCCESS;
653 }
654 
655 static void op_attr_secret_value_clear(void *attr)
656 {
657 	struct tee_cryp_obj_secret *key = attr;
658 
659 	key->key_size = 0;
660 	memset(key + 1, 0, key->alloc_size);
661 }
662 
663 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer,
664 					   size_t size)
665 {
666 	struct bignum **bn = attr;
667 
668 	return crypto_bignum_bin2bn(buffer, size, *bn);
669 }
670 
671 static TEE_Result op_attr_bignum_to_user(void *attr,
672 					 struct tee_ta_session *sess,
673 					 void *buffer, uint64_t *size)
674 {
675 	TEE_Result res = TEE_SUCCESS;
676 	struct bignum **bn = attr;
677 	uint64_t req_size = 0;
678 	uint64_t s = 0;
679 
680 	res = copy_from_user(&s, size, sizeof(s));
681 	if (res != TEE_SUCCESS)
682 		return res;
683 
684 	req_size = crypto_bignum_num_bytes(*bn);
685 	res = copy_to_user(size, &req_size, sizeof(req_size));
686 	if (res != TEE_SUCCESS)
687 		return res;
688 	if (!req_size)
689 		return TEE_SUCCESS;
690 	if (s < req_size || !buffer)
691 		return TEE_ERROR_SHORT_BUFFER;
692 
693 	/* Check we can access data using supplied user mode pointer */
694 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
695 					  TEE_MEMORY_ACCESS_READ |
696 					  TEE_MEMORY_ACCESS_WRITE |
697 					  TEE_MEMORY_ACCESS_ANY_OWNER,
698 					  (uaddr_t)buffer, req_size);
699 	if (res != TEE_SUCCESS)
700 		return res;
701 	/*
702 	* Write the bignum (wich raw data points to) into an array of
703 	* bytes (stored in buffer)
704 	*/
705 	crypto_bignum_bn2bin(*bn, buffer);
706 	return TEE_SUCCESS;
707 }
708 
709 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data,
710 					   size_t data_len, size_t *offs)
711 {
712 	TEE_Result res;
713 	struct bignum **bn = attr;
714 	uint32_t n = crypto_bignum_num_bytes(*bn);
715 	size_t next_offs;
716 
717 	res = op_u32_to_binary_helper(n, data, data_len, offs);
718 	if (res != TEE_SUCCESS)
719 		return res;
720 
721 	if (ADD_OVERFLOW(*offs, n, &next_offs))
722 		return TEE_ERROR_OVERFLOW;
723 
724 	if (data && next_offs <= data_len)
725 		crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs);
726 	(*offs) = next_offs;
727 
728 	return TEE_SUCCESS;
729 }
730 
731 static bool op_attr_bignum_from_binary(void *attr, const void *data,
732 				       size_t data_len, size_t *offs)
733 {
734 	struct bignum **bn = attr;
735 	uint32_t n;
736 
737 	if (!op_u32_from_binary_helper(&n, data, data_len, offs))
738 		return false;
739 
740 	if ((*offs + n) > data_len)
741 		return false;
742 	if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn))
743 		return false;
744 	(*offs) += n;
745 	return true;
746 }
747 
748 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr)
749 {
750 	struct bignum **bn = attr;
751 	struct bignum **src_bn = src_attr;
752 
753 	crypto_bignum_copy(*bn, *src_bn);
754 	return TEE_SUCCESS;
755 }
756 
757 static void op_attr_bignum_clear(void *attr)
758 {
759 	struct bignum **bn = attr;
760 
761 	crypto_bignum_clear(*bn);
762 }
763 
764 static void op_attr_bignum_free(void *attr)
765 {
766 	struct bignum **bn = attr;
767 
768 	crypto_bignum_free(*bn);
769 	*bn = NULL;
770 }
771 
772 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer,
773 					  size_t size)
774 {
775 	uint32_t *v = attr;
776 
777 	if (size != sizeof(uint32_t) * 2)
778 		return TEE_ERROR_GENERIC; /* "can't happen */
779 
780 	/* Note that only the first value is copied */
781 	memcpy(v, buffer, sizeof(uint32_t));
782 	return TEE_SUCCESS;
783 }
784 
785 static TEE_Result op_attr_value_to_user(void *attr,
786 					struct tee_ta_session *sess __unused,
787 					void *buffer, uint64_t *size)
788 {
789 	TEE_Result res;
790 	uint32_t *v = attr;
791 	uint64_t s;
792 	uint32_t value[2] = { *v };
793 	uint64_t req_size = sizeof(value);
794 
795 	res = copy_from_user(&s, size, sizeof(s));
796 	if (res != TEE_SUCCESS)
797 		return res;
798 
799 	if (s < req_size || !buffer)
800 		return TEE_ERROR_SHORT_BUFFER;
801 
802 	return copy_to_user(buffer, value, req_size);
803 }
804 
805 static TEE_Result op_attr_value_to_binary(void *attr, void *data,
806 					  size_t data_len, size_t *offs)
807 {
808 	uint32_t *v = attr;
809 
810 	return op_u32_to_binary_helper(*v, data, data_len, offs);
811 }
812 
813 static bool op_attr_value_from_binary(void *attr, const void *data,
814 				      size_t data_len, size_t *offs)
815 {
816 	uint32_t *v = attr;
817 
818 	return op_u32_from_binary_helper(v, data, data_len, offs);
819 }
820 
821 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr)
822 {
823 	uint32_t *v = attr;
824 	uint32_t *src_v = src_attr;
825 
826 	*v = *src_v;
827 	return TEE_SUCCESS;
828 }
829 
830 static void op_attr_value_clear(void *attr)
831 {
832 	uint32_t *v = attr;
833 
834 	*v = 0;
835 }
836 
837 static const struct attr_ops attr_ops[] = {
838 	[ATTR_OPS_INDEX_SECRET] = {
839 		.from_user = op_attr_secret_value_from_user,
840 		.to_user = op_attr_secret_value_to_user,
841 		.to_binary = op_attr_secret_value_to_binary,
842 		.from_binary = op_attr_secret_value_from_binary,
843 		.from_obj = op_attr_secret_value_from_obj,
844 		.free = op_attr_secret_value_clear, /* not a typo */
845 		.clear = op_attr_secret_value_clear,
846 	},
847 	[ATTR_OPS_INDEX_BIGNUM] = {
848 		.from_user = op_attr_bignum_from_user,
849 		.to_user = op_attr_bignum_to_user,
850 		.to_binary = op_attr_bignum_to_binary,
851 		.from_binary = op_attr_bignum_from_binary,
852 		.from_obj = op_attr_bignum_from_obj,
853 		.free = op_attr_bignum_free,
854 		.clear = op_attr_bignum_clear,
855 	},
856 	[ATTR_OPS_INDEX_VALUE] = {
857 		.from_user = op_attr_value_from_user,
858 		.to_user = op_attr_value_to_user,
859 		.to_binary = op_attr_value_to_binary,
860 		.from_binary = op_attr_value_from_binary,
861 		.from_obj = op_attr_value_from_obj,
862 		.free = op_attr_value_clear, /* not a typo */
863 		.clear = op_attr_value_clear,
864 	},
865 };
866 
867 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src)
868 {
869 	uint64_t d = 0;
870 	TEE_Result res = copy_from_user(&d, src, sizeof(d));
871 
872 	/*
873 	 * On 32-bit systems a size_t can't hold a uint64_t so we need to
874 	 * check that the value isn't too large.
875 	 */
876 	if (!res && ADD_OVERFLOW(0, d, dst))
877 		return TEE_ERROR_OVERFLOW;
878 
879 	return res;
880 }
881 
882 static TEE_Result put_user_u64(uint64_t *dst, size_t value)
883 {
884 	uint64_t v = value;
885 
886 	return copy_to_user(dst, &v, sizeof(v));
887 }
888 
889 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info)
890 {
891 	TEE_Result res;
892 	struct tee_ta_session *sess;
893 	struct tee_obj *o;
894 
895 	res = tee_ta_get_current_session(&sess);
896 	if (res != TEE_SUCCESS)
897 		goto exit;
898 
899 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
900 			  uref_to_vaddr(obj), &o);
901 	if (res != TEE_SUCCESS)
902 		goto exit;
903 
904 	res = copy_to_user_private(info, &o->info, sizeof(o->info));
905 
906 exit:
907 	return res;
908 }
909 
910 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj,
911 			unsigned long usage)
912 {
913 	TEE_Result res;
914 	struct tee_ta_session *sess;
915 	struct tee_obj *o;
916 
917 	res = tee_ta_get_current_session(&sess);
918 	if (res != TEE_SUCCESS)
919 		goto exit;
920 
921 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
922 	if (res != TEE_SUCCESS)
923 		goto exit;
924 
925 	o->info.objectUsage &= usage;
926 
927 exit:
928 	return res;
929 }
930 
931 static int tee_svc_cryp_obj_find_type_attr_idx(
932 		uint32_t attr_id,
933 		const struct tee_cryp_obj_type_props *type_props)
934 {
935 	size_t n;
936 
937 	for (n = 0; n < type_props->num_type_attrs; n++) {
938 		if (attr_id == type_props->type_attrs[n].attr_id)
939 			return n;
940 	}
941 	return -1;
942 }
943 
944 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props(
945 		TEE_ObjectType obj_type)
946 {
947 	size_t n;
948 
949 	for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) {
950 		if (tee_cryp_obj_props[n].obj_type == obj_type)
951 			return tee_cryp_obj_props + n;
952 	}
953 
954 	return NULL;
955 }
956 
957 /* Set an attribute on an object */
958 static void set_attribute(struct tee_obj *o,
959 			  const struct tee_cryp_obj_type_props *props,
960 			  uint32_t attr)
961 {
962 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
963 
964 	if (idx < 0)
965 		return;
966 	o->have_attrs |= BIT(idx);
967 }
968 
969 /* Get an attribute on an object */
970 static uint32_t get_attribute(const struct tee_obj *o,
971 			      const struct tee_cryp_obj_type_props *props,
972 			      uint32_t attr)
973 {
974 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
975 
976 	if (idx < 0)
977 		return 0;
978 	return o->have_attrs & BIT(idx);
979 }
980 
981 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id,
982 			void *buffer, uint64_t *size)
983 {
984 	TEE_Result res;
985 	struct tee_ta_session *sess;
986 	struct tee_obj *o;
987 	const struct tee_cryp_obj_type_props *type_props;
988 	int idx;
989 	const struct attr_ops *ops;
990 	void *attr;
991 
992 	res = tee_ta_get_current_session(&sess);
993 	if (res != TEE_SUCCESS)
994 		return res;
995 
996 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
997 	if (res != TEE_SUCCESS)
998 		return TEE_ERROR_ITEM_NOT_FOUND;
999 
1000 	/* Check that the object is initialized */
1001 	if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED))
1002 		return TEE_ERROR_BAD_PARAMETERS;
1003 
1004 	/* Check that getting the attribute is allowed */
1005 	if (!(attr_id & TEE_ATTR_BIT_PROTECTED) &&
1006 	    !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE))
1007 		return TEE_ERROR_BAD_PARAMETERS;
1008 
1009 	type_props = tee_svc_find_type_props(o->info.objectType);
1010 	if (!type_props) {
1011 		/* Unknown object type, "can't happen" */
1012 		return TEE_ERROR_BAD_STATE;
1013 	}
1014 
1015 	idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props);
1016 	if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0))
1017 		return TEE_ERROR_ITEM_NOT_FOUND;
1018 
1019 	ops = attr_ops + type_props->type_attrs[idx].ops_index;
1020 	attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs;
1021 	return ops->to_user(attr, sess, buffer, size);
1022 }
1023 
1024 void tee_obj_attr_free(struct tee_obj *o)
1025 {
1026 	const struct tee_cryp_obj_type_props *tp;
1027 	size_t n;
1028 
1029 	if (!o->attr)
1030 		return;
1031 	tp = tee_svc_find_type_props(o->info.objectType);
1032 	if (!tp)
1033 		return;
1034 
1035 	for (n = 0; n < tp->num_type_attrs; n++) {
1036 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1037 
1038 		attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs);
1039 	}
1040 }
1041 
1042 void tee_obj_attr_clear(struct tee_obj *o)
1043 {
1044 	const struct tee_cryp_obj_type_props *tp;
1045 	size_t n;
1046 
1047 	if (!o->attr)
1048 		return;
1049 	tp = tee_svc_find_type_props(o->info.objectType);
1050 	if (!tp)
1051 		return;
1052 
1053 	for (n = 0; n < tp->num_type_attrs; n++) {
1054 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1055 
1056 		attr_ops[ta->ops_index].clear((uint8_t *)o->attr +
1057 					      ta->raw_offs);
1058 	}
1059 }
1060 
1061 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data,
1062 				  size_t *data_len)
1063 {
1064 	const struct tee_cryp_obj_type_props *tp;
1065 	size_t n;
1066 	size_t offs = 0;
1067 	size_t len = data ? *data_len : 0;
1068 	TEE_Result res;
1069 
1070 	if (o->info.objectType == TEE_TYPE_DATA) {
1071 		*data_len = 0;
1072 		return TEE_SUCCESS; /* pure data object */
1073 	}
1074 	if (!o->attr)
1075 		return TEE_ERROR_BAD_STATE;
1076 	tp = tee_svc_find_type_props(o->info.objectType);
1077 	if (!tp)
1078 		return TEE_ERROR_BAD_STATE;
1079 
1080 	for (n = 0; n < tp->num_type_attrs; n++) {
1081 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1082 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1083 
1084 		res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs);
1085 		if (res != TEE_SUCCESS)
1086 			return res;
1087 	}
1088 
1089 	*data_len = offs;
1090 	if (data && offs > len)
1091 		return TEE_ERROR_SHORT_BUFFER;
1092 	return TEE_SUCCESS;
1093 }
1094 
1095 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data,
1096 				    size_t data_len)
1097 {
1098 	const struct tee_cryp_obj_type_props *tp;
1099 	size_t n;
1100 	size_t offs = 0;
1101 
1102 	if (o->info.objectType == TEE_TYPE_DATA)
1103 		return TEE_SUCCESS; /* pure data object */
1104 	if (!o->attr)
1105 		return TEE_ERROR_BAD_STATE;
1106 	tp = tee_svc_find_type_props(o->info.objectType);
1107 	if (!tp)
1108 		return TEE_ERROR_BAD_STATE;
1109 
1110 	for (n = 0; n < tp->num_type_attrs; n++) {
1111 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1112 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1113 
1114 		if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len,
1115 							 &offs))
1116 			return TEE_ERROR_CORRUPT_OBJECT;
1117 	}
1118 	return TEE_SUCCESS;
1119 }
1120 
1121 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src)
1122 {
1123 	TEE_Result res;
1124 	const struct tee_cryp_obj_type_props *tp;
1125 	const struct tee_cryp_obj_type_attrs *ta;
1126 	size_t n;
1127 	uint32_t have_attrs = 0;
1128 	void *attr;
1129 	void *src_attr;
1130 
1131 	if (o->info.objectType == TEE_TYPE_DATA)
1132 		return TEE_SUCCESS; /* pure data object */
1133 	if (!o->attr)
1134 		return TEE_ERROR_BAD_STATE;
1135 	tp = tee_svc_find_type_props(o->info.objectType);
1136 	if (!tp)
1137 		return TEE_ERROR_BAD_STATE;
1138 
1139 	if (o->info.objectType == src->info.objectType) {
1140 		have_attrs = src->have_attrs;
1141 		for (n = 0; n < tp->num_type_attrs; n++) {
1142 			ta = tp->type_attrs + n;
1143 			attr = (uint8_t *)o->attr + ta->raw_offs;
1144 			src_attr = (uint8_t *)src->attr + ta->raw_offs;
1145 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1146 			if (res != TEE_SUCCESS)
1147 				return res;
1148 		}
1149 	} else {
1150 		const struct tee_cryp_obj_type_props *tp_src;
1151 		int idx;
1152 
1153 		if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) {
1154 			if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR)
1155 				return TEE_ERROR_BAD_PARAMETERS;
1156 		} else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) {
1157 			if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR)
1158 				return TEE_ERROR_BAD_PARAMETERS;
1159 		} else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) {
1160 			if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR)
1161 				return TEE_ERROR_BAD_PARAMETERS;
1162 		} else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) {
1163 			if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR)
1164 				return TEE_ERROR_BAD_PARAMETERS;
1165 		} else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) {
1166 			if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR)
1167 				return TEE_ERROR_BAD_PARAMETERS;
1168 		} else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) {
1169 			if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR)
1170 				return TEE_ERROR_BAD_PARAMETERS;
1171 		} else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) {
1172 			if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR)
1173 				return TEE_ERROR_BAD_PARAMETERS;
1174 		} else {
1175 			return TEE_ERROR_BAD_PARAMETERS;
1176 		}
1177 
1178 		tp_src = tee_svc_find_type_props(src->info.objectType);
1179 		if (!tp_src)
1180 			return TEE_ERROR_BAD_STATE;
1181 
1182 		have_attrs = BIT32(tp->num_type_attrs) - 1;
1183 		for (n = 0; n < tp->num_type_attrs; n++) {
1184 			ta = tp->type_attrs + n;
1185 
1186 			idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id,
1187 								  tp_src);
1188 			if (idx < 0)
1189 				return TEE_ERROR_BAD_STATE;
1190 
1191 			attr = (uint8_t *)o->attr + ta->raw_offs;
1192 			src_attr = (uint8_t *)src->attr +
1193 				   tp_src->type_attrs[idx].raw_offs;
1194 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1195 			if (res != TEE_SUCCESS)
1196 				return res;
1197 		}
1198 	}
1199 
1200 	o->have_attrs = have_attrs;
1201 	return TEE_SUCCESS;
1202 }
1203 
1204 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type,
1205 			    size_t max_key_size)
1206 {
1207 	TEE_Result res = TEE_SUCCESS;
1208 	const struct tee_cryp_obj_type_props *type_props;
1209 
1210 	/* Can only set type for newly allocated objs */
1211 	if (o->attr)
1212 		return TEE_ERROR_BAD_STATE;
1213 
1214 	/*
1215 	 * Verify that maxKeySize is supported and find out how
1216 	 * much should be allocated.
1217 	 */
1218 
1219 	if (obj_type == TEE_TYPE_DATA) {
1220 		if (max_key_size)
1221 			return TEE_ERROR_NOT_SUPPORTED;
1222 	} else {
1223 		/* Find description of object */
1224 		type_props = tee_svc_find_type_props(obj_type);
1225 		if (!type_props)
1226 			return TEE_ERROR_NOT_SUPPORTED;
1227 
1228 		/* Check that maxKeySize follows restrictions */
1229 		if (max_key_size % type_props->quanta != 0)
1230 			return TEE_ERROR_NOT_SUPPORTED;
1231 		if (max_key_size < type_props->min_size)
1232 			return TEE_ERROR_NOT_SUPPORTED;
1233 		if (max_key_size > type_props->max_size)
1234 			return TEE_ERROR_NOT_SUPPORTED;
1235 
1236 		o->attr = calloc(1, type_props->alloc_size);
1237 		if (!o->attr)
1238 			return TEE_ERROR_OUT_OF_MEMORY;
1239 	}
1240 
1241 	/* If we have a key structure, pre-allocate the bignums inside */
1242 	switch (obj_type) {
1243 	case TEE_TYPE_RSA_PUBLIC_KEY:
1244 		res = crypto_acipher_alloc_rsa_public_key(o->attr,
1245 							  max_key_size);
1246 		break;
1247 	case TEE_TYPE_RSA_KEYPAIR:
1248 		res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size);
1249 		break;
1250 	case TEE_TYPE_DSA_PUBLIC_KEY:
1251 		res = crypto_acipher_alloc_dsa_public_key(o->attr,
1252 							  max_key_size);
1253 		break;
1254 	case TEE_TYPE_DSA_KEYPAIR:
1255 		res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size);
1256 		break;
1257 	case TEE_TYPE_DH_KEYPAIR:
1258 		res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size);
1259 		break;
1260 	case TEE_TYPE_ECDSA_PUBLIC_KEY:
1261 	case TEE_TYPE_ECDH_PUBLIC_KEY:
1262 	case TEE_TYPE_SM2_DSA_PUBLIC_KEY:
1263 	case TEE_TYPE_SM2_PKE_PUBLIC_KEY:
1264 	case TEE_TYPE_SM2_KEP_PUBLIC_KEY:
1265 		res = crypto_acipher_alloc_ecc_public_key(o->attr,
1266 							  max_key_size);
1267 		break;
1268 	case TEE_TYPE_ECDSA_KEYPAIR:
1269 	case TEE_TYPE_ECDH_KEYPAIR:
1270 	case TEE_TYPE_SM2_DSA_KEYPAIR:
1271 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1272 	case TEE_TYPE_SM2_KEP_KEYPAIR:
1273 		res = crypto_acipher_alloc_ecc_keypair(o->attr, max_key_size);
1274 		break;
1275 	default:
1276 		if (obj_type != TEE_TYPE_DATA) {
1277 			struct tee_cryp_obj_secret *key = o->attr;
1278 
1279 			key->alloc_size = type_props->alloc_size -
1280 					  sizeof(*key);
1281 		}
1282 		break;
1283 	}
1284 
1285 	if (res != TEE_SUCCESS)
1286 		return res;
1287 
1288 	o->info.objectType = obj_type;
1289 	o->info.maxKeySize = max_key_size;
1290 	o->info.objectUsage = TEE_USAGE_DEFAULT;
1291 
1292 	return TEE_SUCCESS;
1293 }
1294 
1295 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type,
1296 			unsigned long max_key_size, uint32_t *obj)
1297 {
1298 	TEE_Result res;
1299 	struct tee_ta_session *sess;
1300 	struct tee_obj *o;
1301 
1302 	res = tee_ta_get_current_session(&sess);
1303 	if (res != TEE_SUCCESS)
1304 		return res;
1305 
1306 	o = tee_obj_alloc();
1307 	if (!o)
1308 		return TEE_ERROR_OUT_OF_MEMORY;
1309 
1310 	res = tee_obj_set_type(o, obj_type, max_key_size);
1311 	if (res != TEE_SUCCESS) {
1312 		tee_obj_free(o);
1313 		return res;
1314 	}
1315 
1316 	tee_obj_add(to_user_ta_ctx(sess->ctx), o);
1317 
1318 	res = copy_kaddr_to_uref(obj, o);
1319 	if (res != TEE_SUCCESS)
1320 		tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1321 	return res;
1322 }
1323 
1324 TEE_Result syscall_cryp_obj_close(unsigned long obj)
1325 {
1326 	TEE_Result res;
1327 	struct tee_ta_session *sess;
1328 	struct tee_obj *o;
1329 
1330 	res = tee_ta_get_current_session(&sess);
1331 	if (res != TEE_SUCCESS)
1332 		return res;
1333 
1334 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1335 	if (res != TEE_SUCCESS)
1336 		return res;
1337 
1338 	/*
1339 	 * If it's busy it's used by an operation, a client should never have
1340 	 * this handle.
1341 	 */
1342 	if (o->busy)
1343 		return TEE_ERROR_ITEM_NOT_FOUND;
1344 
1345 	tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1346 	return TEE_SUCCESS;
1347 }
1348 
1349 TEE_Result syscall_cryp_obj_reset(unsigned long obj)
1350 {
1351 	TEE_Result res;
1352 	struct tee_ta_session *sess;
1353 	struct tee_obj *o;
1354 
1355 	res = tee_ta_get_current_session(&sess);
1356 	if (res != TEE_SUCCESS)
1357 		return res;
1358 
1359 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1360 	if (res != TEE_SUCCESS)
1361 		return res;
1362 
1363 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) {
1364 		tee_obj_attr_clear(o);
1365 		o->info.keySize = 0;
1366 		o->info.objectUsage = TEE_USAGE_DEFAULT;
1367 	} else {
1368 		return TEE_ERROR_BAD_PARAMETERS;
1369 	}
1370 
1371 	/* the object is no more initialized */
1372 	o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;
1373 
1374 	return TEE_SUCCESS;
1375 }
1376 
1377 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,
1378 			const struct utee_attribute *usr_attrs,
1379 			uint32_t attr_count, TEE_Attribute *attrs)
1380 {
1381 	TEE_Result res = TEE_SUCCESS;
1382 	size_t size = 0;
1383 	uint32_t n = 0;
1384 
1385 	if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size))
1386 		return TEE_ERROR_OVERFLOW;
1387 
1388 	res = tee_mmu_check_access_rights(&utc->uctx,
1389 					  TEE_MEMORY_ACCESS_READ |
1390 					  TEE_MEMORY_ACCESS_ANY_OWNER,
1391 					  (uaddr_t)usr_attrs, size);
1392 	if (res != TEE_SUCCESS)
1393 		return res;
1394 
1395 	for (n = 0; n < attr_count; n++) {
1396 		attrs[n].attributeID = usr_attrs[n].attribute_id;
1397 		if (attrs[n].attributeID & TEE_ATTR_BIT_VALUE) {
1398 			attrs[n].content.value.a = usr_attrs[n].a;
1399 			attrs[n].content.value.b = usr_attrs[n].b;
1400 		} else {
1401 			uintptr_t buf = usr_attrs[n].a;
1402 			size_t len = usr_attrs[n].b;
1403 			uint32_t flags = TEE_MEMORY_ACCESS_READ |
1404 					 TEE_MEMORY_ACCESS_ANY_OWNER;
1405 
1406 			res = tee_mmu_check_access_rights(&utc->uctx, flags,
1407 							  buf, len);
1408 			if (res != TEE_SUCCESS)
1409 				return res;
1410 			attrs[n].content.ref.buffer = (void *)buf;
1411 			attrs[n].content.ref.length = len;
1412 		}
1413 	}
1414 
1415 	return TEE_SUCCESS;
1416 }
1417 
1418 enum attr_usage {
1419 	ATTR_USAGE_POPULATE,
1420 	ATTR_USAGE_GENERATE_KEY
1421 };
1422 
1423 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage,
1424 					  const struct tee_cryp_obj_type_props
1425 						*type_props,
1426 					  const TEE_Attribute *attrs,
1427 					  uint32_t attr_count)
1428 {
1429 	uint32_t required_flag;
1430 	uint32_t opt_flag;
1431 	bool all_opt_needed;
1432 	uint32_t req_attrs = 0;
1433 	uint32_t opt_grp_attrs = 0;
1434 	uint32_t attrs_found = 0;
1435 	size_t n;
1436 	uint32_t bit;
1437 	uint32_t flags;
1438 	int idx;
1439 
1440 	if (usage == ATTR_USAGE_POPULATE) {
1441 		required_flag = TEE_TYPE_ATTR_REQUIRED;
1442 		opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP;
1443 		all_opt_needed = true;
1444 	} else {
1445 		required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ;
1446 		opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT;
1447 		all_opt_needed = false;
1448 	}
1449 
1450 	/*
1451 	 * First find out which attributes are required and which belong to
1452 	 * the optional group
1453 	 */
1454 	for (n = 0; n < type_props->num_type_attrs; n++) {
1455 		bit = 1 << n;
1456 		flags = type_props->type_attrs[n].flags;
1457 
1458 		if (flags & required_flag)
1459 			req_attrs |= bit;
1460 		else if (flags & opt_flag)
1461 			opt_grp_attrs |= bit;
1462 	}
1463 
1464 	/*
1465 	 * Verify that all required attributes are in place and
1466 	 * that the same attribute isn't repeated.
1467 	 */
1468 	for (n = 0; n < attr_count; n++) {
1469 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1470 							attrs[n].attributeID,
1471 							type_props);
1472 
1473 		/* attribute not defined in current object type */
1474 		if (idx < 0)
1475 			return TEE_ERROR_ITEM_NOT_FOUND;
1476 
1477 		bit = 1 << idx;
1478 
1479 		/* attribute not repeated */
1480 		if ((attrs_found & bit) != 0)
1481 			return TEE_ERROR_ITEM_NOT_FOUND;
1482 
1483 		attrs_found |= bit;
1484 	}
1485 	/* Required attribute missing */
1486 	if ((attrs_found & req_attrs) != req_attrs)
1487 		return TEE_ERROR_ITEM_NOT_FOUND;
1488 
1489 	/*
1490 	 * If the flag says that "if one of the optional attributes are included
1491 	 * all of them has to be included" this must be checked.
1492 	 */
1493 	if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 &&
1494 	    (attrs_found & opt_grp_attrs) != opt_grp_attrs)
1495 		return TEE_ERROR_ITEM_NOT_FOUND;
1496 
1497 	return TEE_SUCCESS;
1498 }
1499 
1500 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size)
1501 {
1502 	switch (curve) {
1503 	case TEE_ECC_CURVE_NIST_P192:
1504 		*key_size = 192;
1505 		break;
1506 	case TEE_ECC_CURVE_NIST_P224:
1507 		*key_size = 224;
1508 		break;
1509 	case TEE_ECC_CURVE_NIST_P256:
1510 		*key_size = 256;
1511 		break;
1512 	case TEE_ECC_CURVE_NIST_P384:
1513 		*key_size = 384;
1514 		break;
1515 	case TEE_ECC_CURVE_NIST_P521:
1516 		*key_size = 521;
1517 		break;
1518 	case TEE_ECC_CURVE_SM2:
1519 		*key_size = 256;
1520 		break;
1521 	default:
1522 		return TEE_ERROR_NOT_SUPPORTED;
1523 	}
1524 
1525 	return TEE_SUCCESS;
1526 }
1527 
1528 static TEE_Result tee_svc_cryp_obj_populate_type(
1529 		struct tee_obj *o,
1530 		const struct tee_cryp_obj_type_props *type_props,
1531 		const TEE_Attribute *attrs,
1532 		uint32_t attr_count)
1533 {
1534 	TEE_Result res;
1535 	uint32_t have_attrs = 0;
1536 	size_t obj_size = 0;
1537 	size_t n;
1538 	int idx;
1539 	const struct attr_ops *ops;
1540 	void *attr;
1541 
1542 	for (n = 0; n < attr_count; n++) {
1543 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1544 							attrs[n].attributeID,
1545 							type_props);
1546 		/* attribute not defined in current object type */
1547 		if (idx < 0)
1548 			return TEE_ERROR_ITEM_NOT_FOUND;
1549 
1550 		have_attrs |= BIT32(idx);
1551 		ops = attr_ops + type_props->type_attrs[idx].ops_index;
1552 		attr = (uint8_t *)o->attr +
1553 		       type_props->type_attrs[idx].raw_offs;
1554 		if (attrs[n].attributeID & TEE_ATTR_BIT_VALUE)
1555 			res = ops->from_user(attr, &attrs[n].content.value,
1556 					     sizeof(attrs[n].content.value));
1557 		else
1558 			res = ops->from_user(attr, attrs[n].content.ref.buffer,
1559 					     attrs[n].content.ref.length);
1560 		if (res != TEE_SUCCESS)
1561 			return res;
1562 
1563 		/*
1564 		 * First attr_idx signifies the attribute that gives the size
1565 		 * of the object
1566 		 */
1567 		if (type_props->type_attrs[idx].flags &
1568 		    TEE_TYPE_ATTR_SIZE_INDICATOR) {
1569 			/*
1570 			 * For ECDSA/ECDH we need to translate curve into
1571 			 * object size
1572 			 */
1573 			if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) {
1574 				res = get_ec_key_size(attrs[n].content.value.a,
1575 						      &obj_size);
1576 				if (res != TEE_SUCCESS)
1577 					return res;
1578 			} else {
1579 				obj_size += (attrs[n].content.ref.length * 8);
1580 			}
1581 		}
1582 	}
1583 
1584 	/*
1585 	 * We have to do it like this because the parity bits aren't counted
1586 	 * when telling the size of the key in bits.
1587 	 */
1588 	if (o->info.objectType == TEE_TYPE_DES ||
1589 	    o->info.objectType == TEE_TYPE_DES3)
1590 		obj_size -= obj_size / 8; /* Exclude parity in size of key */
1591 
1592 	o->have_attrs = have_attrs;
1593 	o->info.keySize = obj_size;
1594 
1595 	return TEE_SUCCESS;
1596 }
1597 
1598 TEE_Result syscall_cryp_obj_populate(unsigned long obj,
1599 			struct utee_attribute *usr_attrs,
1600 			unsigned long attr_count)
1601 {
1602 	TEE_Result res;
1603 	struct tee_ta_session *sess;
1604 	struct tee_obj *o;
1605 	const struct tee_cryp_obj_type_props *type_props;
1606 	TEE_Attribute *attrs = NULL;
1607 
1608 	res = tee_ta_get_current_session(&sess);
1609 	if (res != TEE_SUCCESS)
1610 		return res;
1611 
1612 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1613 	if (res != TEE_SUCCESS)
1614 		return res;
1615 
1616 	/* Must be a transient object */
1617 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1618 		return TEE_ERROR_BAD_PARAMETERS;
1619 
1620 	/* Must not be initialized already */
1621 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1622 		return TEE_ERROR_BAD_PARAMETERS;
1623 
1624 	type_props = tee_svc_find_type_props(o->info.objectType);
1625 	if (!type_props)
1626 		return TEE_ERROR_NOT_IMPLEMENTED;
1627 
1628 	size_t alloc_size = 0;
1629 
1630 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size))
1631 		return TEE_ERROR_OVERFLOW;
1632 
1633 	attrs = malloc(alloc_size);
1634 	if (!attrs)
1635 		return TEE_ERROR_OUT_OF_MEMORY;
1636 
1637 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
1638 			    attrs);
1639 	if (res != TEE_SUCCESS)
1640 		goto out;
1641 
1642 	res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
1643 				      attrs, attr_count);
1644 	if (res != TEE_SUCCESS)
1645 		goto out;
1646 
1647 	res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
1648 	if (res == TEE_SUCCESS)
1649 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1650 
1651 out:
1652 	free_wipe(attrs);
1653 	return res;
1654 }
1655 
1656 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src)
1657 {
1658 	TEE_Result res;
1659 	struct tee_ta_session *sess;
1660 	struct tee_obj *dst_o;
1661 	struct tee_obj *src_o;
1662 
1663 	res = tee_ta_get_current_session(&sess);
1664 	if (res != TEE_SUCCESS)
1665 		return res;
1666 
1667 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1668 			  uref_to_vaddr(dst), &dst_o);
1669 	if (res != TEE_SUCCESS)
1670 		return res;
1671 
1672 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1673 			  uref_to_vaddr(src), &src_o);
1674 	if (res != TEE_SUCCESS)
1675 		return res;
1676 
1677 	if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1678 		return TEE_ERROR_BAD_PARAMETERS;
1679 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1680 		return TEE_ERROR_BAD_PARAMETERS;
1681 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1682 		return TEE_ERROR_BAD_PARAMETERS;
1683 
1684 	res = tee_obj_attr_copy_from(dst_o, src_o);
1685 	if (res != TEE_SUCCESS)
1686 		return res;
1687 
1688 	dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1689 	dst_o->info.keySize = src_o->info.keySize;
1690 	dst_o->info.objectUsage = src_o->info.objectUsage;
1691 	return TEE_SUCCESS;
1692 }
1693 
1694 static TEE_Result tee_svc_obj_generate_key_rsa(
1695 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1696 	uint32_t key_size,
1697 	const TEE_Attribute *params, uint32_t param_count)
1698 {
1699 	TEE_Result res;
1700 	struct rsa_keypair *key = o->attr;
1701 	uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537);
1702 
1703 	/* Copy the present attributes into the obj before starting */
1704 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1705 					     param_count);
1706 	if (res != TEE_SUCCESS)
1707 		return res;
1708 	if (!get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT))
1709 		crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e);
1710 	res = crypto_acipher_gen_rsa_key(key, key_size);
1711 	if (res != TEE_SUCCESS)
1712 		return res;
1713 
1714 	/* Set bits for all known attributes for this object type */
1715 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1716 
1717 	return TEE_SUCCESS;
1718 }
1719 
1720 static TEE_Result tee_svc_obj_generate_key_dsa(
1721 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1722 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1723 {
1724 	TEE_Result res;
1725 
1726 	/* Copy the present attributes into the obj before starting */
1727 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1728 					     param_count);
1729 	if (res != TEE_SUCCESS)
1730 		return res;
1731 
1732 	res = crypto_acipher_gen_dsa_key(o->attr, key_size);
1733 	if (res != TEE_SUCCESS)
1734 		return res;
1735 
1736 	/* Set bits for all known attributes for this object type */
1737 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1738 
1739 	return TEE_SUCCESS;
1740 }
1741 
1742 static TEE_Result tee_svc_obj_generate_key_dh(
1743 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1744 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1745 {
1746 	TEE_Result res;
1747 	struct dh_keypair *tee_dh_key;
1748 	struct bignum *dh_q = NULL;
1749 	uint32_t dh_xbits = 0;
1750 
1751 	/* Copy the present attributes into the obj before starting */
1752 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1753 					     param_count);
1754 	if (res != TEE_SUCCESS)
1755 		return res;
1756 
1757 	tee_dh_key = (struct dh_keypair *)o->attr;
1758 
1759 	if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME))
1760 		dh_q = tee_dh_key->q;
1761 	if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS))
1762 		dh_xbits = tee_dh_key->xbits;
1763 	res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size);
1764 	if (res != TEE_SUCCESS)
1765 		return res;
1766 
1767 	/* Set bits for the generated public and private key */
1768 	set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE);
1769 	set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE);
1770 	set_attribute(o, type_props, TEE_ATTR_DH_X_BITS);
1771 	return TEE_SUCCESS;
1772 }
1773 
1774 static TEE_Result tee_svc_obj_generate_key_ecc(
1775 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1776 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1777 {
1778 	TEE_Result res;
1779 	struct ecc_keypair *tee_ecc_key;
1780 
1781 	/* Copy the present attributes into the obj before starting */
1782 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1783 					     param_count);
1784 	if (res != TEE_SUCCESS)
1785 		return res;
1786 
1787 	tee_ecc_key = (struct ecc_keypair *)o->attr;
1788 
1789 	res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size);
1790 	if (res != TEE_SUCCESS)
1791 		return res;
1792 
1793 	/* Set bits for the generated public and private key */
1794 	set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE);
1795 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X);
1796 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y);
1797 	set_attribute(o, type_props, TEE_ATTR_ECC_CURVE);
1798 	return TEE_SUCCESS;
1799 }
1800 
1801 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size,
1802 			const struct utee_attribute *usr_params,
1803 			unsigned long param_count)
1804 {
1805 	TEE_Result res;
1806 	struct tee_ta_session *sess;
1807 	const struct tee_cryp_obj_type_props *type_props;
1808 	struct tee_obj *o;
1809 	struct tee_cryp_obj_secret *key;
1810 	size_t byte_size;
1811 	TEE_Attribute *params = NULL;
1812 
1813 	res = tee_ta_get_current_session(&sess);
1814 	if (res != TEE_SUCCESS)
1815 		return res;
1816 
1817 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1818 	if (res != TEE_SUCCESS)
1819 		return res;
1820 
1821 	/* Must be a transient object */
1822 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1823 		return TEE_ERROR_BAD_STATE;
1824 
1825 	/* Must not be initialized already */
1826 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1827 		return TEE_ERROR_BAD_STATE;
1828 
1829 	/* Find description of object */
1830 	type_props = tee_svc_find_type_props(o->info.objectType);
1831 	if (!type_props)
1832 		return TEE_ERROR_NOT_SUPPORTED;
1833 
1834 	/* Check that maxKeySize follows restrictions */
1835 	if (key_size % type_props->quanta != 0)
1836 		return TEE_ERROR_NOT_SUPPORTED;
1837 	if (key_size < type_props->min_size)
1838 		return TEE_ERROR_NOT_SUPPORTED;
1839 	if (key_size > type_props->max_size)
1840 		return TEE_ERROR_NOT_SUPPORTED;
1841 
1842 	size_t alloc_size = 0;
1843 
1844 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
1845 		return TEE_ERROR_OVERFLOW;
1846 
1847 	params = malloc(alloc_size);
1848 	if (!params)
1849 		return TEE_ERROR_OUT_OF_MEMORY;
1850 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count,
1851 			    params);
1852 	if (res != TEE_SUCCESS)
1853 		goto out;
1854 
1855 	res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props,
1856 				      params, param_count);
1857 	if (res != TEE_SUCCESS)
1858 		goto out;
1859 
1860 	switch (o->info.objectType) {
1861 	case TEE_TYPE_AES:
1862 	case TEE_TYPE_DES:
1863 	case TEE_TYPE_DES3:
1864 	case TEE_TYPE_SM4:
1865 	case TEE_TYPE_HMAC_MD5:
1866 	case TEE_TYPE_HMAC_SHA1:
1867 	case TEE_TYPE_HMAC_SHA224:
1868 	case TEE_TYPE_HMAC_SHA256:
1869 	case TEE_TYPE_HMAC_SHA384:
1870 	case TEE_TYPE_HMAC_SHA512:
1871 	case TEE_TYPE_HMAC_SM3:
1872 	case TEE_TYPE_GENERIC_SECRET:
1873 		byte_size = key_size / 8;
1874 
1875 		/*
1876 		 * We have to do it like this because the parity bits aren't
1877 		 * counted when telling the size of the key in bits.
1878 		 */
1879 		if (o->info.objectType == TEE_TYPE_DES ||
1880 		    o->info.objectType == TEE_TYPE_DES3) {
1881 			byte_size = (key_size + key_size / 7) / 8;
1882 		}
1883 
1884 		key = (struct tee_cryp_obj_secret *)o->attr;
1885 		if (byte_size > key->alloc_size) {
1886 			res = TEE_ERROR_EXCESS_DATA;
1887 			goto out;
1888 		}
1889 
1890 		res = crypto_rng_read((void *)(key + 1), byte_size);
1891 		if (res != TEE_SUCCESS)
1892 			goto out;
1893 
1894 		key->key_size = byte_size;
1895 
1896 		/* Set bits for all known attributes for this object type */
1897 		o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1898 
1899 		break;
1900 
1901 	case TEE_TYPE_RSA_KEYPAIR:
1902 		res = tee_svc_obj_generate_key_rsa(o, type_props, key_size,
1903 						   params, param_count);
1904 		if (res != TEE_SUCCESS)
1905 			goto out;
1906 		break;
1907 
1908 	case TEE_TYPE_DSA_KEYPAIR:
1909 		res = tee_svc_obj_generate_key_dsa(o, type_props, key_size,
1910 						   params, param_count);
1911 		if (res != TEE_SUCCESS)
1912 			goto out;
1913 		break;
1914 
1915 	case TEE_TYPE_DH_KEYPAIR:
1916 		res = tee_svc_obj_generate_key_dh(o, type_props, key_size,
1917 						  params, param_count);
1918 		if (res != TEE_SUCCESS)
1919 			goto out;
1920 		break;
1921 
1922 	case TEE_TYPE_ECDSA_KEYPAIR:
1923 	case TEE_TYPE_ECDH_KEYPAIR:
1924 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1925 		res = tee_svc_obj_generate_key_ecc(o, type_props, key_size,
1926 						  params, param_count);
1927 		if (res != TEE_SUCCESS)
1928 			goto out;
1929 		break;
1930 
1931 	default:
1932 		res = TEE_ERROR_BAD_FORMAT;
1933 	}
1934 
1935 out:
1936 	free_wipe(params);
1937 	if (res == TEE_SUCCESS) {
1938 		o->info.keySize = key_size;
1939 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1940 	}
1941 	return res;
1942 }
1943 
1944 static TEE_Result tee_svc_cryp_get_state(struct tee_ta_session *sess,
1945 					 uint32_t state_id,
1946 					 struct tee_cryp_state **state)
1947 {
1948 	struct tee_cryp_state *s;
1949 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
1950 
1951 	TAILQ_FOREACH(s, &utc->cryp_states, link) {
1952 		if (state_id == (vaddr_t)s) {
1953 			*state = s;
1954 			return TEE_SUCCESS;
1955 		}
1956 	}
1957 	return TEE_ERROR_BAD_PARAMETERS;
1958 }
1959 
1960 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs)
1961 {
1962 	struct tee_obj *o;
1963 
1964 	if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS)
1965 		tee_obj_close(utc, o);
1966 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS)
1967 		tee_obj_close(utc, o);
1968 
1969 	TAILQ_REMOVE(&utc->cryp_states, cs, link);
1970 	if (cs->ctx_finalize != NULL)
1971 		cs->ctx_finalize(cs->ctx);
1972 
1973 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
1974 	case TEE_OPERATION_CIPHER:
1975 		crypto_cipher_free_ctx(cs->ctx);
1976 		break;
1977 	case TEE_OPERATION_AE:
1978 		crypto_authenc_free_ctx(cs->ctx);
1979 		break;
1980 	case TEE_OPERATION_DIGEST:
1981 		crypto_hash_free_ctx(cs->ctx);
1982 		break;
1983 	case TEE_OPERATION_MAC:
1984 		crypto_mac_free_ctx(cs->ctx);
1985 		break;
1986 	default:
1987 		assert(!cs->ctx);
1988 	}
1989 
1990 	free(cs);
1991 }
1992 
1993 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o,
1994 					      uint32_t algo,
1995 					      TEE_OperationMode mode)
1996 {
1997 	uint32_t req_key_type;
1998 	uint32_t req_key_type2 = 0;
1999 
2000 	switch (TEE_ALG_GET_MAIN_ALG(algo)) {
2001 	case TEE_MAIN_ALGO_MD5:
2002 		req_key_type = TEE_TYPE_HMAC_MD5;
2003 		break;
2004 	case TEE_MAIN_ALGO_SHA1:
2005 		req_key_type = TEE_TYPE_HMAC_SHA1;
2006 		break;
2007 	case TEE_MAIN_ALGO_SHA224:
2008 		req_key_type = TEE_TYPE_HMAC_SHA224;
2009 		break;
2010 	case TEE_MAIN_ALGO_SHA256:
2011 		req_key_type = TEE_TYPE_HMAC_SHA256;
2012 		break;
2013 	case TEE_MAIN_ALGO_SHA384:
2014 		req_key_type = TEE_TYPE_HMAC_SHA384;
2015 		break;
2016 	case TEE_MAIN_ALGO_SHA512:
2017 		req_key_type = TEE_TYPE_HMAC_SHA512;
2018 		break;
2019 	case TEE_MAIN_ALGO_SM3:
2020 		req_key_type = TEE_TYPE_HMAC_SM3;
2021 		break;
2022 	case TEE_MAIN_ALGO_AES:
2023 		req_key_type = TEE_TYPE_AES;
2024 		break;
2025 	case TEE_MAIN_ALGO_DES:
2026 		req_key_type = TEE_TYPE_DES;
2027 		break;
2028 	case TEE_MAIN_ALGO_DES3:
2029 		req_key_type = TEE_TYPE_DES3;
2030 		break;
2031 	case TEE_MAIN_ALGO_SM4:
2032 		req_key_type = TEE_TYPE_SM4;
2033 		break;
2034 	case TEE_MAIN_ALGO_RSA:
2035 		req_key_type = TEE_TYPE_RSA_KEYPAIR;
2036 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2037 			req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY;
2038 		break;
2039 	case TEE_MAIN_ALGO_DSA:
2040 		req_key_type = TEE_TYPE_DSA_KEYPAIR;
2041 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2042 			req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY;
2043 		break;
2044 	case TEE_MAIN_ALGO_DH:
2045 		req_key_type = TEE_TYPE_DH_KEYPAIR;
2046 		break;
2047 	case TEE_MAIN_ALGO_ECDSA:
2048 		req_key_type = TEE_TYPE_ECDSA_KEYPAIR;
2049 		if (mode == TEE_MODE_VERIFY)
2050 			req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY;
2051 		break;
2052 	case TEE_MAIN_ALGO_ECDH:
2053 		req_key_type = TEE_TYPE_ECDH_KEYPAIR;
2054 		break;
2055 	case TEE_MAIN_ALGO_SM2_PKE:
2056 		if (mode == TEE_MODE_ENCRYPT)
2057 			req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY;
2058 		else
2059 			req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR;
2060 		break;
2061 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
2062 		if (mode == TEE_MODE_VERIFY)
2063 			req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY;
2064 		else
2065 			req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR;
2066 		break;
2067 #if defined(CFG_CRYPTO_SM2_KEP)
2068 	case TEE_MAIN_ALGO_SM2_KEP:
2069 		req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR;
2070 		req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY;
2071 		break;
2072 #endif
2073 #if defined(CFG_CRYPTO_HKDF)
2074 	case TEE_MAIN_ALGO_HKDF:
2075 		req_key_type = TEE_TYPE_HKDF_IKM;
2076 		break;
2077 #endif
2078 #if defined(CFG_CRYPTO_CONCAT_KDF)
2079 	case TEE_MAIN_ALGO_CONCAT_KDF:
2080 		req_key_type = TEE_TYPE_CONCAT_KDF_Z;
2081 		break;
2082 #endif
2083 #if defined(CFG_CRYPTO_PBKDF2)
2084 	case TEE_MAIN_ALGO_PBKDF2:
2085 		req_key_type = TEE_TYPE_PBKDF2_PASSWORD;
2086 		break;
2087 #endif
2088 	default:
2089 		return TEE_ERROR_BAD_PARAMETERS;
2090 	}
2091 
2092 	if (req_key_type != o->info.objectType &&
2093 	    req_key_type2 != o->info.objectType)
2094 		return TEE_ERROR_BAD_PARAMETERS;
2095 	return TEE_SUCCESS;
2096 }
2097 
2098 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode,
2099 			unsigned long key1, unsigned long key2,
2100 			uint32_t *state)
2101 {
2102 	TEE_Result res;
2103 	struct tee_cryp_state *cs;
2104 	struct tee_ta_session *sess;
2105 	struct tee_obj *o1 = NULL;
2106 	struct tee_obj *o2 = NULL;
2107 	struct user_ta_ctx *utc;
2108 
2109 	res = tee_ta_get_current_session(&sess);
2110 	if (res != TEE_SUCCESS)
2111 		return res;
2112 	utc = to_user_ta_ctx(sess->ctx);
2113 
2114 	if (key1 != 0) {
2115 		res = tee_obj_get(utc, uref_to_vaddr(key1), &o1);
2116 		if (res != TEE_SUCCESS)
2117 			return res;
2118 		if (o1->busy)
2119 			return TEE_ERROR_BAD_PARAMETERS;
2120 		res = tee_svc_cryp_check_key_type(o1, algo, mode);
2121 		if (res != TEE_SUCCESS)
2122 			return res;
2123 	}
2124 	if (key2 != 0) {
2125 		res = tee_obj_get(utc, uref_to_vaddr(key2), &o2);
2126 		if (res != TEE_SUCCESS)
2127 			return res;
2128 		if (o2->busy)
2129 			return TEE_ERROR_BAD_PARAMETERS;
2130 		res = tee_svc_cryp_check_key_type(o2, algo, mode);
2131 		if (res != TEE_SUCCESS)
2132 			return res;
2133 	}
2134 
2135 	cs = calloc(1, sizeof(struct tee_cryp_state));
2136 	if (!cs)
2137 		return TEE_ERROR_OUT_OF_MEMORY;
2138 	TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link);
2139 	cs->algo = algo;
2140 	cs->mode = mode;
2141 	cs->state = CRYP_STATE_UNINITIALIZED;
2142 
2143 	switch (TEE_ALG_GET_CLASS(algo)) {
2144 	case TEE_OPERATION_CIPHER:
2145 		if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) ||
2146 		    (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) {
2147 			res = TEE_ERROR_BAD_PARAMETERS;
2148 		} else {
2149 			res = crypto_cipher_alloc_ctx(&cs->ctx, algo);
2150 			if (res != TEE_SUCCESS)
2151 				break;
2152 		}
2153 		break;
2154 	case TEE_OPERATION_AE:
2155 		if (key1 == 0 || key2 != 0) {
2156 			res = TEE_ERROR_BAD_PARAMETERS;
2157 		} else {
2158 			res = crypto_authenc_alloc_ctx(&cs->ctx, algo);
2159 			if (res != TEE_SUCCESS)
2160 				break;
2161 		}
2162 		break;
2163 	case TEE_OPERATION_MAC:
2164 		if (key1 == 0 || key2 != 0) {
2165 			res = TEE_ERROR_BAD_PARAMETERS;
2166 		} else {
2167 			res = crypto_mac_alloc_ctx(&cs->ctx, algo);
2168 			if (res != TEE_SUCCESS)
2169 				break;
2170 		}
2171 		break;
2172 	case TEE_OPERATION_DIGEST:
2173 		if (key1 != 0 || key2 != 0) {
2174 			res = TEE_ERROR_BAD_PARAMETERS;
2175 		} else {
2176 			res = crypto_hash_alloc_ctx(&cs->ctx, algo);
2177 			if (res != TEE_SUCCESS)
2178 				break;
2179 		}
2180 		break;
2181 	case TEE_OPERATION_ASYMMETRIC_CIPHER:
2182 	case TEE_OPERATION_ASYMMETRIC_SIGNATURE:
2183 		if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 &&
2184 		    !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) {
2185 			res = TEE_ERROR_NOT_SUPPORTED;
2186 			break;
2187 		}
2188 		if (key1 == 0 || key2 != 0)
2189 			res = TEE_ERROR_BAD_PARAMETERS;
2190 		break;
2191 	case TEE_OPERATION_KEY_DERIVATION:
2192 		if (algo == TEE_ALG_SM2_KEP) {
2193 			if (key1 == 0 || key2 == 0)
2194 				res = TEE_ERROR_BAD_PARAMETERS;
2195 		} else {
2196 			if (key1 == 0 || key2 != 0)
2197 				res = TEE_ERROR_BAD_PARAMETERS;
2198 		}
2199 		break;
2200 	default:
2201 		res = TEE_ERROR_NOT_SUPPORTED;
2202 		break;
2203 	}
2204 	if (res != TEE_SUCCESS)
2205 		goto out;
2206 
2207 	res = copy_kaddr_to_uref(state, cs);
2208 	if (res != TEE_SUCCESS)
2209 		goto out;
2210 
2211 	/* Register keys */
2212 	if (o1 != NULL) {
2213 		o1->busy = true;
2214 		cs->key1 = (vaddr_t)o1;
2215 	}
2216 	if (o2 != NULL) {
2217 		o2->busy = true;
2218 		cs->key2 = (vaddr_t)o2;
2219 	}
2220 
2221 out:
2222 	if (res != TEE_SUCCESS)
2223 		cryp_state_free(utc, cs);
2224 	return res;
2225 }
2226 
2227 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src)
2228 {
2229 	TEE_Result res;
2230 	struct tee_cryp_state *cs_dst;
2231 	struct tee_cryp_state *cs_src;
2232 	struct tee_ta_session *sess;
2233 
2234 	res = tee_ta_get_current_session(&sess);
2235 	if (res != TEE_SUCCESS)
2236 		return res;
2237 
2238 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst);
2239 	if (res != TEE_SUCCESS)
2240 		return res;
2241 
2242 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src);
2243 	if (res != TEE_SUCCESS)
2244 		return res;
2245 	if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode)
2246 		return TEE_ERROR_BAD_PARAMETERS;
2247 
2248 	switch (TEE_ALG_GET_CLASS(cs_src->algo)) {
2249 	case TEE_OPERATION_CIPHER:
2250 		crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx);
2251 		break;
2252 	case TEE_OPERATION_AE:
2253 		crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx);
2254 		break;
2255 	case TEE_OPERATION_DIGEST:
2256 		crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx);
2257 		break;
2258 	case TEE_OPERATION_MAC:
2259 		crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx);
2260 		break;
2261 	default:
2262 		return TEE_ERROR_BAD_STATE;
2263 	}
2264 
2265 	cs_dst->state = cs_src->state;
2266 
2267 	return TEE_SUCCESS;
2268 }
2269 
2270 void tee_svc_cryp_free_states(struct user_ta_ctx *utc)
2271 {
2272 	struct tee_cryp_state_head *states = &utc->cryp_states;
2273 
2274 	while (!TAILQ_EMPTY(states))
2275 		cryp_state_free(utc, TAILQ_FIRST(states));
2276 }
2277 
2278 TEE_Result syscall_cryp_state_free(unsigned long state)
2279 {
2280 	TEE_Result res;
2281 	struct tee_cryp_state *cs;
2282 	struct tee_ta_session *sess;
2283 
2284 	res = tee_ta_get_current_session(&sess);
2285 	if (res != TEE_SUCCESS)
2286 		return res;
2287 
2288 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2289 	if (res != TEE_SUCCESS)
2290 		return res;
2291 	cryp_state_free(to_user_ta_ctx(sess->ctx), cs);
2292 	return TEE_SUCCESS;
2293 }
2294 
2295 TEE_Result syscall_hash_init(unsigned long state,
2296 			     const void *iv __maybe_unused,
2297 			     size_t iv_len __maybe_unused)
2298 {
2299 	TEE_Result res;
2300 	struct tee_cryp_state *cs;
2301 	struct tee_ta_session *sess;
2302 
2303 	res = tee_ta_get_current_session(&sess);
2304 	if (res != TEE_SUCCESS)
2305 		return res;
2306 
2307 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2308 	if (res != TEE_SUCCESS)
2309 		return res;
2310 
2311 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2312 	case TEE_OPERATION_DIGEST:
2313 		res = crypto_hash_init(cs->ctx);
2314 		if (res != TEE_SUCCESS)
2315 			return res;
2316 		break;
2317 	case TEE_OPERATION_MAC:
2318 		{
2319 			struct tee_obj *o;
2320 			struct tee_cryp_obj_secret *key;
2321 
2322 			res = tee_obj_get(to_user_ta_ctx(sess->ctx),
2323 					  cs->key1, &o);
2324 			if (res != TEE_SUCCESS)
2325 				return res;
2326 			if ((o->info.handleFlags &
2327 			     TEE_HANDLE_FLAG_INITIALIZED) == 0)
2328 				return TEE_ERROR_BAD_PARAMETERS;
2329 
2330 			key = (struct tee_cryp_obj_secret *)o->attr;
2331 			res = crypto_mac_init(cs->ctx, (void *)(key + 1),
2332 					      key->key_size);
2333 			if (res != TEE_SUCCESS)
2334 				return res;
2335 			break;
2336 		}
2337 	default:
2338 		return TEE_ERROR_BAD_PARAMETERS;
2339 	}
2340 
2341 	cs->state = CRYP_STATE_INITIALIZED;
2342 
2343 	return TEE_SUCCESS;
2344 }
2345 
2346 TEE_Result syscall_hash_update(unsigned long state, const void *chunk,
2347 			size_t chunk_size)
2348 {
2349 	struct tee_ta_session *sess = NULL;
2350 	struct tee_cryp_state *cs = NULL;
2351 	TEE_Result res = TEE_SUCCESS;
2352 
2353 	/* No data, but size provided isn't valid parameters. */
2354 	if (!chunk && chunk_size)
2355 		return TEE_ERROR_BAD_PARAMETERS;
2356 
2357 	/* Zero length hash is valid, but nothing we need to do. */
2358 	if (!chunk_size)
2359 		return TEE_SUCCESS;
2360 
2361 	res = tee_ta_get_current_session(&sess);
2362 	if (res != TEE_SUCCESS)
2363 		return res;
2364 
2365 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2366 					  TEE_MEMORY_ACCESS_READ |
2367 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2368 					  (uaddr_t)chunk, chunk_size);
2369 	if (res != TEE_SUCCESS)
2370 		return res;
2371 
2372 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2373 	if (res != TEE_SUCCESS)
2374 		return res;
2375 
2376 	if (cs->state != CRYP_STATE_INITIALIZED)
2377 		return TEE_ERROR_BAD_STATE;
2378 
2379 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2380 	case TEE_OPERATION_DIGEST:
2381 		res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2382 		if (res != TEE_SUCCESS)
2383 			return res;
2384 		break;
2385 	case TEE_OPERATION_MAC:
2386 		res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2387 		if (res != TEE_SUCCESS)
2388 			return res;
2389 		break;
2390 	default:
2391 		return TEE_ERROR_BAD_PARAMETERS;
2392 	}
2393 
2394 	return TEE_SUCCESS;
2395 }
2396 
2397 TEE_Result syscall_hash_final(unsigned long state, const void *chunk,
2398 			size_t chunk_size, void *hash, uint64_t *hash_len)
2399 {
2400 	struct tee_ta_session *sess = NULL;
2401 	struct tee_cryp_state *cs = NULL;
2402 	TEE_Result res2 = TEE_SUCCESS;
2403 	TEE_Result res = TEE_SUCCESS;
2404 	size_t hash_size = 0;
2405 	size_t hlen = 0;
2406 
2407 	/* No data, but size provided isn't valid parameters. */
2408 	if (!chunk && chunk_size)
2409 		return TEE_ERROR_BAD_PARAMETERS;
2410 
2411 	res = tee_ta_get_current_session(&sess);
2412 	if (res != TEE_SUCCESS)
2413 		return res;
2414 
2415 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2416 					  TEE_MEMORY_ACCESS_READ |
2417 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2418 					  (uaddr_t)chunk, chunk_size);
2419 	if (res != TEE_SUCCESS)
2420 		return res;
2421 
2422 	res = get_user_u64_as_size_t(&hlen, hash_len);
2423 	if (res != TEE_SUCCESS)
2424 		return res;
2425 
2426 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2427 					  TEE_MEMORY_ACCESS_READ |
2428 					  TEE_MEMORY_ACCESS_WRITE |
2429 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2430 					  (uaddr_t)hash, hlen);
2431 	if (res != TEE_SUCCESS)
2432 		return res;
2433 
2434 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2435 	if (res != TEE_SUCCESS)
2436 		return res;
2437 
2438 	if (cs->state != CRYP_STATE_INITIALIZED)
2439 		return TEE_ERROR_BAD_STATE;
2440 
2441 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2442 	case TEE_OPERATION_DIGEST:
2443 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2444 		if (res != TEE_SUCCESS)
2445 			return res;
2446 		if (hlen < hash_size) {
2447 			res = TEE_ERROR_SHORT_BUFFER;
2448 			goto out;
2449 		}
2450 
2451 		if (chunk_size) {
2452 			res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2453 			if (res != TEE_SUCCESS)
2454 				return res;
2455 		}
2456 
2457 		res = crypto_hash_final(cs->ctx, hash, hash_size);
2458 		if (res != TEE_SUCCESS)
2459 			return res;
2460 		break;
2461 
2462 	case TEE_OPERATION_MAC:
2463 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2464 		if (res != TEE_SUCCESS)
2465 			return res;
2466 		if (hlen < hash_size) {
2467 			res = TEE_ERROR_SHORT_BUFFER;
2468 			goto out;
2469 		}
2470 
2471 		if (chunk_size) {
2472 			res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2473 			if (res != TEE_SUCCESS)
2474 				return res;
2475 		}
2476 
2477 		res = crypto_mac_final(cs->ctx, hash, hash_size);
2478 		if (res != TEE_SUCCESS)
2479 			return res;
2480 		break;
2481 
2482 	default:
2483 		return TEE_ERROR_BAD_PARAMETERS;
2484 	}
2485 out:
2486 	res2 = put_user_u64(hash_len, hash_size);
2487 	if (res2 != TEE_SUCCESS)
2488 		return res2;
2489 	return res;
2490 }
2491 
2492 TEE_Result syscall_cipher_init(unsigned long state, const void *iv,
2493 			size_t iv_len)
2494 {
2495 	struct tee_cryp_obj_secret *key1 = NULL;
2496 	struct tee_ta_session *sess = NULL;
2497 	struct tee_cryp_state *cs = NULL;
2498 	struct user_ta_ctx *utc = NULL;
2499 	TEE_Result res = TEE_SUCCESS;
2500 	struct tee_obj *o = NULL;
2501 
2502 	res = tee_ta_get_current_session(&sess);
2503 	if (res != TEE_SUCCESS)
2504 		return res;
2505 	utc = to_user_ta_ctx(sess->ctx);
2506 
2507 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2508 	if (res != TEE_SUCCESS)
2509 		return res;
2510 
2511 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER)
2512 		return TEE_ERROR_BAD_STATE;
2513 
2514 	res = tee_mmu_check_access_rights(&utc->uctx,
2515 					  TEE_MEMORY_ACCESS_READ |
2516 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2517 					  (uaddr_t)iv, iv_len);
2518 	if (res != TEE_SUCCESS)
2519 		return res;
2520 
2521 	res = tee_obj_get(utc, cs->key1, &o);
2522 	if (res != TEE_SUCCESS)
2523 		return res;
2524 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2525 		return TEE_ERROR_BAD_PARAMETERS;
2526 
2527 	key1 = o->attr;
2528 
2529 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) {
2530 		struct tee_cryp_obj_secret *key2 = o->attr;
2531 
2532 		if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2533 			return TEE_ERROR_BAD_PARAMETERS;
2534 
2535 		res = crypto_cipher_init(cs->ctx, cs->mode,
2536 					 (uint8_t *)(key1 + 1), key1->key_size,
2537 					 (uint8_t *)(key2 + 1), key2->key_size,
2538 					 iv, iv_len);
2539 	} else {
2540 		res = crypto_cipher_init(cs->ctx, cs->mode,
2541 					 (uint8_t *)(key1 + 1), key1->key_size,
2542 					 NULL, 0, iv, iv_len);
2543 	}
2544 	if (res != TEE_SUCCESS)
2545 		return res;
2546 
2547 	cs->ctx_finalize = crypto_cipher_final;
2548 	cs->state = CRYP_STATE_INITIALIZED;
2549 
2550 	return TEE_SUCCESS;
2551 }
2552 
2553 static TEE_Result tee_svc_cipher_update_helper(unsigned long state,
2554 			bool last_block, const void *src, size_t src_len,
2555 			void *dst, uint64_t *dst_len)
2556 {
2557 	struct tee_ta_session *sess = NULL;
2558 	struct tee_cryp_state *cs = NULL;
2559 	TEE_Result res = TEE_SUCCESS;
2560 	size_t dlen = 0;
2561 
2562 	res = tee_ta_get_current_session(&sess);
2563 	if (res != TEE_SUCCESS)
2564 		return res;
2565 
2566 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2567 	if (res != TEE_SUCCESS)
2568 		return res;
2569 
2570 	if (cs->state != CRYP_STATE_INITIALIZED)
2571 		return TEE_ERROR_BAD_STATE;
2572 
2573 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2574 					  TEE_MEMORY_ACCESS_READ |
2575 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2576 					  (uaddr_t)src, src_len);
2577 	if (res != TEE_SUCCESS)
2578 		return res;
2579 
2580 	if (!dst_len) {
2581 		dlen = 0;
2582 	} else {
2583 		struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
2584 		uint32_t flags = TEE_MEMORY_ACCESS_READ |
2585 				 TEE_MEMORY_ACCESS_WRITE |
2586 				 TEE_MEMORY_ACCESS_ANY_OWNER;
2587 
2588 		res = get_user_u64_as_size_t(&dlen, dst_len);
2589 		if (res != TEE_SUCCESS)
2590 			return res;
2591 
2592 		res = tee_mmu_check_access_rights(uctx, flags, (uaddr_t)dst,
2593 						  dlen);
2594 		if (res != TEE_SUCCESS)
2595 			return res;
2596 	}
2597 
2598 	if (dlen < src_len) {
2599 		res = TEE_ERROR_SHORT_BUFFER;
2600 		goto out;
2601 	}
2602 
2603 	if (src_len > 0) {
2604 		/* Permit src_len == 0 to finalize the operation */
2605 		res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode,
2606 					   last_block, src, src_len, dst);
2607 	}
2608 
2609 	if (last_block && cs->ctx_finalize != NULL) {
2610 		cs->ctx_finalize(cs->ctx);
2611 		cs->ctx_finalize = NULL;
2612 	}
2613 
2614 out:
2615 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
2616 	    dst_len != NULL) {
2617 		TEE_Result res2;
2618 
2619 		res2 = put_user_u64(dst_len, src_len);
2620 		if (res2 != TEE_SUCCESS)
2621 			res = res2;
2622 	}
2623 
2624 	return res;
2625 }
2626 
2627 TEE_Result syscall_cipher_update(unsigned long state, const void *src,
2628 			size_t src_len, void *dst, uint64_t *dst_len)
2629 {
2630 	return tee_svc_cipher_update_helper(state, false /* last_block */,
2631 					    src, src_len, dst, dst_len);
2632 }
2633 
2634 TEE_Result syscall_cipher_final(unsigned long state, const void *src,
2635 			size_t src_len, void *dst, uint64_t *dst_len)
2636 {
2637 	return tee_svc_cipher_update_helper(state, true /* last_block */,
2638 					    src, src_len, dst, dst_len);
2639 }
2640 
2641 #if defined(CFG_CRYPTO_HKDF)
2642 static TEE_Result get_hkdf_params(const TEE_Attribute *params,
2643 				  uint32_t param_count,
2644 				  void **salt, size_t *salt_len, void **info,
2645 				  size_t *info_len, size_t *okm_len)
2646 {
2647 	size_t n;
2648 	enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 };
2649 	uint8_t found = 0;
2650 
2651 	*salt = *info = NULL;
2652 	*salt_len = *info_len = *okm_len = 0;
2653 
2654 	for (n = 0; n < param_count; n++) {
2655 		switch (params[n].attributeID) {
2656 		case TEE_ATTR_HKDF_SALT:
2657 			if (!(found & SALT)) {
2658 				*salt = params[n].content.ref.buffer;
2659 				*salt_len = params[n].content.ref.length;
2660 				found |= SALT;
2661 			}
2662 			break;
2663 		case TEE_ATTR_HKDF_OKM_LENGTH:
2664 			if (!(found & LENGTH)) {
2665 				*okm_len = params[n].content.value.a;
2666 				found |= LENGTH;
2667 			}
2668 			break;
2669 		case TEE_ATTR_HKDF_INFO:
2670 			if (!(found & INFO)) {
2671 				*info = params[n].content.ref.buffer;
2672 				*info_len = params[n].content.ref.length;
2673 				found |= INFO;
2674 			}
2675 			break;
2676 		default:
2677 			/* Unexpected attribute */
2678 			return TEE_ERROR_BAD_PARAMETERS;
2679 		}
2680 
2681 	}
2682 
2683 	if (!(found & LENGTH))
2684 		return TEE_ERROR_BAD_PARAMETERS;
2685 
2686 	return TEE_SUCCESS;
2687 }
2688 #endif
2689 
2690 #if defined(CFG_CRYPTO_CONCAT_KDF)
2691 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params,
2692 					uint32_t param_count,
2693 					void **other_info,
2694 					size_t *other_info_len,
2695 					size_t *derived_key_len)
2696 {
2697 	size_t n;
2698 	enum { LENGTH = 0x1, INFO = 0x2 };
2699 	uint8_t found = 0;
2700 
2701 	*other_info = NULL;
2702 	*other_info_len = *derived_key_len = 0;
2703 
2704 	for (n = 0; n < param_count; n++) {
2705 		switch (params[n].attributeID) {
2706 		case TEE_ATTR_CONCAT_KDF_OTHER_INFO:
2707 			if (!(found & INFO)) {
2708 				*other_info = params[n].content.ref.buffer;
2709 				*other_info_len = params[n].content.ref.length;
2710 				found |= INFO;
2711 			}
2712 			break;
2713 		case TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
2714 			if (!(found & LENGTH)) {
2715 				*derived_key_len = params[n].content.value.a;
2716 				found |= LENGTH;
2717 			}
2718 			break;
2719 		default:
2720 			/* Unexpected attribute */
2721 			return TEE_ERROR_BAD_PARAMETERS;
2722 		}
2723 	}
2724 
2725 	if (!(found & LENGTH))
2726 		return TEE_ERROR_BAD_PARAMETERS;
2727 
2728 	return TEE_SUCCESS;
2729 }
2730 #endif
2731 
2732 #if defined(CFG_CRYPTO_PBKDF2)
2733 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params,
2734 				   uint32_t param_count, void **salt,
2735 				   size_t *salt_len, size_t *derived_key_len,
2736 				   size_t *iteration_count)
2737 {
2738 	size_t n;
2739 	enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 };
2740 	uint8_t found = 0;
2741 
2742 	*salt = NULL;
2743 	*salt_len = *derived_key_len = *iteration_count = 0;
2744 
2745 	for (n = 0; n < param_count; n++) {
2746 		switch (params[n].attributeID) {
2747 		case TEE_ATTR_PBKDF2_SALT:
2748 			if (!(found & SALT)) {
2749 				*salt = params[n].content.ref.buffer;
2750 				*salt_len = params[n].content.ref.length;
2751 				found |= SALT;
2752 			}
2753 			break;
2754 		case TEE_ATTR_PBKDF2_DKM_LENGTH:
2755 			if (!(found & LENGTH)) {
2756 				*derived_key_len = params[n].content.value.a;
2757 				found |= LENGTH;
2758 			}
2759 			break;
2760 		case TEE_ATTR_PBKDF2_ITERATION_COUNT:
2761 			if (!(found & COUNT)) {
2762 				*iteration_count = params[n].content.value.a;
2763 				found |= COUNT;
2764 			}
2765 			break;
2766 		default:
2767 			/* Unexpected attribute */
2768 			return TEE_ERROR_BAD_PARAMETERS;
2769 		}
2770 	}
2771 
2772 	if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT))
2773 		return TEE_ERROR_BAD_PARAMETERS;
2774 
2775 	return TEE_SUCCESS;
2776 }
2777 #endif
2778 
2779 #if defined(CFG_CRYPTO_SM2_KEP)
2780 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params,
2781 				     uint32_t param_count,
2782 				     struct ecc_public_key *peer_key,
2783 				     struct ecc_public_key *peer_eph_key,
2784 				     struct sm2_kep_parms *kep_parms)
2785 {
2786 	TEE_Result res = TEE_ERROR_GENERIC;
2787 	size_t n;
2788 	enum {
2789 		IS_INITIATOR,
2790 		PEER_KEY_X,
2791 		PEER_KEY_Y,
2792 		PEER_EPH_KEY_X,
2793 		PEER_EPH_KEY_Y,
2794 		INITIATOR_ID,
2795 		RESPONDER_ID,
2796 	};
2797 	uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) |
2798 		BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) |
2799 		BIT(INITIATOR_ID) | BIT(RESPONDER_ID);
2800 	uint8_t found = 0;
2801 
2802 	res = crypto_acipher_alloc_ecc_public_key(peer_key, 256);
2803 	if (res)
2804 		goto out;
2805 
2806 	res = crypto_acipher_alloc_ecc_public_key(peer_eph_key, 256);
2807 	if (res)
2808 		goto out;
2809 
2810 	peer_key->curve = TEE_ECC_CURVE_SM2;
2811 	peer_eph_key->curve = TEE_ECC_CURVE_SM2;
2812 
2813 	for (n = 0; n < param_count; n++) {
2814 		const TEE_Attribute *p = &params[n];
2815 
2816 		switch (p->attributeID) {
2817 		case TEE_ATTR_SM2_KEP_USER:
2818 			kep_parms->is_initiator = !p->content.value.a;
2819 			found |= BIT(IS_INITIATOR);
2820 			break;
2821 		case TEE_ATTR_ECC_PUBLIC_VALUE_X:
2822 			crypto_bignum_bin2bn(p->content.ref.buffer,
2823 					     p->content.ref.length,
2824 					     peer_key->x);
2825 			found |= BIT(PEER_KEY_X);
2826 			break;
2827 		case TEE_ATTR_ECC_PUBLIC_VALUE_Y:
2828 			crypto_bignum_bin2bn(p->content.ref.buffer,
2829 					     p->content.ref.length,
2830 					     peer_key->y);
2831 			found |= BIT(PEER_KEY_Y);
2832 			break;
2833 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X:
2834 			crypto_bignum_bin2bn(p->content.ref.buffer,
2835 					     p->content.ref.length,
2836 					     peer_eph_key->x);
2837 			found |= BIT(PEER_EPH_KEY_X);
2838 			break;
2839 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y:
2840 			crypto_bignum_bin2bn(p->content.ref.buffer,
2841 					     p->content.ref.length,
2842 					     peer_eph_key->y);
2843 			found |= BIT(PEER_EPH_KEY_Y);
2844 			break;
2845 		case TEE_ATTR_SM2_ID_INITIATOR:
2846 			kep_parms->initiator_id = p->content.ref.buffer;
2847 			kep_parms->initiator_id_len = p->content.ref.length;
2848 			found |= BIT(INITIATOR_ID);
2849 			break;
2850 		case TEE_ATTR_SM2_ID_RESPONDER:
2851 			kep_parms->responder_id = p->content.ref.buffer;
2852 			kep_parms->responder_id_len = p->content.ref.length;
2853 			found |= BIT(RESPONDER_ID);
2854 			break;
2855 		case TEE_ATTR_SM2_KEP_CONFIRMATION_IN:
2856 			kep_parms->conf_in = p->content.ref.buffer;
2857 			kep_parms->conf_in_len = p->content.ref.length;
2858 			break;
2859 		case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT:
2860 			kep_parms->conf_out = p->content.ref.buffer;
2861 			kep_parms->conf_out_len = p->content.ref.length;
2862 			break;
2863 		default:
2864 			/* Unexpected attribute */
2865 			res = TEE_ERROR_BAD_PARAMETERS;
2866 			goto out;
2867 		}
2868 	}
2869 
2870 	if ((found & mandatory) != mandatory) {
2871 		res = TEE_ERROR_BAD_PARAMETERS;
2872 		goto out;
2873 	}
2874 
2875 	return TEE_SUCCESS;
2876 out:
2877 	crypto_acipher_free_ecc_public_key(peer_key);
2878 	crypto_acipher_free_ecc_public_key(peer_eph_key);
2879 	return res;
2880 }
2881 #endif
2882 
2883 TEE_Result syscall_cryp_derive_key(unsigned long state,
2884 			const struct utee_attribute *usr_params,
2885 			unsigned long param_count, unsigned long derived_key)
2886 {
2887 	TEE_Result res = TEE_ERROR_NOT_SUPPORTED;
2888 	struct tee_ta_session *sess;
2889 	struct tee_obj *ko;
2890 	struct tee_obj *so;
2891 	struct tee_cryp_state *cs;
2892 	struct tee_cryp_obj_secret *sk;
2893 	const struct tee_cryp_obj_type_props *type_props;
2894 	TEE_Attribute *params = NULL;
2895 	struct user_ta_ctx *utc;
2896 
2897 	res = tee_ta_get_current_session(&sess);
2898 	if (res != TEE_SUCCESS)
2899 		return res;
2900 	utc = to_user_ta_ctx(sess->ctx);
2901 
2902 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2903 	if (res != TEE_SUCCESS)
2904 		return res;
2905 
2906 	size_t alloc_size = 0;
2907 
2908 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
2909 		return TEE_ERROR_OVERFLOW;
2910 
2911 	params = malloc(alloc_size);
2912 	if (!params)
2913 		return TEE_ERROR_OUT_OF_MEMORY;
2914 	res = copy_in_attrs(utc, usr_params, param_count, params);
2915 	if (res != TEE_SUCCESS)
2916 		goto out;
2917 
2918 	/* Get key set in operation */
2919 	res = tee_obj_get(utc, cs->key1, &ko);
2920 	if (res != TEE_SUCCESS)
2921 		goto out;
2922 
2923 	res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so);
2924 	if (res != TEE_SUCCESS)
2925 		goto out;
2926 
2927 	/* Find information needed about the object to initialize */
2928 	sk = so->attr;
2929 
2930 	/* Find description of object */
2931 	type_props = tee_svc_find_type_props(so->info.objectType);
2932 	if (!type_props) {
2933 		res = TEE_ERROR_NOT_SUPPORTED;
2934 		goto out;
2935 	}
2936 
2937 	if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) {
2938 		struct bignum *pub;
2939 		struct bignum *ss;
2940 
2941 		if (param_count != 1 ||
2942 		    params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) {
2943 			res = TEE_ERROR_BAD_PARAMETERS;
2944 			goto out;
2945 		}
2946 
2947 		size_t bin_size = params[0].content.ref.length;
2948 
2949 		if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) {
2950 			res = TEE_ERROR_OVERFLOW;
2951 			goto out;
2952 		}
2953 
2954 		pub = crypto_bignum_allocate(alloc_size);
2955 		ss = crypto_bignum_allocate(alloc_size);
2956 		if (pub && ss) {
2957 			crypto_bignum_bin2bn(params[0].content.ref.buffer,
2958 					     bin_size, pub);
2959 			res = crypto_acipher_dh_shared_secret(ko->attr,
2960 							      pub, ss);
2961 			if (res == TEE_SUCCESS) {
2962 				sk->key_size = crypto_bignum_num_bytes(ss);
2963 				crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1));
2964 				so->info.handleFlags |=
2965 						TEE_HANDLE_FLAG_INITIALIZED;
2966 				set_attribute(so, type_props,
2967 					      TEE_ATTR_SECRET_VALUE);
2968 			}
2969 		} else {
2970 			res = TEE_ERROR_OUT_OF_MEMORY;
2971 		}
2972 		crypto_bignum_free(pub);
2973 		crypto_bignum_free(ss);
2974 	} else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) {
2975 		struct ecc_public_key key_public;
2976 		uint8_t *pt_secret;
2977 		unsigned long pt_secret_len;
2978 
2979 		if (param_count != 2 ||
2980 		    params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X ||
2981 		    params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) {
2982 			res = TEE_ERROR_BAD_PARAMETERS;
2983 			goto out;
2984 		}
2985 
2986 		switch (cs->algo) {
2987 		case TEE_ALG_ECDH_P192:
2988 			alloc_size = 192;
2989 			break;
2990 		case TEE_ALG_ECDH_P224:
2991 			alloc_size = 224;
2992 			break;
2993 		case TEE_ALG_ECDH_P256:
2994 			alloc_size = 256;
2995 			break;
2996 		case TEE_ALG_ECDH_P384:
2997 			alloc_size = 384;
2998 			break;
2999 		case TEE_ALG_ECDH_P521:
3000 			alloc_size = 521;
3001 			break;
3002 		default:
3003 			res = TEE_ERROR_NOT_IMPLEMENTED;
3004 			goto out;
3005 		}
3006 
3007 		/* Create the public key */
3008 		res = crypto_acipher_alloc_ecc_public_key(&key_public,
3009 							  alloc_size);
3010 		if (res != TEE_SUCCESS)
3011 			goto out;
3012 		key_public.curve = ((struct ecc_keypair *)ko->attr)->curve;
3013 		crypto_bignum_bin2bn(params[0].content.ref.buffer,
3014 				     params[0].content.ref.length,
3015 				     key_public.x);
3016 		crypto_bignum_bin2bn(params[1].content.ref.buffer,
3017 				     params[1].content.ref.length,
3018 				     key_public.y);
3019 
3020 		pt_secret = (uint8_t *)(sk + 1);
3021 		pt_secret_len = sk->alloc_size;
3022 		res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public,
3023 						       pt_secret,
3024 						       &pt_secret_len);
3025 
3026 		if (res == TEE_SUCCESS) {
3027 			sk->key_size = pt_secret_len;
3028 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3029 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3030 		}
3031 
3032 		/* free the public key */
3033 		crypto_acipher_free_ecc_public_key(&key_public);
3034 	}
3035 #if defined(CFG_CRYPTO_HKDF)
3036 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) {
3037 		void *salt, *info;
3038 		size_t salt_len, info_len, okm_len;
3039 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3040 		struct tee_cryp_obj_secret *ik = ko->attr;
3041 		const uint8_t *ikm = (const uint8_t *)(ik + 1);
3042 
3043 		res = get_hkdf_params(params, param_count, &salt, &salt_len,
3044 				      &info, &info_len, &okm_len);
3045 		if (res != TEE_SUCCESS)
3046 			goto out;
3047 
3048 		/* Requested size must fit into the output object's buffer */
3049 		if (okm_len > ik->alloc_size) {
3050 			res = TEE_ERROR_BAD_PARAMETERS;
3051 			goto out;
3052 		}
3053 
3054 		res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len,
3055 				    info, info_len, (uint8_t *)(sk + 1),
3056 				    okm_len);
3057 		if (res == TEE_SUCCESS) {
3058 			sk->key_size = okm_len;
3059 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3060 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3061 		}
3062 	}
3063 #endif
3064 #if defined(CFG_CRYPTO_CONCAT_KDF)
3065 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) {
3066 		void *info;
3067 		size_t info_len, derived_key_len;
3068 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3069 		struct tee_cryp_obj_secret *ss = ko->attr;
3070 		const uint8_t *shared_secret = (const uint8_t *)(ss + 1);
3071 
3072 		res = get_concat_kdf_params(params, param_count, &info,
3073 					    &info_len, &derived_key_len);
3074 		if (res != TEE_SUCCESS)
3075 			goto out;
3076 
3077 		/* Requested size must fit into the output object's buffer */
3078 		if (derived_key_len > ss->alloc_size) {
3079 			res = TEE_ERROR_BAD_PARAMETERS;
3080 			goto out;
3081 		}
3082 
3083 		res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size,
3084 					  info, info_len, (uint8_t *)(sk + 1),
3085 					  derived_key_len);
3086 		if (res == TEE_SUCCESS) {
3087 			sk->key_size = derived_key_len;
3088 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3089 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3090 		}
3091 	}
3092 #endif
3093 #if defined(CFG_CRYPTO_PBKDF2)
3094 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) {
3095 		void *salt;
3096 		size_t salt_len, iteration_count, derived_key_len;
3097 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3098 		struct tee_cryp_obj_secret *ss = ko->attr;
3099 		const uint8_t *password = (const uint8_t *)(ss + 1);
3100 
3101 		res = get_pbkdf2_params(params, param_count, &salt, &salt_len,
3102 					&derived_key_len, &iteration_count);
3103 		if (res != TEE_SUCCESS)
3104 			goto out;
3105 
3106 		/* Requested size must fit into the output object's buffer */
3107 		if (derived_key_len > ss->alloc_size) {
3108 			res = TEE_ERROR_BAD_PARAMETERS;
3109 			goto out;
3110 		}
3111 
3112 		res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt,
3113 				      salt_len, iteration_count,
3114 				      (uint8_t *)(sk + 1), derived_key_len);
3115 		if (res == TEE_SUCCESS) {
3116 			sk->key_size = derived_key_len;
3117 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3118 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3119 		}
3120 	}
3121 #endif
3122 #if defined(CFG_CRYPTO_SM2_KEP)
3123 	else if (cs->algo == TEE_ALG_SM2_KEP) {
3124 		struct ecc_public_key peer_eph_key = { };
3125 		struct ecc_public_key peer_key = { };
3126 		struct sm2_kep_parms kep_parms = {
3127 			.out = (uint8_t *)(sk + 1),
3128 			.out_len = so->info.maxKeySize,
3129 		};
3130 		struct tee_obj *ko2 = NULL;
3131 
3132 		res = tee_obj_get(utc, cs->key2, &ko2);
3133 		if (res != TEE_SUCCESS)
3134 			goto out;
3135 
3136 		res = get_sm2_kep_params(params, param_count, &peer_key,
3137 					 &peer_eph_key, &kep_parms);
3138 		if (res != TEE_SUCCESS)
3139 			goto out;
3140 
3141 		/*
3142 		 * key1 is our private keypair, key2 is our ephemeral public key
3143 		 */
3144 		res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */
3145 						    ko2->attr, /* key2 */
3146 						    &peer_key, &peer_eph_key,
3147 						    &kep_parms);
3148 
3149 		if (res == TEE_SUCCESS) {
3150 			sk->key_size = kep_parms.out_len;
3151 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3152 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3153 		}
3154 		crypto_acipher_free_ecc_public_key(&peer_key);
3155 		crypto_acipher_free_ecc_public_key(&peer_eph_key);
3156 	}
3157 #endif
3158 	else
3159 		res = TEE_ERROR_NOT_SUPPORTED;
3160 
3161 out:
3162 	free_wipe(params);
3163 	return res;
3164 }
3165 
3166 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen)
3167 {
3168 	struct tee_ta_session *sess = NULL;
3169 	TEE_Result res = TEE_SUCCESS;
3170 
3171 	res = tee_ta_get_current_session(&sess);
3172 	if (res != TEE_SUCCESS)
3173 		return res;
3174 
3175 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3176 					  TEE_MEMORY_ACCESS_WRITE,
3177 					  (uaddr_t)buf, blen);
3178 	if (res != TEE_SUCCESS)
3179 		return res;
3180 
3181 	res = crypto_rng_read(buf, blen);
3182 	if (res != TEE_SUCCESS)
3183 		return res;
3184 
3185 	return res;
3186 }
3187 
3188 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce,
3189 				size_t nonce_len, size_t tag_len,
3190 				size_t aad_len, size_t payload_len)
3191 {
3192 	struct tee_cryp_obj_secret *key = NULL;
3193 	struct tee_ta_session *sess = NULL;
3194 	struct tee_cryp_state *cs = NULL;
3195 	TEE_Result res = TEE_SUCCESS;
3196 	struct tee_obj *o = NULL;
3197 
3198 	res = tee_ta_get_current_session(&sess);
3199 	if (res != TEE_SUCCESS)
3200 		return res;
3201 
3202 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3203 					  TEE_MEMORY_ACCESS_READ |
3204 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3205 					  (uaddr_t)nonce, nonce_len);
3206 	if (res != TEE_SUCCESS)
3207 		return res;
3208 
3209 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3210 	if (res != TEE_SUCCESS)
3211 		return res;
3212 
3213 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o);
3214 	if (res != TEE_SUCCESS)
3215 		return res;
3216 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
3217 		return TEE_ERROR_BAD_PARAMETERS;
3218 
3219 	key = o->attr;
3220 	res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1),
3221 				  key->key_size, nonce, nonce_len, tag_len,
3222 				  aad_len, payload_len);
3223 	if (res != TEE_SUCCESS)
3224 		return res;
3225 
3226 	cs->ctx_finalize = crypto_authenc_final;
3227 	cs->state = CRYP_STATE_INITIALIZED;
3228 
3229 	return TEE_SUCCESS;
3230 }
3231 
3232 TEE_Result syscall_authenc_update_aad(unsigned long state,
3233 				      const void *aad_data, size_t aad_data_len)
3234 {
3235 	TEE_Result res = TEE_SUCCESS;
3236 	struct tee_cryp_state *cs;
3237 	struct tee_ta_session *sess;
3238 
3239 	res = tee_ta_get_current_session(&sess);
3240 	if (res != TEE_SUCCESS)
3241 		return res;
3242 
3243 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3244 					  TEE_MEMORY_ACCESS_READ |
3245 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3246 					  (uaddr_t) aad_data,
3247 					  aad_data_len);
3248 	if (res != TEE_SUCCESS)
3249 		return res;
3250 
3251 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3252 	if (res != TEE_SUCCESS)
3253 		return res;
3254 
3255 	if (cs->state != CRYP_STATE_INITIALIZED)
3256 		return TEE_ERROR_BAD_STATE;
3257 
3258 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3259 		return TEE_ERROR_BAD_STATE;
3260 
3261 	res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data,
3262 					aad_data_len);
3263 	if (res != TEE_SUCCESS)
3264 		return res;
3265 
3266 	return TEE_SUCCESS;
3267 }
3268 
3269 TEE_Result syscall_authenc_update_payload(unsigned long state,
3270 					  const void *src_data,
3271 					  size_t src_len, void *dst_data,
3272 					  uint64_t *dst_len)
3273 {
3274 	struct tee_ta_session *sess = NULL;
3275 	struct tee_cryp_state *cs = NULL;
3276 	TEE_Result res = TEE_SUCCESS;
3277 	size_t dlen = 0;
3278 
3279 	res = tee_ta_get_current_session(&sess);
3280 	if (res != TEE_SUCCESS)
3281 		return res;
3282 
3283 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3284 	if (res != TEE_SUCCESS)
3285 		return res;
3286 
3287 	if (cs->state != CRYP_STATE_INITIALIZED)
3288 		return TEE_ERROR_BAD_STATE;
3289 
3290 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3291 		return TEE_ERROR_BAD_STATE;
3292 
3293 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3294 					  TEE_MEMORY_ACCESS_READ |
3295 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3296 					  (uaddr_t)src_data, src_len);
3297 	if (res != TEE_SUCCESS)
3298 		return res;
3299 
3300 	res = get_user_u64_as_size_t(&dlen, dst_len);
3301 	if (res != TEE_SUCCESS)
3302 		return res;
3303 
3304 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3305 					  TEE_MEMORY_ACCESS_READ |
3306 					  TEE_MEMORY_ACCESS_WRITE |
3307 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3308 					  (uaddr_t)dst_data, dlen);
3309 	if (res != TEE_SUCCESS)
3310 		return res;
3311 
3312 	if (dlen < src_len) {
3313 		res = TEE_ERROR_SHORT_BUFFER;
3314 		goto out;
3315 	}
3316 
3317 	res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data,
3318 					    src_len, dst_data, &dlen);
3319 out:
3320 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3321 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3322 
3323 		if (res2 != TEE_SUCCESS)
3324 			res = res2;
3325 	}
3326 
3327 	return res;
3328 }
3329 
3330 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data,
3331 				     size_t src_len, void *dst_data,
3332 				     uint64_t *dst_len, void *tag,
3333 				     uint64_t *tag_len)
3334 {
3335 	struct tee_ta_session *sess = NULL;
3336 	struct user_mode_ctx *uctx = NULL;
3337 	struct tee_cryp_state *cs = NULL;
3338 	TEE_Result res = TEE_SUCCESS;
3339 	size_t dlen = 0;
3340 	size_t tlen = 0;
3341 
3342 	res = tee_ta_get_current_session(&sess);
3343 	if (res != TEE_SUCCESS)
3344 		return res;
3345 
3346 	uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3347 
3348 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3349 	if (res != TEE_SUCCESS)
3350 		return res;
3351 
3352 	if (cs->state != CRYP_STATE_INITIALIZED)
3353 		return TEE_ERROR_BAD_STATE;
3354 
3355 	if (cs->mode != TEE_MODE_ENCRYPT)
3356 		return TEE_ERROR_BAD_PARAMETERS;
3357 
3358 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3359 		return TEE_ERROR_BAD_STATE;
3360 
3361 	res = tee_mmu_check_access_rights(uctx,
3362 					  TEE_MEMORY_ACCESS_READ |
3363 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3364 					  (uaddr_t)src_data, src_len);
3365 	if (res != TEE_SUCCESS)
3366 		return res;
3367 
3368 	if (!dst_len) {
3369 		dlen = 0;
3370 	} else {
3371 		res = get_user_u64_as_size_t(&dlen, dst_len);
3372 		if (res != TEE_SUCCESS)
3373 			return res;
3374 
3375 		res = tee_mmu_check_access_rights(uctx,
3376 						  TEE_MEMORY_ACCESS_READ |
3377 						  TEE_MEMORY_ACCESS_WRITE |
3378 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3379 						  (uaddr_t)dst_data, dlen);
3380 		if (res != TEE_SUCCESS)
3381 			return res;
3382 	}
3383 
3384 	if (dlen < src_len) {
3385 		res = TEE_ERROR_SHORT_BUFFER;
3386 		goto out;
3387 	}
3388 
3389 	res = get_user_u64_as_size_t(&tlen, tag_len);
3390 	if (res != TEE_SUCCESS)
3391 		return res;
3392 
3393 	res = tee_mmu_check_access_rights(uctx,
3394 					  TEE_MEMORY_ACCESS_READ |
3395 					  TEE_MEMORY_ACCESS_WRITE |
3396 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3397 					  (uaddr_t)tag, tlen);
3398 	if (res != TEE_SUCCESS)
3399 		return res;
3400 
3401 	res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data,
3402 				       &dlen, tag, &tlen);
3403 
3404 out:
3405 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3406 		TEE_Result res2 = TEE_SUCCESS;
3407 
3408 		if (dst_len != NULL) {
3409 			res2 = put_user_u64(dst_len, dlen);
3410 			if (res2 != TEE_SUCCESS)
3411 				return res2;
3412 		}
3413 
3414 		res2 = put_user_u64(tag_len, tlen);
3415 		if (res2 != TEE_SUCCESS)
3416 			return res2;
3417 	}
3418 
3419 	return res;
3420 }
3421 
3422 TEE_Result syscall_authenc_dec_final(unsigned long state,
3423 			const void *src_data, size_t src_len, void *dst_data,
3424 			uint64_t *dst_len, const void *tag, size_t tag_len)
3425 {
3426 	struct tee_ta_session *sess = NULL;
3427 	struct user_mode_ctx *uctx = NULL;
3428 	struct tee_cryp_state *cs = NULL;
3429 	TEE_Result res = TEE_SUCCESS;
3430 	size_t dlen = 0;
3431 
3432 	res = tee_ta_get_current_session(&sess);
3433 	if (res != TEE_SUCCESS)
3434 		return res;
3435 
3436 	uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3437 
3438 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3439 	if (res != TEE_SUCCESS)
3440 		return res;
3441 
3442 	if (cs->state != CRYP_STATE_INITIALIZED)
3443 		return TEE_ERROR_BAD_STATE;
3444 
3445 	if (cs->mode != TEE_MODE_DECRYPT)
3446 		return TEE_ERROR_BAD_PARAMETERS;
3447 
3448 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3449 		return TEE_ERROR_BAD_STATE;
3450 
3451 	res = tee_mmu_check_access_rights(uctx,
3452 					  TEE_MEMORY_ACCESS_READ |
3453 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3454 					  (uaddr_t)src_data, src_len);
3455 	if (res != TEE_SUCCESS)
3456 		return res;
3457 
3458 	if (!dst_len) {
3459 		dlen = 0;
3460 	} else {
3461 		res = get_user_u64_as_size_t(&dlen, dst_len);
3462 		if (res != TEE_SUCCESS)
3463 			return res;
3464 
3465 		res = tee_mmu_check_access_rights(uctx,
3466 						  TEE_MEMORY_ACCESS_READ |
3467 						  TEE_MEMORY_ACCESS_WRITE |
3468 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3469 						  (uaddr_t)dst_data, dlen);
3470 		if (res != TEE_SUCCESS)
3471 			return res;
3472 	}
3473 
3474 	if (dlen < src_len) {
3475 		res = TEE_ERROR_SHORT_BUFFER;
3476 		goto out;
3477 	}
3478 
3479 	res = tee_mmu_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ,
3480 					  (uaddr_t)tag, tag_len);
3481 	if (res != TEE_SUCCESS)
3482 		return res;
3483 
3484 	res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data,
3485 				       &dlen, tag, tag_len);
3486 
3487 out:
3488 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
3489 	    dst_len != NULL) {
3490 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3491 
3492 		if (res2 != TEE_SUCCESS)
3493 			return res2;
3494 	}
3495 
3496 	return res;
3497 }
3498 
3499 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params,
3500 			      size_t default_len)
3501 {
3502 	size_t n;
3503 
3504 	assert(default_len < INT_MAX);
3505 
3506 	for (n = 0; n < num_params; n++) {
3507 		if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) {
3508 			if (params[n].content.value.a < INT_MAX)
3509 				return params[n].content.value.a;
3510 			break;
3511 		}
3512 	}
3513 	/*
3514 	 * If salt length isn't provided use the default value which is
3515 	 * the length of the digest.
3516 	 */
3517 	return default_len;
3518 }
3519 
3520 TEE_Result syscall_asymm_operate(unsigned long state,
3521 			const struct utee_attribute *usr_params,
3522 			size_t num_params, const void *src_data, size_t src_len,
3523 			void *dst_data, uint64_t *dst_len)
3524 {
3525 	TEE_Result res;
3526 	struct tee_cryp_state *cs;
3527 	struct tee_ta_session *sess;
3528 	size_t dlen;
3529 	struct tee_obj *o;
3530 	void *label = NULL;
3531 	size_t label_len = 0;
3532 	size_t n;
3533 	int salt_len;
3534 	TEE_Attribute *params = NULL;
3535 	struct user_ta_ctx *utc;
3536 
3537 	res = tee_ta_get_current_session(&sess);
3538 	if (res != TEE_SUCCESS)
3539 		return res;
3540 	utc = to_user_ta_ctx(sess->ctx);
3541 
3542 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3543 	if (res != TEE_SUCCESS)
3544 		return res;
3545 
3546 	res = tee_mmu_check_access_rights(&utc->uctx,
3547 					  TEE_MEMORY_ACCESS_READ |
3548 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3549 					  (uaddr_t)src_data, src_len);
3550 	if (res != TEE_SUCCESS)
3551 		return res;
3552 
3553 	res = get_user_u64_as_size_t(&dlen, dst_len);
3554 	if (res != TEE_SUCCESS)
3555 		return res;
3556 
3557 	res = tee_mmu_check_access_rights(&utc->uctx,
3558 					  TEE_MEMORY_ACCESS_READ |
3559 					  TEE_MEMORY_ACCESS_WRITE |
3560 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3561 					  (uaddr_t)dst_data, dlen);
3562 	if (res != TEE_SUCCESS)
3563 		return res;
3564 
3565 	size_t alloc_size = 0;
3566 
3567 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3568 		return TEE_ERROR_OVERFLOW;
3569 
3570 	params = malloc(alloc_size);
3571 	if (!params)
3572 		return TEE_ERROR_OUT_OF_MEMORY;
3573 	res = copy_in_attrs(utc, usr_params, num_params, params);
3574 	if (res != TEE_SUCCESS)
3575 		goto out;
3576 
3577 	res = tee_obj_get(utc, cs->key1, &o);
3578 	if (res != TEE_SUCCESS)
3579 		goto out;
3580 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3581 		res = TEE_ERROR_GENERIC;
3582 		goto out;
3583 	}
3584 
3585 	switch (cs->algo) {
3586 	case TEE_ALG_RSA_NOPAD:
3587 		if (cs->mode == TEE_MODE_ENCRYPT) {
3588 			res = crypto_acipher_rsanopad_encrypt(o->attr, src_data,
3589 							      src_len, dst_data,
3590 							      &dlen);
3591 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3592 			res = crypto_acipher_rsanopad_decrypt(o->attr, src_data,
3593 							      src_len, dst_data,
3594 							      &dlen);
3595 		} else {
3596 			/*
3597 			 * We will panic because "the mode is not compatible
3598 			 * with the function"
3599 			 */
3600 			res = TEE_ERROR_GENERIC;
3601 		}
3602 		break;
3603 
3604 	case TEE_ALG_SM2_PKE:
3605 		if (cs->mode == TEE_MODE_ENCRYPT) {
3606 			res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data,
3607 							     src_len, dst_data,
3608 							     &dlen);
3609 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3610 			res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data,
3611 							     src_len, dst_data,
3612 							     &dlen);
3613 		} else {
3614 			res = TEE_ERROR_GENERIC;
3615 		}
3616 		break;
3617 
3618 	case TEE_ALG_RSAES_PKCS1_V1_5:
3619 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
3620 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
3621 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
3622 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
3623 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
3624 		for (n = 0; n < num_params; n++) {
3625 			if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) {
3626 				label = params[n].content.ref.buffer;
3627 				label_len = params[n].content.ref.length;
3628 				break;
3629 			}
3630 		}
3631 
3632 		if (cs->mode == TEE_MODE_ENCRYPT) {
3633 			res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr,
3634 							   label, label_len,
3635 							   src_data, src_len,
3636 							   dst_data, &dlen);
3637 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3638 			res = crypto_acipher_rsaes_decrypt(
3639 					cs->algo, o->attr, label, label_len,
3640 					src_data, src_len, dst_data, &dlen);
3641 		} else {
3642 			res = TEE_ERROR_BAD_PARAMETERS;
3643 		}
3644 		break;
3645 
3646 #if defined(CFG_CRYPTO_RSASSA_NA1)
3647 	case TEE_ALG_RSASSA_PKCS1_V1_5:
3648 #endif
3649 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
3650 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
3651 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
3652 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
3653 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
3654 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
3655 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
3656 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
3657 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
3658 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
3659 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
3660 		if (cs->mode != TEE_MODE_SIGN) {
3661 			res = TEE_ERROR_BAD_PARAMETERS;
3662 			break;
3663 		}
3664 		salt_len = pkcs1_get_salt_len(params, num_params, src_len);
3665 		res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len,
3666 						 src_data, src_len, dst_data,
3667 						 &dlen);
3668 		break;
3669 
3670 	case TEE_ALG_DSA_SHA1:
3671 	case TEE_ALG_DSA_SHA224:
3672 	case TEE_ALG_DSA_SHA256:
3673 		res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data,
3674 					      src_len, dst_data, &dlen);
3675 		break;
3676 	case TEE_ALG_ECDSA_P192:
3677 	case TEE_ALG_ECDSA_P224:
3678 	case TEE_ALG_ECDSA_P256:
3679 	case TEE_ALG_ECDSA_P384:
3680 	case TEE_ALG_ECDSA_P521:
3681 		res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data,
3682 					      src_len, dst_data, &dlen);
3683 		break;
3684 	case TEE_ALG_SM2_DSA_SM3:
3685 		res = crypto_acipher_sm2_dsa_sign(cs->algo, o->attr, src_data,
3686 						  src_len, dst_data, &dlen);
3687 		break;
3688 
3689 	default:
3690 		res = TEE_ERROR_BAD_PARAMETERS;
3691 		break;
3692 	}
3693 
3694 out:
3695 	free_wipe(params);
3696 
3697 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3698 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3699 
3700 		if (res2 != TEE_SUCCESS)
3701 			return res2;
3702 	}
3703 
3704 	return res;
3705 }
3706 
3707 TEE_Result syscall_asymm_verify(unsigned long state,
3708 			const struct utee_attribute *usr_params,
3709 			size_t num_params, const void *data, size_t data_len,
3710 			const void *sig, size_t sig_len)
3711 {
3712 	struct tee_ta_session *sess = NULL;
3713 	struct tee_cryp_state *cs = NULL;
3714 	struct user_ta_ctx *utc = NULL;
3715 	TEE_Result res = TEE_SUCCESS;
3716 	TEE_Attribute *params = NULL;
3717 	struct tee_obj *o = NULL;
3718 	size_t hash_size = 0;
3719 	uint32_t hash_algo = 0;
3720 	int salt_len = 0;
3721 
3722 	res = tee_ta_get_current_session(&sess);
3723 	if (res != TEE_SUCCESS)
3724 		return res;
3725 	utc = to_user_ta_ctx(sess->ctx);
3726 
3727 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3728 	if (res != TEE_SUCCESS)
3729 		return res;
3730 
3731 	if (cs->mode != TEE_MODE_VERIFY)
3732 		return TEE_ERROR_BAD_PARAMETERS;
3733 
3734 	res = tee_mmu_check_access_rights(&utc->uctx,
3735 					  TEE_MEMORY_ACCESS_READ |
3736 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3737 					  (uaddr_t)data, data_len);
3738 	if (res != TEE_SUCCESS)
3739 		return res;
3740 
3741 	res = tee_mmu_check_access_rights(&utc->uctx,
3742 					  TEE_MEMORY_ACCESS_READ |
3743 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3744 					  (uaddr_t)sig, sig_len);
3745 	if (res != TEE_SUCCESS)
3746 		return res;
3747 
3748 	size_t alloc_size = 0;
3749 
3750 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3751 		return TEE_ERROR_OVERFLOW;
3752 
3753 	params = malloc(alloc_size);
3754 	if (!params)
3755 		return TEE_ERROR_OUT_OF_MEMORY;
3756 	res = copy_in_attrs(utc, usr_params, num_params, params);
3757 	if (res != TEE_SUCCESS)
3758 		goto out;
3759 
3760 	res = tee_obj_get(utc, cs->key1, &o);
3761 	if (res != TEE_SUCCESS)
3762 		goto out;
3763 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3764 		res = TEE_ERROR_BAD_PARAMETERS;
3765 		goto out;
3766 	}
3767 
3768 	switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) {
3769 	case TEE_MAIN_ALGO_RSA:
3770 		if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) {
3771 			hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3772 			res = tee_alg_get_digest_size(hash_algo, &hash_size);
3773 			if (res != TEE_SUCCESS)
3774 				break;
3775 			if (data_len != hash_size) {
3776 				res = TEE_ERROR_BAD_PARAMETERS;
3777 				break;
3778 			}
3779 			salt_len = pkcs1_get_salt_len(params, num_params,
3780 						      hash_size);
3781 		}
3782 		res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len,
3783 						   data, data_len, sig,
3784 						   sig_len);
3785 		break;
3786 
3787 	case TEE_MAIN_ALGO_DSA:
3788 		hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3789 		res = tee_alg_get_digest_size(hash_algo, &hash_size);
3790 		if (res != TEE_SUCCESS)
3791 			break;
3792 		/*
3793 		 * Depending on the DSA algorithm (NIST), the digital signature
3794 		 * output size may be truncated to the size of a key pair
3795 		 * (Q prime size). Q prime size must be less or equal than the
3796 		 * hash output length of the hash algorithm involved.
3797 		 */
3798 		if (data_len > hash_size) {
3799 			res = TEE_ERROR_BAD_PARAMETERS;
3800 			break;
3801 		}
3802 		res = crypto_acipher_dsa_verify(cs->algo, o->attr, data,
3803 						data_len, sig, sig_len);
3804 		break;
3805 
3806 	case TEE_MAIN_ALGO_ECDSA:
3807 		res = crypto_acipher_ecc_verify(cs->algo, o->attr, data,
3808 						data_len, sig, sig_len);
3809 		break;
3810 
3811 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
3812 		res = crypto_acipher_sm2_dsa_verify(cs->algo, o->attr, data,
3813 						    data_len, sig, sig_len);
3814 		break;
3815 
3816 	default:
3817 		res = TEE_ERROR_NOT_SUPPORTED;
3818 	}
3819 
3820 out:
3821 	free_wipe(params);
3822 	return res;
3823 }
3824