1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * Copyright (c) 2020, 2022 Linaro Limited 5 * Copyright (c) 2022, Technology Innovation Institute (TII) 6 */ 7 8 #include <assert.h> 9 #include <bitstring.h> 10 #include <compiler.h> 11 #include <config.h> 12 #include <crypto/crypto.h> 13 #include <kernel/tee_ta_manager.h> 14 #include <kernel/user_access.h> 15 #include <memtag.h> 16 #include <mm/vm.h> 17 #include <stdlib_ext.h> 18 #include <string_ext.h> 19 #include <string.h> 20 #include <sys/queue.h> 21 #include <tee_api_defines_extensions.h> 22 #include <tee_api_types.h> 23 #include <tee/tee_cryp_utl.h> 24 #include <tee/tee_obj.h> 25 #include <tee/tee_svc_cryp.h> 26 #include <tee/tee_svc.h> 27 #include <trace.h> 28 #include <utee_defines.h> 29 #include <util.h> 30 #if defined(CFG_CRYPTO_HKDF) 31 #include <tee/tee_cryp_hkdf.h> 32 #endif 33 #if defined(CFG_CRYPTO_CONCAT_KDF) 34 #include <tee/tee_cryp_concat_kdf.h> 35 #endif 36 #if defined(CFG_CRYPTO_PBKDF2) 37 #include <tee/tee_cryp_pbkdf2.h> 38 #endif 39 40 enum cryp_state { 41 CRYP_STATE_INITIALIZED = 0, 42 CRYP_STATE_UNINITIALIZED 43 }; 44 45 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx); 46 struct tee_cryp_state { 47 TAILQ_ENTRY(tee_cryp_state) link; 48 uint32_t algo; 49 uint32_t mode; 50 vaddr_t key1; 51 vaddr_t key2; 52 void *ctx; 53 tee_cryp_ctx_finalize_func_t ctx_finalize; 54 enum cryp_state state; 55 }; 56 57 struct tee_cryp_obj_secret { 58 uint32_t key_size; 59 uint32_t alloc_size; 60 61 /* 62 * Pseudo code visualize layout of structure 63 * Next follows data, such as: 64 * uint8_t data[alloc_size] 65 * key_size must never exceed alloc_size 66 */ 67 }; 68 69 #define TEE_TYPE_ATTR_OPTIONAL BIT(0) 70 #define TEE_TYPE_ATTR_REQUIRED BIT(1) 71 #define TEE_TYPE_ATTR_OPTIONAL_GROUP BIT(2) 72 #define TEE_TYPE_ATTR_SIZE_INDICATOR BIT(3) 73 #define TEE_TYPE_ATTR_GEN_KEY_OPT BIT(4) 74 #define TEE_TYPE_ATTR_GEN_KEY_REQ BIT(5) 75 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS BIT(6) 76 77 /* Handle storing of generic secret keys of varying lengths */ 78 #define ATTR_OPS_INDEX_SECRET 0 79 /* Convert to/from big-endian byte array and provider-specific bignum */ 80 #define ATTR_OPS_INDEX_BIGNUM 1 81 /* Convert to/from value attribute depending on direction */ 82 #define ATTR_OPS_INDEX_VALUE 2 83 /* Convert to/from curve25519 attribute depending on direction */ 84 #define ATTR_OPS_INDEX_25519 3 85 86 /* Curve25519 key bytes size is always 32 bytes*/ 87 #define KEY_SIZE_BYTES_25519 UL(32) 88 /* TEE Internal Core API v1.3.1, Table 6-8 */ 89 #define TEE_ED25519_CTX_MAX_LENGTH 255 90 91 struct tee_cryp_obj_type_attrs { 92 uint32_t attr_id; 93 uint16_t flags; 94 uint16_t ops_index; 95 uint16_t raw_offs; 96 uint16_t raw_size; 97 }; 98 99 #define RAW_DATA(_x, _y) \ 100 .raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y) 101 102 static const struct tee_cryp_obj_type_attrs 103 tee_cryp_obj_secret_value_attrs[] = { 104 { 105 .attr_id = TEE_ATTR_SECRET_VALUE, 106 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 107 .ops_index = ATTR_OPS_INDEX_SECRET, 108 .raw_offs = 0, 109 .raw_size = 0 110 }, 111 }; 112 113 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = { 114 { 115 .attr_id = TEE_ATTR_RSA_MODULUS, 116 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 117 .ops_index = ATTR_OPS_INDEX_BIGNUM, 118 RAW_DATA(struct rsa_public_key, n) 119 }, 120 121 { 122 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 123 .flags = TEE_TYPE_ATTR_REQUIRED, 124 .ops_index = ATTR_OPS_INDEX_BIGNUM, 125 RAW_DATA(struct rsa_public_key, e) 126 }, 127 }; 128 129 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = { 130 { 131 .attr_id = TEE_ATTR_RSA_MODULUS, 132 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 133 .ops_index = ATTR_OPS_INDEX_BIGNUM, 134 RAW_DATA(struct rsa_keypair, n) 135 }, 136 137 { 138 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 139 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT, 140 .ops_index = ATTR_OPS_INDEX_BIGNUM, 141 RAW_DATA(struct rsa_keypair, e) 142 }, 143 144 { 145 .attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT, 146 .flags = TEE_TYPE_ATTR_REQUIRED, 147 .ops_index = ATTR_OPS_INDEX_BIGNUM, 148 RAW_DATA(struct rsa_keypair, d) 149 }, 150 151 { 152 .attr_id = TEE_ATTR_RSA_PRIME1, 153 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 154 .ops_index = ATTR_OPS_INDEX_BIGNUM, 155 RAW_DATA(struct rsa_keypair, p) 156 }, 157 158 { 159 .attr_id = TEE_ATTR_RSA_PRIME2, 160 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 161 .ops_index = ATTR_OPS_INDEX_BIGNUM, 162 RAW_DATA(struct rsa_keypair, q) 163 }, 164 165 { 166 .attr_id = TEE_ATTR_RSA_EXPONENT1, 167 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 168 .ops_index = ATTR_OPS_INDEX_BIGNUM, 169 RAW_DATA(struct rsa_keypair, dp) 170 }, 171 172 { 173 .attr_id = TEE_ATTR_RSA_EXPONENT2, 174 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 175 .ops_index = ATTR_OPS_INDEX_BIGNUM, 176 RAW_DATA(struct rsa_keypair, dq) 177 }, 178 179 { 180 .attr_id = TEE_ATTR_RSA_COEFFICIENT, 181 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 182 .ops_index = ATTR_OPS_INDEX_BIGNUM, 183 RAW_DATA(struct rsa_keypair, qp) 184 }, 185 }; 186 187 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = { 188 { 189 .attr_id = TEE_ATTR_DSA_PRIME, 190 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS | 191 TEE_TYPE_ATTR_SIZE_INDICATOR, 192 .ops_index = ATTR_OPS_INDEX_BIGNUM, 193 RAW_DATA(struct dsa_public_key, p) 194 }, 195 196 { 197 .attr_id = TEE_ATTR_DSA_SUBPRIME, 198 .flags = TEE_TYPE_ATTR_REQUIRED, 199 .ops_index = ATTR_OPS_INDEX_BIGNUM, 200 RAW_DATA(struct dsa_public_key, q) 201 }, 202 203 { 204 .attr_id = TEE_ATTR_DSA_BASE, 205 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 206 .ops_index = ATTR_OPS_INDEX_BIGNUM, 207 RAW_DATA(struct dsa_public_key, g) 208 }, 209 210 { 211 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 212 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 213 .ops_index = ATTR_OPS_INDEX_BIGNUM, 214 RAW_DATA(struct dsa_public_key, y) 215 }, 216 }; 217 218 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = { 219 { 220 .attr_id = TEE_ATTR_DSA_PRIME, 221 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 222 TEE_TYPE_ATTR_BIGNUM_MAXBITS | TEE_TYPE_ATTR_SIZE_INDICATOR, 223 .ops_index = ATTR_OPS_INDEX_BIGNUM, 224 RAW_DATA(struct dsa_keypair, p) 225 }, 226 227 { 228 .attr_id = TEE_ATTR_DSA_SUBPRIME, 229 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, 230 .ops_index = ATTR_OPS_INDEX_BIGNUM, 231 RAW_DATA(struct dsa_keypair, q) 232 }, 233 234 { 235 .attr_id = TEE_ATTR_DSA_BASE, 236 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 237 TEE_TYPE_ATTR_BIGNUM_MAXBITS, 238 .ops_index = ATTR_OPS_INDEX_BIGNUM, 239 RAW_DATA(struct dsa_keypair, g) 240 }, 241 242 { 243 .attr_id = TEE_ATTR_DSA_PRIVATE_VALUE, 244 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 245 .ops_index = ATTR_OPS_INDEX_BIGNUM, 246 RAW_DATA(struct dsa_keypair, x) 247 }, 248 249 { 250 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 251 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 252 .ops_index = ATTR_OPS_INDEX_BIGNUM, 253 RAW_DATA(struct dsa_keypair, y) 254 }, 255 }; 256 257 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = { 258 { 259 .attr_id = TEE_ATTR_DH_PRIME, 260 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 261 TEE_TYPE_ATTR_GEN_KEY_REQ, 262 .ops_index = ATTR_OPS_INDEX_BIGNUM, 263 RAW_DATA(struct dh_keypair, p) 264 }, 265 266 { 267 .attr_id = TEE_ATTR_DH_BASE, 268 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, 269 .ops_index = ATTR_OPS_INDEX_BIGNUM, 270 RAW_DATA(struct dh_keypair, g) 271 }, 272 273 { 274 .attr_id = TEE_ATTR_DH_PUBLIC_VALUE, 275 .flags = TEE_TYPE_ATTR_REQUIRED, 276 .ops_index = ATTR_OPS_INDEX_BIGNUM, 277 RAW_DATA(struct dh_keypair, y) 278 }, 279 280 { 281 .attr_id = TEE_ATTR_DH_PRIVATE_VALUE, 282 .flags = TEE_TYPE_ATTR_REQUIRED, 283 .ops_index = ATTR_OPS_INDEX_BIGNUM, 284 RAW_DATA(struct dh_keypair, x) 285 }, 286 287 { 288 .attr_id = TEE_ATTR_DH_SUBPRIME, 289 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP | TEE_TYPE_ATTR_GEN_KEY_OPT, 290 .ops_index = ATTR_OPS_INDEX_BIGNUM, 291 RAW_DATA(struct dh_keypair, q) 292 }, 293 294 { 295 .attr_id = TEE_ATTR_DH_X_BITS, 296 .flags = TEE_TYPE_ATTR_GEN_KEY_OPT, 297 .ops_index = ATTR_OPS_INDEX_VALUE, 298 RAW_DATA(struct dh_keypair, xbits) 299 }, 300 }; 301 302 #if defined(CFG_CRYPTO_HKDF) 303 static const struct tee_cryp_obj_type_attrs 304 tee_cryp_obj_hkdf_ikm_attrs[] = { 305 { 306 .attr_id = TEE_ATTR_HKDF_IKM, 307 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 308 .ops_index = ATTR_OPS_INDEX_SECRET, 309 .raw_offs = 0, 310 .raw_size = 0 311 }, 312 }; 313 #endif 314 315 #if defined(CFG_CRYPTO_CONCAT_KDF) 316 static const struct tee_cryp_obj_type_attrs 317 tee_cryp_obj_concat_kdf_z_attrs[] = { 318 { 319 .attr_id = TEE_ATTR_CONCAT_KDF_Z, 320 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 321 .ops_index = ATTR_OPS_INDEX_SECRET, 322 .raw_offs = 0, 323 .raw_size = 0 324 }, 325 }; 326 #endif 327 328 #if defined(CFG_CRYPTO_PBKDF2) 329 static const struct tee_cryp_obj_type_attrs 330 tee_cryp_obj_pbkdf2_passwd_attrs[] = { 331 { 332 .attr_id = TEE_ATTR_PBKDF2_PASSWORD, 333 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 334 .ops_index = ATTR_OPS_INDEX_SECRET, 335 .raw_offs = 0, 336 .raw_size = 0 337 }, 338 }; 339 #endif 340 341 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = { 342 { 343 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 344 .flags = TEE_TYPE_ATTR_REQUIRED, 345 .ops_index = ATTR_OPS_INDEX_BIGNUM, 346 RAW_DATA(struct ecc_public_key, x) 347 }, 348 349 { 350 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 351 .flags = TEE_TYPE_ATTR_REQUIRED, 352 .ops_index = ATTR_OPS_INDEX_BIGNUM, 353 RAW_DATA(struct ecc_public_key, y) 354 }, 355 356 { 357 .attr_id = TEE_ATTR_ECC_CURVE, 358 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 359 .ops_index = ATTR_OPS_INDEX_VALUE, 360 RAW_DATA(struct ecc_public_key, curve) 361 }, 362 }; 363 364 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = { 365 { 366 .attr_id = TEE_ATTR_ECC_PRIVATE_VALUE, 367 .flags = TEE_TYPE_ATTR_REQUIRED, 368 .ops_index = ATTR_OPS_INDEX_BIGNUM, 369 RAW_DATA(struct ecc_keypair, d) 370 }, 371 372 { 373 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 374 .flags = TEE_TYPE_ATTR_REQUIRED, 375 .ops_index = ATTR_OPS_INDEX_BIGNUM, 376 RAW_DATA(struct ecc_keypair, x) 377 }, 378 379 { 380 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 381 .flags = TEE_TYPE_ATTR_REQUIRED, 382 .ops_index = ATTR_OPS_INDEX_BIGNUM, 383 RAW_DATA(struct ecc_keypair, y) 384 }, 385 386 { 387 .attr_id = TEE_ATTR_ECC_CURVE, 388 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 389 TEE_TYPE_ATTR_GEN_KEY_REQ, 390 .ops_index = ATTR_OPS_INDEX_VALUE, 391 RAW_DATA(struct ecc_keypair, curve) 392 }, 393 }; 394 395 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_sm2_pub_key_attrs[] = { 396 { 397 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 398 .flags = TEE_TYPE_ATTR_REQUIRED, 399 .ops_index = ATTR_OPS_INDEX_BIGNUM, 400 RAW_DATA(struct ecc_public_key, x) 401 }, 402 403 { 404 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 405 .flags = TEE_TYPE_ATTR_REQUIRED, 406 .ops_index = ATTR_OPS_INDEX_BIGNUM, 407 RAW_DATA(struct ecc_public_key, y) 408 }, 409 }; 410 411 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_sm2_keypair_attrs[] = { 412 { 413 .attr_id = TEE_ATTR_ECC_PRIVATE_VALUE, 414 .flags = TEE_TYPE_ATTR_REQUIRED, 415 .ops_index = ATTR_OPS_INDEX_BIGNUM, 416 RAW_DATA(struct ecc_keypair, d) 417 }, 418 419 { 420 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 421 .flags = TEE_TYPE_ATTR_REQUIRED, 422 .ops_index = ATTR_OPS_INDEX_BIGNUM, 423 RAW_DATA(struct ecc_keypair, x) 424 }, 425 426 { 427 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 428 .flags = TEE_TYPE_ATTR_REQUIRED, 429 .ops_index = ATTR_OPS_INDEX_BIGNUM, 430 RAW_DATA(struct ecc_keypair, y) 431 }, 432 }; 433 434 static 435 const struct tee_cryp_obj_type_attrs tee_cryp_obj_x25519_keypair_attrs[] = { 436 { 437 .attr_id = TEE_ATTR_X25519_PRIVATE_VALUE, 438 .flags = TEE_TYPE_ATTR_REQUIRED, 439 .ops_index = ATTR_OPS_INDEX_25519, 440 RAW_DATA(struct x25519_keypair, priv) 441 }, 442 443 { 444 .attr_id = TEE_ATTR_X25519_PUBLIC_VALUE, 445 .flags = TEE_TYPE_ATTR_REQUIRED, 446 .ops_index = ATTR_OPS_INDEX_25519, 447 RAW_DATA(struct x25519_keypair, pub) 448 }, 449 }; 450 451 static 452 const struct tee_cryp_obj_type_attrs tee_cryp_obj_ed25519_pub_key_attrs[] = { 453 { 454 .attr_id = TEE_ATTR_ED25519_PUBLIC_VALUE, 455 .flags = TEE_TYPE_ATTR_REQUIRED, 456 .ops_index = ATTR_OPS_INDEX_25519, 457 RAW_DATA(struct ed25519_keypair, pub) 458 }, 459 }; 460 461 static 462 const struct tee_cryp_obj_type_attrs tee_cryp_obj_ed25519_keypair_attrs[] = { 463 { 464 .attr_id = TEE_ATTR_ED25519_PRIVATE_VALUE, 465 .flags = TEE_TYPE_ATTR_REQUIRED, 466 .ops_index = ATTR_OPS_INDEX_25519, 467 RAW_DATA(struct ed25519_keypair, priv) 468 }, 469 470 { 471 .attr_id = TEE_ATTR_ED25519_PUBLIC_VALUE, 472 .flags = TEE_TYPE_ATTR_REQUIRED, 473 .ops_index = ATTR_OPS_INDEX_25519, 474 RAW_DATA(struct ed25519_keypair, pub) 475 }, 476 }; 477 478 struct tee_cryp_obj_type_props { 479 TEE_ObjectType obj_type; 480 uint16_t min_size; /* may not be smaller than this */ 481 uint16_t max_size; /* may not be larger than this */ 482 uint16_t alloc_size; /* this many bytes are allocated to hold data */ 483 uint8_t quanta; /* may only be an multiple of this */ 484 485 uint8_t num_type_attrs; 486 const struct tee_cryp_obj_type_attrs *type_attrs; 487 }; 488 489 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \ 490 { (obj_type), (min_size), (max_size), (alloc_size), (quanta), \ 491 ARRAY_SIZE(type_attrs), (type_attrs) } 492 493 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = { 494 PROP(TEE_TYPE_AES, 64, 128, 256, /* valid sizes 128, 192, 256 */ 495 256 / 8 + sizeof(struct tee_cryp_obj_secret), 496 tee_cryp_obj_secret_value_attrs), 497 PROP(TEE_TYPE_DES, 64, 64, 64, 498 /* Valid size 64 with parity */ 499 64 / 8 + sizeof(struct tee_cryp_obj_secret), 500 tee_cryp_obj_secret_value_attrs), 501 PROP(TEE_TYPE_DES3, 64, 128, 192, 502 /* Valid sizes 128, 192 with parity */ 503 192 / 8 + sizeof(struct tee_cryp_obj_secret), 504 tee_cryp_obj_secret_value_attrs), 505 PROP(TEE_TYPE_SM4, 128, 128, 128, 506 128 / 8 + sizeof(struct tee_cryp_obj_secret), 507 tee_cryp_obj_secret_value_attrs), 508 PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512, 509 512 / 8 + sizeof(struct tee_cryp_obj_secret), 510 tee_cryp_obj_secret_value_attrs), 511 PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512, 512 512 / 8 + sizeof(struct tee_cryp_obj_secret), 513 tee_cryp_obj_secret_value_attrs), 514 PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512, 515 512 / 8 + sizeof(struct tee_cryp_obj_secret), 516 tee_cryp_obj_secret_value_attrs), 517 PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024, 518 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 519 tee_cryp_obj_secret_value_attrs), 520 PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024, 521 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 522 tee_cryp_obj_secret_value_attrs), 523 PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024, 524 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 525 tee_cryp_obj_secret_value_attrs), 526 PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024, 527 512 / 8 + sizeof(struct tee_cryp_obj_secret), 528 tee_cryp_obj_secret_value_attrs), 529 PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096, 530 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 531 tee_cryp_obj_secret_value_attrs), 532 #if defined(CFG_CRYPTO_HKDF) 533 PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096, 534 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 535 tee_cryp_obj_hkdf_ikm_attrs), 536 #endif 537 #if defined(CFG_CRYPTO_CONCAT_KDF) 538 PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096, 539 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 540 tee_cryp_obj_concat_kdf_z_attrs), 541 #endif 542 #if defined(CFG_CRYPTO_PBKDF2) 543 PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096, 544 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 545 tee_cryp_obj_pbkdf2_passwd_attrs), 546 #endif 547 PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 548 sizeof(struct rsa_public_key), 549 tee_cryp_obj_rsa_pub_key_attrs), 550 551 PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 552 sizeof(struct rsa_keypair), 553 tee_cryp_obj_rsa_keypair_attrs), 554 555 PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072, 556 sizeof(struct dsa_public_key), 557 tee_cryp_obj_dsa_pub_key_attrs), 558 559 PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072, 560 sizeof(struct dsa_keypair), 561 tee_cryp_obj_dsa_keypair_attrs), 562 563 PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048, 564 sizeof(struct dh_keypair), 565 tee_cryp_obj_dh_keypair_attrs), 566 567 PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521, 568 sizeof(struct ecc_public_key), 569 tee_cryp_obj_ecc_pub_key_attrs), 570 571 PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521, 572 sizeof(struct ecc_keypair), 573 tee_cryp_obj_ecc_keypair_attrs), 574 575 PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521, 576 sizeof(struct ecc_public_key), 577 tee_cryp_obj_ecc_pub_key_attrs), 578 579 PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521, 580 sizeof(struct ecc_keypair), 581 tee_cryp_obj_ecc_keypair_attrs), 582 583 PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256, 584 sizeof(struct ecc_public_key), 585 tee_cryp_obj_sm2_pub_key_attrs), 586 587 PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256, 588 sizeof(struct ecc_keypair), 589 tee_cryp_obj_sm2_keypair_attrs), 590 591 PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256, 592 sizeof(struct ecc_public_key), 593 tee_cryp_obj_sm2_pub_key_attrs), 594 595 PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256, 596 sizeof(struct ecc_keypair), 597 tee_cryp_obj_sm2_keypair_attrs), 598 599 PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256, 600 sizeof(struct ecc_public_key), 601 tee_cryp_obj_sm2_pub_key_attrs), 602 603 PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256, 604 sizeof(struct ecc_keypair), 605 tee_cryp_obj_sm2_keypair_attrs), 606 607 PROP(TEE_TYPE_X25519_KEYPAIR, 1, 256, 256, 608 sizeof(struct x25519_keypair), 609 tee_cryp_obj_x25519_keypair_attrs), 610 611 PROP(TEE_TYPE_ED25519_PUBLIC_KEY, 1, 256, 256, 612 sizeof(struct ed25519_keypair), 613 tee_cryp_obj_ed25519_pub_key_attrs), 614 615 PROP(TEE_TYPE_ED25519_KEYPAIR, 1, 256, 256, 616 sizeof(struct ed25519_keypair), 617 tee_cryp_obj_ed25519_keypair_attrs), 618 }; 619 620 struct attr_ops { 621 TEE_Result (*from_user)(void *attr, const void *buffer, size_t size); 622 TEE_Result (*to_user)(void *attr, struct ts_session *sess, 623 void *buffer, uint64_t *size); 624 TEE_Result (*to_binary)(void *attr, void *data, size_t data_len, 625 size_t *offs); 626 bool (*from_binary)(void *attr, const void *data, size_t data_len, 627 size_t *offs); 628 TEE_Result (*from_obj)(void *attr, void *src_attr); 629 void (*free)(void *attr); 630 void (*clear)(void *attr); 631 }; 632 633 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data, 634 size_t data_len, size_t *offs) 635 { 636 uint32_t field; 637 size_t next_offs; 638 639 if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs)) 640 return TEE_ERROR_OVERFLOW; 641 642 if (data && next_offs <= data_len) { 643 field = TEE_U32_TO_BIG_ENDIAN(v); 644 memcpy(data + *offs, &field, sizeof(field)); 645 } 646 (*offs) = next_offs; 647 648 return TEE_SUCCESS; 649 } 650 651 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data, 652 size_t data_len, size_t *offs) 653 { 654 uint32_t field; 655 656 if (!data || (*offs + sizeof(field)) > data_len) 657 return false; 658 659 memcpy(&field, data + *offs, sizeof(field)); 660 *v = TEE_U32_FROM_BIG_ENDIAN(field); 661 (*offs) += sizeof(field); 662 return true; 663 } 664 665 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer, 666 size_t size) 667 { 668 struct tee_cryp_obj_secret *key = attr; 669 670 /* Data size has to fit in allocated buffer */ 671 if (size > key->alloc_size) 672 return TEE_ERROR_SECURITY; 673 memcpy(key + 1, buffer, size); 674 key->key_size = size; 675 return TEE_SUCCESS; 676 } 677 678 static TEE_Result op_attr_secret_value_to_user(void *attr, 679 struct ts_session *sess __unused, 680 void *buffer, uint64_t *size) 681 { 682 TEE_Result res; 683 struct tee_cryp_obj_secret *key = attr; 684 uint64_t s; 685 uint64_t key_size; 686 687 res = copy_from_user(&s, size, sizeof(s)); 688 if (res != TEE_SUCCESS) 689 return res; 690 691 key_size = key->key_size; 692 res = copy_to_user(size, &key_size, sizeof(key_size)); 693 if (res != TEE_SUCCESS) 694 return res; 695 696 if (s < key->key_size || !buffer) 697 return TEE_ERROR_SHORT_BUFFER; 698 699 return copy_to_user(buffer, key + 1, key->key_size); 700 } 701 702 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data, 703 size_t data_len, size_t *offs) 704 { 705 TEE_Result res; 706 struct tee_cryp_obj_secret *key = attr; 707 size_t next_offs; 708 709 res = op_u32_to_binary_helper(key->key_size, data, data_len, offs); 710 if (res != TEE_SUCCESS) 711 return res; 712 713 if (ADD_OVERFLOW(*offs, key->key_size, &next_offs)) 714 return TEE_ERROR_OVERFLOW; 715 716 if (data && next_offs <= data_len) 717 memcpy((uint8_t *)data + *offs, key + 1, key->key_size); 718 (*offs) = next_offs; 719 720 return TEE_SUCCESS; 721 } 722 723 static bool op_attr_secret_value_from_binary(void *attr, const void *data, 724 size_t data_len, size_t *offs) 725 { 726 struct tee_cryp_obj_secret *key = attr; 727 uint32_t s; 728 729 if (!op_u32_from_binary_helper(&s, data, data_len, offs)) 730 return false; 731 732 if ((*offs + s) > data_len) 733 return false; 734 735 /* Data size has to fit in allocated buffer */ 736 if (s > key->alloc_size) 737 return false; 738 key->key_size = s; 739 memcpy(key + 1, (const uint8_t *)data + *offs, s); 740 (*offs) += s; 741 return true; 742 } 743 744 745 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr) 746 { 747 struct tee_cryp_obj_secret *key = attr; 748 struct tee_cryp_obj_secret *src_key = src_attr; 749 750 if (src_key->key_size > key->alloc_size) 751 return TEE_ERROR_BAD_STATE; 752 memcpy(key + 1, src_key + 1, src_key->key_size); 753 key->key_size = src_key->key_size; 754 return TEE_SUCCESS; 755 } 756 757 static void op_attr_secret_value_clear(void *attr) 758 { 759 struct tee_cryp_obj_secret *key = attr; 760 761 key->key_size = 0; 762 memzero_explicit(key + 1, key->alloc_size); 763 } 764 765 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer, 766 size_t size) 767 { 768 struct bignum **bn = attr; 769 770 return crypto_bignum_bin2bn(buffer, size, *bn); 771 } 772 773 static TEE_Result op_attr_bignum_to_user(void *attr, 774 struct ts_session *sess, 775 void *buffer, uint64_t *size) 776 { 777 TEE_Result res = TEE_SUCCESS; 778 struct bignum **bn = attr; 779 uint64_t req_size = 0; 780 uint64_t s = 0; 781 782 res = copy_from_user(&s, size, sizeof(s)); 783 if (res != TEE_SUCCESS) 784 return res; 785 786 req_size = crypto_bignum_num_bytes(*bn); 787 res = copy_to_user(size, &req_size, sizeof(req_size)); 788 if (res != TEE_SUCCESS) 789 return res; 790 if (!req_size) 791 return TEE_SUCCESS; 792 if (s < req_size || !buffer) 793 return TEE_ERROR_SHORT_BUFFER; 794 795 buffer = memtag_strip_tag(buffer); 796 797 /* Check we can access data using supplied user mode pointer */ 798 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 799 TEE_MEMORY_ACCESS_READ | 800 TEE_MEMORY_ACCESS_WRITE | 801 TEE_MEMORY_ACCESS_ANY_OWNER, 802 (uaddr_t)buffer, req_size); 803 if (res != TEE_SUCCESS) 804 return res; 805 /* 806 * Write the bignum (wich raw data points to) into an array of 807 * bytes (stored in buffer) 808 */ 809 crypto_bignum_bn2bin(*bn, buffer); 810 return TEE_SUCCESS; 811 } 812 813 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data, 814 size_t data_len, size_t *offs) 815 { 816 TEE_Result res; 817 struct bignum **bn = attr; 818 uint32_t n = crypto_bignum_num_bytes(*bn); 819 size_t next_offs; 820 821 res = op_u32_to_binary_helper(n, data, data_len, offs); 822 if (res != TEE_SUCCESS) 823 return res; 824 825 if (ADD_OVERFLOW(*offs, n, &next_offs)) 826 return TEE_ERROR_OVERFLOW; 827 828 if (data && next_offs <= data_len) 829 crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs); 830 (*offs) = next_offs; 831 832 return TEE_SUCCESS; 833 } 834 835 static bool op_attr_bignum_from_binary(void *attr, const void *data, 836 size_t data_len, size_t *offs) 837 { 838 struct bignum **bn = attr; 839 uint32_t n; 840 841 if (!op_u32_from_binary_helper(&n, data, data_len, offs)) 842 return false; 843 844 if ((*offs + n) > data_len) 845 return false; 846 if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn)) 847 return false; 848 (*offs) += n; 849 return true; 850 } 851 852 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr) 853 { 854 struct bignum **bn = attr; 855 struct bignum **src_bn = src_attr; 856 857 crypto_bignum_copy(*bn, *src_bn); 858 return TEE_SUCCESS; 859 } 860 861 static void op_attr_bignum_clear(void *attr) 862 { 863 struct bignum **bn = attr; 864 865 crypto_bignum_clear(*bn); 866 } 867 868 static void op_attr_bignum_free(void *attr) 869 { 870 struct bignum **bn = attr; 871 872 crypto_bignum_free(*bn); 873 *bn = NULL; 874 } 875 876 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer, 877 size_t size) 878 { 879 uint32_t *v = attr; 880 881 if (size != sizeof(uint32_t) * 2) 882 return TEE_ERROR_GENERIC; /* "can't happen */ 883 884 /* Note that only the first value is copied */ 885 memcpy(v, buffer, sizeof(uint32_t)); 886 return TEE_SUCCESS; 887 } 888 889 static TEE_Result op_attr_value_to_user(void *attr, 890 struct ts_session *sess __unused, 891 void *buffer, uint64_t *size) 892 { 893 TEE_Result res; 894 uint32_t *v = attr; 895 uint64_t s; 896 uint32_t value[2] = { *v }; 897 uint64_t req_size = sizeof(value); 898 899 res = copy_from_user(&s, size, sizeof(s)); 900 if (res != TEE_SUCCESS) 901 return res; 902 903 if (s < req_size || !buffer) 904 return TEE_ERROR_SHORT_BUFFER; 905 906 return copy_to_user(buffer, value, req_size); 907 } 908 909 static TEE_Result op_attr_value_to_binary(void *attr, void *data, 910 size_t data_len, size_t *offs) 911 { 912 uint32_t *v = attr; 913 914 return op_u32_to_binary_helper(*v, data, data_len, offs); 915 } 916 917 static bool op_attr_value_from_binary(void *attr, const void *data, 918 size_t data_len, size_t *offs) 919 { 920 uint32_t *v = attr; 921 922 return op_u32_from_binary_helper(v, data, data_len, offs); 923 } 924 925 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr) 926 { 927 uint32_t *v = attr; 928 uint32_t *src_v = src_attr; 929 930 *v = *src_v; 931 return TEE_SUCCESS; 932 } 933 934 static void op_attr_value_clear(void *attr) 935 { 936 uint32_t *v = attr; 937 938 *v = 0; 939 } 940 941 static TEE_Result op_attr_25519_from_user(void *attr, const void *buffer, 942 size_t size) 943 { 944 uint8_t **key = attr; 945 946 if (size != KEY_SIZE_BYTES_25519 || !*key) 947 return TEE_ERROR_SECURITY; 948 949 memcpy(*key, buffer, size); 950 951 return TEE_SUCCESS; 952 } 953 954 static TEE_Result op_attr_25519_to_user(void *attr, 955 struct ts_session *sess __unused, 956 void *buffer, uint64_t *size) 957 { 958 TEE_Result res = TEE_ERROR_GENERIC; 959 uint8_t **key = attr; 960 uint64_t s = 0; 961 uint64_t key_size = (uint64_t)KEY_SIZE_BYTES_25519; 962 963 res = copy_from_user(&s, size, sizeof(s)); 964 if (res != TEE_SUCCESS) 965 return res; 966 967 res = copy_to_user(size, &key_size, sizeof(key_size)); 968 if (res != TEE_SUCCESS) 969 return res; 970 971 if (s < key_size || !buffer) 972 return TEE_ERROR_SHORT_BUFFER; 973 974 return copy_to_user(buffer, *key, key_size); 975 } 976 977 static TEE_Result op_attr_25519_to_binary(void *attr, void *data, 978 size_t data_len, size_t *offs) 979 { 980 TEE_Result res = TEE_ERROR_GENERIC; 981 uint8_t **key = attr; 982 size_t next_offs = 0; 983 uint64_t key_size = (uint64_t)KEY_SIZE_BYTES_25519; 984 985 res = op_u32_to_binary_helper(key_size, data, data_len, offs); 986 if (res != TEE_SUCCESS) 987 return res; 988 989 if (ADD_OVERFLOW(*offs, key_size, &next_offs)) 990 return TEE_ERROR_OVERFLOW; 991 992 if (data && next_offs <= data_len) 993 memcpy((uint8_t *)data + *offs, *key, key_size); 994 *offs = next_offs; 995 996 return TEE_SUCCESS; 997 } 998 999 static bool op_attr_25519_from_binary(void *attr, const void *data, 1000 size_t data_len, size_t *offs) 1001 { 1002 uint8_t **key = attr; 1003 uint32_t s = 0; 1004 1005 if (!op_u32_from_binary_helper(&s, data, data_len, offs)) 1006 return false; 1007 1008 if (*offs + s > data_len) 1009 return false; 1010 1011 if (s > (uint32_t)KEY_SIZE_BYTES_25519) 1012 return false; 1013 1014 memcpy(*key, (const uint8_t *)data + *offs, s); 1015 *offs += s; 1016 return true; 1017 } 1018 1019 static TEE_Result op_attr_25519_from_obj(void *attr, void *src_attr) 1020 { 1021 uint8_t **key = attr; 1022 uint8_t **src_key = src_attr; 1023 1024 if (!*key || !*src_key) 1025 return TEE_ERROR_SECURITY; 1026 1027 memcpy(*key, *src_key, KEY_SIZE_BYTES_25519); 1028 1029 return TEE_SUCCESS; 1030 } 1031 1032 static void op_attr_25519_clear(void *attr) 1033 { 1034 uint8_t **key = attr; 1035 1036 assert(*key); 1037 1038 memzero_explicit(*key, KEY_SIZE_BYTES_25519); 1039 } 1040 1041 static void op_attr_25519_free(void *attr) 1042 { 1043 uint8_t **key = attr; 1044 1045 op_attr_25519_clear(attr); 1046 free(*key); 1047 } 1048 1049 static const struct attr_ops attr_ops[] = { 1050 [ATTR_OPS_INDEX_SECRET] = { 1051 .from_user = op_attr_secret_value_from_user, 1052 .to_user = op_attr_secret_value_to_user, 1053 .to_binary = op_attr_secret_value_to_binary, 1054 .from_binary = op_attr_secret_value_from_binary, 1055 .from_obj = op_attr_secret_value_from_obj, 1056 .free = op_attr_secret_value_clear, /* not a typo */ 1057 .clear = op_attr_secret_value_clear, 1058 }, 1059 [ATTR_OPS_INDEX_BIGNUM] = { 1060 .from_user = op_attr_bignum_from_user, 1061 .to_user = op_attr_bignum_to_user, 1062 .to_binary = op_attr_bignum_to_binary, 1063 .from_binary = op_attr_bignum_from_binary, 1064 .from_obj = op_attr_bignum_from_obj, 1065 .free = op_attr_bignum_free, 1066 .clear = op_attr_bignum_clear, 1067 }, 1068 [ATTR_OPS_INDEX_VALUE] = { 1069 .from_user = op_attr_value_from_user, 1070 .to_user = op_attr_value_to_user, 1071 .to_binary = op_attr_value_to_binary, 1072 .from_binary = op_attr_value_from_binary, 1073 .from_obj = op_attr_value_from_obj, 1074 .free = op_attr_value_clear, /* not a typo */ 1075 .clear = op_attr_value_clear, 1076 }, 1077 [ATTR_OPS_INDEX_25519] = { 1078 .from_user = op_attr_25519_from_user, 1079 .to_user = op_attr_25519_to_user, 1080 .to_binary = op_attr_25519_to_binary, 1081 .from_binary = op_attr_25519_from_binary, 1082 .from_obj = op_attr_25519_from_obj, 1083 .free = op_attr_25519_free, 1084 .clear = op_attr_25519_clear, 1085 }, 1086 }; 1087 1088 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src) 1089 { 1090 uint64_t d = 0; 1091 TEE_Result res = copy_from_user(&d, src, sizeof(d)); 1092 1093 /* 1094 * On 32-bit systems a size_t can't hold a uint64_t so we need to 1095 * check that the value isn't too large. 1096 */ 1097 if (!res && ADD_OVERFLOW(0, d, dst)) 1098 return TEE_ERROR_OVERFLOW; 1099 1100 return res; 1101 } 1102 1103 static TEE_Result put_user_u64(uint64_t *dst, size_t value) 1104 { 1105 uint64_t v = value; 1106 1107 return copy_to_user(dst, &v, sizeof(v)); 1108 } 1109 1110 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, 1111 struct utee_object_info *info) 1112 { 1113 struct ts_session *sess = ts_get_current_session(); 1114 struct utee_object_info o_info = { }; 1115 TEE_Result res = TEE_SUCCESS; 1116 struct tee_obj *o = NULL; 1117 1118 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1119 uref_to_vaddr(obj), &o); 1120 if (res != TEE_SUCCESS) 1121 goto exit; 1122 1123 o_info.obj_type = o->info.objectType; 1124 o_info.obj_size = o->info.objectSize; 1125 o_info.max_obj_size = o->info.maxObjectSize; 1126 o_info.obj_usage = o->info.objectUsage; 1127 o_info.data_size = o->info.dataSize; 1128 o_info.data_pos = o->info.dataPosition; 1129 o_info.handle_flags = o->info.handleFlags; 1130 res = copy_to_user_private(info, &o_info, sizeof(o_info)); 1131 1132 exit: 1133 return res; 1134 } 1135 1136 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj, 1137 unsigned long usage) 1138 { 1139 struct ts_session *sess = ts_get_current_session(); 1140 TEE_Result res = TEE_SUCCESS; 1141 struct tee_obj *o = NULL; 1142 1143 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1144 if (res != TEE_SUCCESS) 1145 goto exit; 1146 1147 o->info.objectUsage &= usage; 1148 1149 exit: 1150 return res; 1151 } 1152 1153 static int tee_svc_cryp_obj_find_type_attr_idx( 1154 uint32_t attr_id, 1155 const struct tee_cryp_obj_type_props *type_props) 1156 { 1157 size_t n; 1158 1159 for (n = 0; n < type_props->num_type_attrs; n++) { 1160 if (attr_id == type_props->type_attrs[n].attr_id) 1161 return n; 1162 } 1163 return -1; 1164 } 1165 1166 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props( 1167 TEE_ObjectType obj_type) 1168 { 1169 size_t n; 1170 1171 for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) { 1172 if (tee_cryp_obj_props[n].obj_type == obj_type) 1173 return tee_cryp_obj_props + n; 1174 } 1175 1176 return NULL; 1177 } 1178 1179 /* Set an attribute on an object */ 1180 static void set_attribute(struct tee_obj *o, 1181 const struct tee_cryp_obj_type_props *props, 1182 uint32_t attr) 1183 { 1184 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 1185 1186 if (idx < 0) 1187 return; 1188 o->have_attrs |= BIT(idx); 1189 } 1190 1191 /* Get an attribute on an object */ 1192 static uint32_t get_attribute(const struct tee_obj *o, 1193 const struct tee_cryp_obj_type_props *props, 1194 uint32_t attr) 1195 { 1196 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 1197 1198 if (idx < 0) 1199 return 0; 1200 return o->have_attrs & BIT(idx); 1201 } 1202 1203 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id, 1204 void *buffer, uint64_t *size) 1205 { 1206 struct ts_session *sess = ts_get_current_session(); 1207 TEE_Result res = TEE_SUCCESS; 1208 struct tee_obj *o = NULL; 1209 const struct tee_cryp_obj_type_props *type_props = NULL; 1210 int idx = 0; 1211 const struct attr_ops *ops = NULL; 1212 void *attr = NULL; 1213 1214 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1215 if (res != TEE_SUCCESS) 1216 return TEE_ERROR_ITEM_NOT_FOUND; 1217 1218 /* Check that the object is initialized */ 1219 if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED)) 1220 return TEE_ERROR_BAD_PARAMETERS; 1221 1222 /* Check that getting the attribute is allowed */ 1223 if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) && 1224 !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE)) 1225 return TEE_ERROR_BAD_PARAMETERS; 1226 1227 type_props = tee_svc_find_type_props(o->info.objectType); 1228 if (!type_props) { 1229 /* Unknown object type, "can't happen" */ 1230 return TEE_ERROR_BAD_STATE; 1231 } 1232 1233 idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props); 1234 if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0)) 1235 return TEE_ERROR_ITEM_NOT_FOUND; 1236 1237 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1238 attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs; 1239 return ops->to_user(attr, sess, buffer, size); 1240 } 1241 1242 void tee_obj_attr_free(struct tee_obj *o) 1243 { 1244 const struct tee_cryp_obj_type_props *tp; 1245 size_t n; 1246 1247 if (!o->attr) 1248 return; 1249 tp = tee_svc_find_type_props(o->info.objectType); 1250 if (!tp) 1251 return; 1252 1253 for (n = 0; n < tp->num_type_attrs; n++) { 1254 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1255 1256 attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs); 1257 } 1258 } 1259 1260 void tee_obj_attr_clear(struct tee_obj *o) 1261 { 1262 const struct tee_cryp_obj_type_props *tp; 1263 size_t n; 1264 1265 if (!o->attr) 1266 return; 1267 tp = tee_svc_find_type_props(o->info.objectType); 1268 if (!tp) 1269 return; 1270 1271 for (n = 0; n < tp->num_type_attrs; n++) { 1272 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1273 1274 attr_ops[ta->ops_index].clear((uint8_t *)o->attr + 1275 ta->raw_offs); 1276 } 1277 } 1278 1279 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data, 1280 size_t *data_len) 1281 { 1282 const struct tee_cryp_obj_type_props *tp; 1283 size_t n; 1284 size_t offs = 0; 1285 size_t len = data ? *data_len : 0; 1286 TEE_Result res; 1287 1288 if (o->info.objectType == TEE_TYPE_DATA) { 1289 *data_len = 0; 1290 return TEE_SUCCESS; /* pure data object */ 1291 } 1292 if (!o->attr) 1293 return TEE_ERROR_BAD_STATE; 1294 tp = tee_svc_find_type_props(o->info.objectType); 1295 if (!tp) 1296 return TEE_ERROR_BAD_STATE; 1297 1298 for (n = 0; n < tp->num_type_attrs; n++) { 1299 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1300 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1301 1302 res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs); 1303 if (res != TEE_SUCCESS) 1304 return res; 1305 } 1306 1307 *data_len = offs; 1308 if (data && offs > len) 1309 return TEE_ERROR_SHORT_BUFFER; 1310 return TEE_SUCCESS; 1311 } 1312 1313 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data, 1314 size_t data_len) 1315 { 1316 const struct tee_cryp_obj_type_props *tp; 1317 size_t n; 1318 size_t offs = 0; 1319 1320 if (o->info.objectType == TEE_TYPE_DATA) 1321 return TEE_SUCCESS; /* pure data object */ 1322 if (!o->attr) 1323 return TEE_ERROR_BAD_STATE; 1324 tp = tee_svc_find_type_props(o->info.objectType); 1325 if (!tp) 1326 return TEE_ERROR_BAD_STATE; 1327 1328 for (n = 0; n < tp->num_type_attrs; n++) { 1329 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1330 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1331 1332 if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len, 1333 &offs)) 1334 return TEE_ERROR_CORRUPT_OBJECT; 1335 } 1336 return TEE_SUCCESS; 1337 } 1338 1339 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src) 1340 { 1341 TEE_Result res; 1342 const struct tee_cryp_obj_type_props *tp; 1343 const struct tee_cryp_obj_type_attrs *ta; 1344 size_t n; 1345 uint32_t have_attrs = 0; 1346 void *attr; 1347 void *src_attr; 1348 1349 if (o->info.objectType == TEE_TYPE_DATA) 1350 return TEE_SUCCESS; /* pure data object */ 1351 if (!o->attr) 1352 return TEE_ERROR_BAD_STATE; 1353 tp = tee_svc_find_type_props(o->info.objectType); 1354 if (!tp) 1355 return TEE_ERROR_BAD_STATE; 1356 1357 if (o->info.objectType == src->info.objectType) { 1358 have_attrs = src->have_attrs; 1359 for (n = 0; n < tp->num_type_attrs; n++) { 1360 ta = tp->type_attrs + n; 1361 attr = (uint8_t *)o->attr + ta->raw_offs; 1362 src_attr = (uint8_t *)src->attr + ta->raw_offs; 1363 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1364 if (res != TEE_SUCCESS) 1365 return res; 1366 } 1367 } else { 1368 const struct tee_cryp_obj_type_props *tp_src; 1369 int idx; 1370 1371 if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) { 1372 if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR) 1373 return TEE_ERROR_BAD_PARAMETERS; 1374 } else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) { 1375 if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR) 1376 return TEE_ERROR_BAD_PARAMETERS; 1377 } else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) { 1378 if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR) 1379 return TEE_ERROR_BAD_PARAMETERS; 1380 } else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) { 1381 if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR) 1382 return TEE_ERROR_BAD_PARAMETERS; 1383 } else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) { 1384 if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR) 1385 return TEE_ERROR_BAD_PARAMETERS; 1386 } else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) { 1387 if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR) 1388 return TEE_ERROR_BAD_PARAMETERS; 1389 } else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) { 1390 if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR) 1391 return TEE_ERROR_BAD_PARAMETERS; 1392 } else if (o->info.objectType == TEE_TYPE_ED25519_PUBLIC_KEY) { 1393 if (src->info.objectType != TEE_TYPE_ED25519_KEYPAIR) 1394 return TEE_ERROR_BAD_PARAMETERS; 1395 } else { 1396 return TEE_ERROR_BAD_PARAMETERS; 1397 } 1398 1399 tp_src = tee_svc_find_type_props(src->info.objectType); 1400 if (!tp_src) 1401 return TEE_ERROR_BAD_STATE; 1402 1403 have_attrs = BIT32(tp->num_type_attrs) - 1; 1404 for (n = 0; n < tp->num_type_attrs; n++) { 1405 ta = tp->type_attrs + n; 1406 1407 idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id, 1408 tp_src); 1409 if (idx < 0) 1410 return TEE_ERROR_BAD_STATE; 1411 1412 attr = (uint8_t *)o->attr + ta->raw_offs; 1413 src_attr = (uint8_t *)src->attr + 1414 tp_src->type_attrs[idx].raw_offs; 1415 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1416 if (res != TEE_SUCCESS) 1417 return res; 1418 } 1419 } 1420 1421 o->have_attrs = have_attrs; 1422 return TEE_SUCCESS; 1423 } 1424 1425 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz) 1426 { 1427 return IS_ENABLED(CFG_COMPAT_GP10_DES) && 1428 ((type == TEE_TYPE_DES && sz == 56) || 1429 (type == TEE_TYPE_DES3 && (sz == 112 || sz == 168))); 1430 } 1431 1432 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props, 1433 size_t key_size) 1434 { 1435 size_t sz = key_size; 1436 1437 /* 1438 * In GP Internal API Specification 1.0 the partity bits aren't 1439 * counted when telling the size of the key in bits so add them 1440 * here if missing. 1441 */ 1442 if (is_gp_legacy_des_key_size(props->obj_type, sz)) 1443 sz += sz / 7; 1444 1445 if (sz % props->quanta != 0) 1446 return TEE_ERROR_NOT_SUPPORTED; 1447 if (sz < props->min_size) 1448 return TEE_ERROR_NOT_SUPPORTED; 1449 if (sz > props->max_size) 1450 return TEE_ERROR_NOT_SUPPORTED; 1451 1452 return TEE_SUCCESS; 1453 } 1454 1455 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type, 1456 size_t max_key_size) 1457 { 1458 TEE_Result res = TEE_SUCCESS; 1459 const struct tee_cryp_obj_type_props *type_props; 1460 1461 /* Can only set type for newly allocated objs */ 1462 if (o->attr) 1463 return TEE_ERROR_BAD_STATE; 1464 1465 /* 1466 * Verify that maxObjectSize is supported and find out how 1467 * much should be allocated. 1468 */ 1469 1470 if (obj_type == TEE_TYPE_DATA) { 1471 if (max_key_size) 1472 return TEE_ERROR_NOT_SUPPORTED; 1473 } else { 1474 /* Find description of object */ 1475 type_props = tee_svc_find_type_props(obj_type); 1476 if (!type_props) 1477 return TEE_ERROR_NOT_SUPPORTED; 1478 1479 /* Check that max_key_size follows restrictions */ 1480 res = check_key_size(type_props, max_key_size); 1481 if (res) 1482 return res; 1483 1484 o->attr = calloc(1, type_props->alloc_size); 1485 if (!o->attr) 1486 return TEE_ERROR_OUT_OF_MEMORY; 1487 } 1488 1489 /* If we have a key structure, pre-allocate the bignums inside */ 1490 switch (obj_type) { 1491 case TEE_TYPE_RSA_PUBLIC_KEY: 1492 res = crypto_acipher_alloc_rsa_public_key(o->attr, 1493 max_key_size); 1494 break; 1495 case TEE_TYPE_RSA_KEYPAIR: 1496 res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size); 1497 break; 1498 case TEE_TYPE_DSA_PUBLIC_KEY: 1499 res = crypto_acipher_alloc_dsa_public_key(o->attr, 1500 max_key_size); 1501 break; 1502 case TEE_TYPE_DSA_KEYPAIR: 1503 res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size); 1504 break; 1505 case TEE_TYPE_DH_KEYPAIR: 1506 res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size); 1507 break; 1508 case TEE_TYPE_ECDSA_PUBLIC_KEY: 1509 case TEE_TYPE_ECDH_PUBLIC_KEY: 1510 case TEE_TYPE_SM2_DSA_PUBLIC_KEY: 1511 case TEE_TYPE_SM2_PKE_PUBLIC_KEY: 1512 case TEE_TYPE_SM2_KEP_PUBLIC_KEY: 1513 res = crypto_acipher_alloc_ecc_public_key(o->attr, obj_type, 1514 max_key_size); 1515 break; 1516 case TEE_TYPE_ECDSA_KEYPAIR: 1517 case TEE_TYPE_ECDH_KEYPAIR: 1518 case TEE_TYPE_SM2_DSA_KEYPAIR: 1519 case TEE_TYPE_SM2_PKE_KEYPAIR: 1520 case TEE_TYPE_SM2_KEP_KEYPAIR: 1521 res = crypto_acipher_alloc_ecc_keypair(o->attr, obj_type, 1522 max_key_size); 1523 break; 1524 case TEE_TYPE_X25519_KEYPAIR: 1525 res = crypto_acipher_alloc_x25519_keypair(o->attr, 1526 max_key_size); 1527 break; 1528 case TEE_TYPE_ED25519_KEYPAIR: 1529 case TEE_TYPE_ED25519_PUBLIC_KEY: 1530 res = crypto_acipher_alloc_ed25519_keypair(o->attr, 1531 max_key_size); 1532 break; 1533 default: 1534 if (obj_type != TEE_TYPE_DATA) { 1535 struct tee_cryp_obj_secret *key = o->attr; 1536 1537 key->alloc_size = type_props->alloc_size - 1538 sizeof(*key); 1539 } 1540 break; 1541 } 1542 1543 if (res != TEE_SUCCESS) 1544 return res; 1545 1546 o->info.objectType = obj_type; 1547 o->info.maxObjectSize = max_key_size; 1548 o->info.objectUsage = TEE_USAGE_DEFAULT; 1549 1550 return TEE_SUCCESS; 1551 } 1552 1553 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type, 1554 unsigned long max_key_size, uint32_t *obj) 1555 { 1556 struct ts_session *sess = ts_get_current_session(); 1557 TEE_Result res = TEE_SUCCESS; 1558 struct tee_obj *o = NULL; 1559 1560 1561 o = tee_obj_alloc(); 1562 if (!o) 1563 return TEE_ERROR_OUT_OF_MEMORY; 1564 1565 res = tee_obj_set_type(o, obj_type, max_key_size); 1566 if (res != TEE_SUCCESS) { 1567 tee_obj_free(o); 1568 return res; 1569 } 1570 1571 tee_obj_add(to_user_ta_ctx(sess->ctx), o); 1572 1573 res = copy_kaddr_to_uref(obj, o); 1574 if (res != TEE_SUCCESS) 1575 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1576 return res; 1577 } 1578 1579 TEE_Result syscall_cryp_obj_close(unsigned long obj) 1580 { 1581 struct ts_session *sess = ts_get_current_session(); 1582 TEE_Result res = TEE_SUCCESS; 1583 struct tee_obj *o = NULL; 1584 1585 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1586 if (res != TEE_SUCCESS) 1587 return res; 1588 1589 /* 1590 * If it's busy it's used by an operation, a client should never have 1591 * this handle. 1592 */ 1593 if (o->busy) 1594 return TEE_ERROR_ITEM_NOT_FOUND; 1595 1596 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1597 return TEE_SUCCESS; 1598 } 1599 1600 TEE_Result syscall_cryp_obj_reset(unsigned long obj) 1601 { 1602 struct ts_session *sess = ts_get_current_session(); 1603 TEE_Result res = TEE_SUCCESS; 1604 struct tee_obj *o = NULL; 1605 1606 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1607 if (res != TEE_SUCCESS) 1608 return res; 1609 1610 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) { 1611 tee_obj_attr_clear(o); 1612 o->info.objectSize = 0; 1613 o->info.objectUsage = TEE_USAGE_DEFAULT; 1614 } else { 1615 return TEE_ERROR_BAD_PARAMETERS; 1616 } 1617 1618 /* the object is no more initialized */ 1619 o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED; 1620 1621 return TEE_SUCCESS; 1622 } 1623 1624 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc, 1625 const struct utee_attribute *usr_attrs, 1626 uint32_t attr_count, TEE_Attribute *attrs) 1627 { 1628 TEE_Result res = TEE_SUCCESS; 1629 size_t size = 0; 1630 uint32_t n = 0; 1631 1632 if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size)) 1633 return TEE_ERROR_OVERFLOW; 1634 1635 usr_attrs = memtag_strip_tag_const(usr_attrs); 1636 1637 res = vm_check_access_rights(&utc->uctx, 1638 TEE_MEMORY_ACCESS_READ | 1639 TEE_MEMORY_ACCESS_ANY_OWNER, 1640 (uaddr_t)usr_attrs, size); 1641 if (res != TEE_SUCCESS) 1642 return res; 1643 1644 for (n = 0; n < attr_count; n++) { 1645 attrs[n].attributeID = usr_attrs[n].attribute_id; 1646 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) { 1647 attrs[n].content.value.a = usr_attrs[n].a; 1648 attrs[n].content.value.b = usr_attrs[n].b; 1649 } else { 1650 uintptr_t buf = usr_attrs[n].a; 1651 size_t len = usr_attrs[n].b; 1652 uint32_t flags = TEE_MEMORY_ACCESS_READ | 1653 TEE_MEMORY_ACCESS_ANY_OWNER; 1654 1655 buf = memtag_strip_tag_vaddr((void *)buf); 1656 1657 res = vm_check_access_rights(&utc->uctx, flags, buf, 1658 len); 1659 if (res != TEE_SUCCESS) 1660 return res; 1661 attrs[n].content.ref.buffer = (void *)buf; 1662 attrs[n].content.ref.length = len; 1663 } 1664 } 1665 1666 return TEE_SUCCESS; 1667 } 1668 1669 enum attr_usage { 1670 ATTR_USAGE_POPULATE, 1671 ATTR_USAGE_GENERATE_KEY 1672 }; 1673 1674 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage, 1675 const struct tee_cryp_obj_type_props 1676 *type_props, 1677 const TEE_Attribute *attrs, 1678 uint32_t attr_count) 1679 { 1680 uint32_t required_flag = 0; 1681 uint32_t opt_flag = 0; 1682 bool all_opt_needed = false; 1683 uint32_t req_attrs = 0; 1684 uint32_t opt_grp_attrs = 0; 1685 uint32_t attrs_found = 0; 1686 size_t n = 0; 1687 uint32_t bit = 0; 1688 uint32_t flags = 0; 1689 int idx = 0; 1690 1691 if (usage == ATTR_USAGE_POPULATE) { 1692 required_flag = TEE_TYPE_ATTR_REQUIRED; 1693 opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP; 1694 all_opt_needed = true; 1695 } else { 1696 required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ; 1697 opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT; 1698 all_opt_needed = false; 1699 } 1700 1701 /* 1702 * First find out which attributes are required and which belong to 1703 * the optional group 1704 */ 1705 for (n = 0; n < type_props->num_type_attrs; n++) { 1706 bit = 1 << n; 1707 flags = type_props->type_attrs[n].flags; 1708 1709 if (flags & required_flag) 1710 req_attrs |= bit; 1711 else if (flags & opt_flag) 1712 opt_grp_attrs |= bit; 1713 } 1714 1715 /* 1716 * Verify that all required attributes are in place and 1717 * that the same attribute isn't repeated. 1718 */ 1719 for (n = 0; n < attr_count; n++) { 1720 idx = tee_svc_cryp_obj_find_type_attr_idx( 1721 attrs[n].attributeID, 1722 type_props); 1723 1724 /* attribute not defined in current object type */ 1725 if (idx < 0) 1726 return TEE_ERROR_ITEM_NOT_FOUND; 1727 1728 bit = 1 << idx; 1729 1730 /* attribute not repeated */ 1731 if ((attrs_found & bit) != 0) 1732 return TEE_ERROR_ITEM_NOT_FOUND; 1733 1734 /* 1735 * Attribute not defined in current object type for this 1736 * usage. 1737 */ 1738 if (!(bit & (req_attrs | opt_grp_attrs))) 1739 return TEE_ERROR_ITEM_NOT_FOUND; 1740 1741 attrs_found |= bit; 1742 } 1743 /* Required attribute missing */ 1744 if ((attrs_found & req_attrs) != req_attrs) 1745 return TEE_ERROR_ITEM_NOT_FOUND; 1746 1747 /* 1748 * If the flag says that "if one of the optional attributes are included 1749 * all of them has to be included" this must be checked. 1750 */ 1751 if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 && 1752 (attrs_found & opt_grp_attrs) != opt_grp_attrs) 1753 return TEE_ERROR_ITEM_NOT_FOUND; 1754 1755 return TEE_SUCCESS; 1756 } 1757 1758 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size) 1759 { 1760 switch (curve) { 1761 case TEE_ECC_CURVE_NIST_P192: 1762 *key_size = 192; 1763 break; 1764 case TEE_ECC_CURVE_NIST_P224: 1765 *key_size = 224; 1766 break; 1767 case TEE_ECC_CURVE_NIST_P256: 1768 *key_size = 256; 1769 break; 1770 case TEE_ECC_CURVE_NIST_P384: 1771 *key_size = 384; 1772 break; 1773 case TEE_ECC_CURVE_NIST_P521: 1774 *key_size = 521; 1775 break; 1776 case TEE_ECC_CURVE_SM2: 1777 case TEE_ECC_CURVE_25519: 1778 *key_size = 256; 1779 break; 1780 default: 1781 return TEE_ERROR_NOT_SUPPORTED; 1782 } 1783 1784 return TEE_SUCCESS; 1785 } 1786 1787 static size_t get_used_bits(const TEE_Attribute *a) 1788 { 1789 int nbits = a->content.ref.length * 8; 1790 int v = 0; 1791 1792 bit_ffs(a->content.ref.buffer, nbits, &v); 1793 return nbits - v; 1794 } 1795 1796 static TEE_Result tee_svc_cryp_obj_populate_type( 1797 struct tee_obj *o, 1798 const struct tee_cryp_obj_type_props *type_props, 1799 const TEE_Attribute *attrs, 1800 uint32_t attr_count) 1801 { 1802 TEE_Result res = TEE_SUCCESS; 1803 uint32_t have_attrs = 0; 1804 size_t obj_size = 0; 1805 size_t n = 0; 1806 int idx = 0; 1807 const struct attr_ops *ops = NULL; 1808 void *attr = NULL; 1809 1810 for (n = 0; n < attr_count; n++) { 1811 idx = tee_svc_cryp_obj_find_type_attr_idx( 1812 attrs[n].attributeID, 1813 type_props); 1814 /* attribute not defined in current object type */ 1815 if (idx < 0) 1816 return TEE_ERROR_ITEM_NOT_FOUND; 1817 1818 have_attrs |= BIT32(idx); 1819 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1820 attr = (uint8_t *)o->attr + 1821 type_props->type_attrs[idx].raw_offs; 1822 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) 1823 res = ops->from_user(attr, &attrs[n].content.value, 1824 sizeof(attrs[n].content.value)); 1825 else 1826 res = ops->from_user(attr, attrs[n].content.ref.buffer, 1827 attrs[n].content.ref.length); 1828 if (res != TEE_SUCCESS) 1829 return res; 1830 1831 /* 1832 * The attribute that gives the size of the object is 1833 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR. 1834 */ 1835 if (type_props->type_attrs[idx].flags & 1836 TEE_TYPE_ATTR_SIZE_INDICATOR) { 1837 /* There should be only one */ 1838 if (obj_size) 1839 return TEE_ERROR_BAD_STATE; 1840 1841 /* 1842 * For ECDSA/ECDH we need to translate curve into 1843 * object size 1844 */ 1845 if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) { 1846 res = get_ec_key_size(attrs[n].content.value.a, 1847 &obj_size); 1848 if (res != TEE_SUCCESS) 1849 return res; 1850 } else { 1851 TEE_ObjectType obj_type = o->info.objectType; 1852 size_t sz = o->info.maxObjectSize; 1853 1854 obj_size = attrs[n].content.ref.length * 8; 1855 /* Drop the parity bits for legacy objects */ 1856 if (is_gp_legacy_des_key_size(obj_type, sz)) 1857 obj_size -= obj_size / 8; 1858 } 1859 if (obj_size > o->info.maxObjectSize) 1860 return TEE_ERROR_BAD_STATE; 1861 res = check_key_size(type_props, obj_size); 1862 if (res != TEE_SUCCESS) 1863 return TEE_ERROR_BAD_PARAMETERS; 1864 } 1865 1866 /* 1867 * Bignum attributes limited by the number of bits in 1868 * o->info.objectSize are flagged with 1869 * TEE_TYPE_ATTR_BIGNUM_MAXBITS. 1870 */ 1871 if (type_props->type_attrs[idx].flags & 1872 TEE_TYPE_ATTR_BIGNUM_MAXBITS) { 1873 if (get_used_bits(attrs + n) > o->info.maxObjectSize) 1874 return TEE_ERROR_BAD_STATE; 1875 } 1876 } 1877 1878 o->have_attrs = have_attrs; 1879 o->info.objectSize = obj_size; 1880 /* 1881 * In GP Internal API Specification 1.0 the partity bits aren't 1882 * counted when telling the size of the key in bits so remove the 1883 * parity bits here. 1884 */ 1885 if (is_gp_legacy_des_key_size(o->info.objectType, 1886 o->info.maxObjectSize)) 1887 o->info.objectSize -= o->info.objectSize / 8; 1888 1889 return TEE_SUCCESS; 1890 } 1891 1892 TEE_Result syscall_cryp_obj_populate(unsigned long obj, 1893 struct utee_attribute *usr_attrs, 1894 unsigned long attr_count) 1895 { 1896 struct ts_session *sess = ts_get_current_session(); 1897 TEE_Result res = TEE_SUCCESS; 1898 struct tee_obj *o = NULL; 1899 const struct tee_cryp_obj_type_props *type_props = NULL; 1900 TEE_Attribute *attrs = NULL; 1901 size_t alloc_size = 0; 1902 1903 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1904 if (res != TEE_SUCCESS) 1905 return res; 1906 1907 /* Must be a transient object */ 1908 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1909 return TEE_ERROR_BAD_PARAMETERS; 1910 1911 /* Must not be initialized already */ 1912 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1913 return TEE_ERROR_BAD_PARAMETERS; 1914 1915 type_props = tee_svc_find_type_props(o->info.objectType); 1916 if (!type_props) 1917 return TEE_ERROR_NOT_IMPLEMENTED; 1918 1919 if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size)) 1920 return TEE_ERROR_OVERFLOW; 1921 1922 attrs = malloc(alloc_size); 1923 if (!attrs) 1924 return TEE_ERROR_OUT_OF_MEMORY; 1925 1926 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count, 1927 attrs); 1928 if (res != TEE_SUCCESS) 1929 goto out; 1930 1931 res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props, 1932 attrs, attr_count); 1933 if (res != TEE_SUCCESS) 1934 goto out; 1935 1936 res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count); 1937 if (res == TEE_SUCCESS) 1938 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1939 1940 out: 1941 free_wipe(attrs); 1942 return res; 1943 } 1944 1945 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src) 1946 { 1947 struct ts_session *sess = ts_get_current_session(); 1948 TEE_Result res = TEE_SUCCESS; 1949 struct tee_obj *dst_o = NULL; 1950 struct tee_obj *src_o = NULL; 1951 1952 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1953 uref_to_vaddr(dst), &dst_o); 1954 if (res != TEE_SUCCESS) 1955 return res; 1956 1957 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1958 uref_to_vaddr(src), &src_o); 1959 if (res != TEE_SUCCESS) 1960 return res; 1961 1962 if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 1963 return TEE_ERROR_BAD_PARAMETERS; 1964 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1965 return TEE_ERROR_BAD_PARAMETERS; 1966 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1967 return TEE_ERROR_BAD_PARAMETERS; 1968 1969 res = tee_obj_attr_copy_from(dst_o, src_o); 1970 if (res != TEE_SUCCESS) 1971 return res; 1972 1973 dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1974 dst_o->info.objectSize = src_o->info.objectSize; 1975 dst_o->info.objectUsage = src_o->info.objectUsage; 1976 return TEE_SUCCESS; 1977 } 1978 1979 static TEE_Result check_pub_rsa_key(struct bignum *e) 1980 { 1981 size_t n = crypto_bignum_num_bytes(e); 1982 uint8_t bin_key[256 / 8] = { 0 }; 1983 1984 /* 1985 * NIST SP800-56B requires public RSA key to be an odd integer in 1986 * the range 65537 <= e < 2^256. 1987 */ 1988 1989 if (n > sizeof(bin_key) || n < 3) 1990 return TEE_ERROR_BAD_PARAMETERS; 1991 1992 crypto_bignum_bn2bin(e, bin_key); 1993 1994 if (!(bin_key[n - 1] & 1)) /* key must be odd */ 1995 return TEE_ERROR_BAD_PARAMETERS; 1996 1997 if (n == 3) { 1998 uint32_t key = 0; 1999 2000 for (n = 0; n < 3; n++) { 2001 key <<= 8; 2002 key |= bin_key[n]; 2003 } 2004 2005 if (key < 65537) 2006 return TEE_ERROR_BAD_PARAMETERS; 2007 } 2008 2009 /* key is larger than 65537 */ 2010 return TEE_SUCCESS; 2011 } 2012 2013 static TEE_Result tee_svc_obj_generate_key_rsa( 2014 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2015 uint32_t key_size, 2016 const TEE_Attribute *params, uint32_t param_count) 2017 { 2018 TEE_Result res = TEE_SUCCESS; 2019 struct rsa_keypair *key = o->attr; 2020 uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537); 2021 2022 /* Copy the present attributes into the obj before starting */ 2023 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2024 param_count); 2025 if (res != TEE_SUCCESS) 2026 return res; 2027 if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) { 2028 res = check_pub_rsa_key(key->e); 2029 if (res) 2030 return res; 2031 } else { 2032 crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e); 2033 } 2034 res = crypto_acipher_gen_rsa_key(key, key_size); 2035 if (res != TEE_SUCCESS) 2036 return res; 2037 2038 /* Set bits for all known attributes for this object type */ 2039 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 2040 2041 return TEE_SUCCESS; 2042 } 2043 2044 static TEE_Result tee_svc_obj_generate_key_dsa( 2045 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2046 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 2047 { 2048 TEE_Result res; 2049 2050 /* Copy the present attributes into the obj before starting */ 2051 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2052 param_count); 2053 if (res != TEE_SUCCESS) 2054 return res; 2055 2056 res = crypto_acipher_gen_dsa_key(o->attr, key_size); 2057 if (res != TEE_SUCCESS) 2058 return res; 2059 2060 /* Set bits for all known attributes for this object type */ 2061 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 2062 2063 return TEE_SUCCESS; 2064 } 2065 2066 static TEE_Result tee_svc_obj_generate_key_dh( 2067 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2068 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 2069 { 2070 TEE_Result res; 2071 struct dh_keypair *tee_dh_key; 2072 struct bignum *dh_q = NULL; 2073 uint32_t dh_xbits = 0; 2074 2075 /* Copy the present attributes into the obj before starting */ 2076 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2077 param_count); 2078 if (res != TEE_SUCCESS) 2079 return res; 2080 2081 tee_dh_key = (struct dh_keypair *)o->attr; 2082 2083 if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME)) 2084 dh_q = tee_dh_key->q; 2085 if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS)) 2086 dh_xbits = tee_dh_key->xbits; 2087 res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size); 2088 if (res != TEE_SUCCESS) 2089 return res; 2090 2091 /* Set bits for the generated public and private key */ 2092 set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE); 2093 set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE); 2094 set_attribute(o, type_props, TEE_ATTR_DH_X_BITS); 2095 return TEE_SUCCESS; 2096 } 2097 2098 static TEE_Result tee_svc_obj_generate_key_ecc( 2099 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2100 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 2101 { 2102 TEE_Result res; 2103 struct ecc_keypair *tee_ecc_key; 2104 2105 /* Copy the present attributes into the obj before starting */ 2106 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2107 param_count); 2108 if (res != TEE_SUCCESS) 2109 return res; 2110 2111 tee_ecc_key = (struct ecc_keypair *)o->attr; 2112 2113 res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size); 2114 if (res != TEE_SUCCESS) 2115 return res; 2116 2117 /* Set bits for the generated public and private key */ 2118 set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE); 2119 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X); 2120 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y); 2121 set_attribute(o, type_props, TEE_ATTR_ECC_CURVE); 2122 return TEE_SUCCESS; 2123 } 2124 2125 static TEE_Result 2126 tee_svc_obj_generate_key_x25519(struct tee_obj *o, 2127 const struct tee_cryp_obj_type_props 2128 *type_props, 2129 uint32_t key_size, 2130 const TEE_Attribute *params, 2131 uint32_t param_count) 2132 { 2133 TEE_Result res = TEE_ERROR_GENERIC; 2134 struct x25519_keypair *tee_x25519_key = NULL; 2135 2136 /* Copy the present attributes into the obj before starting */ 2137 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2138 param_count); 2139 if (res != TEE_SUCCESS) 2140 return res; 2141 2142 tee_x25519_key = (struct x25519_keypair *)o->attr; 2143 2144 res = crypto_acipher_gen_x25519_key(tee_x25519_key, key_size); 2145 if (res != TEE_SUCCESS) 2146 return res; 2147 2148 /* Set bits for the generated public and private key */ 2149 set_attribute(o, type_props, TEE_ATTR_X25519_PRIVATE_VALUE); 2150 set_attribute(o, type_props, TEE_ATTR_X25519_PUBLIC_VALUE); 2151 return TEE_SUCCESS; 2152 } 2153 2154 static TEE_Result 2155 tee_svc_obj_generate_key_ed25519(struct tee_obj *o, 2156 const struct tee_cryp_obj_type_props 2157 *type_props, 2158 uint32_t key_size, 2159 const TEE_Attribute *params, 2160 uint32_t param_count) 2161 { 2162 TEE_Result res = TEE_ERROR_GENERIC; 2163 struct ed25519_keypair *key = NULL; 2164 2165 /* Copy the present attributes into the obj before starting */ 2166 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2167 param_count); 2168 if (res != TEE_SUCCESS) 2169 return res; 2170 2171 key = o->attr; 2172 2173 res = crypto_acipher_gen_ed25519_key(key, key_size); 2174 if (res != TEE_SUCCESS) 2175 return res; 2176 2177 /* Set bits for the generated public and private key */ 2178 set_attribute(o, type_props, TEE_ATTR_ED25519_PRIVATE_VALUE); 2179 set_attribute(o, type_props, TEE_ATTR_ED25519_PUBLIC_VALUE); 2180 return TEE_SUCCESS; 2181 } 2182 2183 static TEE_Result 2184 tee_svc_obj_ed25519_parse_params(const TEE_Attribute *params, size_t num_params, 2185 bool *ph_flag, const uint8_t **ctx, 2186 size_t *ctx_len) 2187 { 2188 size_t n = 0; 2189 2190 *ctx = NULL; 2191 2192 for (n = 0; n < num_params; n++) { 2193 switch (params[n].attributeID) { 2194 case TEE_ATTR_EDDSA_PREHASH: 2195 *ph_flag = true; 2196 break; 2197 2198 case TEE_ATTR_EDDSA_CTX: 2199 /* several provided contexts are treated as error */ 2200 if (*ctx) 2201 return TEE_ERROR_BAD_PARAMETERS; 2202 2203 *ctx_len = params[n].content.ref.length; 2204 if (*ctx_len > TEE_ED25519_CTX_MAX_LENGTH) 2205 return TEE_ERROR_BAD_PARAMETERS; 2206 2207 if (!*ctx_len) 2208 break; 2209 2210 *ctx = params[n].content.ref.buffer; 2211 if (!*ctx) 2212 return TEE_ERROR_BAD_PARAMETERS; 2213 break; 2214 2215 default: 2216 return TEE_ERROR_BAD_PARAMETERS; 2217 } 2218 } 2219 2220 return TEE_SUCCESS; 2221 } 2222 2223 static TEE_Result 2224 tee_svc_obj_ed25519_sign(struct ed25519_keypair *key, 2225 const uint8_t *msg, size_t msg_len, 2226 uint8_t *sig, size_t *sig_len, 2227 const TEE_Attribute *params, size_t num_params) 2228 { 2229 TEE_Result err = TEE_ERROR_GENERIC; 2230 size_t ctx_len = 0; 2231 const uint8_t *ctx = NULL; 2232 bool ph_flag = false; 2233 2234 err = tee_svc_obj_ed25519_parse_params(params, num_params, &ph_flag, 2235 &ctx, &ctx_len); 2236 if (err != TEE_SUCCESS) 2237 return err; 2238 2239 if (ph_flag || ctx) { 2240 return crypto_acipher_ed25519ctx_sign(key, msg, msg_len, sig, 2241 sig_len, ph_flag, 2242 ctx, ctx_len); 2243 } 2244 2245 return crypto_acipher_ed25519_sign(key, msg, msg_len, sig, sig_len); 2246 } 2247 2248 static TEE_Result 2249 tee_svc_obj_ed25519_verify(struct ed25519_keypair *key, 2250 const uint8_t *msg, size_t msg_len, 2251 const uint8_t *sig, size_t sig_len, 2252 const TEE_Attribute *params, size_t num_params) 2253 { 2254 TEE_Result err = TEE_ERROR_GENERIC; 2255 size_t ctx_len = 0; 2256 const uint8_t *ctx = NULL; 2257 bool ph_flag = false; 2258 2259 err = tee_svc_obj_ed25519_parse_params(params, num_params, &ph_flag, 2260 &ctx, &ctx_len); 2261 if (err) 2262 return err; 2263 2264 if (ph_flag || ctx) { 2265 return crypto_acipher_ed25519ctx_verify(key, msg, msg_len, sig, 2266 sig_len, ph_flag, 2267 ctx, ctx_len); 2268 } 2269 2270 return crypto_acipher_ed25519_verify(key, msg, msg_len, sig, sig_len); 2271 } 2272 2273 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size, 2274 const struct utee_attribute *usr_params, 2275 unsigned long param_count) 2276 { 2277 struct ts_session *sess = ts_get_current_session(); 2278 TEE_Result res = TEE_SUCCESS; 2279 const struct tee_cryp_obj_type_props *type_props = NULL; 2280 struct tee_obj *o = NULL; 2281 struct tee_cryp_obj_secret *key = NULL; 2282 size_t byte_size = 0; 2283 TEE_Attribute *params = NULL; 2284 size_t alloc_size = 0; 2285 2286 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 2287 if (res != TEE_SUCCESS) 2288 return res; 2289 2290 /* Must be a transient object */ 2291 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 2292 return TEE_ERROR_BAD_STATE; 2293 2294 /* Must not be initialized already */ 2295 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 2296 return TEE_ERROR_BAD_STATE; 2297 2298 /* Find description of object */ 2299 type_props = tee_svc_find_type_props(o->info.objectType); 2300 if (!type_props) 2301 return TEE_ERROR_NOT_SUPPORTED; 2302 2303 /* Check that key_size follows restrictions */ 2304 res = check_key_size(type_props, key_size); 2305 if (res) 2306 return res; 2307 2308 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 2309 return TEE_ERROR_OVERFLOW; 2310 2311 params = malloc(alloc_size); 2312 if (!params) 2313 return TEE_ERROR_OUT_OF_MEMORY; 2314 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count, 2315 params); 2316 if (res != TEE_SUCCESS) 2317 goto out; 2318 2319 res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props, 2320 params, param_count); 2321 if (res != TEE_SUCCESS) 2322 goto out; 2323 2324 switch (o->info.objectType) { 2325 case TEE_TYPE_AES: 2326 case TEE_TYPE_DES: 2327 case TEE_TYPE_DES3: 2328 case TEE_TYPE_SM4: 2329 case TEE_TYPE_HMAC_MD5: 2330 case TEE_TYPE_HMAC_SHA1: 2331 case TEE_TYPE_HMAC_SHA224: 2332 case TEE_TYPE_HMAC_SHA256: 2333 case TEE_TYPE_HMAC_SHA384: 2334 case TEE_TYPE_HMAC_SHA512: 2335 case TEE_TYPE_HMAC_SM3: 2336 case TEE_TYPE_GENERIC_SECRET: 2337 byte_size = key_size / 8; 2338 2339 /* 2340 * In GP Internal API Specification 1.0 the partity bits 2341 * aren't counted when telling the size of the key in bits. 2342 */ 2343 if (is_gp_legacy_des_key_size(o->info.objectType, key_size)) 2344 byte_size = (key_size + key_size / 7) / 8; 2345 2346 key = (struct tee_cryp_obj_secret *)o->attr; 2347 if (byte_size > key->alloc_size) { 2348 res = TEE_ERROR_EXCESS_DATA; 2349 goto out; 2350 } 2351 2352 res = crypto_rng_read((void *)(key + 1), byte_size); 2353 if (res != TEE_SUCCESS) 2354 goto out; 2355 2356 key->key_size = byte_size; 2357 2358 /* Set bits for all known attributes for this object type */ 2359 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 2360 2361 break; 2362 2363 case TEE_TYPE_RSA_KEYPAIR: 2364 res = tee_svc_obj_generate_key_rsa(o, type_props, key_size, 2365 params, param_count); 2366 if (res != TEE_SUCCESS) 2367 goto out; 2368 break; 2369 2370 case TEE_TYPE_DSA_KEYPAIR: 2371 res = tee_svc_obj_generate_key_dsa(o, type_props, key_size, 2372 params, param_count); 2373 if (res != TEE_SUCCESS) 2374 goto out; 2375 break; 2376 2377 case TEE_TYPE_DH_KEYPAIR: 2378 res = tee_svc_obj_generate_key_dh(o, type_props, key_size, 2379 params, param_count); 2380 if (res != TEE_SUCCESS) 2381 goto out; 2382 break; 2383 2384 case TEE_TYPE_ECDSA_KEYPAIR: 2385 case TEE_TYPE_ECDH_KEYPAIR: 2386 case TEE_TYPE_SM2_DSA_KEYPAIR: 2387 case TEE_TYPE_SM2_KEP_KEYPAIR: 2388 case TEE_TYPE_SM2_PKE_KEYPAIR: 2389 res = tee_svc_obj_generate_key_ecc(o, type_props, key_size, 2390 params, param_count); 2391 if (res != TEE_SUCCESS) 2392 goto out; 2393 break; 2394 2395 case TEE_TYPE_X25519_KEYPAIR: 2396 res = tee_svc_obj_generate_key_x25519(o, type_props, key_size, 2397 params, param_count); 2398 if (res != TEE_SUCCESS) 2399 goto out; 2400 break; 2401 2402 case TEE_TYPE_ED25519_KEYPAIR: 2403 res = tee_svc_obj_generate_key_ed25519(o, type_props, key_size, 2404 params, param_count); 2405 if (res != TEE_SUCCESS) 2406 goto out; 2407 break; 2408 2409 default: 2410 res = TEE_ERROR_BAD_FORMAT; 2411 } 2412 2413 out: 2414 free_wipe(params); 2415 if (res == TEE_SUCCESS) { 2416 o->info.objectSize = key_size; 2417 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 2418 } 2419 return res; 2420 } 2421 2422 static TEE_Result tee_svc_cryp_get_state(struct ts_session *sess, 2423 vaddr_t state_id, 2424 struct tee_cryp_state **state) 2425 { 2426 struct tee_cryp_state *s; 2427 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2428 2429 TAILQ_FOREACH(s, &utc->cryp_states, link) { 2430 if (state_id == (vaddr_t)s) { 2431 *state = s; 2432 return TEE_SUCCESS; 2433 } 2434 } 2435 return TEE_ERROR_BAD_PARAMETERS; 2436 } 2437 2438 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs) 2439 { 2440 struct tee_obj *o; 2441 2442 if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS) 2443 tee_obj_close(utc, o); 2444 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) 2445 tee_obj_close(utc, o); 2446 2447 TAILQ_REMOVE(&utc->cryp_states, cs, link); 2448 if (cs->ctx_finalize != NULL) 2449 cs->ctx_finalize(cs->ctx); 2450 2451 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2452 case TEE_OPERATION_CIPHER: 2453 crypto_cipher_free_ctx(cs->ctx); 2454 break; 2455 case TEE_OPERATION_AE: 2456 crypto_authenc_free_ctx(cs->ctx); 2457 break; 2458 case TEE_OPERATION_DIGEST: 2459 crypto_hash_free_ctx(cs->ctx); 2460 break; 2461 case TEE_OPERATION_MAC: 2462 crypto_mac_free_ctx(cs->ctx); 2463 break; 2464 default: 2465 assert(!cs->ctx); 2466 } 2467 2468 free(cs); 2469 } 2470 2471 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o, 2472 uint32_t algo, 2473 TEE_OperationMode mode) 2474 { 2475 uint32_t req_key_type; 2476 uint32_t req_key_type2 = 0; 2477 2478 switch (TEE_ALG_GET_MAIN_ALG(algo)) { 2479 case TEE_MAIN_ALGO_MD5: 2480 req_key_type = TEE_TYPE_HMAC_MD5; 2481 break; 2482 case TEE_MAIN_ALGO_SHA1: 2483 req_key_type = TEE_TYPE_HMAC_SHA1; 2484 break; 2485 case TEE_MAIN_ALGO_SHA224: 2486 req_key_type = TEE_TYPE_HMAC_SHA224; 2487 break; 2488 case TEE_MAIN_ALGO_SHA256: 2489 req_key_type = TEE_TYPE_HMAC_SHA256; 2490 break; 2491 case TEE_MAIN_ALGO_SHA384: 2492 req_key_type = TEE_TYPE_HMAC_SHA384; 2493 break; 2494 case TEE_MAIN_ALGO_SHA512: 2495 req_key_type = TEE_TYPE_HMAC_SHA512; 2496 break; 2497 case TEE_MAIN_ALGO_SM3: 2498 req_key_type = TEE_TYPE_HMAC_SM3; 2499 break; 2500 case TEE_MAIN_ALGO_AES: 2501 req_key_type = TEE_TYPE_AES; 2502 break; 2503 case TEE_MAIN_ALGO_DES: 2504 req_key_type = TEE_TYPE_DES; 2505 break; 2506 case TEE_MAIN_ALGO_DES3: 2507 req_key_type = TEE_TYPE_DES3; 2508 break; 2509 case TEE_MAIN_ALGO_SM4: 2510 req_key_type = TEE_TYPE_SM4; 2511 break; 2512 case TEE_MAIN_ALGO_RSA: 2513 req_key_type = TEE_TYPE_RSA_KEYPAIR; 2514 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2515 req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY; 2516 break; 2517 case TEE_MAIN_ALGO_DSA: 2518 req_key_type = TEE_TYPE_DSA_KEYPAIR; 2519 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2520 req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY; 2521 break; 2522 case TEE_MAIN_ALGO_DH: 2523 req_key_type = TEE_TYPE_DH_KEYPAIR; 2524 break; 2525 case TEE_MAIN_ALGO_ECDSA: 2526 req_key_type = TEE_TYPE_ECDSA_KEYPAIR; 2527 if (mode == TEE_MODE_VERIFY) 2528 req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY; 2529 break; 2530 case TEE_MAIN_ALGO_ECDH: 2531 req_key_type = TEE_TYPE_ECDH_KEYPAIR; 2532 break; 2533 case TEE_MAIN_ALGO_ED25519: 2534 req_key_type = TEE_TYPE_ED25519_KEYPAIR; 2535 if (mode == TEE_MODE_VERIFY) 2536 req_key_type2 = TEE_TYPE_ED25519_PUBLIC_KEY; 2537 break; 2538 case TEE_MAIN_ALGO_SM2_PKE: 2539 if (mode == TEE_MODE_ENCRYPT) 2540 req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY; 2541 else 2542 req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR; 2543 break; 2544 case TEE_MAIN_ALGO_SM2_DSA_SM3: 2545 if (mode == TEE_MODE_VERIFY) 2546 req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY; 2547 else 2548 req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR; 2549 break; 2550 #if defined(CFG_CRYPTO_SM2_KEP) 2551 case TEE_MAIN_ALGO_SM2_KEP: 2552 req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR; 2553 req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY; 2554 break; 2555 #endif 2556 #if defined(CFG_CRYPTO_HKDF) 2557 case TEE_MAIN_ALGO_HKDF: 2558 req_key_type = TEE_TYPE_HKDF_IKM; 2559 break; 2560 #endif 2561 #if defined(CFG_CRYPTO_CONCAT_KDF) 2562 case TEE_MAIN_ALGO_CONCAT_KDF: 2563 req_key_type = TEE_TYPE_CONCAT_KDF_Z; 2564 break; 2565 #endif 2566 #if defined(CFG_CRYPTO_PBKDF2) 2567 case TEE_MAIN_ALGO_PBKDF2: 2568 req_key_type = TEE_TYPE_PBKDF2_PASSWORD; 2569 break; 2570 #endif 2571 case TEE_MAIN_ALGO_X25519: 2572 req_key_type = TEE_TYPE_X25519_KEYPAIR; 2573 break; 2574 default: 2575 return TEE_ERROR_BAD_PARAMETERS; 2576 } 2577 2578 if (req_key_type != o->info.objectType && 2579 req_key_type2 != o->info.objectType) 2580 return TEE_ERROR_BAD_PARAMETERS; 2581 return TEE_SUCCESS; 2582 } 2583 2584 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode, 2585 unsigned long key1, unsigned long key2, 2586 uint32_t *state) 2587 { 2588 struct ts_session *sess = ts_get_current_session(); 2589 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2590 TEE_Result res = TEE_SUCCESS; 2591 struct tee_cryp_state *cs = NULL; 2592 struct tee_obj *o1 = NULL; 2593 struct tee_obj *o2 = NULL; 2594 2595 if (key1 != 0) { 2596 res = tee_obj_get(utc, uref_to_vaddr(key1), &o1); 2597 if (res != TEE_SUCCESS) 2598 return res; 2599 if (o1->busy) 2600 return TEE_ERROR_BAD_PARAMETERS; 2601 res = tee_svc_cryp_check_key_type(o1, algo, mode); 2602 if (res != TEE_SUCCESS) 2603 return res; 2604 } 2605 if (key2 != 0) { 2606 res = tee_obj_get(utc, uref_to_vaddr(key2), &o2); 2607 if (res != TEE_SUCCESS) 2608 return res; 2609 if (o2->busy) 2610 return TEE_ERROR_BAD_PARAMETERS; 2611 res = tee_svc_cryp_check_key_type(o2, algo, mode); 2612 if (res != TEE_SUCCESS) 2613 return res; 2614 } 2615 2616 cs = calloc(1, sizeof(struct tee_cryp_state)); 2617 if (!cs) 2618 return TEE_ERROR_OUT_OF_MEMORY; 2619 TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link); 2620 cs->algo = algo; 2621 cs->mode = mode; 2622 cs->state = CRYP_STATE_UNINITIALIZED; 2623 2624 switch (TEE_ALG_GET_CLASS(algo)) { 2625 case TEE_OPERATION_CIPHER: 2626 if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) || 2627 (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) { 2628 res = TEE_ERROR_BAD_PARAMETERS; 2629 } else { 2630 res = crypto_cipher_alloc_ctx(&cs->ctx, algo); 2631 if (res != TEE_SUCCESS) 2632 break; 2633 } 2634 break; 2635 case TEE_OPERATION_AE: 2636 if (key1 == 0 || key2 != 0) { 2637 res = TEE_ERROR_BAD_PARAMETERS; 2638 } else { 2639 res = crypto_authenc_alloc_ctx(&cs->ctx, algo); 2640 if (res != TEE_SUCCESS) 2641 break; 2642 } 2643 break; 2644 case TEE_OPERATION_MAC: 2645 if (key1 == 0 || key2 != 0) { 2646 res = TEE_ERROR_BAD_PARAMETERS; 2647 } else { 2648 res = crypto_mac_alloc_ctx(&cs->ctx, algo); 2649 if (res != TEE_SUCCESS) 2650 break; 2651 } 2652 break; 2653 case TEE_OPERATION_DIGEST: 2654 if (key1 != 0 || key2 != 0) { 2655 res = TEE_ERROR_BAD_PARAMETERS; 2656 } else { 2657 res = crypto_hash_alloc_ctx(&cs->ctx, algo); 2658 if (res != TEE_SUCCESS) 2659 break; 2660 } 2661 break; 2662 case TEE_OPERATION_ASYMMETRIC_CIPHER: 2663 case TEE_OPERATION_ASYMMETRIC_SIGNATURE: 2664 if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 && 2665 !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) { 2666 res = TEE_ERROR_NOT_SUPPORTED; 2667 break; 2668 } 2669 if (key1 == 0 || key2 != 0) 2670 res = TEE_ERROR_BAD_PARAMETERS; 2671 break; 2672 case TEE_OPERATION_KEY_DERIVATION: 2673 if (algo == TEE_ALG_SM2_KEP) { 2674 if (key1 == 0 || key2 == 0) 2675 res = TEE_ERROR_BAD_PARAMETERS; 2676 } else { 2677 if (key1 == 0 || key2 != 0) 2678 res = TEE_ERROR_BAD_PARAMETERS; 2679 } 2680 break; 2681 default: 2682 res = TEE_ERROR_NOT_SUPPORTED; 2683 break; 2684 } 2685 if (res != TEE_SUCCESS) 2686 goto out; 2687 2688 res = copy_kaddr_to_uref(state, cs); 2689 if (res != TEE_SUCCESS) 2690 goto out; 2691 2692 /* Register keys */ 2693 if (o1 != NULL) { 2694 o1->busy = true; 2695 cs->key1 = (vaddr_t)o1; 2696 } 2697 if (o2 != NULL) { 2698 o2->busy = true; 2699 cs->key2 = (vaddr_t)o2; 2700 } 2701 2702 out: 2703 if (res != TEE_SUCCESS) 2704 cryp_state_free(utc, cs); 2705 return res; 2706 } 2707 2708 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src) 2709 { 2710 struct ts_session *sess = ts_get_current_session(); 2711 TEE_Result res = TEE_SUCCESS; 2712 struct tee_cryp_state *cs_dst = NULL; 2713 struct tee_cryp_state *cs_src = NULL; 2714 2715 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst); 2716 if (res != TEE_SUCCESS) 2717 return res; 2718 2719 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src); 2720 if (res != TEE_SUCCESS) 2721 return res; 2722 if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode) 2723 return TEE_ERROR_BAD_PARAMETERS; 2724 2725 switch (TEE_ALG_GET_CLASS(cs_src->algo)) { 2726 case TEE_OPERATION_CIPHER: 2727 crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx); 2728 break; 2729 case TEE_OPERATION_AE: 2730 crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx); 2731 break; 2732 case TEE_OPERATION_DIGEST: 2733 crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx); 2734 break; 2735 case TEE_OPERATION_MAC: 2736 crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx); 2737 break; 2738 default: 2739 return TEE_ERROR_BAD_STATE; 2740 } 2741 2742 cs_dst->state = cs_src->state; 2743 cs_dst->ctx_finalize = cs_src->ctx_finalize; 2744 2745 return TEE_SUCCESS; 2746 } 2747 2748 void tee_svc_cryp_free_states(struct user_ta_ctx *utc) 2749 { 2750 struct tee_cryp_state_head *states = &utc->cryp_states; 2751 2752 while (!TAILQ_EMPTY(states)) 2753 cryp_state_free(utc, TAILQ_FIRST(states)); 2754 } 2755 2756 TEE_Result syscall_cryp_state_free(unsigned long state) 2757 { 2758 struct ts_session *sess = ts_get_current_session(); 2759 TEE_Result res = TEE_SUCCESS; 2760 struct tee_cryp_state *cs = NULL; 2761 2762 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2763 if (res != TEE_SUCCESS) 2764 return res; 2765 cryp_state_free(to_user_ta_ctx(sess->ctx), cs); 2766 return TEE_SUCCESS; 2767 } 2768 2769 TEE_Result syscall_hash_init(unsigned long state, 2770 const void *iv __maybe_unused, 2771 size_t iv_len __maybe_unused) 2772 { 2773 struct ts_session *sess = ts_get_current_session(); 2774 TEE_Result res = TEE_SUCCESS; 2775 struct tee_cryp_state *cs = NULL; 2776 2777 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2778 if (res != TEE_SUCCESS) 2779 return res; 2780 2781 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2782 case TEE_OPERATION_DIGEST: 2783 res = crypto_hash_init(cs->ctx); 2784 if (res != TEE_SUCCESS) 2785 return res; 2786 break; 2787 case TEE_OPERATION_MAC: 2788 { 2789 struct tee_obj *o; 2790 struct tee_cryp_obj_secret *key; 2791 2792 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 2793 cs->key1, &o); 2794 if (res != TEE_SUCCESS) 2795 return res; 2796 if ((o->info.handleFlags & 2797 TEE_HANDLE_FLAG_INITIALIZED) == 0) 2798 return TEE_ERROR_BAD_PARAMETERS; 2799 2800 key = (struct tee_cryp_obj_secret *)o->attr; 2801 res = crypto_mac_init(cs->ctx, (void *)(key + 1), 2802 key->key_size); 2803 if (res != TEE_SUCCESS) 2804 return res; 2805 break; 2806 } 2807 default: 2808 return TEE_ERROR_BAD_PARAMETERS; 2809 } 2810 2811 cs->state = CRYP_STATE_INITIALIZED; 2812 2813 return TEE_SUCCESS; 2814 } 2815 2816 TEE_Result syscall_hash_update(unsigned long state, const void *chunk, 2817 size_t chunk_size) 2818 { 2819 struct ts_session *sess = ts_get_current_session(); 2820 struct tee_cryp_state *cs = NULL; 2821 TEE_Result res = TEE_SUCCESS; 2822 2823 /* No data, but size provided isn't valid parameters. */ 2824 if (!chunk && chunk_size) 2825 return TEE_ERROR_BAD_PARAMETERS; 2826 2827 /* Zero length hash is valid, but nothing we need to do. */ 2828 if (!chunk_size) 2829 return TEE_SUCCESS; 2830 2831 chunk = memtag_strip_tag_const(chunk); 2832 2833 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2834 TEE_MEMORY_ACCESS_READ | 2835 TEE_MEMORY_ACCESS_ANY_OWNER, 2836 (uaddr_t)chunk, chunk_size); 2837 if (res != TEE_SUCCESS) 2838 return res; 2839 2840 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2841 if (res != TEE_SUCCESS) 2842 return res; 2843 2844 if (cs->state != CRYP_STATE_INITIALIZED) 2845 return TEE_ERROR_BAD_STATE; 2846 2847 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2848 case TEE_OPERATION_DIGEST: 2849 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2850 if (res != TEE_SUCCESS) 2851 return res; 2852 break; 2853 case TEE_OPERATION_MAC: 2854 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2855 if (res != TEE_SUCCESS) 2856 return res; 2857 break; 2858 default: 2859 return TEE_ERROR_BAD_PARAMETERS; 2860 } 2861 2862 return TEE_SUCCESS; 2863 } 2864 2865 TEE_Result syscall_hash_final(unsigned long state, const void *chunk, 2866 size_t chunk_size, void *hash, uint64_t *hash_len) 2867 { 2868 struct ts_session *sess = ts_get_current_session(); 2869 struct tee_cryp_state *cs = NULL; 2870 TEE_Result res2 = TEE_SUCCESS; 2871 TEE_Result res = TEE_SUCCESS; 2872 size_t hash_size = 0; 2873 size_t hlen = 0; 2874 2875 /* No data, but size provided isn't valid parameters. */ 2876 if (!chunk && chunk_size) 2877 return TEE_ERROR_BAD_PARAMETERS; 2878 2879 chunk = memtag_strip_tag_const(chunk); 2880 hash = memtag_strip_tag(hash); 2881 2882 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2883 TEE_MEMORY_ACCESS_READ | 2884 TEE_MEMORY_ACCESS_ANY_OWNER, 2885 (uaddr_t)chunk, chunk_size); 2886 if (res != TEE_SUCCESS) 2887 return res; 2888 2889 res = get_user_u64_as_size_t(&hlen, hash_len); 2890 if (res != TEE_SUCCESS) 2891 return res; 2892 2893 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2894 TEE_MEMORY_ACCESS_READ | 2895 TEE_MEMORY_ACCESS_WRITE | 2896 TEE_MEMORY_ACCESS_ANY_OWNER, 2897 (uaddr_t)hash, hlen); 2898 if (res != TEE_SUCCESS) 2899 return res; 2900 2901 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2902 if (res != TEE_SUCCESS) 2903 return res; 2904 2905 if (cs->state != CRYP_STATE_INITIALIZED) 2906 return TEE_ERROR_BAD_STATE; 2907 2908 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2909 case TEE_OPERATION_DIGEST: 2910 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2911 if (res != TEE_SUCCESS) 2912 return res; 2913 if (hlen < hash_size) { 2914 res = TEE_ERROR_SHORT_BUFFER; 2915 goto out; 2916 } 2917 2918 if (chunk_size) { 2919 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2920 if (res != TEE_SUCCESS) 2921 return res; 2922 } 2923 2924 res = crypto_hash_final(cs->ctx, hash, hash_size); 2925 if (res != TEE_SUCCESS) 2926 return res; 2927 break; 2928 2929 case TEE_OPERATION_MAC: 2930 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2931 if (res != TEE_SUCCESS) 2932 return res; 2933 if (hlen < hash_size) { 2934 res = TEE_ERROR_SHORT_BUFFER; 2935 goto out; 2936 } 2937 2938 if (chunk_size) { 2939 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2940 if (res != TEE_SUCCESS) 2941 return res; 2942 } 2943 2944 res = crypto_mac_final(cs->ctx, hash, hash_size); 2945 if (res != TEE_SUCCESS) 2946 return res; 2947 break; 2948 2949 default: 2950 return TEE_ERROR_BAD_PARAMETERS; 2951 } 2952 out: 2953 res2 = put_user_u64(hash_len, hash_size); 2954 if (res2 != TEE_SUCCESS) 2955 return res2; 2956 return res; 2957 } 2958 2959 TEE_Result syscall_cipher_init(unsigned long state, const void *iv, 2960 size_t iv_len) 2961 { 2962 struct ts_session *sess = ts_get_current_session(); 2963 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2964 struct tee_cryp_obj_secret *key1 = NULL; 2965 struct tee_cryp_state *cs = NULL; 2966 TEE_Result res = TEE_SUCCESS; 2967 struct tee_obj *o = NULL; 2968 2969 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2970 if (res != TEE_SUCCESS) 2971 return res; 2972 2973 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER) 2974 return TEE_ERROR_BAD_STATE; 2975 2976 iv = memtag_strip_tag_const(iv); 2977 2978 res = vm_check_access_rights(&utc->uctx, 2979 TEE_MEMORY_ACCESS_READ | 2980 TEE_MEMORY_ACCESS_ANY_OWNER, 2981 (uaddr_t)iv, iv_len); 2982 if (res != TEE_SUCCESS) 2983 return res; 2984 2985 res = tee_obj_get(utc, cs->key1, &o); 2986 if (res != TEE_SUCCESS) 2987 return res; 2988 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 2989 return TEE_ERROR_BAD_PARAMETERS; 2990 2991 key1 = o->attr; 2992 2993 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) { 2994 struct tee_cryp_obj_secret *key2 = o->attr; 2995 2996 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 2997 return TEE_ERROR_BAD_PARAMETERS; 2998 2999 res = crypto_cipher_init(cs->ctx, cs->mode, 3000 (uint8_t *)(key1 + 1), key1->key_size, 3001 (uint8_t *)(key2 + 1), key2->key_size, 3002 iv, iv_len); 3003 } else { 3004 res = crypto_cipher_init(cs->ctx, cs->mode, 3005 (uint8_t *)(key1 + 1), key1->key_size, 3006 NULL, 0, iv, iv_len); 3007 } 3008 if (res != TEE_SUCCESS) 3009 return res; 3010 3011 cs->ctx_finalize = crypto_cipher_final; 3012 cs->state = CRYP_STATE_INITIALIZED; 3013 3014 return TEE_SUCCESS; 3015 } 3016 3017 static TEE_Result tee_svc_cipher_update_helper(unsigned long state, 3018 bool last_block, const void *src, size_t src_len, 3019 void *dst, uint64_t *dst_len) 3020 { 3021 struct ts_session *sess = ts_get_current_session(); 3022 struct tee_cryp_state *cs = NULL; 3023 TEE_Result res = TEE_SUCCESS; 3024 size_t dlen = 0; 3025 3026 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3027 if (res != TEE_SUCCESS) 3028 return res; 3029 3030 if (cs->state != CRYP_STATE_INITIALIZED) 3031 return TEE_ERROR_BAD_STATE; 3032 3033 src = memtag_strip_tag_const(src); 3034 dst = memtag_strip_tag(dst); 3035 3036 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3037 TEE_MEMORY_ACCESS_READ | 3038 TEE_MEMORY_ACCESS_ANY_OWNER, 3039 (uaddr_t)src, src_len); 3040 if (res != TEE_SUCCESS) 3041 return res; 3042 3043 if (!dst_len) { 3044 dlen = 0; 3045 } else { 3046 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3047 uint32_t flags = TEE_MEMORY_ACCESS_READ | 3048 TEE_MEMORY_ACCESS_WRITE | 3049 TEE_MEMORY_ACCESS_ANY_OWNER; 3050 3051 res = get_user_u64_as_size_t(&dlen, dst_len); 3052 if (res != TEE_SUCCESS) 3053 return res; 3054 3055 res = vm_check_access_rights(uctx, flags, (uaddr_t)dst, dlen); 3056 if (res != TEE_SUCCESS) 3057 return res; 3058 } 3059 3060 if (dlen < src_len) { 3061 res = TEE_ERROR_SHORT_BUFFER; 3062 goto out; 3063 } 3064 3065 if (src_len > 0) { 3066 /* Permit src_len == 0 to finalize the operation */ 3067 res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode, 3068 last_block, src, src_len, dst); 3069 } 3070 3071 if (last_block && cs->ctx_finalize != NULL) { 3072 cs->ctx_finalize(cs->ctx); 3073 cs->ctx_finalize = NULL; 3074 } 3075 3076 out: 3077 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 3078 dst_len != NULL) { 3079 TEE_Result res2; 3080 3081 res2 = put_user_u64(dst_len, src_len); 3082 if (res2 != TEE_SUCCESS) 3083 res = res2; 3084 } 3085 3086 return res; 3087 } 3088 3089 TEE_Result syscall_cipher_update(unsigned long state, const void *src, 3090 size_t src_len, void *dst, uint64_t *dst_len) 3091 { 3092 return tee_svc_cipher_update_helper(state, false /* last_block */, 3093 src, src_len, dst, dst_len); 3094 } 3095 3096 TEE_Result syscall_cipher_final(unsigned long state, const void *src, 3097 size_t src_len, void *dst, uint64_t *dst_len) 3098 { 3099 return tee_svc_cipher_update_helper(state, true /* last_block */, 3100 src, src_len, dst, dst_len); 3101 } 3102 3103 #if defined(CFG_CRYPTO_HKDF) 3104 static TEE_Result get_hkdf_params(const TEE_Attribute *params, 3105 uint32_t param_count, 3106 void **salt, size_t *salt_len, void **info, 3107 size_t *info_len, size_t *okm_len) 3108 { 3109 size_t n; 3110 enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 }; 3111 uint8_t found = 0; 3112 3113 *salt = *info = NULL; 3114 *salt_len = *info_len = *okm_len = 0; 3115 3116 for (n = 0; n < param_count; n++) { 3117 switch (params[n].attributeID) { 3118 case TEE_ATTR_HKDF_SALT: 3119 if (!(found & SALT)) { 3120 *salt = params[n].content.ref.buffer; 3121 *salt_len = params[n].content.ref.length; 3122 found |= SALT; 3123 } 3124 break; 3125 case TEE_ATTR_HKDF_OKM_LENGTH: 3126 if (!(found & LENGTH)) { 3127 *okm_len = params[n].content.value.a; 3128 found |= LENGTH; 3129 } 3130 break; 3131 case TEE_ATTR_HKDF_INFO: 3132 if (!(found & INFO)) { 3133 *info = params[n].content.ref.buffer; 3134 *info_len = params[n].content.ref.length; 3135 found |= INFO; 3136 } 3137 break; 3138 default: 3139 /* Unexpected attribute */ 3140 return TEE_ERROR_BAD_PARAMETERS; 3141 } 3142 3143 } 3144 3145 if (!(found & LENGTH)) 3146 return TEE_ERROR_BAD_PARAMETERS; 3147 3148 return TEE_SUCCESS; 3149 } 3150 #endif 3151 3152 #if defined(CFG_CRYPTO_CONCAT_KDF) 3153 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params, 3154 uint32_t param_count, 3155 void **other_info, 3156 size_t *other_info_len, 3157 size_t *derived_key_len) 3158 { 3159 size_t n; 3160 enum { LENGTH = 0x1, INFO = 0x2 }; 3161 uint8_t found = 0; 3162 3163 *other_info = NULL; 3164 *other_info_len = *derived_key_len = 0; 3165 3166 for (n = 0; n < param_count; n++) { 3167 switch (params[n].attributeID) { 3168 case TEE_ATTR_CONCAT_KDF_OTHER_INFO: 3169 if (!(found & INFO)) { 3170 *other_info = params[n].content.ref.buffer; 3171 *other_info_len = params[n].content.ref.length; 3172 found |= INFO; 3173 } 3174 break; 3175 case TEE_ATTR_CONCAT_KDF_DKM_LENGTH: 3176 if (!(found & LENGTH)) { 3177 *derived_key_len = params[n].content.value.a; 3178 found |= LENGTH; 3179 } 3180 break; 3181 default: 3182 /* Unexpected attribute */ 3183 return TEE_ERROR_BAD_PARAMETERS; 3184 } 3185 } 3186 3187 if (!(found & LENGTH)) 3188 return TEE_ERROR_BAD_PARAMETERS; 3189 3190 return TEE_SUCCESS; 3191 } 3192 #endif 3193 3194 #if defined(CFG_CRYPTO_PBKDF2) 3195 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params, 3196 uint32_t param_count, void **salt, 3197 size_t *salt_len, size_t *derived_key_len, 3198 size_t *iteration_count) 3199 { 3200 size_t n; 3201 enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 }; 3202 uint8_t found = 0; 3203 3204 *salt = NULL; 3205 *salt_len = *derived_key_len = *iteration_count = 0; 3206 3207 for (n = 0; n < param_count; n++) { 3208 switch (params[n].attributeID) { 3209 case TEE_ATTR_PBKDF2_SALT: 3210 if (!(found & SALT)) { 3211 *salt = params[n].content.ref.buffer; 3212 *salt_len = params[n].content.ref.length; 3213 found |= SALT; 3214 } 3215 break; 3216 case TEE_ATTR_PBKDF2_DKM_LENGTH: 3217 if (!(found & LENGTH)) { 3218 *derived_key_len = params[n].content.value.a; 3219 found |= LENGTH; 3220 } 3221 break; 3222 case TEE_ATTR_PBKDF2_ITERATION_COUNT: 3223 if (!(found & COUNT)) { 3224 *iteration_count = params[n].content.value.a; 3225 found |= COUNT; 3226 } 3227 break; 3228 default: 3229 /* Unexpected attribute */ 3230 return TEE_ERROR_BAD_PARAMETERS; 3231 } 3232 } 3233 3234 if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT)) 3235 return TEE_ERROR_BAD_PARAMETERS; 3236 3237 return TEE_SUCCESS; 3238 } 3239 #endif 3240 3241 #if defined(CFG_CRYPTO_SM2_KEP) 3242 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params, 3243 uint32_t param_count, 3244 struct ecc_public_key *peer_key, 3245 struct ecc_public_key *peer_eph_key, 3246 struct sm2_kep_parms *kep_parms) 3247 { 3248 TEE_Result res = TEE_ERROR_GENERIC; 3249 size_t n; 3250 enum { 3251 IS_INITIATOR, 3252 PEER_KEY_X, 3253 PEER_KEY_Y, 3254 PEER_EPH_KEY_X, 3255 PEER_EPH_KEY_Y, 3256 INITIATOR_ID, 3257 RESPONDER_ID, 3258 }; 3259 uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) | 3260 BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) | 3261 BIT(INITIATOR_ID) | BIT(RESPONDER_ID); 3262 uint8_t found = 0; 3263 3264 res = crypto_acipher_alloc_ecc_public_key(peer_key, 3265 TEE_TYPE_SM2_KEP_PUBLIC_KEY, 3266 256); 3267 if (res) 3268 return res; 3269 3270 res = crypto_acipher_alloc_ecc_public_key(peer_eph_key, 3271 TEE_TYPE_SM2_KEP_PUBLIC_KEY, 3272 256); 3273 if (res) 3274 goto out_p; 3275 3276 peer_key->curve = TEE_ECC_CURVE_SM2; 3277 peer_eph_key->curve = TEE_ECC_CURVE_SM2; 3278 3279 for (n = 0; n < param_count; n++) { 3280 const TEE_Attribute *p = ¶ms[n]; 3281 3282 switch (p->attributeID) { 3283 case TEE_ATTR_SM2_KEP_USER: 3284 kep_parms->is_initiator = !p->content.value.a; 3285 found |= BIT(IS_INITIATOR); 3286 break; 3287 case TEE_ATTR_ECC_PUBLIC_VALUE_X: 3288 crypto_bignum_bin2bn(p->content.ref.buffer, 3289 p->content.ref.length, 3290 peer_key->x); 3291 found |= BIT(PEER_KEY_X); 3292 break; 3293 case TEE_ATTR_ECC_PUBLIC_VALUE_Y: 3294 crypto_bignum_bin2bn(p->content.ref.buffer, 3295 p->content.ref.length, 3296 peer_key->y); 3297 found |= BIT(PEER_KEY_Y); 3298 break; 3299 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X: 3300 crypto_bignum_bin2bn(p->content.ref.buffer, 3301 p->content.ref.length, 3302 peer_eph_key->x); 3303 found |= BIT(PEER_EPH_KEY_X); 3304 break; 3305 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y: 3306 crypto_bignum_bin2bn(p->content.ref.buffer, 3307 p->content.ref.length, 3308 peer_eph_key->y); 3309 found |= BIT(PEER_EPH_KEY_Y); 3310 break; 3311 case TEE_ATTR_SM2_ID_INITIATOR: 3312 kep_parms->initiator_id = p->content.ref.buffer; 3313 kep_parms->initiator_id_len = p->content.ref.length; 3314 found |= BIT(INITIATOR_ID); 3315 break; 3316 case TEE_ATTR_SM2_ID_RESPONDER: 3317 kep_parms->responder_id = p->content.ref.buffer; 3318 kep_parms->responder_id_len = p->content.ref.length; 3319 found |= BIT(RESPONDER_ID); 3320 break; 3321 case TEE_ATTR_SM2_KEP_CONFIRMATION_IN: 3322 kep_parms->conf_in = p->content.ref.buffer; 3323 kep_parms->conf_in_len = p->content.ref.length; 3324 break; 3325 case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT: 3326 kep_parms->conf_out = p->content.ref.buffer; 3327 kep_parms->conf_out_len = p->content.ref.length; 3328 break; 3329 default: 3330 /* Unexpected attribute */ 3331 res = TEE_ERROR_BAD_PARAMETERS; 3332 goto out; 3333 } 3334 } 3335 3336 if ((found & mandatory) != mandatory) { 3337 res = TEE_ERROR_BAD_PARAMETERS; 3338 goto out; 3339 } 3340 3341 return TEE_SUCCESS; 3342 out: 3343 crypto_acipher_free_ecc_public_key(peer_eph_key); 3344 out_p: 3345 crypto_acipher_free_ecc_public_key(peer_key); 3346 return res; 3347 } 3348 #endif 3349 3350 TEE_Result syscall_cryp_derive_key(unsigned long state, 3351 const struct utee_attribute *usr_params, 3352 unsigned long param_count, unsigned long derived_key) 3353 { 3354 struct ts_session *sess = ts_get_current_session(); 3355 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 3356 TEE_Result res = TEE_ERROR_NOT_SUPPORTED; 3357 struct tee_obj *ko = NULL; 3358 struct tee_obj *so = NULL; 3359 struct tee_cryp_state *cs = NULL; 3360 struct tee_cryp_obj_secret *sk = NULL; 3361 const struct tee_cryp_obj_type_props *type_props = NULL; 3362 TEE_Attribute *params = NULL; 3363 size_t alloc_size = 0; 3364 3365 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3366 if (res != TEE_SUCCESS) 3367 return res; 3368 3369 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 3370 return TEE_ERROR_OVERFLOW; 3371 3372 params = malloc(alloc_size); 3373 if (!params) 3374 return TEE_ERROR_OUT_OF_MEMORY; 3375 res = copy_in_attrs(utc, usr_params, param_count, params); 3376 if (res != TEE_SUCCESS) 3377 goto out; 3378 3379 /* Get key set in operation */ 3380 res = tee_obj_get(utc, cs->key1, &ko); 3381 if (res != TEE_SUCCESS) 3382 goto out; 3383 3384 res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so); 3385 if (res != TEE_SUCCESS) 3386 goto out; 3387 3388 /* Find information needed about the object to initialize */ 3389 sk = so->attr; 3390 3391 /* Find description of object */ 3392 type_props = tee_svc_find_type_props(so->info.objectType); 3393 if (!type_props) { 3394 res = TEE_ERROR_NOT_SUPPORTED; 3395 goto out; 3396 } 3397 3398 if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) { 3399 struct bignum *pub = NULL; 3400 struct bignum *ss = NULL; 3401 size_t bin_size = 0; 3402 3403 if (param_count != 1 || 3404 params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) { 3405 res = TEE_ERROR_BAD_PARAMETERS; 3406 goto out; 3407 } 3408 3409 bin_size = params[0].content.ref.length; 3410 3411 if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) { 3412 res = TEE_ERROR_OVERFLOW; 3413 goto out; 3414 } 3415 3416 pub = crypto_bignum_allocate(alloc_size); 3417 ss = crypto_bignum_allocate(alloc_size); 3418 if (pub && ss) { 3419 crypto_bignum_bin2bn(params[0].content.ref.buffer, 3420 bin_size, pub); 3421 res = crypto_acipher_dh_shared_secret(ko->attr, 3422 pub, ss); 3423 if (res == TEE_SUCCESS) { 3424 sk->key_size = crypto_bignum_num_bytes(ss); 3425 crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1)); 3426 so->info.handleFlags |= 3427 TEE_HANDLE_FLAG_INITIALIZED; 3428 set_attribute(so, type_props, 3429 TEE_ATTR_SECRET_VALUE); 3430 } 3431 } else { 3432 res = TEE_ERROR_OUT_OF_MEMORY; 3433 } 3434 crypto_bignum_free(pub); 3435 crypto_bignum_free(ss); 3436 } else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) { 3437 struct ecc_public_key key_public; 3438 uint8_t *pt_secret; 3439 unsigned long pt_secret_len; 3440 uint32_t key_type = TEE_TYPE_ECDH_PUBLIC_KEY; 3441 3442 if (param_count != 2 || 3443 params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X || 3444 params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) { 3445 res = TEE_ERROR_BAD_PARAMETERS; 3446 goto out; 3447 } 3448 3449 switch (cs->algo) { 3450 case TEE_ALG_ECDH_P192: 3451 alloc_size = 192; 3452 break; 3453 case TEE_ALG_ECDH_P224: 3454 alloc_size = 224; 3455 break; 3456 case TEE_ALG_ECDH_P256: 3457 alloc_size = 256; 3458 break; 3459 case TEE_ALG_ECDH_P384: 3460 alloc_size = 384; 3461 break; 3462 case TEE_ALG_ECDH_P521: 3463 alloc_size = 521; 3464 break; 3465 default: 3466 res = TEE_ERROR_NOT_IMPLEMENTED; 3467 goto out; 3468 } 3469 3470 /* Create the public key */ 3471 res = crypto_acipher_alloc_ecc_public_key(&key_public, key_type, 3472 alloc_size); 3473 if (res != TEE_SUCCESS) 3474 goto out; 3475 key_public.curve = ((struct ecc_keypair *)ko->attr)->curve; 3476 crypto_bignum_bin2bn(params[0].content.ref.buffer, 3477 params[0].content.ref.length, 3478 key_public.x); 3479 crypto_bignum_bin2bn(params[1].content.ref.buffer, 3480 params[1].content.ref.length, 3481 key_public.y); 3482 3483 pt_secret = (uint8_t *)(sk + 1); 3484 pt_secret_len = sk->alloc_size; 3485 res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public, 3486 pt_secret, 3487 &pt_secret_len); 3488 3489 if (res == TEE_SUCCESS) { 3490 sk->key_size = pt_secret_len; 3491 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3492 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3493 } 3494 3495 /* free the public key */ 3496 crypto_acipher_free_ecc_public_key(&key_public); 3497 } 3498 #if defined(CFG_CRYPTO_HKDF) 3499 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) { 3500 void *salt, *info; 3501 size_t salt_len, info_len, okm_len; 3502 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3503 struct tee_cryp_obj_secret *ik = ko->attr; 3504 const uint8_t *ikm = (const uint8_t *)(ik + 1); 3505 3506 res = get_hkdf_params(params, param_count, &salt, &salt_len, 3507 &info, &info_len, &okm_len); 3508 if (res != TEE_SUCCESS) 3509 goto out; 3510 3511 /* Requested size must fit into the output object's buffer */ 3512 if (okm_len > ik->alloc_size) { 3513 res = TEE_ERROR_BAD_PARAMETERS; 3514 goto out; 3515 } 3516 3517 res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len, 3518 info, info_len, (uint8_t *)(sk + 1), 3519 okm_len); 3520 if (res == TEE_SUCCESS) { 3521 sk->key_size = okm_len; 3522 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3523 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3524 } 3525 } 3526 #endif 3527 #if defined(CFG_CRYPTO_CONCAT_KDF) 3528 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) { 3529 void *info; 3530 size_t info_len, derived_key_len; 3531 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3532 struct tee_cryp_obj_secret *ss = ko->attr; 3533 const uint8_t *shared_secret = (const uint8_t *)(ss + 1); 3534 3535 res = get_concat_kdf_params(params, param_count, &info, 3536 &info_len, &derived_key_len); 3537 if (res != TEE_SUCCESS) 3538 goto out; 3539 3540 /* Requested size must fit into the output object's buffer */ 3541 if (derived_key_len > ss->alloc_size) { 3542 res = TEE_ERROR_BAD_PARAMETERS; 3543 goto out; 3544 } 3545 3546 res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size, 3547 info, info_len, (uint8_t *)(sk + 1), 3548 derived_key_len); 3549 if (res == TEE_SUCCESS) { 3550 sk->key_size = derived_key_len; 3551 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3552 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3553 } 3554 } 3555 #endif 3556 #if defined(CFG_CRYPTO_PBKDF2) 3557 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) { 3558 void *salt; 3559 size_t salt_len, iteration_count, derived_key_len; 3560 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3561 struct tee_cryp_obj_secret *ss = ko->attr; 3562 const uint8_t *password = (const uint8_t *)(ss + 1); 3563 3564 res = get_pbkdf2_params(params, param_count, &salt, &salt_len, 3565 &derived_key_len, &iteration_count); 3566 if (res != TEE_SUCCESS) 3567 goto out; 3568 3569 /* Requested size must fit into the output object's buffer */ 3570 if (derived_key_len > ss->alloc_size) { 3571 res = TEE_ERROR_BAD_PARAMETERS; 3572 goto out; 3573 } 3574 3575 res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt, 3576 salt_len, iteration_count, 3577 (uint8_t *)(sk + 1), derived_key_len); 3578 if (res == TEE_SUCCESS) { 3579 sk->key_size = derived_key_len; 3580 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3581 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3582 } 3583 } 3584 #endif 3585 #if defined(CFG_CRYPTO_SM2_KEP) 3586 else if (cs->algo == TEE_ALG_SM2_KEP) { 3587 struct ecc_public_key peer_eph_key = { }; 3588 struct ecc_public_key peer_key = { }; 3589 struct sm2_kep_parms kep_parms = { 3590 .out = (uint8_t *)(sk + 1), 3591 .out_len = so->info.maxObjectSize, 3592 }; 3593 struct tee_obj *ko2 = NULL; 3594 3595 res = tee_obj_get(utc, cs->key2, &ko2); 3596 if (res != TEE_SUCCESS) 3597 goto out; 3598 3599 res = get_sm2_kep_params(params, param_count, &peer_key, 3600 &peer_eph_key, &kep_parms); 3601 if (res != TEE_SUCCESS) 3602 goto out; 3603 3604 /* 3605 * key1 is our private keypair, key2 is our ephemeral public key 3606 */ 3607 res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */ 3608 ko2->attr, /* key2 */ 3609 &peer_key, &peer_eph_key, 3610 &kep_parms); 3611 3612 if (res == TEE_SUCCESS) { 3613 sk->key_size = kep_parms.out_len; 3614 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3615 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3616 } 3617 crypto_acipher_free_ecc_public_key(&peer_key); 3618 crypto_acipher_free_ecc_public_key(&peer_eph_key); 3619 } 3620 #endif 3621 #if defined(CFG_CRYPTO_X25519) 3622 else if (cs->algo == TEE_ALG_X25519) { 3623 uint8_t *x25519_pub_key = NULL; 3624 uint8_t *pt_secret = NULL; 3625 unsigned long pt_secret_len = 0; 3626 3627 if (param_count != 1 || 3628 params[0].attributeID != TEE_ATTR_X25519_PUBLIC_VALUE) { 3629 res = TEE_ERROR_BAD_PARAMETERS; 3630 goto out; 3631 } 3632 3633 /* X25519 public key size is 32 bytes */ 3634 if (params[0].content.ref.length != KEY_SIZE_BYTES_25519) { 3635 res = TEE_ERROR_BAD_PARAMETERS; 3636 goto out; 3637 } 3638 3639 /* Set the public key */ 3640 x25519_pub_key = params[0].content.ref.buffer; 3641 3642 pt_secret = (uint8_t *)(sk + 1); 3643 pt_secret_len = sk->alloc_size; 3644 res = crypto_acipher_x25519_shared_secret(ko->attr, 3645 x25519_pub_key, 3646 pt_secret, 3647 &pt_secret_len); 3648 3649 if (res == TEE_SUCCESS) { 3650 sk->key_size = pt_secret_len; 3651 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3652 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3653 } 3654 } 3655 #endif 3656 else 3657 res = TEE_ERROR_NOT_SUPPORTED; 3658 3659 out: 3660 free_wipe(params); 3661 return res; 3662 } 3663 3664 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen) 3665 { 3666 struct ts_session *sess = ts_get_current_session(); 3667 TEE_Result res = TEE_SUCCESS; 3668 3669 buf = memtag_strip_tag(buf); 3670 3671 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3672 TEE_MEMORY_ACCESS_WRITE, 3673 (uaddr_t)buf, blen); 3674 if (res != TEE_SUCCESS) 3675 return res; 3676 3677 res = crypto_rng_read(buf, blen); 3678 if (res != TEE_SUCCESS) 3679 return res; 3680 3681 return res; 3682 } 3683 3684 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce, 3685 size_t nonce_len, size_t tag_len, 3686 size_t aad_len, size_t payload_len) 3687 { 3688 struct ts_session *sess = ts_get_current_session(); 3689 struct tee_cryp_obj_secret *key = NULL; 3690 struct tee_cryp_state *cs = NULL; 3691 TEE_Result res = TEE_SUCCESS; 3692 struct tee_obj *o = NULL; 3693 3694 nonce = memtag_strip_tag_const(nonce); 3695 3696 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3697 TEE_MEMORY_ACCESS_READ | 3698 TEE_MEMORY_ACCESS_ANY_OWNER, 3699 (uaddr_t)nonce, nonce_len); 3700 if (res != TEE_SUCCESS) 3701 return res; 3702 3703 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3704 if (res != TEE_SUCCESS) 3705 return res; 3706 3707 res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o); 3708 if (res != TEE_SUCCESS) 3709 return res; 3710 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 3711 return TEE_ERROR_BAD_PARAMETERS; 3712 3713 key = o->attr; 3714 res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1), 3715 key->key_size, nonce, nonce_len, tag_len, 3716 aad_len, payload_len); 3717 if (res != TEE_SUCCESS) 3718 return res; 3719 3720 cs->ctx_finalize = crypto_authenc_final; 3721 cs->state = CRYP_STATE_INITIALIZED; 3722 3723 return TEE_SUCCESS; 3724 } 3725 3726 TEE_Result syscall_authenc_update_aad(unsigned long state, 3727 const void *aad_data, size_t aad_data_len) 3728 { 3729 struct ts_session *sess = ts_get_current_session(); 3730 TEE_Result res = TEE_SUCCESS; 3731 struct tee_cryp_state *cs = NULL; 3732 3733 aad_data = memtag_strip_tag_const(aad_data); 3734 3735 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3736 TEE_MEMORY_ACCESS_READ | 3737 TEE_MEMORY_ACCESS_ANY_OWNER, 3738 (uaddr_t)aad_data, aad_data_len); 3739 if (res != TEE_SUCCESS) 3740 return res; 3741 3742 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3743 if (res != TEE_SUCCESS) 3744 return res; 3745 3746 if (cs->state != CRYP_STATE_INITIALIZED) 3747 return TEE_ERROR_BAD_STATE; 3748 3749 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3750 return TEE_ERROR_BAD_STATE; 3751 3752 res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data, 3753 aad_data_len); 3754 if (res != TEE_SUCCESS) 3755 return res; 3756 3757 return TEE_SUCCESS; 3758 } 3759 3760 TEE_Result syscall_authenc_update_payload(unsigned long state, 3761 const void *src_data, 3762 size_t src_len, void *dst_data, 3763 uint64_t *dst_len) 3764 { 3765 struct ts_session *sess = ts_get_current_session(); 3766 struct tee_cryp_state *cs = NULL; 3767 TEE_Result res = TEE_SUCCESS; 3768 size_t dlen = 0; 3769 3770 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3771 if (res != TEE_SUCCESS) 3772 return res; 3773 3774 if (cs->state != CRYP_STATE_INITIALIZED) 3775 return TEE_ERROR_BAD_STATE; 3776 3777 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3778 return TEE_ERROR_BAD_STATE; 3779 3780 src_data = memtag_strip_tag_const(src_data); 3781 dst_data = memtag_strip_tag(dst_data); 3782 3783 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3784 TEE_MEMORY_ACCESS_READ | 3785 TEE_MEMORY_ACCESS_ANY_OWNER, 3786 (uaddr_t)src_data, src_len); 3787 if (res != TEE_SUCCESS) 3788 return res; 3789 3790 res = get_user_u64_as_size_t(&dlen, dst_len); 3791 if (res != TEE_SUCCESS) 3792 return res; 3793 3794 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3795 TEE_MEMORY_ACCESS_READ | 3796 TEE_MEMORY_ACCESS_WRITE | 3797 TEE_MEMORY_ACCESS_ANY_OWNER, 3798 (uaddr_t)dst_data, dlen); 3799 if (res != TEE_SUCCESS) 3800 return res; 3801 3802 if (dlen < src_len) { 3803 res = TEE_ERROR_SHORT_BUFFER; 3804 goto out; 3805 } 3806 3807 res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data, 3808 src_len, dst_data, &dlen); 3809 out: 3810 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3811 TEE_Result res2 = put_user_u64(dst_len, dlen); 3812 3813 if (res2 != TEE_SUCCESS) 3814 res = res2; 3815 } 3816 3817 return res; 3818 } 3819 3820 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data, 3821 size_t src_len, void *dst_data, 3822 uint64_t *dst_len, void *tag, 3823 uint64_t *tag_len) 3824 { 3825 struct ts_session *sess = ts_get_current_session(); 3826 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3827 struct tee_cryp_state *cs = NULL; 3828 TEE_Result res = TEE_SUCCESS; 3829 size_t dlen = 0; 3830 size_t tlen = 0; 3831 3832 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3833 if (res != TEE_SUCCESS) 3834 return res; 3835 3836 if (cs->state != CRYP_STATE_INITIALIZED) 3837 return TEE_ERROR_BAD_STATE; 3838 3839 if (cs->mode != TEE_MODE_ENCRYPT) 3840 return TEE_ERROR_BAD_PARAMETERS; 3841 3842 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3843 return TEE_ERROR_BAD_STATE; 3844 3845 src_data = memtag_strip_tag_const(src_data); 3846 dst_data = memtag_strip_tag(dst_data); 3847 tag = memtag_strip_tag(tag); 3848 3849 res = vm_check_access_rights(uctx, 3850 TEE_MEMORY_ACCESS_READ | 3851 TEE_MEMORY_ACCESS_ANY_OWNER, 3852 (uaddr_t)src_data, src_len); 3853 if (res != TEE_SUCCESS) 3854 return res; 3855 3856 if (!dst_len) { 3857 dlen = 0; 3858 } else { 3859 res = get_user_u64_as_size_t(&dlen, dst_len); 3860 if (res != TEE_SUCCESS) 3861 return res; 3862 3863 res = vm_check_access_rights(uctx, 3864 TEE_MEMORY_ACCESS_READ | 3865 TEE_MEMORY_ACCESS_WRITE | 3866 TEE_MEMORY_ACCESS_ANY_OWNER, 3867 (uaddr_t)dst_data, dlen); 3868 if (res != TEE_SUCCESS) 3869 return res; 3870 } 3871 3872 if (dlen < src_len) { 3873 res = TEE_ERROR_SHORT_BUFFER; 3874 goto out; 3875 } 3876 3877 res = get_user_u64_as_size_t(&tlen, tag_len); 3878 if (res != TEE_SUCCESS) 3879 return res; 3880 3881 res = vm_check_access_rights(uctx, 3882 TEE_MEMORY_ACCESS_READ | 3883 TEE_MEMORY_ACCESS_WRITE | 3884 TEE_MEMORY_ACCESS_ANY_OWNER, 3885 (uaddr_t)tag, tlen); 3886 if (res != TEE_SUCCESS) 3887 return res; 3888 3889 res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data, 3890 &dlen, tag, &tlen); 3891 3892 out: 3893 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3894 TEE_Result res2 = TEE_SUCCESS; 3895 3896 if (dst_len != NULL) { 3897 res2 = put_user_u64(dst_len, dlen); 3898 if (res2 != TEE_SUCCESS) 3899 return res2; 3900 } 3901 3902 res2 = put_user_u64(tag_len, tlen); 3903 if (res2 != TEE_SUCCESS) 3904 return res2; 3905 } 3906 3907 return res; 3908 } 3909 3910 TEE_Result syscall_authenc_dec_final(unsigned long state, 3911 const void *src_data, size_t src_len, void *dst_data, 3912 uint64_t *dst_len, const void *tag, size_t tag_len) 3913 { 3914 struct ts_session *sess = ts_get_current_session(); 3915 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3916 struct tee_cryp_state *cs = NULL; 3917 TEE_Result res = TEE_SUCCESS; 3918 size_t dlen = 0; 3919 3920 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3921 if (res != TEE_SUCCESS) 3922 return res; 3923 3924 if (cs->state != CRYP_STATE_INITIALIZED) 3925 return TEE_ERROR_BAD_STATE; 3926 3927 if (cs->mode != TEE_MODE_DECRYPT) 3928 return TEE_ERROR_BAD_PARAMETERS; 3929 3930 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3931 return TEE_ERROR_BAD_STATE; 3932 3933 src_data = memtag_strip_tag_const(src_data); 3934 dst_data = memtag_strip_tag(dst_data); 3935 tag = memtag_strip_tag_const(tag); 3936 3937 res = vm_check_access_rights(uctx, 3938 TEE_MEMORY_ACCESS_READ | 3939 TEE_MEMORY_ACCESS_ANY_OWNER, 3940 (uaddr_t)src_data, src_len); 3941 if (res != TEE_SUCCESS) 3942 return res; 3943 3944 if (!dst_len) { 3945 dlen = 0; 3946 } else { 3947 res = get_user_u64_as_size_t(&dlen, dst_len); 3948 if (res != TEE_SUCCESS) 3949 return res; 3950 3951 res = vm_check_access_rights(uctx, 3952 TEE_MEMORY_ACCESS_READ | 3953 TEE_MEMORY_ACCESS_WRITE | 3954 TEE_MEMORY_ACCESS_ANY_OWNER, 3955 (uaddr_t)dst_data, dlen); 3956 if (res != TEE_SUCCESS) 3957 return res; 3958 } 3959 3960 if (dlen < src_len) { 3961 res = TEE_ERROR_SHORT_BUFFER; 3962 goto out; 3963 } 3964 3965 res = vm_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ, 3966 (uaddr_t)tag, tag_len); 3967 if (res != TEE_SUCCESS) 3968 return res; 3969 3970 res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data, 3971 &dlen, tag, tag_len); 3972 3973 out: 3974 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 3975 dst_len != NULL) { 3976 TEE_Result res2 = put_user_u64(dst_len, dlen); 3977 3978 if (res2 != TEE_SUCCESS) 3979 return res2; 3980 } 3981 3982 return res; 3983 } 3984 3985 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params, 3986 size_t default_len) 3987 { 3988 size_t n; 3989 3990 assert(default_len < INT_MAX); 3991 3992 for (n = 0; n < num_params; n++) { 3993 if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) { 3994 if (params[n].content.value.a < INT_MAX) 3995 return params[n].content.value.a; 3996 break; 3997 } 3998 } 3999 /* 4000 * If salt length isn't provided use the default value which is 4001 * the length of the digest. 4002 */ 4003 return default_len; 4004 } 4005 4006 TEE_Result syscall_asymm_operate(unsigned long state, 4007 const struct utee_attribute *usr_params, 4008 size_t num_params, const void *src_data, size_t src_len, 4009 void *dst_data, uint64_t *dst_len) 4010 { 4011 struct ts_session *sess = ts_get_current_session(); 4012 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 4013 TEE_Result res = TEE_SUCCESS; 4014 struct tee_cryp_state *cs = NULL; 4015 size_t dlen = 0; 4016 struct tee_obj *o = NULL; 4017 void *label = NULL; 4018 size_t label_len = 0; 4019 size_t n = 0; 4020 int salt_len = 0; 4021 TEE_Attribute *params = NULL; 4022 size_t alloc_size = 0; 4023 4024 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 4025 if (res != TEE_SUCCESS) 4026 return res; 4027 4028 src_data = memtag_strip_tag_const(src_data); 4029 dst_data = memtag_strip_tag(dst_data); 4030 4031 res = vm_check_access_rights(&utc->uctx, 4032 TEE_MEMORY_ACCESS_READ | 4033 TEE_MEMORY_ACCESS_ANY_OWNER, 4034 (uaddr_t)src_data, src_len); 4035 if (res != TEE_SUCCESS) 4036 return res; 4037 4038 res = get_user_u64_as_size_t(&dlen, dst_len); 4039 if (res != TEE_SUCCESS) 4040 return res; 4041 4042 res = vm_check_access_rights(&utc->uctx, 4043 TEE_MEMORY_ACCESS_READ | 4044 TEE_MEMORY_ACCESS_WRITE | 4045 TEE_MEMORY_ACCESS_ANY_OWNER, 4046 (uaddr_t)dst_data, dlen); 4047 if (res != TEE_SUCCESS) 4048 return res; 4049 4050 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 4051 return TEE_ERROR_OVERFLOW; 4052 4053 params = malloc(alloc_size); 4054 if (!params) 4055 return TEE_ERROR_OUT_OF_MEMORY; 4056 res = copy_in_attrs(utc, usr_params, num_params, params); 4057 if (res != TEE_SUCCESS) 4058 goto out; 4059 4060 res = tee_obj_get(utc, cs->key1, &o); 4061 if (res != TEE_SUCCESS) 4062 goto out; 4063 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 4064 res = TEE_ERROR_GENERIC; 4065 goto out; 4066 } 4067 4068 switch (cs->algo) { 4069 case TEE_ALG_RSA_NOPAD: 4070 if (cs->mode == TEE_MODE_ENCRYPT) { 4071 res = crypto_acipher_rsanopad_encrypt(o->attr, src_data, 4072 src_len, dst_data, 4073 &dlen); 4074 } else if (cs->mode == TEE_MODE_DECRYPT) { 4075 res = crypto_acipher_rsanopad_decrypt(o->attr, src_data, 4076 src_len, dst_data, 4077 &dlen); 4078 } else { 4079 /* 4080 * We will panic because "the mode is not compatible 4081 * with the function" 4082 */ 4083 res = TEE_ERROR_GENERIC; 4084 } 4085 break; 4086 4087 case TEE_ALG_SM2_PKE: 4088 if (cs->mode == TEE_MODE_ENCRYPT) { 4089 res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data, 4090 src_len, dst_data, 4091 &dlen); 4092 } else if (cs->mode == TEE_MODE_DECRYPT) { 4093 res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data, 4094 src_len, dst_data, 4095 &dlen); 4096 } else { 4097 res = TEE_ERROR_GENERIC; 4098 } 4099 break; 4100 4101 case TEE_ALG_RSAES_PKCS1_V1_5: 4102 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1: 4103 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224: 4104 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256: 4105 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384: 4106 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512: 4107 for (n = 0; n < num_params; n++) { 4108 if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) { 4109 label = params[n].content.ref.buffer; 4110 label_len = params[n].content.ref.length; 4111 break; 4112 } 4113 } 4114 4115 if (cs->mode == TEE_MODE_ENCRYPT) { 4116 res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr, 4117 label, label_len, 4118 src_data, src_len, 4119 dst_data, &dlen); 4120 } else if (cs->mode == TEE_MODE_DECRYPT) { 4121 res = crypto_acipher_rsaes_decrypt( 4122 cs->algo, o->attr, label, label_len, 4123 src_data, src_len, dst_data, &dlen); 4124 } else { 4125 res = TEE_ERROR_BAD_PARAMETERS; 4126 } 4127 break; 4128 4129 #if defined(CFG_CRYPTO_RSASSA_NA1) 4130 case TEE_ALG_RSASSA_PKCS1_V1_5: 4131 #endif 4132 case TEE_ALG_RSASSA_PKCS1_V1_5_MD5: 4133 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1: 4134 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224: 4135 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256: 4136 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384: 4137 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512: 4138 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1: 4139 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224: 4140 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256: 4141 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384: 4142 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512: 4143 if (cs->mode != TEE_MODE_SIGN) { 4144 res = TEE_ERROR_BAD_PARAMETERS; 4145 break; 4146 } 4147 salt_len = pkcs1_get_salt_len(params, num_params, src_len); 4148 res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len, 4149 src_data, src_len, dst_data, 4150 &dlen); 4151 break; 4152 4153 case TEE_ALG_DSA_SHA1: 4154 case TEE_ALG_DSA_SHA224: 4155 case TEE_ALG_DSA_SHA256: 4156 res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data, 4157 src_len, dst_data, &dlen); 4158 break; 4159 4160 case TEE_ALG_ED25519: 4161 res = tee_svc_obj_ed25519_sign(o->attr, src_data, src_len, 4162 dst_data, &dlen, params, 4163 num_params); 4164 break; 4165 4166 case TEE_ALG_ECDSA_P192: 4167 case TEE_ALG_ECDSA_P224: 4168 case TEE_ALG_ECDSA_P256: 4169 case TEE_ALG_ECDSA_P384: 4170 case TEE_ALG_ECDSA_P521: 4171 case TEE_ALG_SM2_DSA_SM3: 4172 res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data, 4173 src_len, dst_data, &dlen); 4174 break; 4175 default: 4176 res = TEE_ERROR_BAD_PARAMETERS; 4177 break; 4178 } 4179 4180 out: 4181 free_wipe(params); 4182 4183 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 4184 TEE_Result res2 = put_user_u64(dst_len, dlen); 4185 4186 if (res2 != TEE_SUCCESS) 4187 return res2; 4188 } 4189 4190 return res; 4191 } 4192 4193 TEE_Result syscall_asymm_verify(unsigned long state, 4194 const struct utee_attribute *usr_params, 4195 size_t num_params, const void *data, size_t data_len, 4196 const void *sig, size_t sig_len) 4197 { 4198 struct ts_session *sess = ts_get_current_session(); 4199 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 4200 struct tee_cryp_state *cs = NULL; 4201 TEE_Result res = TEE_SUCCESS; 4202 TEE_Attribute *params = NULL; 4203 struct tee_obj *o = NULL; 4204 size_t hash_size = 0; 4205 uint32_t hash_algo = 0; 4206 int salt_len = 0; 4207 size_t alloc_size = 0; 4208 4209 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 4210 if (res != TEE_SUCCESS) 4211 return res; 4212 4213 if (cs->mode != TEE_MODE_VERIFY) 4214 return TEE_ERROR_BAD_PARAMETERS; 4215 4216 data = memtag_strip_tag_const(data); 4217 sig = memtag_strip_tag_const(sig); 4218 4219 res = vm_check_access_rights(&utc->uctx, 4220 TEE_MEMORY_ACCESS_READ | 4221 TEE_MEMORY_ACCESS_ANY_OWNER, 4222 (uaddr_t)data, data_len); 4223 if (res != TEE_SUCCESS) 4224 return res; 4225 4226 res = vm_check_access_rights(&utc->uctx, 4227 TEE_MEMORY_ACCESS_READ | 4228 TEE_MEMORY_ACCESS_ANY_OWNER, 4229 (uaddr_t)sig, sig_len); 4230 if (res != TEE_SUCCESS) 4231 return res; 4232 4233 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 4234 return TEE_ERROR_OVERFLOW; 4235 4236 params = malloc(alloc_size); 4237 if (!params) 4238 return TEE_ERROR_OUT_OF_MEMORY; 4239 res = copy_in_attrs(utc, usr_params, num_params, params); 4240 if (res != TEE_SUCCESS) 4241 goto out; 4242 4243 res = tee_obj_get(utc, cs->key1, &o); 4244 if (res != TEE_SUCCESS) 4245 goto out; 4246 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 4247 res = TEE_ERROR_BAD_PARAMETERS; 4248 goto out; 4249 } 4250 4251 switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) { 4252 case TEE_MAIN_ALGO_RSA: 4253 if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) { 4254 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 4255 res = tee_alg_get_digest_size(hash_algo, &hash_size); 4256 if (res != TEE_SUCCESS) 4257 break; 4258 if (data_len != hash_size) { 4259 res = TEE_ERROR_BAD_PARAMETERS; 4260 break; 4261 } 4262 salt_len = pkcs1_get_salt_len(params, num_params, 4263 hash_size); 4264 } 4265 res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len, 4266 data, data_len, sig, 4267 sig_len); 4268 break; 4269 4270 case TEE_MAIN_ALGO_DSA: 4271 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 4272 res = tee_alg_get_digest_size(hash_algo, &hash_size); 4273 if (res != TEE_SUCCESS) 4274 break; 4275 4276 if (data_len != hash_size) { 4277 struct dsa_public_key *key = o->attr; 4278 4279 /* 4280 * Depending on the DSA algorithm (NIST), the 4281 * digital signature output size may be truncated 4282 * to the size of a key pair (Q prime size). Q 4283 * prime size must be less or equal than the hash 4284 * output length of the hash algorithm involved. 4285 * 4286 * We're checking here in order to be able to 4287 * return this particular error code, which will 4288 * cause TEE_AsymmetricVerifyDigest() to panic as 4289 * required by GP. crypto_acipher_dsa_verify() is 4290 * implemented in the glue layer of the crypto 4291 * library and it might be a bit harder to catch 4292 * this particular case there or lead to duplicated 4293 * code in different crypto glue layers. 4294 * 4295 * The GP spec says that we SHOULD panic if 4296 * data_len != hash_size, but that would break a 4297 * few of the DSA tests in xtest where the 4298 * hash_size is larger than possible data_len. So 4299 * the compromise is in case data_len != hash_size 4300 * check that it's not smaller than what makes 4301 * sense. 4302 */ 4303 if (data_len != crypto_bignum_num_bytes(key->q)) { 4304 res = TEE_ERROR_BAD_PARAMETERS; 4305 break; 4306 } 4307 } 4308 res = crypto_acipher_dsa_verify(cs->algo, o->attr, data, 4309 data_len, sig, sig_len); 4310 break; 4311 4312 case TEE_MAIN_ALGO_ED25519: 4313 res = tee_svc_obj_ed25519_verify(o->attr, data, 4314 data_len, sig, sig_len, 4315 params, num_params); 4316 break; 4317 4318 case TEE_MAIN_ALGO_ECDSA: 4319 case TEE_MAIN_ALGO_SM2_DSA_SM3: 4320 res = crypto_acipher_ecc_verify(cs->algo, o->attr, data, 4321 data_len, sig, sig_len); 4322 break; 4323 4324 default: 4325 res = TEE_ERROR_NOT_SUPPORTED; 4326 } 4327 4328 out: 4329 free_wipe(params); 4330 return res; 4331 } 4332