xref: /optee_os/core/tee/tee_svc_cryp.c (revision 73e18e2dc736f5fa8e603684b161e36cf79f3e22)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <assert.h>
8 #include <compiler.h>
9 #include <config.h>
10 #include <crypto/crypto.h>
11 #include <kernel/tee_ta_manager.h>
12 #include <kernel/user_access.h>
13 #include <mm/tee_mmu.h>
14 #include <stdlib_ext.h>
15 #include <string_ext.h>
16 #include <string.h>
17 #include <sys/queue.h>
18 #include <tee_api_defines_extensions.h>
19 #include <tee_api_types.h>
20 #include <tee/tee_cryp_utl.h>
21 #include <tee/tee_obj.h>
22 #include <tee/tee_svc_cryp.h>
23 #include <tee/tee_svc.h>
24 #include <trace.h>
25 #include <utee_defines.h>
26 #include <util.h>
27 #if defined(CFG_CRYPTO_HKDF)
28 #include <tee/tee_cryp_hkdf.h>
29 #endif
30 #if defined(CFG_CRYPTO_CONCAT_KDF)
31 #include <tee/tee_cryp_concat_kdf.h>
32 #endif
33 #if defined(CFG_CRYPTO_PBKDF2)
34 #include <tee/tee_cryp_pbkdf2.h>
35 #endif
36 
37 enum cryp_state {
38 	CRYP_STATE_INITIALIZED = 0,
39 	CRYP_STATE_UNINITIALIZED
40 };
41 
42 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx);
43 struct tee_cryp_state {
44 	TAILQ_ENTRY(tee_cryp_state) link;
45 	uint32_t algo;
46 	uint32_t mode;
47 	vaddr_t key1;
48 	vaddr_t key2;
49 	void *ctx;
50 	tee_cryp_ctx_finalize_func_t ctx_finalize;
51 	enum cryp_state state;
52 };
53 
54 struct tee_cryp_obj_secret {
55 	uint32_t key_size;
56 	uint32_t alloc_size;
57 
58 	/*
59 	 * Pseudo code visualize layout of structure
60 	 * Next follows data, such as:
61 	 *	uint8_t data[alloc_size]
62 	 * key_size must never exceed alloc_size
63 	 */
64 };
65 
66 #define TEE_TYPE_ATTR_OPTIONAL       0x0
67 #define TEE_TYPE_ATTR_REQUIRED       0x1
68 #define TEE_TYPE_ATTR_OPTIONAL_GROUP 0x2
69 #define TEE_TYPE_ATTR_SIZE_INDICATOR 0x4
70 #define TEE_TYPE_ATTR_GEN_KEY_OPT    0x8
71 #define TEE_TYPE_ATTR_GEN_KEY_REQ    0x10
72 
73     /* Handle storing of generic secret keys of varying lengths */
74 #define ATTR_OPS_INDEX_SECRET     0
75     /* Convert to/from big-endian byte array and provider-specific bignum */
76 #define ATTR_OPS_INDEX_BIGNUM     1
77     /* Convert to/from value attribute depending on direction */
78 #define ATTR_OPS_INDEX_VALUE      2
79 
80 struct tee_cryp_obj_type_attrs {
81 	uint32_t attr_id;
82 	uint16_t flags;
83 	uint16_t ops_index;
84 	uint16_t raw_offs;
85 	uint16_t raw_size;
86 };
87 
88 #define RAW_DATA(_x, _y)	\
89 	.raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y)
90 
91 static const struct tee_cryp_obj_type_attrs
92 	tee_cryp_obj_secret_value_attrs[] = {
93 	{
94 	.attr_id = TEE_ATTR_SECRET_VALUE,
95 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
96 	.ops_index = ATTR_OPS_INDEX_SECRET,
97 	.raw_offs = 0,
98 	.raw_size = 0
99 	},
100 };
101 
102 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = {
103 	{
104 	.attr_id = TEE_ATTR_RSA_MODULUS,
105 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
106 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
107 	RAW_DATA(struct rsa_public_key, n)
108 	},
109 
110 	{
111 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
112 	.flags = TEE_TYPE_ATTR_REQUIRED,
113 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
114 	RAW_DATA(struct rsa_public_key, e)
115 	},
116 };
117 
118 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = {
119 	{
120 	.attr_id = TEE_ATTR_RSA_MODULUS,
121 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
122 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
123 	RAW_DATA(struct rsa_keypair, n)
124 	},
125 
126 	{
127 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
128 	.flags = TEE_TYPE_ATTR_REQUIRED,
129 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
130 	RAW_DATA(struct rsa_keypair, e)
131 	},
132 
133 	{
134 	.attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT,
135 	.flags = TEE_TYPE_ATTR_REQUIRED,
136 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
137 	RAW_DATA(struct rsa_keypair, d)
138 	},
139 
140 	{
141 	.attr_id = TEE_ATTR_RSA_PRIME1,
142 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
143 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
144 	RAW_DATA(struct rsa_keypair, p)
145 	},
146 
147 	{
148 	.attr_id = TEE_ATTR_RSA_PRIME2,
149 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
150 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
151 	RAW_DATA(struct rsa_keypair, q)
152 	},
153 
154 	{
155 	.attr_id = TEE_ATTR_RSA_EXPONENT1,
156 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
157 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
158 	RAW_DATA(struct rsa_keypair, dp)
159 	},
160 
161 	{
162 	.attr_id = TEE_ATTR_RSA_EXPONENT2,
163 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
164 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
165 	RAW_DATA(struct rsa_keypair, dq)
166 	},
167 
168 	{
169 	.attr_id = TEE_ATTR_RSA_COEFFICIENT,
170 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
171 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
172 	RAW_DATA(struct rsa_keypair, qp)
173 	},
174 };
175 
176 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = {
177 	{
178 	.attr_id = TEE_ATTR_DSA_PRIME,
179 	.flags = TEE_TYPE_ATTR_REQUIRED,
180 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
181 	RAW_DATA(struct dsa_public_key, p)
182 	},
183 
184 	{
185 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
186 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
187 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
188 	RAW_DATA(struct dsa_public_key, q)
189 	},
190 
191 	{
192 	.attr_id = TEE_ATTR_DSA_BASE,
193 	.flags = TEE_TYPE_ATTR_REQUIRED,
194 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
195 	RAW_DATA(struct dsa_public_key, g)
196 	},
197 
198 	{
199 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
200 	.flags = TEE_TYPE_ATTR_REQUIRED,
201 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
202 	RAW_DATA(struct dsa_public_key, y)
203 	},
204 };
205 
206 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = {
207 	{
208 	.attr_id = TEE_ATTR_DSA_PRIME,
209 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
210 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
211 	RAW_DATA(struct dsa_keypair, p)
212 	},
213 
214 	{
215 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
216 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
217 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
218 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
219 	RAW_DATA(struct dsa_keypair, q)
220 	},
221 
222 	{
223 	.attr_id = TEE_ATTR_DSA_BASE,
224 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
225 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
226 	RAW_DATA(struct dsa_keypair, g)
227 	},
228 
229 	{
230 	.attr_id = TEE_ATTR_DSA_PRIVATE_VALUE,
231 	.flags = TEE_TYPE_ATTR_REQUIRED,
232 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
233 	RAW_DATA(struct dsa_keypair, x)
234 	},
235 
236 	{
237 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
238 	.flags = TEE_TYPE_ATTR_REQUIRED,
239 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
240 	RAW_DATA(struct dsa_keypair, y)
241 	},
242 };
243 
244 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = {
245 	{
246 	.attr_id = TEE_ATTR_DH_PRIME,
247 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
248 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
249 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
250 	RAW_DATA(struct dh_keypair, p)
251 	},
252 
253 	{
254 	.attr_id = TEE_ATTR_DH_BASE,
255 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
256 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
257 	RAW_DATA(struct dh_keypair, g)
258 	},
259 
260 	{
261 	.attr_id = TEE_ATTR_DH_PUBLIC_VALUE,
262 	.flags = TEE_TYPE_ATTR_REQUIRED,
263 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
264 	RAW_DATA(struct dh_keypair, y)
265 	},
266 
267 	{
268 	.attr_id = TEE_ATTR_DH_PRIVATE_VALUE,
269 	.flags = TEE_TYPE_ATTR_REQUIRED,
270 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
271 	RAW_DATA(struct dh_keypair, x)
272 	},
273 
274 	{
275 	.attr_id = TEE_ATTR_DH_SUBPRIME,
276 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP |	 TEE_TYPE_ATTR_GEN_KEY_OPT,
277 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
278 	RAW_DATA(struct dh_keypair, q)
279 	},
280 
281 	{
282 	.attr_id = TEE_ATTR_DH_X_BITS,
283 	.flags = TEE_TYPE_ATTR_GEN_KEY_OPT,
284 	.ops_index = ATTR_OPS_INDEX_VALUE,
285 	RAW_DATA(struct dh_keypair, xbits)
286 	},
287 };
288 
289 #if defined(CFG_CRYPTO_HKDF)
290 static const struct tee_cryp_obj_type_attrs
291 	tee_cryp_obj_hkdf_ikm_attrs[] = {
292 	{
293 	.attr_id = TEE_ATTR_HKDF_IKM,
294 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
295 	.ops_index = ATTR_OPS_INDEX_SECRET,
296 	.raw_offs = 0,
297 	.raw_size = 0
298 	},
299 };
300 #endif
301 
302 #if defined(CFG_CRYPTO_CONCAT_KDF)
303 static const struct tee_cryp_obj_type_attrs
304 	tee_cryp_obj_concat_kdf_z_attrs[] = {
305 	{
306 	.attr_id = TEE_ATTR_CONCAT_KDF_Z,
307 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
308 	.ops_index = ATTR_OPS_INDEX_SECRET,
309 	.raw_offs = 0,
310 	.raw_size = 0
311 	},
312 };
313 #endif
314 
315 #if defined(CFG_CRYPTO_PBKDF2)
316 static const struct tee_cryp_obj_type_attrs
317 	tee_cryp_obj_pbkdf2_passwd_attrs[] = {
318 	{
319 	.attr_id = TEE_ATTR_PBKDF2_PASSWORD,
320 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
321 	.ops_index = ATTR_OPS_INDEX_SECRET,
322 	.raw_offs = 0,
323 	.raw_size = 0
324 	},
325 };
326 #endif
327 
328 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = {
329 	{
330 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
331 	.flags = TEE_TYPE_ATTR_REQUIRED,
332 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
333 	RAW_DATA(struct ecc_public_key, x)
334 	},
335 
336 	{
337 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
338 	.flags = TEE_TYPE_ATTR_REQUIRED,
339 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
340 	RAW_DATA(struct ecc_public_key, y)
341 	},
342 
343 	{
344 	.attr_id = TEE_ATTR_ECC_CURVE,
345 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
346 	.ops_index = ATTR_OPS_INDEX_VALUE,
347 	RAW_DATA(struct ecc_public_key, curve)
348 	},
349 };
350 
351 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = {
352 	{
353 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
354 	.flags = TEE_TYPE_ATTR_REQUIRED,
355 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
356 	RAW_DATA(struct ecc_keypair, d)
357 	},
358 
359 	{
360 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
361 	.flags = TEE_TYPE_ATTR_REQUIRED,
362 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
363 	RAW_DATA(struct ecc_keypair, x)
364 	},
365 
366 	{
367 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
368 	.flags = TEE_TYPE_ATTR_REQUIRED,
369 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
370 	RAW_DATA(struct ecc_keypair, y)
371 	},
372 
373 	{
374 	.attr_id = TEE_ATTR_ECC_CURVE,
375 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
376 	.ops_index = ATTR_OPS_INDEX_VALUE,
377 	RAW_DATA(struct ecc_keypair, curve)
378 	},
379 };
380 
381 struct tee_cryp_obj_type_props {
382 	TEE_ObjectType obj_type;
383 	uint16_t min_size;	/* may not be smaller than this */
384 	uint16_t max_size;	/* may not be larger than this */
385 	uint16_t alloc_size;	/* this many bytes are allocated to hold data */
386 	uint8_t quanta;		/* may only be an multiple of this */
387 
388 	uint8_t num_type_attrs;
389 	const struct tee_cryp_obj_type_attrs *type_attrs;
390 };
391 
392 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \
393 		{ (obj_type), (min_size), (max_size), (alloc_size), (quanta), \
394 		  ARRAY_SIZE(type_attrs), (type_attrs) }
395 
396 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = {
397 	PROP(TEE_TYPE_AES, 64, 128, 256,	/* valid sizes 128, 192, 256 */
398 		256 / 8 + sizeof(struct tee_cryp_obj_secret),
399 		tee_cryp_obj_secret_value_attrs),
400 	PROP(TEE_TYPE_DES, 56, 56, 56,
401 		/*
402 		* Valid size 56 without parity, note that we still allocate
403 		* for 64 bits since the key is supplied with parity.
404 		*/
405 		64 / 8 + sizeof(struct tee_cryp_obj_secret),
406 		tee_cryp_obj_secret_value_attrs),
407 	PROP(TEE_TYPE_DES3, 56, 112, 168,
408 		/*
409 		* Valid sizes 112, 168 without parity, note that we still
410 		* allocate for with space for the parity since the key is
411 		* supplied with parity.
412 		*/
413 		192 / 8 + sizeof(struct tee_cryp_obj_secret),
414 		tee_cryp_obj_secret_value_attrs),
415 	PROP(TEE_TYPE_SM4, 128, 128, 128,
416 		128 / 8 + sizeof(struct tee_cryp_obj_secret),
417 		tee_cryp_obj_secret_value_attrs),
418 	PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512,
419 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
420 		tee_cryp_obj_secret_value_attrs),
421 	PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512,
422 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
423 		tee_cryp_obj_secret_value_attrs),
424 	PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512,
425 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
426 		tee_cryp_obj_secret_value_attrs),
427 	PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024,
428 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
429 		tee_cryp_obj_secret_value_attrs),
430 	PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024,
431 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
432 		tee_cryp_obj_secret_value_attrs),
433 	PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024,
434 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
435 		tee_cryp_obj_secret_value_attrs),
436 	PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024,
437 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
438 		tee_cryp_obj_secret_value_attrs),
439 	PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096,
440 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
441 		tee_cryp_obj_secret_value_attrs),
442 #if defined(CFG_CRYPTO_HKDF)
443 	PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096,
444 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
445 		tee_cryp_obj_hkdf_ikm_attrs),
446 #endif
447 #if defined(CFG_CRYPTO_CONCAT_KDF)
448 	PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096,
449 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
450 		tee_cryp_obj_concat_kdf_z_attrs),
451 #endif
452 #if defined(CFG_CRYPTO_PBKDF2)
453 	PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096,
454 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
455 		tee_cryp_obj_pbkdf2_passwd_attrs),
456 #endif
457 	PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
458 		sizeof(struct rsa_public_key),
459 		tee_cryp_obj_rsa_pub_key_attrs),
460 
461 	PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
462 		sizeof(struct rsa_keypair),
463 		tee_cryp_obj_rsa_keypair_attrs),
464 
465 	PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072,
466 		sizeof(struct dsa_public_key),
467 		tee_cryp_obj_dsa_pub_key_attrs),
468 
469 	PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072,
470 		sizeof(struct dsa_keypair),
471 		tee_cryp_obj_dsa_keypair_attrs),
472 
473 	PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048,
474 		sizeof(struct dh_keypair),
475 		tee_cryp_obj_dh_keypair_attrs),
476 
477 	PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521,
478 		sizeof(struct ecc_public_key),
479 		tee_cryp_obj_ecc_pub_key_attrs),
480 
481 	PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521,
482 		sizeof(struct ecc_keypair),
483 		tee_cryp_obj_ecc_keypair_attrs),
484 
485 	PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521,
486 		sizeof(struct ecc_public_key),
487 		tee_cryp_obj_ecc_pub_key_attrs),
488 
489 	PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521,
490 		sizeof(struct ecc_keypair),
491 		tee_cryp_obj_ecc_keypair_attrs),
492 
493 	PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256,
494 	     sizeof(struct ecc_public_key),
495 	     tee_cryp_obj_ecc_pub_key_attrs),
496 
497 	PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256,
498 	     sizeof(struct ecc_keypair),
499 	     tee_cryp_obj_ecc_keypair_attrs),
500 
501 	PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256,
502 	     sizeof(struct ecc_public_key),
503 	     tee_cryp_obj_ecc_pub_key_attrs),
504 
505 	PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256,
506 	     sizeof(struct ecc_keypair),
507 	     tee_cryp_obj_ecc_keypair_attrs),
508 
509 	PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256,
510 	     sizeof(struct ecc_public_key),
511 	     tee_cryp_obj_ecc_pub_key_attrs),
512 
513 	PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256,
514 	     sizeof(struct ecc_keypair),
515 	     tee_cryp_obj_ecc_keypair_attrs),
516 };
517 
518 struct attr_ops {
519 	TEE_Result (*from_user)(void *attr, const void *buffer, size_t size);
520 	TEE_Result (*to_user)(void *attr, struct tee_ta_session *sess,
521 			      void *buffer, uint64_t *size);
522 	TEE_Result (*to_binary)(void *attr, void *data, size_t data_len,
523 			    size_t *offs);
524 	bool (*from_binary)(void *attr, const void *data, size_t data_len,
525 			    size_t *offs);
526 	TEE_Result (*from_obj)(void *attr, void *src_attr);
527 	void (*free)(void *attr);
528 	void (*clear)(void *attr);
529 };
530 
531 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data,
532 				    size_t data_len, size_t *offs)
533 {
534 	uint32_t field;
535 	size_t next_offs;
536 
537 	if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs))
538 		return TEE_ERROR_OVERFLOW;
539 
540 	if (data && next_offs <= data_len) {
541 		field = TEE_U32_TO_BIG_ENDIAN(v);
542 		memcpy(data + *offs, &field, sizeof(field));
543 	}
544 	(*offs) = next_offs;
545 
546 	return TEE_SUCCESS;
547 }
548 
549 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data,
550 				      size_t data_len, size_t *offs)
551 {
552 	uint32_t field;
553 
554 	if (!data || (*offs + sizeof(field)) > data_len)
555 		return false;
556 
557 	memcpy(&field, data + *offs, sizeof(field));
558 	*v = TEE_U32_FROM_BIG_ENDIAN(field);
559 	(*offs) += sizeof(field);
560 	return true;
561 }
562 
563 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer,
564 						 size_t size)
565 {
566 	struct tee_cryp_obj_secret *key = attr;
567 
568 	/* Data size has to fit in allocated buffer */
569 	if (size > key->alloc_size)
570 		return TEE_ERROR_SECURITY;
571 	memcpy(key + 1, buffer, size);
572 	key->key_size = size;
573 	return TEE_SUCCESS;
574 }
575 
576 static TEE_Result op_attr_secret_value_to_user(void *attr,
577 			struct tee_ta_session *sess __unused,
578 			void *buffer, uint64_t *size)
579 {
580 	TEE_Result res;
581 	struct tee_cryp_obj_secret *key = attr;
582 	uint64_t s;
583 	uint64_t key_size;
584 
585 	res = copy_from_user(&s, size, sizeof(s));
586 	if (res != TEE_SUCCESS)
587 		return res;
588 
589 	key_size = key->key_size;
590 	res = copy_to_user(size, &key_size, sizeof(key_size));
591 	if (res != TEE_SUCCESS)
592 		return res;
593 
594 	if (s < key->key_size || !buffer)
595 		return TEE_ERROR_SHORT_BUFFER;
596 
597 	return copy_to_user(buffer, key + 1, key->key_size);
598 }
599 
600 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data,
601 					   size_t data_len, size_t *offs)
602 {
603 	TEE_Result res;
604 	struct tee_cryp_obj_secret *key = attr;
605 	size_t next_offs;
606 
607 	res = op_u32_to_binary_helper(key->key_size, data, data_len, offs);
608 	if (res != TEE_SUCCESS)
609 		return res;
610 
611 	if (ADD_OVERFLOW(*offs, key->key_size, &next_offs))
612 		return TEE_ERROR_OVERFLOW;
613 
614 	if (data && next_offs <= data_len)
615 		memcpy((uint8_t *)data + *offs, key + 1, key->key_size);
616 	(*offs) = next_offs;
617 
618 	return TEE_SUCCESS;
619 }
620 
621 static bool op_attr_secret_value_from_binary(void *attr, const void *data,
622 					     size_t data_len, size_t *offs)
623 {
624 	struct tee_cryp_obj_secret *key = attr;
625 	uint32_t s;
626 
627 	if (!op_u32_from_binary_helper(&s, data, data_len, offs))
628 		return false;
629 
630 	if ((*offs + s) > data_len)
631 		return false;
632 
633 	/* Data size has to fit in allocated buffer */
634 	if (s > key->alloc_size)
635 		return false;
636 	key->key_size = s;
637 	memcpy(key + 1, (const uint8_t *)data + *offs, s);
638 	(*offs) += s;
639 	return true;
640 }
641 
642 
643 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr)
644 {
645 	struct tee_cryp_obj_secret *key = attr;
646 	struct tee_cryp_obj_secret *src_key = src_attr;
647 
648 	if (src_key->key_size > key->alloc_size)
649 		return TEE_ERROR_BAD_STATE;
650 	memcpy(key + 1, src_key + 1, src_key->key_size);
651 	key->key_size = src_key->key_size;
652 	return TEE_SUCCESS;
653 }
654 
655 static void op_attr_secret_value_clear(void *attr)
656 {
657 	struct tee_cryp_obj_secret *key = attr;
658 
659 	key->key_size = 0;
660 	memset(key + 1, 0, key->alloc_size);
661 }
662 
663 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer,
664 					   size_t size)
665 {
666 	struct bignum **bn = attr;
667 
668 	return crypto_bignum_bin2bn(buffer, size, *bn);
669 }
670 
671 static TEE_Result op_attr_bignum_to_user(void *attr,
672 					 struct tee_ta_session *sess,
673 					 void *buffer, uint64_t *size)
674 {
675 	TEE_Result res = TEE_SUCCESS;
676 	struct bignum **bn = attr;
677 	uint64_t req_size = 0;
678 	uint64_t s = 0;
679 
680 	res = copy_from_user(&s, size, sizeof(s));
681 	if (res != TEE_SUCCESS)
682 		return res;
683 
684 	req_size = crypto_bignum_num_bytes(*bn);
685 	res = copy_to_user(size, &req_size, sizeof(req_size));
686 	if (res != TEE_SUCCESS)
687 		return res;
688 	if (!req_size)
689 		return TEE_SUCCESS;
690 	if (s < req_size || !buffer)
691 		return TEE_ERROR_SHORT_BUFFER;
692 
693 	/* Check we can access data using supplied user mode pointer */
694 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
695 					  TEE_MEMORY_ACCESS_READ |
696 					  TEE_MEMORY_ACCESS_WRITE |
697 					  TEE_MEMORY_ACCESS_ANY_OWNER,
698 					  (uaddr_t)buffer, req_size);
699 	if (res != TEE_SUCCESS)
700 		return res;
701 	/*
702 	* Write the bignum (wich raw data points to) into an array of
703 	* bytes (stored in buffer)
704 	*/
705 	crypto_bignum_bn2bin(*bn, buffer);
706 	return TEE_SUCCESS;
707 }
708 
709 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data,
710 					   size_t data_len, size_t *offs)
711 {
712 	TEE_Result res;
713 	struct bignum **bn = attr;
714 	uint32_t n = crypto_bignum_num_bytes(*bn);
715 	size_t next_offs;
716 
717 	res = op_u32_to_binary_helper(n, data, data_len, offs);
718 	if (res != TEE_SUCCESS)
719 		return res;
720 
721 	if (ADD_OVERFLOW(*offs, n, &next_offs))
722 		return TEE_ERROR_OVERFLOW;
723 
724 	if (data && next_offs <= data_len)
725 		crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs);
726 	(*offs) = next_offs;
727 
728 	return TEE_SUCCESS;
729 }
730 
731 static bool op_attr_bignum_from_binary(void *attr, const void *data,
732 				       size_t data_len, size_t *offs)
733 {
734 	struct bignum **bn = attr;
735 	uint32_t n;
736 
737 	if (!op_u32_from_binary_helper(&n, data, data_len, offs))
738 		return false;
739 
740 	if ((*offs + n) > data_len)
741 		return false;
742 	if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn))
743 		return false;
744 	(*offs) += n;
745 	return true;
746 }
747 
748 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr)
749 {
750 	struct bignum **bn = attr;
751 	struct bignum **src_bn = src_attr;
752 
753 	crypto_bignum_copy(*bn, *src_bn);
754 	return TEE_SUCCESS;
755 }
756 
757 static void op_attr_bignum_clear(void *attr)
758 {
759 	struct bignum **bn = attr;
760 
761 	crypto_bignum_clear(*bn);
762 }
763 
764 static void op_attr_bignum_free(void *attr)
765 {
766 	struct bignum **bn = attr;
767 
768 	crypto_bignum_free(*bn);
769 	*bn = NULL;
770 }
771 
772 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer,
773 					  size_t size)
774 {
775 	uint32_t *v = attr;
776 
777 	if (size != sizeof(uint32_t) * 2)
778 		return TEE_ERROR_GENERIC; /* "can't happen */
779 
780 	/* Note that only the first value is copied */
781 	memcpy(v, buffer, sizeof(uint32_t));
782 	return TEE_SUCCESS;
783 }
784 
785 static TEE_Result op_attr_value_to_user(void *attr,
786 					struct tee_ta_session *sess __unused,
787 					void *buffer, uint64_t *size)
788 {
789 	TEE_Result res;
790 	uint32_t *v = attr;
791 	uint64_t s;
792 	uint32_t value[2] = { *v };
793 	uint64_t req_size = sizeof(value);
794 
795 	res = copy_from_user(&s, size, sizeof(s));
796 	if (res != TEE_SUCCESS)
797 		return res;
798 
799 	if (s < req_size || !buffer)
800 		return TEE_ERROR_SHORT_BUFFER;
801 
802 	return copy_to_user(buffer, value, req_size);
803 }
804 
805 static TEE_Result op_attr_value_to_binary(void *attr, void *data,
806 					  size_t data_len, size_t *offs)
807 {
808 	uint32_t *v = attr;
809 
810 	return op_u32_to_binary_helper(*v, data, data_len, offs);
811 }
812 
813 static bool op_attr_value_from_binary(void *attr, const void *data,
814 				      size_t data_len, size_t *offs)
815 {
816 	uint32_t *v = attr;
817 
818 	return op_u32_from_binary_helper(v, data, data_len, offs);
819 }
820 
821 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr)
822 {
823 	uint32_t *v = attr;
824 	uint32_t *src_v = src_attr;
825 
826 	*v = *src_v;
827 	return TEE_SUCCESS;
828 }
829 
830 static void op_attr_value_clear(void *attr)
831 {
832 	uint32_t *v = attr;
833 
834 	*v = 0;
835 }
836 
837 static const struct attr_ops attr_ops[] = {
838 	[ATTR_OPS_INDEX_SECRET] = {
839 		.from_user = op_attr_secret_value_from_user,
840 		.to_user = op_attr_secret_value_to_user,
841 		.to_binary = op_attr_secret_value_to_binary,
842 		.from_binary = op_attr_secret_value_from_binary,
843 		.from_obj = op_attr_secret_value_from_obj,
844 		.free = op_attr_secret_value_clear, /* not a typo */
845 		.clear = op_attr_secret_value_clear,
846 	},
847 	[ATTR_OPS_INDEX_BIGNUM] = {
848 		.from_user = op_attr_bignum_from_user,
849 		.to_user = op_attr_bignum_to_user,
850 		.to_binary = op_attr_bignum_to_binary,
851 		.from_binary = op_attr_bignum_from_binary,
852 		.from_obj = op_attr_bignum_from_obj,
853 		.free = op_attr_bignum_free,
854 		.clear = op_attr_bignum_clear,
855 	},
856 	[ATTR_OPS_INDEX_VALUE] = {
857 		.from_user = op_attr_value_from_user,
858 		.to_user = op_attr_value_to_user,
859 		.to_binary = op_attr_value_to_binary,
860 		.from_binary = op_attr_value_from_binary,
861 		.from_obj = op_attr_value_from_obj,
862 		.free = op_attr_value_clear, /* not a typo */
863 		.clear = op_attr_value_clear,
864 	},
865 };
866 
867 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src)
868 {
869 	uint64_t d = 0;
870 	TEE_Result res = copy_from_user(&d, src, sizeof(d));
871 
872 	/*
873 	 * On 32-bit systems a size_t can't hold a uint64_t so we need to
874 	 * check that the value isn't too large.
875 	 */
876 	if (!res && ADD_OVERFLOW(0, d, dst))
877 		return TEE_ERROR_OVERFLOW;
878 
879 	return res;
880 }
881 
882 static TEE_Result put_user_u64(uint64_t *dst, size_t value)
883 {
884 	uint64_t v = value;
885 
886 	return copy_to_user(dst, &v, sizeof(v));
887 }
888 
889 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info)
890 {
891 	TEE_Result res;
892 	struct tee_ta_session *sess;
893 	struct tee_obj *o;
894 
895 	res = tee_ta_get_current_session(&sess);
896 	if (res != TEE_SUCCESS)
897 		goto exit;
898 
899 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
900 			  uref_to_vaddr(obj), &o);
901 	if (res != TEE_SUCCESS)
902 		goto exit;
903 
904 	res = copy_to_user_private(info, &o->info, sizeof(o->info));
905 
906 exit:
907 	return res;
908 }
909 
910 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj,
911 			unsigned long usage)
912 {
913 	TEE_Result res;
914 	struct tee_ta_session *sess;
915 	struct tee_obj *o;
916 
917 	res = tee_ta_get_current_session(&sess);
918 	if (res != TEE_SUCCESS)
919 		goto exit;
920 
921 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
922 	if (res != TEE_SUCCESS)
923 		goto exit;
924 
925 	o->info.objectUsage &= usage;
926 
927 exit:
928 	return res;
929 }
930 
931 static int tee_svc_cryp_obj_find_type_attr_idx(
932 		uint32_t attr_id,
933 		const struct tee_cryp_obj_type_props *type_props)
934 {
935 	size_t n;
936 
937 	for (n = 0; n < type_props->num_type_attrs; n++) {
938 		if (attr_id == type_props->type_attrs[n].attr_id)
939 			return n;
940 	}
941 	return -1;
942 }
943 
944 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props(
945 		TEE_ObjectType obj_type)
946 {
947 	size_t n;
948 
949 	for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) {
950 		if (tee_cryp_obj_props[n].obj_type == obj_type)
951 			return tee_cryp_obj_props + n;
952 	}
953 
954 	return NULL;
955 }
956 
957 /* Set an attribute on an object */
958 static void set_attribute(struct tee_obj *o,
959 			  const struct tee_cryp_obj_type_props *props,
960 			  uint32_t attr)
961 {
962 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
963 
964 	if (idx < 0)
965 		return;
966 	o->have_attrs |= BIT(idx);
967 }
968 
969 /* Get an attribute on an object */
970 static uint32_t get_attribute(const struct tee_obj *o,
971 			      const struct tee_cryp_obj_type_props *props,
972 			      uint32_t attr)
973 {
974 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
975 
976 	if (idx < 0)
977 		return 0;
978 	return o->have_attrs & BIT(idx);
979 }
980 
981 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id,
982 			void *buffer, uint64_t *size)
983 {
984 	TEE_Result res;
985 	struct tee_ta_session *sess;
986 	struct tee_obj *o;
987 	const struct tee_cryp_obj_type_props *type_props;
988 	int idx;
989 	const struct attr_ops *ops;
990 	void *attr;
991 
992 	res = tee_ta_get_current_session(&sess);
993 	if (res != TEE_SUCCESS)
994 		return res;
995 
996 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
997 	if (res != TEE_SUCCESS)
998 		return TEE_ERROR_ITEM_NOT_FOUND;
999 
1000 	/* Check that the object is initialized */
1001 	if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED))
1002 		return TEE_ERROR_BAD_PARAMETERS;
1003 
1004 	/* Check that getting the attribute is allowed */
1005 	if (!(attr_id & TEE_ATTR_BIT_PROTECTED) &&
1006 	    !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE))
1007 		return TEE_ERROR_BAD_PARAMETERS;
1008 
1009 	type_props = tee_svc_find_type_props(o->info.objectType);
1010 	if (!type_props) {
1011 		/* Unknown object type, "can't happen" */
1012 		return TEE_ERROR_BAD_STATE;
1013 	}
1014 
1015 	idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props);
1016 	if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0))
1017 		return TEE_ERROR_ITEM_NOT_FOUND;
1018 
1019 	ops = attr_ops + type_props->type_attrs[idx].ops_index;
1020 	attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs;
1021 	return ops->to_user(attr, sess, buffer, size);
1022 }
1023 
1024 void tee_obj_attr_free(struct tee_obj *o)
1025 {
1026 	const struct tee_cryp_obj_type_props *tp;
1027 	size_t n;
1028 
1029 	if (!o->attr)
1030 		return;
1031 	tp = tee_svc_find_type_props(o->info.objectType);
1032 	if (!tp)
1033 		return;
1034 
1035 	for (n = 0; n < tp->num_type_attrs; n++) {
1036 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1037 
1038 		attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs);
1039 	}
1040 }
1041 
1042 void tee_obj_attr_clear(struct tee_obj *o)
1043 {
1044 	const struct tee_cryp_obj_type_props *tp;
1045 	size_t n;
1046 
1047 	if (!o->attr)
1048 		return;
1049 	tp = tee_svc_find_type_props(o->info.objectType);
1050 	if (!tp)
1051 		return;
1052 
1053 	for (n = 0; n < tp->num_type_attrs; n++) {
1054 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1055 
1056 		attr_ops[ta->ops_index].clear((uint8_t *)o->attr +
1057 					      ta->raw_offs);
1058 	}
1059 }
1060 
1061 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data,
1062 				  size_t *data_len)
1063 {
1064 	const struct tee_cryp_obj_type_props *tp;
1065 	size_t n;
1066 	size_t offs = 0;
1067 	size_t len = data ? *data_len : 0;
1068 	TEE_Result res;
1069 
1070 	if (o->info.objectType == TEE_TYPE_DATA) {
1071 		*data_len = 0;
1072 		return TEE_SUCCESS; /* pure data object */
1073 	}
1074 	if (!o->attr)
1075 		return TEE_ERROR_BAD_STATE;
1076 	tp = tee_svc_find_type_props(o->info.objectType);
1077 	if (!tp)
1078 		return TEE_ERROR_BAD_STATE;
1079 
1080 	for (n = 0; n < tp->num_type_attrs; n++) {
1081 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1082 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1083 
1084 		res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs);
1085 		if (res != TEE_SUCCESS)
1086 			return res;
1087 	}
1088 
1089 	*data_len = offs;
1090 	if (data && offs > len)
1091 		return TEE_ERROR_SHORT_BUFFER;
1092 	return TEE_SUCCESS;
1093 }
1094 
1095 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data,
1096 				    size_t data_len)
1097 {
1098 	const struct tee_cryp_obj_type_props *tp;
1099 	size_t n;
1100 	size_t offs = 0;
1101 
1102 	if (o->info.objectType == TEE_TYPE_DATA)
1103 		return TEE_SUCCESS; /* pure data object */
1104 	if (!o->attr)
1105 		return TEE_ERROR_BAD_STATE;
1106 	tp = tee_svc_find_type_props(o->info.objectType);
1107 	if (!tp)
1108 		return TEE_ERROR_BAD_STATE;
1109 
1110 	for (n = 0; n < tp->num_type_attrs; n++) {
1111 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1112 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1113 
1114 		if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len,
1115 							 &offs))
1116 			return TEE_ERROR_CORRUPT_OBJECT;
1117 	}
1118 	return TEE_SUCCESS;
1119 }
1120 
1121 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src)
1122 {
1123 	TEE_Result res;
1124 	const struct tee_cryp_obj_type_props *tp;
1125 	const struct tee_cryp_obj_type_attrs *ta;
1126 	size_t n;
1127 	uint32_t have_attrs = 0;
1128 	void *attr;
1129 	void *src_attr;
1130 
1131 	if (o->info.objectType == TEE_TYPE_DATA)
1132 		return TEE_SUCCESS; /* pure data object */
1133 	if (!o->attr)
1134 		return TEE_ERROR_BAD_STATE;
1135 	tp = tee_svc_find_type_props(o->info.objectType);
1136 	if (!tp)
1137 		return TEE_ERROR_BAD_STATE;
1138 
1139 	if (o->info.objectType == src->info.objectType) {
1140 		have_attrs = src->have_attrs;
1141 		for (n = 0; n < tp->num_type_attrs; n++) {
1142 			ta = tp->type_attrs + n;
1143 			attr = (uint8_t *)o->attr + ta->raw_offs;
1144 			src_attr = (uint8_t *)src->attr + ta->raw_offs;
1145 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1146 			if (res != TEE_SUCCESS)
1147 				return res;
1148 		}
1149 	} else {
1150 		const struct tee_cryp_obj_type_props *tp_src;
1151 		int idx;
1152 
1153 		if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) {
1154 			if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR)
1155 				return TEE_ERROR_BAD_PARAMETERS;
1156 		} else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) {
1157 			if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR)
1158 				return TEE_ERROR_BAD_PARAMETERS;
1159 		} else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) {
1160 			if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR)
1161 				return TEE_ERROR_BAD_PARAMETERS;
1162 		} else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) {
1163 			if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR)
1164 				return TEE_ERROR_BAD_PARAMETERS;
1165 		} else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) {
1166 			if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR)
1167 				return TEE_ERROR_BAD_PARAMETERS;
1168 		} else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) {
1169 			if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR)
1170 				return TEE_ERROR_BAD_PARAMETERS;
1171 		} else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) {
1172 			if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR)
1173 				return TEE_ERROR_BAD_PARAMETERS;
1174 		} else {
1175 			return TEE_ERROR_BAD_PARAMETERS;
1176 		}
1177 
1178 		tp_src = tee_svc_find_type_props(src->info.objectType);
1179 		if (!tp_src)
1180 			return TEE_ERROR_BAD_STATE;
1181 
1182 		have_attrs = BIT32(tp->num_type_attrs) - 1;
1183 		for (n = 0; n < tp->num_type_attrs; n++) {
1184 			ta = tp->type_attrs + n;
1185 
1186 			idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id,
1187 								  tp_src);
1188 			if (idx < 0)
1189 				return TEE_ERROR_BAD_STATE;
1190 
1191 			attr = (uint8_t *)o->attr + ta->raw_offs;
1192 			src_attr = (uint8_t *)src->attr +
1193 				   tp_src->type_attrs[idx].raw_offs;
1194 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1195 			if (res != TEE_SUCCESS)
1196 				return res;
1197 		}
1198 	}
1199 
1200 	o->have_attrs = have_attrs;
1201 	return TEE_SUCCESS;
1202 }
1203 
1204 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type,
1205 			    size_t max_key_size)
1206 {
1207 	TEE_Result res = TEE_SUCCESS;
1208 	const struct tee_cryp_obj_type_props *type_props;
1209 
1210 	/* Can only set type for newly allocated objs */
1211 	if (o->attr)
1212 		return TEE_ERROR_BAD_STATE;
1213 
1214 	/*
1215 	 * Verify that maxKeySize is supported and find out how
1216 	 * much should be allocated.
1217 	 */
1218 
1219 	if (obj_type == TEE_TYPE_DATA) {
1220 		if (max_key_size)
1221 			return TEE_ERROR_NOT_SUPPORTED;
1222 	} else {
1223 		/* Find description of object */
1224 		type_props = tee_svc_find_type_props(obj_type);
1225 		if (!type_props)
1226 			return TEE_ERROR_NOT_SUPPORTED;
1227 
1228 		/* Check that maxKeySize follows restrictions */
1229 		if (max_key_size % type_props->quanta != 0)
1230 			return TEE_ERROR_NOT_SUPPORTED;
1231 		if (max_key_size < type_props->min_size)
1232 			return TEE_ERROR_NOT_SUPPORTED;
1233 		if (max_key_size > type_props->max_size)
1234 			return TEE_ERROR_NOT_SUPPORTED;
1235 
1236 		o->attr = calloc(1, type_props->alloc_size);
1237 		if (!o->attr)
1238 			return TEE_ERROR_OUT_OF_MEMORY;
1239 	}
1240 
1241 	/* If we have a key structure, pre-allocate the bignums inside */
1242 	switch (obj_type) {
1243 	case TEE_TYPE_RSA_PUBLIC_KEY:
1244 		res = crypto_acipher_alloc_rsa_public_key(o->attr,
1245 							  max_key_size);
1246 		break;
1247 	case TEE_TYPE_RSA_KEYPAIR:
1248 		res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size);
1249 		break;
1250 	case TEE_TYPE_DSA_PUBLIC_KEY:
1251 		res = crypto_acipher_alloc_dsa_public_key(o->attr,
1252 							  max_key_size);
1253 		break;
1254 	case TEE_TYPE_DSA_KEYPAIR:
1255 		res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size);
1256 		break;
1257 	case TEE_TYPE_DH_KEYPAIR:
1258 		res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size);
1259 		break;
1260 	case TEE_TYPE_ECDSA_PUBLIC_KEY:
1261 	case TEE_TYPE_ECDH_PUBLIC_KEY:
1262 	case TEE_TYPE_SM2_DSA_PUBLIC_KEY:
1263 	case TEE_TYPE_SM2_PKE_PUBLIC_KEY:
1264 	case TEE_TYPE_SM2_KEP_PUBLIC_KEY:
1265 		res = crypto_acipher_alloc_ecc_public_key(o->attr,
1266 							  max_key_size);
1267 		break;
1268 	case TEE_TYPE_ECDSA_KEYPAIR:
1269 	case TEE_TYPE_ECDH_KEYPAIR:
1270 	case TEE_TYPE_SM2_DSA_KEYPAIR:
1271 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1272 	case TEE_TYPE_SM2_KEP_KEYPAIR:
1273 		res = crypto_acipher_alloc_ecc_keypair(o->attr, max_key_size);
1274 		break;
1275 	default:
1276 		if (obj_type != TEE_TYPE_DATA) {
1277 			struct tee_cryp_obj_secret *key = o->attr;
1278 
1279 			key->alloc_size = type_props->alloc_size -
1280 					  sizeof(*key);
1281 		}
1282 		break;
1283 	}
1284 
1285 	if (res != TEE_SUCCESS)
1286 		return res;
1287 
1288 	o->info.objectType = obj_type;
1289 	o->info.maxKeySize = max_key_size;
1290 	o->info.objectUsage = TEE_USAGE_DEFAULT;
1291 
1292 	return TEE_SUCCESS;
1293 }
1294 
1295 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type,
1296 			unsigned long max_key_size, uint32_t *obj)
1297 {
1298 	TEE_Result res;
1299 	struct tee_ta_session *sess;
1300 	struct tee_obj *o;
1301 
1302 	res = tee_ta_get_current_session(&sess);
1303 	if (res != TEE_SUCCESS)
1304 		return res;
1305 
1306 	o = tee_obj_alloc();
1307 	if (!o)
1308 		return TEE_ERROR_OUT_OF_MEMORY;
1309 
1310 	res = tee_obj_set_type(o, obj_type, max_key_size);
1311 	if (res != TEE_SUCCESS) {
1312 		tee_obj_free(o);
1313 		return res;
1314 	}
1315 
1316 	tee_obj_add(to_user_ta_ctx(sess->ctx), o);
1317 
1318 	res = copy_kaddr_to_uref(obj, o);
1319 	if (res != TEE_SUCCESS)
1320 		tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1321 	return res;
1322 }
1323 
1324 TEE_Result syscall_cryp_obj_close(unsigned long obj)
1325 {
1326 	TEE_Result res;
1327 	struct tee_ta_session *sess;
1328 	struct tee_obj *o;
1329 
1330 	res = tee_ta_get_current_session(&sess);
1331 	if (res != TEE_SUCCESS)
1332 		return res;
1333 
1334 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1335 	if (res != TEE_SUCCESS)
1336 		return res;
1337 
1338 	/*
1339 	 * If it's busy it's used by an operation, a client should never have
1340 	 * this handle.
1341 	 */
1342 	if (o->busy)
1343 		return TEE_ERROR_ITEM_NOT_FOUND;
1344 
1345 	tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1346 	return TEE_SUCCESS;
1347 }
1348 
1349 TEE_Result syscall_cryp_obj_reset(unsigned long obj)
1350 {
1351 	TEE_Result res;
1352 	struct tee_ta_session *sess;
1353 	struct tee_obj *o;
1354 
1355 	res = tee_ta_get_current_session(&sess);
1356 	if (res != TEE_SUCCESS)
1357 		return res;
1358 
1359 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1360 	if (res != TEE_SUCCESS)
1361 		return res;
1362 
1363 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) {
1364 		tee_obj_attr_clear(o);
1365 		o->info.keySize = 0;
1366 		o->info.objectUsage = TEE_USAGE_DEFAULT;
1367 	} else {
1368 		return TEE_ERROR_BAD_PARAMETERS;
1369 	}
1370 
1371 	/* the object is no more initialized */
1372 	o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;
1373 
1374 	return TEE_SUCCESS;
1375 }
1376 
1377 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,
1378 			const struct utee_attribute *usr_attrs,
1379 			uint32_t attr_count, TEE_Attribute *attrs)
1380 {
1381 	TEE_Result res = TEE_SUCCESS;
1382 	size_t size = 0;
1383 	uint32_t n = 0;
1384 
1385 	if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size))
1386 		return TEE_ERROR_OVERFLOW;
1387 
1388 	res = tee_mmu_check_access_rights(&utc->uctx,
1389 					  TEE_MEMORY_ACCESS_READ |
1390 					  TEE_MEMORY_ACCESS_ANY_OWNER,
1391 					  (uaddr_t)usr_attrs, size);
1392 	if (res != TEE_SUCCESS)
1393 		return res;
1394 
1395 	for (n = 0; n < attr_count; n++) {
1396 		attrs[n].attributeID = usr_attrs[n].attribute_id;
1397 		if (attrs[n].attributeID & TEE_ATTR_BIT_VALUE) {
1398 			attrs[n].content.value.a = usr_attrs[n].a;
1399 			attrs[n].content.value.b = usr_attrs[n].b;
1400 		} else {
1401 			uintptr_t buf = usr_attrs[n].a;
1402 			size_t len = usr_attrs[n].b;
1403 			uint32_t flags = TEE_MEMORY_ACCESS_READ |
1404 					 TEE_MEMORY_ACCESS_ANY_OWNER;
1405 
1406 			res = tee_mmu_check_access_rights(&utc->uctx, flags,
1407 							  buf, len);
1408 			if (res != TEE_SUCCESS)
1409 				return res;
1410 			attrs[n].content.ref.buffer = (void *)buf;
1411 			attrs[n].content.ref.length = len;
1412 		}
1413 	}
1414 
1415 	return TEE_SUCCESS;
1416 }
1417 
1418 enum attr_usage {
1419 	ATTR_USAGE_POPULATE,
1420 	ATTR_USAGE_GENERATE_KEY
1421 };
1422 
1423 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage,
1424 					  const struct tee_cryp_obj_type_props
1425 						*type_props,
1426 					  const TEE_Attribute *attrs,
1427 					  uint32_t attr_count)
1428 {
1429 	uint32_t required_flag;
1430 	uint32_t opt_flag;
1431 	bool all_opt_needed;
1432 	uint32_t req_attrs = 0;
1433 	uint32_t opt_grp_attrs = 0;
1434 	uint32_t attrs_found = 0;
1435 	size_t n;
1436 	uint32_t bit;
1437 	uint32_t flags;
1438 	int idx;
1439 
1440 	if (usage == ATTR_USAGE_POPULATE) {
1441 		required_flag = TEE_TYPE_ATTR_REQUIRED;
1442 		opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP;
1443 		all_opt_needed = true;
1444 	} else {
1445 		required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ;
1446 		opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT;
1447 		all_opt_needed = false;
1448 	}
1449 
1450 	/*
1451 	 * First find out which attributes are required and which belong to
1452 	 * the optional group
1453 	 */
1454 	for (n = 0; n < type_props->num_type_attrs; n++) {
1455 		bit = 1 << n;
1456 		flags = type_props->type_attrs[n].flags;
1457 
1458 		if (flags & required_flag)
1459 			req_attrs |= bit;
1460 		else if (flags & opt_flag)
1461 			opt_grp_attrs |= bit;
1462 	}
1463 
1464 	/*
1465 	 * Verify that all required attributes are in place and
1466 	 * that the same attribute isn't repeated.
1467 	 */
1468 	for (n = 0; n < attr_count; n++) {
1469 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1470 							attrs[n].attributeID,
1471 							type_props);
1472 
1473 		/* attribute not defined in current object type */
1474 		if (idx < 0)
1475 			return TEE_ERROR_ITEM_NOT_FOUND;
1476 
1477 		bit = 1 << idx;
1478 
1479 		/* attribute not repeated */
1480 		if ((attrs_found & bit) != 0)
1481 			return TEE_ERROR_ITEM_NOT_FOUND;
1482 
1483 		attrs_found |= bit;
1484 	}
1485 	/* Required attribute missing */
1486 	if ((attrs_found & req_attrs) != req_attrs)
1487 		return TEE_ERROR_ITEM_NOT_FOUND;
1488 
1489 	/*
1490 	 * If the flag says that "if one of the optional attributes are included
1491 	 * all of them has to be included" this must be checked.
1492 	 */
1493 	if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 &&
1494 	    (attrs_found & opt_grp_attrs) != opt_grp_attrs)
1495 		return TEE_ERROR_ITEM_NOT_FOUND;
1496 
1497 	return TEE_SUCCESS;
1498 }
1499 
1500 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size)
1501 {
1502 	switch (curve) {
1503 	case TEE_ECC_CURVE_NIST_P192:
1504 		*key_size = 192;
1505 		break;
1506 	case TEE_ECC_CURVE_NIST_P224:
1507 		*key_size = 224;
1508 		break;
1509 	case TEE_ECC_CURVE_NIST_P256:
1510 		*key_size = 256;
1511 		break;
1512 	case TEE_ECC_CURVE_NIST_P384:
1513 		*key_size = 384;
1514 		break;
1515 	case TEE_ECC_CURVE_NIST_P521:
1516 		*key_size = 521;
1517 		break;
1518 	case TEE_ECC_CURVE_SM2:
1519 		*key_size = 256;
1520 		break;
1521 	default:
1522 		return TEE_ERROR_NOT_SUPPORTED;
1523 	}
1524 
1525 	return TEE_SUCCESS;
1526 }
1527 
1528 static TEE_Result tee_svc_cryp_obj_populate_type(
1529 		struct tee_obj *o,
1530 		const struct tee_cryp_obj_type_props *type_props,
1531 		const TEE_Attribute *attrs,
1532 		uint32_t attr_count)
1533 {
1534 	TEE_Result res;
1535 	uint32_t have_attrs = 0;
1536 	size_t obj_size = 0;
1537 	size_t n;
1538 	int idx;
1539 	const struct attr_ops *ops;
1540 	void *attr;
1541 
1542 	for (n = 0; n < attr_count; n++) {
1543 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1544 							attrs[n].attributeID,
1545 							type_props);
1546 		/* attribute not defined in current object type */
1547 		if (idx < 0)
1548 			return TEE_ERROR_ITEM_NOT_FOUND;
1549 
1550 		have_attrs |= BIT32(idx);
1551 		ops = attr_ops + type_props->type_attrs[idx].ops_index;
1552 		attr = (uint8_t *)o->attr +
1553 		       type_props->type_attrs[idx].raw_offs;
1554 		if (attrs[n].attributeID & TEE_ATTR_BIT_VALUE)
1555 			res = ops->from_user(attr, &attrs[n].content.value,
1556 					     sizeof(attrs[n].content.value));
1557 		else
1558 			res = ops->from_user(attr, attrs[n].content.ref.buffer,
1559 					     attrs[n].content.ref.length);
1560 		if (res != TEE_SUCCESS)
1561 			return res;
1562 
1563 		/*
1564 		 * First attr_idx signifies the attribute that gives the size
1565 		 * of the object
1566 		 */
1567 		if (type_props->type_attrs[idx].flags &
1568 		    TEE_TYPE_ATTR_SIZE_INDICATOR) {
1569 			/*
1570 			 * For ECDSA/ECDH we need to translate curve into
1571 			 * object size
1572 			 */
1573 			if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) {
1574 				res = get_ec_key_size(attrs[n].content.value.a,
1575 						      &obj_size);
1576 				if (res != TEE_SUCCESS)
1577 					return res;
1578 			} else {
1579 				TEE_ObjectType obj_type = o->info.objectType;
1580 
1581 				obj_size += (attrs[n].content.ref.length * 8);
1582 
1583 				/* Drop the parity bits DES keys */
1584 				if (obj_type == TEE_TYPE_DES ||
1585 				    obj_type == TEE_TYPE_DES3)
1586 					obj_size -= obj_size / 8;
1587 			}
1588 			if (obj_size > o->info.maxKeySize)
1589 				return TEE_ERROR_BAD_STATE;
1590 		}
1591 	}
1592 
1593 	/*
1594 	 * We have to do it like this because the parity bits aren't counted
1595 	 * when telling the size of the key in bits.
1596 	 */
1597 	if (o->info.objectType == TEE_TYPE_DES ||
1598 	    o->info.objectType == TEE_TYPE_DES3)
1599 		obj_size -= obj_size / 8; /* Exclude parity in size of key */
1600 
1601 	o->have_attrs = have_attrs;
1602 	o->info.keySize = obj_size;
1603 
1604 	return TEE_SUCCESS;
1605 }
1606 
1607 TEE_Result syscall_cryp_obj_populate(unsigned long obj,
1608 			struct utee_attribute *usr_attrs,
1609 			unsigned long attr_count)
1610 {
1611 	TEE_Result res;
1612 	struct tee_ta_session *sess;
1613 	struct tee_obj *o;
1614 	const struct tee_cryp_obj_type_props *type_props;
1615 	TEE_Attribute *attrs = NULL;
1616 
1617 	res = tee_ta_get_current_session(&sess);
1618 	if (res != TEE_SUCCESS)
1619 		return res;
1620 
1621 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1622 	if (res != TEE_SUCCESS)
1623 		return res;
1624 
1625 	/* Must be a transient object */
1626 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1627 		return TEE_ERROR_BAD_PARAMETERS;
1628 
1629 	/* Must not be initialized already */
1630 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1631 		return TEE_ERROR_BAD_PARAMETERS;
1632 
1633 	type_props = tee_svc_find_type_props(o->info.objectType);
1634 	if (!type_props)
1635 		return TEE_ERROR_NOT_IMPLEMENTED;
1636 
1637 	size_t alloc_size = 0;
1638 
1639 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size))
1640 		return TEE_ERROR_OVERFLOW;
1641 
1642 	attrs = malloc(alloc_size);
1643 	if (!attrs)
1644 		return TEE_ERROR_OUT_OF_MEMORY;
1645 
1646 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
1647 			    attrs);
1648 	if (res != TEE_SUCCESS)
1649 		goto out;
1650 
1651 	res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
1652 				      attrs, attr_count);
1653 	if (res != TEE_SUCCESS)
1654 		goto out;
1655 
1656 	res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
1657 	if (res == TEE_SUCCESS)
1658 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1659 
1660 out:
1661 	free_wipe(attrs);
1662 	return res;
1663 }
1664 
1665 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src)
1666 {
1667 	TEE_Result res;
1668 	struct tee_ta_session *sess;
1669 	struct tee_obj *dst_o;
1670 	struct tee_obj *src_o;
1671 
1672 	res = tee_ta_get_current_session(&sess);
1673 	if (res != TEE_SUCCESS)
1674 		return res;
1675 
1676 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1677 			  uref_to_vaddr(dst), &dst_o);
1678 	if (res != TEE_SUCCESS)
1679 		return res;
1680 
1681 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1682 			  uref_to_vaddr(src), &src_o);
1683 	if (res != TEE_SUCCESS)
1684 		return res;
1685 
1686 	if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1687 		return TEE_ERROR_BAD_PARAMETERS;
1688 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1689 		return TEE_ERROR_BAD_PARAMETERS;
1690 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1691 		return TEE_ERROR_BAD_PARAMETERS;
1692 
1693 	res = tee_obj_attr_copy_from(dst_o, src_o);
1694 	if (res != TEE_SUCCESS)
1695 		return res;
1696 
1697 	dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1698 	dst_o->info.keySize = src_o->info.keySize;
1699 	dst_o->info.objectUsage = src_o->info.objectUsage;
1700 	return TEE_SUCCESS;
1701 }
1702 
1703 static TEE_Result check_pub_rsa_key(struct bignum *e)
1704 {
1705 	size_t n = crypto_bignum_num_bytes(e);
1706 	uint8_t bin_key[256 / 8] = { 0 };
1707 
1708 	/*
1709 	 * NIST SP800-56B requires public RSA key to be an odd integer in
1710 	 * the range 65537 <= e < 2^256.
1711 	 */
1712 
1713 	if (n > sizeof(bin_key) || n < 3)
1714 		return TEE_ERROR_BAD_PARAMETERS;
1715 
1716 	crypto_bignum_bn2bin(e, bin_key);
1717 
1718 	if (!(bin_key[0] & 1)) /* key must be odd */
1719 		return TEE_ERROR_BAD_PARAMETERS;
1720 
1721 	if (n == 3) {
1722 		uint32_t key = 0;
1723 
1724 		for (n = 0; n < 3; n++) {
1725 			key <<= 8;
1726 			key |= bin_key[n];
1727 		}
1728 
1729 		if (key < 65537)
1730 			return TEE_ERROR_BAD_PARAMETERS;
1731 	}
1732 
1733 	/* key is larger than 65537 */
1734 	return TEE_SUCCESS;
1735 }
1736 
1737 static TEE_Result tee_svc_obj_generate_key_rsa(
1738 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1739 	uint32_t key_size,
1740 	const TEE_Attribute *params, uint32_t param_count)
1741 {
1742 	TEE_Result res = TEE_SUCCESS;
1743 	struct rsa_keypair *key = o->attr;
1744 	uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537);
1745 
1746 	/* Copy the present attributes into the obj before starting */
1747 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1748 					     param_count);
1749 	if (res != TEE_SUCCESS)
1750 		return res;
1751 	if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) {
1752 		res = check_pub_rsa_key(key->e);
1753 		if (res)
1754 			return res;
1755 	} else {
1756 		crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e);
1757 	}
1758 	res = crypto_acipher_gen_rsa_key(key, key_size);
1759 	if (res != TEE_SUCCESS)
1760 		return res;
1761 
1762 	/* Set bits for all known attributes for this object type */
1763 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1764 
1765 	return TEE_SUCCESS;
1766 }
1767 
1768 static TEE_Result tee_svc_obj_generate_key_dsa(
1769 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1770 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1771 {
1772 	TEE_Result res;
1773 
1774 	/* Copy the present attributes into the obj before starting */
1775 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1776 					     param_count);
1777 	if (res != TEE_SUCCESS)
1778 		return res;
1779 
1780 	res = crypto_acipher_gen_dsa_key(o->attr, key_size);
1781 	if (res != TEE_SUCCESS)
1782 		return res;
1783 
1784 	/* Set bits for all known attributes for this object type */
1785 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1786 
1787 	return TEE_SUCCESS;
1788 }
1789 
1790 static TEE_Result tee_svc_obj_generate_key_dh(
1791 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1792 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1793 {
1794 	TEE_Result res;
1795 	struct dh_keypair *tee_dh_key;
1796 	struct bignum *dh_q = NULL;
1797 	uint32_t dh_xbits = 0;
1798 
1799 	/* Copy the present attributes into the obj before starting */
1800 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1801 					     param_count);
1802 	if (res != TEE_SUCCESS)
1803 		return res;
1804 
1805 	tee_dh_key = (struct dh_keypair *)o->attr;
1806 
1807 	if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME))
1808 		dh_q = tee_dh_key->q;
1809 	if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS))
1810 		dh_xbits = tee_dh_key->xbits;
1811 	res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size);
1812 	if (res != TEE_SUCCESS)
1813 		return res;
1814 
1815 	/* Set bits for the generated public and private key */
1816 	set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE);
1817 	set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE);
1818 	set_attribute(o, type_props, TEE_ATTR_DH_X_BITS);
1819 	return TEE_SUCCESS;
1820 }
1821 
1822 static TEE_Result tee_svc_obj_generate_key_ecc(
1823 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1824 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1825 {
1826 	TEE_Result res;
1827 	struct ecc_keypair *tee_ecc_key;
1828 
1829 	/* Copy the present attributes into the obj before starting */
1830 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1831 					     param_count);
1832 	if (res != TEE_SUCCESS)
1833 		return res;
1834 
1835 	tee_ecc_key = (struct ecc_keypair *)o->attr;
1836 
1837 	res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size);
1838 	if (res != TEE_SUCCESS)
1839 		return res;
1840 
1841 	/* Set bits for the generated public and private key */
1842 	set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE);
1843 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X);
1844 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y);
1845 	set_attribute(o, type_props, TEE_ATTR_ECC_CURVE);
1846 	return TEE_SUCCESS;
1847 }
1848 
1849 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size,
1850 			const struct utee_attribute *usr_params,
1851 			unsigned long param_count)
1852 {
1853 	TEE_Result res;
1854 	struct tee_ta_session *sess;
1855 	const struct tee_cryp_obj_type_props *type_props;
1856 	struct tee_obj *o;
1857 	struct tee_cryp_obj_secret *key;
1858 	size_t byte_size;
1859 	TEE_Attribute *params = NULL;
1860 
1861 	res = tee_ta_get_current_session(&sess);
1862 	if (res != TEE_SUCCESS)
1863 		return res;
1864 
1865 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1866 	if (res != TEE_SUCCESS)
1867 		return res;
1868 
1869 	/* Must be a transient object */
1870 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1871 		return TEE_ERROR_BAD_STATE;
1872 
1873 	/* Must not be initialized already */
1874 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1875 		return TEE_ERROR_BAD_STATE;
1876 
1877 	/* Find description of object */
1878 	type_props = tee_svc_find_type_props(o->info.objectType);
1879 	if (!type_props)
1880 		return TEE_ERROR_NOT_SUPPORTED;
1881 
1882 	/* Check that maxKeySize follows restrictions */
1883 	if (key_size % type_props->quanta != 0)
1884 		return TEE_ERROR_NOT_SUPPORTED;
1885 	if (key_size < type_props->min_size)
1886 		return TEE_ERROR_NOT_SUPPORTED;
1887 	if (key_size > type_props->max_size)
1888 		return TEE_ERROR_NOT_SUPPORTED;
1889 
1890 	size_t alloc_size = 0;
1891 
1892 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
1893 		return TEE_ERROR_OVERFLOW;
1894 
1895 	params = malloc(alloc_size);
1896 	if (!params)
1897 		return TEE_ERROR_OUT_OF_MEMORY;
1898 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count,
1899 			    params);
1900 	if (res != TEE_SUCCESS)
1901 		goto out;
1902 
1903 	res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props,
1904 				      params, param_count);
1905 	if (res != TEE_SUCCESS)
1906 		goto out;
1907 
1908 	switch (o->info.objectType) {
1909 	case TEE_TYPE_AES:
1910 	case TEE_TYPE_DES:
1911 	case TEE_TYPE_DES3:
1912 	case TEE_TYPE_SM4:
1913 	case TEE_TYPE_HMAC_MD5:
1914 	case TEE_TYPE_HMAC_SHA1:
1915 	case TEE_TYPE_HMAC_SHA224:
1916 	case TEE_TYPE_HMAC_SHA256:
1917 	case TEE_TYPE_HMAC_SHA384:
1918 	case TEE_TYPE_HMAC_SHA512:
1919 	case TEE_TYPE_HMAC_SM3:
1920 	case TEE_TYPE_GENERIC_SECRET:
1921 		byte_size = key_size / 8;
1922 
1923 		/*
1924 		 * We have to do it like this because the parity bits aren't
1925 		 * counted when telling the size of the key in bits.
1926 		 */
1927 		if (o->info.objectType == TEE_TYPE_DES ||
1928 		    o->info.objectType == TEE_TYPE_DES3) {
1929 			byte_size = (key_size + key_size / 7) / 8;
1930 		}
1931 
1932 		key = (struct tee_cryp_obj_secret *)o->attr;
1933 		if (byte_size > key->alloc_size) {
1934 			res = TEE_ERROR_EXCESS_DATA;
1935 			goto out;
1936 		}
1937 
1938 		res = crypto_rng_read((void *)(key + 1), byte_size);
1939 		if (res != TEE_SUCCESS)
1940 			goto out;
1941 
1942 		key->key_size = byte_size;
1943 
1944 		/* Set bits for all known attributes for this object type */
1945 		o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1946 
1947 		break;
1948 
1949 	case TEE_TYPE_RSA_KEYPAIR:
1950 		res = tee_svc_obj_generate_key_rsa(o, type_props, key_size,
1951 						   params, param_count);
1952 		if (res != TEE_SUCCESS)
1953 			goto out;
1954 		break;
1955 
1956 	case TEE_TYPE_DSA_KEYPAIR:
1957 		res = tee_svc_obj_generate_key_dsa(o, type_props, key_size,
1958 						   params, param_count);
1959 		if (res != TEE_SUCCESS)
1960 			goto out;
1961 		break;
1962 
1963 	case TEE_TYPE_DH_KEYPAIR:
1964 		res = tee_svc_obj_generate_key_dh(o, type_props, key_size,
1965 						  params, param_count);
1966 		if (res != TEE_SUCCESS)
1967 			goto out;
1968 		break;
1969 
1970 	case TEE_TYPE_ECDSA_KEYPAIR:
1971 	case TEE_TYPE_ECDH_KEYPAIR:
1972 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1973 		res = tee_svc_obj_generate_key_ecc(o, type_props, key_size,
1974 						  params, param_count);
1975 		if (res != TEE_SUCCESS)
1976 			goto out;
1977 		break;
1978 
1979 	default:
1980 		res = TEE_ERROR_BAD_FORMAT;
1981 	}
1982 
1983 out:
1984 	free_wipe(params);
1985 	if (res == TEE_SUCCESS) {
1986 		o->info.keySize = key_size;
1987 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1988 	}
1989 	return res;
1990 }
1991 
1992 static TEE_Result tee_svc_cryp_get_state(struct tee_ta_session *sess,
1993 					 uint32_t state_id,
1994 					 struct tee_cryp_state **state)
1995 {
1996 	struct tee_cryp_state *s;
1997 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
1998 
1999 	TAILQ_FOREACH(s, &utc->cryp_states, link) {
2000 		if (state_id == (vaddr_t)s) {
2001 			*state = s;
2002 			return TEE_SUCCESS;
2003 		}
2004 	}
2005 	return TEE_ERROR_BAD_PARAMETERS;
2006 }
2007 
2008 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs)
2009 {
2010 	struct tee_obj *o;
2011 
2012 	if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS)
2013 		tee_obj_close(utc, o);
2014 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS)
2015 		tee_obj_close(utc, o);
2016 
2017 	TAILQ_REMOVE(&utc->cryp_states, cs, link);
2018 	if (cs->ctx_finalize != NULL)
2019 		cs->ctx_finalize(cs->ctx);
2020 
2021 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2022 	case TEE_OPERATION_CIPHER:
2023 		crypto_cipher_free_ctx(cs->ctx);
2024 		break;
2025 	case TEE_OPERATION_AE:
2026 		crypto_authenc_free_ctx(cs->ctx);
2027 		break;
2028 	case TEE_OPERATION_DIGEST:
2029 		crypto_hash_free_ctx(cs->ctx);
2030 		break;
2031 	case TEE_OPERATION_MAC:
2032 		crypto_mac_free_ctx(cs->ctx);
2033 		break;
2034 	default:
2035 		assert(!cs->ctx);
2036 	}
2037 
2038 	free(cs);
2039 }
2040 
2041 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o,
2042 					      uint32_t algo,
2043 					      TEE_OperationMode mode)
2044 {
2045 	uint32_t req_key_type;
2046 	uint32_t req_key_type2 = 0;
2047 
2048 	switch (TEE_ALG_GET_MAIN_ALG(algo)) {
2049 	case TEE_MAIN_ALGO_MD5:
2050 		req_key_type = TEE_TYPE_HMAC_MD5;
2051 		break;
2052 	case TEE_MAIN_ALGO_SHA1:
2053 		req_key_type = TEE_TYPE_HMAC_SHA1;
2054 		break;
2055 	case TEE_MAIN_ALGO_SHA224:
2056 		req_key_type = TEE_TYPE_HMAC_SHA224;
2057 		break;
2058 	case TEE_MAIN_ALGO_SHA256:
2059 		req_key_type = TEE_TYPE_HMAC_SHA256;
2060 		break;
2061 	case TEE_MAIN_ALGO_SHA384:
2062 		req_key_type = TEE_TYPE_HMAC_SHA384;
2063 		break;
2064 	case TEE_MAIN_ALGO_SHA512:
2065 		req_key_type = TEE_TYPE_HMAC_SHA512;
2066 		break;
2067 	case TEE_MAIN_ALGO_SM3:
2068 		req_key_type = TEE_TYPE_HMAC_SM3;
2069 		break;
2070 	case TEE_MAIN_ALGO_AES:
2071 		req_key_type = TEE_TYPE_AES;
2072 		break;
2073 	case TEE_MAIN_ALGO_DES:
2074 		req_key_type = TEE_TYPE_DES;
2075 		break;
2076 	case TEE_MAIN_ALGO_DES3:
2077 		req_key_type = TEE_TYPE_DES3;
2078 		break;
2079 	case TEE_MAIN_ALGO_SM4:
2080 		req_key_type = TEE_TYPE_SM4;
2081 		break;
2082 	case TEE_MAIN_ALGO_RSA:
2083 		req_key_type = TEE_TYPE_RSA_KEYPAIR;
2084 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2085 			req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY;
2086 		break;
2087 	case TEE_MAIN_ALGO_DSA:
2088 		req_key_type = TEE_TYPE_DSA_KEYPAIR;
2089 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2090 			req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY;
2091 		break;
2092 	case TEE_MAIN_ALGO_DH:
2093 		req_key_type = TEE_TYPE_DH_KEYPAIR;
2094 		break;
2095 	case TEE_MAIN_ALGO_ECDSA:
2096 		req_key_type = TEE_TYPE_ECDSA_KEYPAIR;
2097 		if (mode == TEE_MODE_VERIFY)
2098 			req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY;
2099 		break;
2100 	case TEE_MAIN_ALGO_ECDH:
2101 		req_key_type = TEE_TYPE_ECDH_KEYPAIR;
2102 		break;
2103 	case TEE_MAIN_ALGO_SM2_PKE:
2104 		if (mode == TEE_MODE_ENCRYPT)
2105 			req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY;
2106 		else
2107 			req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR;
2108 		break;
2109 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
2110 		if (mode == TEE_MODE_VERIFY)
2111 			req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY;
2112 		else
2113 			req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR;
2114 		break;
2115 #if defined(CFG_CRYPTO_SM2_KEP)
2116 	case TEE_MAIN_ALGO_SM2_KEP:
2117 		req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR;
2118 		req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY;
2119 		break;
2120 #endif
2121 #if defined(CFG_CRYPTO_HKDF)
2122 	case TEE_MAIN_ALGO_HKDF:
2123 		req_key_type = TEE_TYPE_HKDF_IKM;
2124 		break;
2125 #endif
2126 #if defined(CFG_CRYPTO_CONCAT_KDF)
2127 	case TEE_MAIN_ALGO_CONCAT_KDF:
2128 		req_key_type = TEE_TYPE_CONCAT_KDF_Z;
2129 		break;
2130 #endif
2131 #if defined(CFG_CRYPTO_PBKDF2)
2132 	case TEE_MAIN_ALGO_PBKDF2:
2133 		req_key_type = TEE_TYPE_PBKDF2_PASSWORD;
2134 		break;
2135 #endif
2136 	default:
2137 		return TEE_ERROR_BAD_PARAMETERS;
2138 	}
2139 
2140 	if (req_key_type != o->info.objectType &&
2141 	    req_key_type2 != o->info.objectType)
2142 		return TEE_ERROR_BAD_PARAMETERS;
2143 	return TEE_SUCCESS;
2144 }
2145 
2146 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode,
2147 			unsigned long key1, unsigned long key2,
2148 			uint32_t *state)
2149 {
2150 	TEE_Result res;
2151 	struct tee_cryp_state *cs;
2152 	struct tee_ta_session *sess;
2153 	struct tee_obj *o1 = NULL;
2154 	struct tee_obj *o2 = NULL;
2155 	struct user_ta_ctx *utc;
2156 
2157 	res = tee_ta_get_current_session(&sess);
2158 	if (res != TEE_SUCCESS)
2159 		return res;
2160 	utc = to_user_ta_ctx(sess->ctx);
2161 
2162 	if (key1 != 0) {
2163 		res = tee_obj_get(utc, uref_to_vaddr(key1), &o1);
2164 		if (res != TEE_SUCCESS)
2165 			return res;
2166 		if (o1->busy)
2167 			return TEE_ERROR_BAD_PARAMETERS;
2168 		res = tee_svc_cryp_check_key_type(o1, algo, mode);
2169 		if (res != TEE_SUCCESS)
2170 			return res;
2171 	}
2172 	if (key2 != 0) {
2173 		res = tee_obj_get(utc, uref_to_vaddr(key2), &o2);
2174 		if (res != TEE_SUCCESS)
2175 			return res;
2176 		if (o2->busy)
2177 			return TEE_ERROR_BAD_PARAMETERS;
2178 		res = tee_svc_cryp_check_key_type(o2, algo, mode);
2179 		if (res != TEE_SUCCESS)
2180 			return res;
2181 	}
2182 
2183 	cs = calloc(1, sizeof(struct tee_cryp_state));
2184 	if (!cs)
2185 		return TEE_ERROR_OUT_OF_MEMORY;
2186 	TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link);
2187 	cs->algo = algo;
2188 	cs->mode = mode;
2189 	cs->state = CRYP_STATE_UNINITIALIZED;
2190 
2191 	switch (TEE_ALG_GET_CLASS(algo)) {
2192 	case TEE_OPERATION_CIPHER:
2193 		if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) ||
2194 		    (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) {
2195 			res = TEE_ERROR_BAD_PARAMETERS;
2196 		} else {
2197 			res = crypto_cipher_alloc_ctx(&cs->ctx, algo);
2198 			if (res != TEE_SUCCESS)
2199 				break;
2200 		}
2201 		break;
2202 	case TEE_OPERATION_AE:
2203 		if (key1 == 0 || key2 != 0) {
2204 			res = TEE_ERROR_BAD_PARAMETERS;
2205 		} else {
2206 			res = crypto_authenc_alloc_ctx(&cs->ctx, algo);
2207 			if (res != TEE_SUCCESS)
2208 				break;
2209 		}
2210 		break;
2211 	case TEE_OPERATION_MAC:
2212 		if (key1 == 0 || key2 != 0) {
2213 			res = TEE_ERROR_BAD_PARAMETERS;
2214 		} else {
2215 			res = crypto_mac_alloc_ctx(&cs->ctx, algo);
2216 			if (res != TEE_SUCCESS)
2217 				break;
2218 		}
2219 		break;
2220 	case TEE_OPERATION_DIGEST:
2221 		if (key1 != 0 || key2 != 0) {
2222 			res = TEE_ERROR_BAD_PARAMETERS;
2223 		} else {
2224 			res = crypto_hash_alloc_ctx(&cs->ctx, algo);
2225 			if (res != TEE_SUCCESS)
2226 				break;
2227 		}
2228 		break;
2229 	case TEE_OPERATION_ASYMMETRIC_CIPHER:
2230 	case TEE_OPERATION_ASYMMETRIC_SIGNATURE:
2231 		if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 &&
2232 		    !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) {
2233 			res = TEE_ERROR_NOT_SUPPORTED;
2234 			break;
2235 		}
2236 		if (key1 == 0 || key2 != 0)
2237 			res = TEE_ERROR_BAD_PARAMETERS;
2238 		break;
2239 	case TEE_OPERATION_KEY_DERIVATION:
2240 		if (algo == TEE_ALG_SM2_KEP) {
2241 			if (key1 == 0 || key2 == 0)
2242 				res = TEE_ERROR_BAD_PARAMETERS;
2243 		} else {
2244 			if (key1 == 0 || key2 != 0)
2245 				res = TEE_ERROR_BAD_PARAMETERS;
2246 		}
2247 		break;
2248 	default:
2249 		res = TEE_ERROR_NOT_SUPPORTED;
2250 		break;
2251 	}
2252 	if (res != TEE_SUCCESS)
2253 		goto out;
2254 
2255 	res = copy_kaddr_to_uref(state, cs);
2256 	if (res != TEE_SUCCESS)
2257 		goto out;
2258 
2259 	/* Register keys */
2260 	if (o1 != NULL) {
2261 		o1->busy = true;
2262 		cs->key1 = (vaddr_t)o1;
2263 	}
2264 	if (o2 != NULL) {
2265 		o2->busy = true;
2266 		cs->key2 = (vaddr_t)o2;
2267 	}
2268 
2269 out:
2270 	if (res != TEE_SUCCESS)
2271 		cryp_state_free(utc, cs);
2272 	return res;
2273 }
2274 
2275 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src)
2276 {
2277 	TEE_Result res;
2278 	struct tee_cryp_state *cs_dst;
2279 	struct tee_cryp_state *cs_src;
2280 	struct tee_ta_session *sess;
2281 
2282 	res = tee_ta_get_current_session(&sess);
2283 	if (res != TEE_SUCCESS)
2284 		return res;
2285 
2286 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst);
2287 	if (res != TEE_SUCCESS)
2288 		return res;
2289 
2290 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src);
2291 	if (res != TEE_SUCCESS)
2292 		return res;
2293 	if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode)
2294 		return TEE_ERROR_BAD_PARAMETERS;
2295 
2296 	switch (TEE_ALG_GET_CLASS(cs_src->algo)) {
2297 	case TEE_OPERATION_CIPHER:
2298 		crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx);
2299 		break;
2300 	case TEE_OPERATION_AE:
2301 		crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx);
2302 		break;
2303 	case TEE_OPERATION_DIGEST:
2304 		crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx);
2305 		break;
2306 	case TEE_OPERATION_MAC:
2307 		crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx);
2308 		break;
2309 	default:
2310 		return TEE_ERROR_BAD_STATE;
2311 	}
2312 
2313 	cs_dst->state = cs_src->state;
2314 
2315 	return TEE_SUCCESS;
2316 }
2317 
2318 void tee_svc_cryp_free_states(struct user_ta_ctx *utc)
2319 {
2320 	struct tee_cryp_state_head *states = &utc->cryp_states;
2321 
2322 	while (!TAILQ_EMPTY(states))
2323 		cryp_state_free(utc, TAILQ_FIRST(states));
2324 }
2325 
2326 TEE_Result syscall_cryp_state_free(unsigned long state)
2327 {
2328 	TEE_Result res;
2329 	struct tee_cryp_state *cs;
2330 	struct tee_ta_session *sess;
2331 
2332 	res = tee_ta_get_current_session(&sess);
2333 	if (res != TEE_SUCCESS)
2334 		return res;
2335 
2336 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2337 	if (res != TEE_SUCCESS)
2338 		return res;
2339 	cryp_state_free(to_user_ta_ctx(sess->ctx), cs);
2340 	return TEE_SUCCESS;
2341 }
2342 
2343 TEE_Result syscall_hash_init(unsigned long state,
2344 			     const void *iv __maybe_unused,
2345 			     size_t iv_len __maybe_unused)
2346 {
2347 	TEE_Result res;
2348 	struct tee_cryp_state *cs;
2349 	struct tee_ta_session *sess;
2350 
2351 	res = tee_ta_get_current_session(&sess);
2352 	if (res != TEE_SUCCESS)
2353 		return res;
2354 
2355 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2356 	if (res != TEE_SUCCESS)
2357 		return res;
2358 
2359 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2360 	case TEE_OPERATION_DIGEST:
2361 		res = crypto_hash_init(cs->ctx);
2362 		if (res != TEE_SUCCESS)
2363 			return res;
2364 		break;
2365 	case TEE_OPERATION_MAC:
2366 		{
2367 			struct tee_obj *o;
2368 			struct tee_cryp_obj_secret *key;
2369 
2370 			res = tee_obj_get(to_user_ta_ctx(sess->ctx),
2371 					  cs->key1, &o);
2372 			if (res != TEE_SUCCESS)
2373 				return res;
2374 			if ((o->info.handleFlags &
2375 			     TEE_HANDLE_FLAG_INITIALIZED) == 0)
2376 				return TEE_ERROR_BAD_PARAMETERS;
2377 
2378 			key = (struct tee_cryp_obj_secret *)o->attr;
2379 			res = crypto_mac_init(cs->ctx, (void *)(key + 1),
2380 					      key->key_size);
2381 			if (res != TEE_SUCCESS)
2382 				return res;
2383 			break;
2384 		}
2385 	default:
2386 		return TEE_ERROR_BAD_PARAMETERS;
2387 	}
2388 
2389 	cs->state = CRYP_STATE_INITIALIZED;
2390 
2391 	return TEE_SUCCESS;
2392 }
2393 
2394 TEE_Result syscall_hash_update(unsigned long state, const void *chunk,
2395 			size_t chunk_size)
2396 {
2397 	struct tee_ta_session *sess = NULL;
2398 	struct tee_cryp_state *cs = NULL;
2399 	TEE_Result res = TEE_SUCCESS;
2400 
2401 	/* No data, but size provided isn't valid parameters. */
2402 	if (!chunk && chunk_size)
2403 		return TEE_ERROR_BAD_PARAMETERS;
2404 
2405 	/* Zero length hash is valid, but nothing we need to do. */
2406 	if (!chunk_size)
2407 		return TEE_SUCCESS;
2408 
2409 	res = tee_ta_get_current_session(&sess);
2410 	if (res != TEE_SUCCESS)
2411 		return res;
2412 
2413 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2414 					  TEE_MEMORY_ACCESS_READ |
2415 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2416 					  (uaddr_t)chunk, chunk_size);
2417 	if (res != TEE_SUCCESS)
2418 		return res;
2419 
2420 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2421 	if (res != TEE_SUCCESS)
2422 		return res;
2423 
2424 	if (cs->state != CRYP_STATE_INITIALIZED)
2425 		return TEE_ERROR_BAD_STATE;
2426 
2427 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2428 	case TEE_OPERATION_DIGEST:
2429 		res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2430 		if (res != TEE_SUCCESS)
2431 			return res;
2432 		break;
2433 	case TEE_OPERATION_MAC:
2434 		res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2435 		if (res != TEE_SUCCESS)
2436 			return res;
2437 		break;
2438 	default:
2439 		return TEE_ERROR_BAD_PARAMETERS;
2440 	}
2441 
2442 	return TEE_SUCCESS;
2443 }
2444 
2445 TEE_Result syscall_hash_final(unsigned long state, const void *chunk,
2446 			size_t chunk_size, void *hash, uint64_t *hash_len)
2447 {
2448 	struct tee_ta_session *sess = NULL;
2449 	struct tee_cryp_state *cs = NULL;
2450 	TEE_Result res2 = TEE_SUCCESS;
2451 	TEE_Result res = TEE_SUCCESS;
2452 	size_t hash_size = 0;
2453 	size_t hlen = 0;
2454 
2455 	/* No data, but size provided isn't valid parameters. */
2456 	if (!chunk && chunk_size)
2457 		return TEE_ERROR_BAD_PARAMETERS;
2458 
2459 	res = tee_ta_get_current_session(&sess);
2460 	if (res != TEE_SUCCESS)
2461 		return res;
2462 
2463 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2464 					  TEE_MEMORY_ACCESS_READ |
2465 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2466 					  (uaddr_t)chunk, chunk_size);
2467 	if (res != TEE_SUCCESS)
2468 		return res;
2469 
2470 	res = get_user_u64_as_size_t(&hlen, hash_len);
2471 	if (res != TEE_SUCCESS)
2472 		return res;
2473 
2474 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2475 					  TEE_MEMORY_ACCESS_READ |
2476 					  TEE_MEMORY_ACCESS_WRITE |
2477 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2478 					  (uaddr_t)hash, hlen);
2479 	if (res != TEE_SUCCESS)
2480 		return res;
2481 
2482 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2483 	if (res != TEE_SUCCESS)
2484 		return res;
2485 
2486 	if (cs->state != CRYP_STATE_INITIALIZED)
2487 		return TEE_ERROR_BAD_STATE;
2488 
2489 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2490 	case TEE_OPERATION_DIGEST:
2491 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2492 		if (res != TEE_SUCCESS)
2493 			return res;
2494 		if (hlen < hash_size) {
2495 			res = TEE_ERROR_SHORT_BUFFER;
2496 			goto out;
2497 		}
2498 
2499 		if (chunk_size) {
2500 			res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2501 			if (res != TEE_SUCCESS)
2502 				return res;
2503 		}
2504 
2505 		res = crypto_hash_final(cs->ctx, hash, hash_size);
2506 		if (res != TEE_SUCCESS)
2507 			return res;
2508 		break;
2509 
2510 	case TEE_OPERATION_MAC:
2511 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2512 		if (res != TEE_SUCCESS)
2513 			return res;
2514 		if (hlen < hash_size) {
2515 			res = TEE_ERROR_SHORT_BUFFER;
2516 			goto out;
2517 		}
2518 
2519 		if (chunk_size) {
2520 			res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2521 			if (res != TEE_SUCCESS)
2522 				return res;
2523 		}
2524 
2525 		res = crypto_mac_final(cs->ctx, hash, hash_size);
2526 		if (res != TEE_SUCCESS)
2527 			return res;
2528 		break;
2529 
2530 	default:
2531 		return TEE_ERROR_BAD_PARAMETERS;
2532 	}
2533 out:
2534 	res2 = put_user_u64(hash_len, hash_size);
2535 	if (res2 != TEE_SUCCESS)
2536 		return res2;
2537 	return res;
2538 }
2539 
2540 TEE_Result syscall_cipher_init(unsigned long state, const void *iv,
2541 			size_t iv_len)
2542 {
2543 	struct tee_cryp_obj_secret *key1 = NULL;
2544 	struct tee_ta_session *sess = NULL;
2545 	struct tee_cryp_state *cs = NULL;
2546 	struct user_ta_ctx *utc = NULL;
2547 	TEE_Result res = TEE_SUCCESS;
2548 	struct tee_obj *o = NULL;
2549 
2550 	res = tee_ta_get_current_session(&sess);
2551 	if (res != TEE_SUCCESS)
2552 		return res;
2553 	utc = to_user_ta_ctx(sess->ctx);
2554 
2555 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2556 	if (res != TEE_SUCCESS)
2557 		return res;
2558 
2559 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER)
2560 		return TEE_ERROR_BAD_STATE;
2561 
2562 	res = tee_mmu_check_access_rights(&utc->uctx,
2563 					  TEE_MEMORY_ACCESS_READ |
2564 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2565 					  (uaddr_t)iv, iv_len);
2566 	if (res != TEE_SUCCESS)
2567 		return res;
2568 
2569 	res = tee_obj_get(utc, cs->key1, &o);
2570 	if (res != TEE_SUCCESS)
2571 		return res;
2572 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2573 		return TEE_ERROR_BAD_PARAMETERS;
2574 
2575 	key1 = o->attr;
2576 
2577 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) {
2578 		struct tee_cryp_obj_secret *key2 = o->attr;
2579 
2580 		if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2581 			return TEE_ERROR_BAD_PARAMETERS;
2582 
2583 		res = crypto_cipher_init(cs->ctx, cs->mode,
2584 					 (uint8_t *)(key1 + 1), key1->key_size,
2585 					 (uint8_t *)(key2 + 1), key2->key_size,
2586 					 iv, iv_len);
2587 	} else {
2588 		res = crypto_cipher_init(cs->ctx, cs->mode,
2589 					 (uint8_t *)(key1 + 1), key1->key_size,
2590 					 NULL, 0, iv, iv_len);
2591 	}
2592 	if (res != TEE_SUCCESS)
2593 		return res;
2594 
2595 	cs->ctx_finalize = crypto_cipher_final;
2596 	cs->state = CRYP_STATE_INITIALIZED;
2597 
2598 	return TEE_SUCCESS;
2599 }
2600 
2601 static TEE_Result tee_svc_cipher_update_helper(unsigned long state,
2602 			bool last_block, const void *src, size_t src_len,
2603 			void *dst, uint64_t *dst_len)
2604 {
2605 	struct tee_ta_session *sess = NULL;
2606 	struct tee_cryp_state *cs = NULL;
2607 	TEE_Result res = TEE_SUCCESS;
2608 	size_t dlen = 0;
2609 
2610 	res = tee_ta_get_current_session(&sess);
2611 	if (res != TEE_SUCCESS)
2612 		return res;
2613 
2614 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2615 	if (res != TEE_SUCCESS)
2616 		return res;
2617 
2618 	if (cs->state != CRYP_STATE_INITIALIZED)
2619 		return TEE_ERROR_BAD_STATE;
2620 
2621 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2622 					  TEE_MEMORY_ACCESS_READ |
2623 					  TEE_MEMORY_ACCESS_ANY_OWNER,
2624 					  (uaddr_t)src, src_len);
2625 	if (res != TEE_SUCCESS)
2626 		return res;
2627 
2628 	if (!dst_len) {
2629 		dlen = 0;
2630 	} else {
2631 		struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
2632 		uint32_t flags = TEE_MEMORY_ACCESS_READ |
2633 				 TEE_MEMORY_ACCESS_WRITE |
2634 				 TEE_MEMORY_ACCESS_ANY_OWNER;
2635 
2636 		res = get_user_u64_as_size_t(&dlen, dst_len);
2637 		if (res != TEE_SUCCESS)
2638 			return res;
2639 
2640 		res = tee_mmu_check_access_rights(uctx, flags, (uaddr_t)dst,
2641 						  dlen);
2642 		if (res != TEE_SUCCESS)
2643 			return res;
2644 	}
2645 
2646 	if (dlen < src_len) {
2647 		res = TEE_ERROR_SHORT_BUFFER;
2648 		goto out;
2649 	}
2650 
2651 	if (src_len > 0) {
2652 		/* Permit src_len == 0 to finalize the operation */
2653 		res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode,
2654 					   last_block, src, src_len, dst);
2655 	}
2656 
2657 	if (last_block && cs->ctx_finalize != NULL) {
2658 		cs->ctx_finalize(cs->ctx);
2659 		cs->ctx_finalize = NULL;
2660 	}
2661 
2662 out:
2663 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
2664 	    dst_len != NULL) {
2665 		TEE_Result res2;
2666 
2667 		res2 = put_user_u64(dst_len, src_len);
2668 		if (res2 != TEE_SUCCESS)
2669 			res = res2;
2670 	}
2671 
2672 	return res;
2673 }
2674 
2675 TEE_Result syscall_cipher_update(unsigned long state, const void *src,
2676 			size_t src_len, void *dst, uint64_t *dst_len)
2677 {
2678 	return tee_svc_cipher_update_helper(state, false /* last_block */,
2679 					    src, src_len, dst, dst_len);
2680 }
2681 
2682 TEE_Result syscall_cipher_final(unsigned long state, const void *src,
2683 			size_t src_len, void *dst, uint64_t *dst_len)
2684 {
2685 	return tee_svc_cipher_update_helper(state, true /* last_block */,
2686 					    src, src_len, dst, dst_len);
2687 }
2688 
2689 #if defined(CFG_CRYPTO_HKDF)
2690 static TEE_Result get_hkdf_params(const TEE_Attribute *params,
2691 				  uint32_t param_count,
2692 				  void **salt, size_t *salt_len, void **info,
2693 				  size_t *info_len, size_t *okm_len)
2694 {
2695 	size_t n;
2696 	enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 };
2697 	uint8_t found = 0;
2698 
2699 	*salt = *info = NULL;
2700 	*salt_len = *info_len = *okm_len = 0;
2701 
2702 	for (n = 0; n < param_count; n++) {
2703 		switch (params[n].attributeID) {
2704 		case TEE_ATTR_HKDF_SALT:
2705 			if (!(found & SALT)) {
2706 				*salt = params[n].content.ref.buffer;
2707 				*salt_len = params[n].content.ref.length;
2708 				found |= SALT;
2709 			}
2710 			break;
2711 		case TEE_ATTR_HKDF_OKM_LENGTH:
2712 			if (!(found & LENGTH)) {
2713 				*okm_len = params[n].content.value.a;
2714 				found |= LENGTH;
2715 			}
2716 			break;
2717 		case TEE_ATTR_HKDF_INFO:
2718 			if (!(found & INFO)) {
2719 				*info = params[n].content.ref.buffer;
2720 				*info_len = params[n].content.ref.length;
2721 				found |= INFO;
2722 			}
2723 			break;
2724 		default:
2725 			/* Unexpected attribute */
2726 			return TEE_ERROR_BAD_PARAMETERS;
2727 		}
2728 
2729 	}
2730 
2731 	if (!(found & LENGTH))
2732 		return TEE_ERROR_BAD_PARAMETERS;
2733 
2734 	return TEE_SUCCESS;
2735 }
2736 #endif
2737 
2738 #if defined(CFG_CRYPTO_CONCAT_KDF)
2739 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params,
2740 					uint32_t param_count,
2741 					void **other_info,
2742 					size_t *other_info_len,
2743 					size_t *derived_key_len)
2744 {
2745 	size_t n;
2746 	enum { LENGTH = 0x1, INFO = 0x2 };
2747 	uint8_t found = 0;
2748 
2749 	*other_info = NULL;
2750 	*other_info_len = *derived_key_len = 0;
2751 
2752 	for (n = 0; n < param_count; n++) {
2753 		switch (params[n].attributeID) {
2754 		case TEE_ATTR_CONCAT_KDF_OTHER_INFO:
2755 			if (!(found & INFO)) {
2756 				*other_info = params[n].content.ref.buffer;
2757 				*other_info_len = params[n].content.ref.length;
2758 				found |= INFO;
2759 			}
2760 			break;
2761 		case TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
2762 			if (!(found & LENGTH)) {
2763 				*derived_key_len = params[n].content.value.a;
2764 				found |= LENGTH;
2765 			}
2766 			break;
2767 		default:
2768 			/* Unexpected attribute */
2769 			return TEE_ERROR_BAD_PARAMETERS;
2770 		}
2771 	}
2772 
2773 	if (!(found & LENGTH))
2774 		return TEE_ERROR_BAD_PARAMETERS;
2775 
2776 	return TEE_SUCCESS;
2777 }
2778 #endif
2779 
2780 #if defined(CFG_CRYPTO_PBKDF2)
2781 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params,
2782 				   uint32_t param_count, void **salt,
2783 				   size_t *salt_len, size_t *derived_key_len,
2784 				   size_t *iteration_count)
2785 {
2786 	size_t n;
2787 	enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 };
2788 	uint8_t found = 0;
2789 
2790 	*salt = NULL;
2791 	*salt_len = *derived_key_len = *iteration_count = 0;
2792 
2793 	for (n = 0; n < param_count; n++) {
2794 		switch (params[n].attributeID) {
2795 		case TEE_ATTR_PBKDF2_SALT:
2796 			if (!(found & SALT)) {
2797 				*salt = params[n].content.ref.buffer;
2798 				*salt_len = params[n].content.ref.length;
2799 				found |= SALT;
2800 			}
2801 			break;
2802 		case TEE_ATTR_PBKDF2_DKM_LENGTH:
2803 			if (!(found & LENGTH)) {
2804 				*derived_key_len = params[n].content.value.a;
2805 				found |= LENGTH;
2806 			}
2807 			break;
2808 		case TEE_ATTR_PBKDF2_ITERATION_COUNT:
2809 			if (!(found & COUNT)) {
2810 				*iteration_count = params[n].content.value.a;
2811 				found |= COUNT;
2812 			}
2813 			break;
2814 		default:
2815 			/* Unexpected attribute */
2816 			return TEE_ERROR_BAD_PARAMETERS;
2817 		}
2818 	}
2819 
2820 	if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT))
2821 		return TEE_ERROR_BAD_PARAMETERS;
2822 
2823 	return TEE_SUCCESS;
2824 }
2825 #endif
2826 
2827 #if defined(CFG_CRYPTO_SM2_KEP)
2828 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params,
2829 				     uint32_t param_count,
2830 				     struct ecc_public_key *peer_key,
2831 				     struct ecc_public_key *peer_eph_key,
2832 				     struct sm2_kep_parms *kep_parms)
2833 {
2834 	TEE_Result res = TEE_ERROR_GENERIC;
2835 	size_t n;
2836 	enum {
2837 		IS_INITIATOR,
2838 		PEER_KEY_X,
2839 		PEER_KEY_Y,
2840 		PEER_EPH_KEY_X,
2841 		PEER_EPH_KEY_Y,
2842 		INITIATOR_ID,
2843 		RESPONDER_ID,
2844 	};
2845 	uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) |
2846 		BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) |
2847 		BIT(INITIATOR_ID) | BIT(RESPONDER_ID);
2848 	uint8_t found = 0;
2849 
2850 	res = crypto_acipher_alloc_ecc_public_key(peer_key, 256);
2851 	if (res)
2852 		goto out;
2853 
2854 	res = crypto_acipher_alloc_ecc_public_key(peer_eph_key, 256);
2855 	if (res)
2856 		goto out;
2857 
2858 	peer_key->curve = TEE_ECC_CURVE_SM2;
2859 	peer_eph_key->curve = TEE_ECC_CURVE_SM2;
2860 
2861 	for (n = 0; n < param_count; n++) {
2862 		const TEE_Attribute *p = &params[n];
2863 
2864 		switch (p->attributeID) {
2865 		case TEE_ATTR_SM2_KEP_USER:
2866 			kep_parms->is_initiator = !p->content.value.a;
2867 			found |= BIT(IS_INITIATOR);
2868 			break;
2869 		case TEE_ATTR_ECC_PUBLIC_VALUE_X:
2870 			crypto_bignum_bin2bn(p->content.ref.buffer,
2871 					     p->content.ref.length,
2872 					     peer_key->x);
2873 			found |= BIT(PEER_KEY_X);
2874 			break;
2875 		case TEE_ATTR_ECC_PUBLIC_VALUE_Y:
2876 			crypto_bignum_bin2bn(p->content.ref.buffer,
2877 					     p->content.ref.length,
2878 					     peer_key->y);
2879 			found |= BIT(PEER_KEY_Y);
2880 			break;
2881 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X:
2882 			crypto_bignum_bin2bn(p->content.ref.buffer,
2883 					     p->content.ref.length,
2884 					     peer_eph_key->x);
2885 			found |= BIT(PEER_EPH_KEY_X);
2886 			break;
2887 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y:
2888 			crypto_bignum_bin2bn(p->content.ref.buffer,
2889 					     p->content.ref.length,
2890 					     peer_eph_key->y);
2891 			found |= BIT(PEER_EPH_KEY_Y);
2892 			break;
2893 		case TEE_ATTR_SM2_ID_INITIATOR:
2894 			kep_parms->initiator_id = p->content.ref.buffer;
2895 			kep_parms->initiator_id_len = p->content.ref.length;
2896 			found |= BIT(INITIATOR_ID);
2897 			break;
2898 		case TEE_ATTR_SM2_ID_RESPONDER:
2899 			kep_parms->responder_id = p->content.ref.buffer;
2900 			kep_parms->responder_id_len = p->content.ref.length;
2901 			found |= BIT(RESPONDER_ID);
2902 			break;
2903 		case TEE_ATTR_SM2_KEP_CONFIRMATION_IN:
2904 			kep_parms->conf_in = p->content.ref.buffer;
2905 			kep_parms->conf_in_len = p->content.ref.length;
2906 			break;
2907 		case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT:
2908 			kep_parms->conf_out = p->content.ref.buffer;
2909 			kep_parms->conf_out_len = p->content.ref.length;
2910 			break;
2911 		default:
2912 			/* Unexpected attribute */
2913 			res = TEE_ERROR_BAD_PARAMETERS;
2914 			goto out;
2915 		}
2916 	}
2917 
2918 	if ((found & mandatory) != mandatory) {
2919 		res = TEE_ERROR_BAD_PARAMETERS;
2920 		goto out;
2921 	}
2922 
2923 	return TEE_SUCCESS;
2924 out:
2925 	crypto_acipher_free_ecc_public_key(peer_key);
2926 	crypto_acipher_free_ecc_public_key(peer_eph_key);
2927 	return res;
2928 }
2929 #endif
2930 
2931 TEE_Result syscall_cryp_derive_key(unsigned long state,
2932 			const struct utee_attribute *usr_params,
2933 			unsigned long param_count, unsigned long derived_key)
2934 {
2935 	TEE_Result res = TEE_ERROR_NOT_SUPPORTED;
2936 	struct tee_ta_session *sess;
2937 	struct tee_obj *ko;
2938 	struct tee_obj *so;
2939 	struct tee_cryp_state *cs;
2940 	struct tee_cryp_obj_secret *sk;
2941 	const struct tee_cryp_obj_type_props *type_props;
2942 	TEE_Attribute *params = NULL;
2943 	struct user_ta_ctx *utc;
2944 
2945 	res = tee_ta_get_current_session(&sess);
2946 	if (res != TEE_SUCCESS)
2947 		return res;
2948 	utc = to_user_ta_ctx(sess->ctx);
2949 
2950 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2951 	if (res != TEE_SUCCESS)
2952 		return res;
2953 
2954 	size_t alloc_size = 0;
2955 
2956 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
2957 		return TEE_ERROR_OVERFLOW;
2958 
2959 	params = malloc(alloc_size);
2960 	if (!params)
2961 		return TEE_ERROR_OUT_OF_MEMORY;
2962 	res = copy_in_attrs(utc, usr_params, param_count, params);
2963 	if (res != TEE_SUCCESS)
2964 		goto out;
2965 
2966 	/* Get key set in operation */
2967 	res = tee_obj_get(utc, cs->key1, &ko);
2968 	if (res != TEE_SUCCESS)
2969 		goto out;
2970 
2971 	res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so);
2972 	if (res != TEE_SUCCESS)
2973 		goto out;
2974 
2975 	/* Find information needed about the object to initialize */
2976 	sk = so->attr;
2977 
2978 	/* Find description of object */
2979 	type_props = tee_svc_find_type_props(so->info.objectType);
2980 	if (!type_props) {
2981 		res = TEE_ERROR_NOT_SUPPORTED;
2982 		goto out;
2983 	}
2984 
2985 	if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) {
2986 		struct bignum *pub;
2987 		struct bignum *ss;
2988 
2989 		if (param_count != 1 ||
2990 		    params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) {
2991 			res = TEE_ERROR_BAD_PARAMETERS;
2992 			goto out;
2993 		}
2994 
2995 		size_t bin_size = params[0].content.ref.length;
2996 
2997 		if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) {
2998 			res = TEE_ERROR_OVERFLOW;
2999 			goto out;
3000 		}
3001 
3002 		pub = crypto_bignum_allocate(alloc_size);
3003 		ss = crypto_bignum_allocate(alloc_size);
3004 		if (pub && ss) {
3005 			crypto_bignum_bin2bn(params[0].content.ref.buffer,
3006 					     bin_size, pub);
3007 			res = crypto_acipher_dh_shared_secret(ko->attr,
3008 							      pub, ss);
3009 			if (res == TEE_SUCCESS) {
3010 				sk->key_size = crypto_bignum_num_bytes(ss);
3011 				crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1));
3012 				so->info.handleFlags |=
3013 						TEE_HANDLE_FLAG_INITIALIZED;
3014 				set_attribute(so, type_props,
3015 					      TEE_ATTR_SECRET_VALUE);
3016 			}
3017 		} else {
3018 			res = TEE_ERROR_OUT_OF_MEMORY;
3019 		}
3020 		crypto_bignum_free(pub);
3021 		crypto_bignum_free(ss);
3022 	} else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) {
3023 		struct ecc_public_key key_public;
3024 		uint8_t *pt_secret;
3025 		unsigned long pt_secret_len;
3026 
3027 		if (param_count != 2 ||
3028 		    params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X ||
3029 		    params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) {
3030 			res = TEE_ERROR_BAD_PARAMETERS;
3031 			goto out;
3032 		}
3033 
3034 		switch (cs->algo) {
3035 		case TEE_ALG_ECDH_P192:
3036 			alloc_size = 192;
3037 			break;
3038 		case TEE_ALG_ECDH_P224:
3039 			alloc_size = 224;
3040 			break;
3041 		case TEE_ALG_ECDH_P256:
3042 			alloc_size = 256;
3043 			break;
3044 		case TEE_ALG_ECDH_P384:
3045 			alloc_size = 384;
3046 			break;
3047 		case TEE_ALG_ECDH_P521:
3048 			alloc_size = 521;
3049 			break;
3050 		default:
3051 			res = TEE_ERROR_NOT_IMPLEMENTED;
3052 			goto out;
3053 		}
3054 
3055 		/* Create the public key */
3056 		res = crypto_acipher_alloc_ecc_public_key(&key_public,
3057 							  alloc_size);
3058 		if (res != TEE_SUCCESS)
3059 			goto out;
3060 		key_public.curve = ((struct ecc_keypair *)ko->attr)->curve;
3061 		crypto_bignum_bin2bn(params[0].content.ref.buffer,
3062 				     params[0].content.ref.length,
3063 				     key_public.x);
3064 		crypto_bignum_bin2bn(params[1].content.ref.buffer,
3065 				     params[1].content.ref.length,
3066 				     key_public.y);
3067 
3068 		pt_secret = (uint8_t *)(sk + 1);
3069 		pt_secret_len = sk->alloc_size;
3070 		res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public,
3071 						       pt_secret,
3072 						       &pt_secret_len);
3073 
3074 		if (res == TEE_SUCCESS) {
3075 			sk->key_size = pt_secret_len;
3076 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3077 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3078 		}
3079 
3080 		/* free the public key */
3081 		crypto_acipher_free_ecc_public_key(&key_public);
3082 	}
3083 #if defined(CFG_CRYPTO_HKDF)
3084 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) {
3085 		void *salt, *info;
3086 		size_t salt_len, info_len, okm_len;
3087 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3088 		struct tee_cryp_obj_secret *ik = ko->attr;
3089 		const uint8_t *ikm = (const uint8_t *)(ik + 1);
3090 
3091 		res = get_hkdf_params(params, param_count, &salt, &salt_len,
3092 				      &info, &info_len, &okm_len);
3093 		if (res != TEE_SUCCESS)
3094 			goto out;
3095 
3096 		/* Requested size must fit into the output object's buffer */
3097 		if (okm_len > ik->alloc_size) {
3098 			res = TEE_ERROR_BAD_PARAMETERS;
3099 			goto out;
3100 		}
3101 
3102 		res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len,
3103 				    info, info_len, (uint8_t *)(sk + 1),
3104 				    okm_len);
3105 		if (res == TEE_SUCCESS) {
3106 			sk->key_size = okm_len;
3107 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3108 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3109 		}
3110 	}
3111 #endif
3112 #if defined(CFG_CRYPTO_CONCAT_KDF)
3113 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) {
3114 		void *info;
3115 		size_t info_len, derived_key_len;
3116 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3117 		struct tee_cryp_obj_secret *ss = ko->attr;
3118 		const uint8_t *shared_secret = (const uint8_t *)(ss + 1);
3119 
3120 		res = get_concat_kdf_params(params, param_count, &info,
3121 					    &info_len, &derived_key_len);
3122 		if (res != TEE_SUCCESS)
3123 			goto out;
3124 
3125 		/* Requested size must fit into the output object's buffer */
3126 		if (derived_key_len > ss->alloc_size) {
3127 			res = TEE_ERROR_BAD_PARAMETERS;
3128 			goto out;
3129 		}
3130 
3131 		res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size,
3132 					  info, info_len, (uint8_t *)(sk + 1),
3133 					  derived_key_len);
3134 		if (res == TEE_SUCCESS) {
3135 			sk->key_size = derived_key_len;
3136 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3137 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3138 		}
3139 	}
3140 #endif
3141 #if defined(CFG_CRYPTO_PBKDF2)
3142 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) {
3143 		void *salt;
3144 		size_t salt_len, iteration_count, derived_key_len;
3145 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3146 		struct tee_cryp_obj_secret *ss = ko->attr;
3147 		const uint8_t *password = (const uint8_t *)(ss + 1);
3148 
3149 		res = get_pbkdf2_params(params, param_count, &salt, &salt_len,
3150 					&derived_key_len, &iteration_count);
3151 		if (res != TEE_SUCCESS)
3152 			goto out;
3153 
3154 		/* Requested size must fit into the output object's buffer */
3155 		if (derived_key_len > ss->alloc_size) {
3156 			res = TEE_ERROR_BAD_PARAMETERS;
3157 			goto out;
3158 		}
3159 
3160 		res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt,
3161 				      salt_len, iteration_count,
3162 				      (uint8_t *)(sk + 1), derived_key_len);
3163 		if (res == TEE_SUCCESS) {
3164 			sk->key_size = derived_key_len;
3165 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3166 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3167 		}
3168 	}
3169 #endif
3170 #if defined(CFG_CRYPTO_SM2_KEP)
3171 	else if (cs->algo == TEE_ALG_SM2_KEP) {
3172 		struct ecc_public_key peer_eph_key = { };
3173 		struct ecc_public_key peer_key = { };
3174 		struct sm2_kep_parms kep_parms = {
3175 			.out = (uint8_t *)(sk + 1),
3176 			.out_len = so->info.maxKeySize,
3177 		};
3178 		struct tee_obj *ko2 = NULL;
3179 
3180 		res = tee_obj_get(utc, cs->key2, &ko2);
3181 		if (res != TEE_SUCCESS)
3182 			goto out;
3183 
3184 		res = get_sm2_kep_params(params, param_count, &peer_key,
3185 					 &peer_eph_key, &kep_parms);
3186 		if (res != TEE_SUCCESS)
3187 			goto out;
3188 
3189 		/*
3190 		 * key1 is our private keypair, key2 is our ephemeral public key
3191 		 */
3192 		res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */
3193 						    ko2->attr, /* key2 */
3194 						    &peer_key, &peer_eph_key,
3195 						    &kep_parms);
3196 
3197 		if (res == TEE_SUCCESS) {
3198 			sk->key_size = kep_parms.out_len;
3199 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3200 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3201 		}
3202 		crypto_acipher_free_ecc_public_key(&peer_key);
3203 		crypto_acipher_free_ecc_public_key(&peer_eph_key);
3204 	}
3205 #endif
3206 	else
3207 		res = TEE_ERROR_NOT_SUPPORTED;
3208 
3209 out:
3210 	free_wipe(params);
3211 	return res;
3212 }
3213 
3214 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen)
3215 {
3216 	struct tee_ta_session *sess = NULL;
3217 	TEE_Result res = TEE_SUCCESS;
3218 
3219 	res = tee_ta_get_current_session(&sess);
3220 	if (res != TEE_SUCCESS)
3221 		return res;
3222 
3223 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3224 					  TEE_MEMORY_ACCESS_WRITE,
3225 					  (uaddr_t)buf, blen);
3226 	if (res != TEE_SUCCESS)
3227 		return res;
3228 
3229 	res = crypto_rng_read(buf, blen);
3230 	if (res != TEE_SUCCESS)
3231 		return res;
3232 
3233 	return res;
3234 }
3235 
3236 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce,
3237 				size_t nonce_len, size_t tag_len,
3238 				size_t aad_len, size_t payload_len)
3239 {
3240 	struct tee_cryp_obj_secret *key = NULL;
3241 	struct tee_ta_session *sess = NULL;
3242 	struct tee_cryp_state *cs = NULL;
3243 	TEE_Result res = TEE_SUCCESS;
3244 	struct tee_obj *o = NULL;
3245 
3246 	res = tee_ta_get_current_session(&sess);
3247 	if (res != TEE_SUCCESS)
3248 		return res;
3249 
3250 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3251 					  TEE_MEMORY_ACCESS_READ |
3252 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3253 					  (uaddr_t)nonce, nonce_len);
3254 	if (res != TEE_SUCCESS)
3255 		return res;
3256 
3257 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3258 	if (res != TEE_SUCCESS)
3259 		return res;
3260 
3261 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o);
3262 	if (res != TEE_SUCCESS)
3263 		return res;
3264 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
3265 		return TEE_ERROR_BAD_PARAMETERS;
3266 
3267 	key = o->attr;
3268 	res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1),
3269 				  key->key_size, nonce, nonce_len, tag_len,
3270 				  aad_len, payload_len);
3271 	if (res != TEE_SUCCESS)
3272 		return res;
3273 
3274 	cs->ctx_finalize = crypto_authenc_final;
3275 	cs->state = CRYP_STATE_INITIALIZED;
3276 
3277 	return TEE_SUCCESS;
3278 }
3279 
3280 TEE_Result syscall_authenc_update_aad(unsigned long state,
3281 				      const void *aad_data, size_t aad_data_len)
3282 {
3283 	TEE_Result res = TEE_SUCCESS;
3284 	struct tee_cryp_state *cs;
3285 	struct tee_ta_session *sess;
3286 
3287 	res = tee_ta_get_current_session(&sess);
3288 	if (res != TEE_SUCCESS)
3289 		return res;
3290 
3291 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3292 					  TEE_MEMORY_ACCESS_READ |
3293 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3294 					  (uaddr_t) aad_data,
3295 					  aad_data_len);
3296 	if (res != TEE_SUCCESS)
3297 		return res;
3298 
3299 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3300 	if (res != TEE_SUCCESS)
3301 		return res;
3302 
3303 	if (cs->state != CRYP_STATE_INITIALIZED)
3304 		return TEE_ERROR_BAD_STATE;
3305 
3306 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3307 		return TEE_ERROR_BAD_STATE;
3308 
3309 	res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data,
3310 					aad_data_len);
3311 	if (res != TEE_SUCCESS)
3312 		return res;
3313 
3314 	return TEE_SUCCESS;
3315 }
3316 
3317 TEE_Result syscall_authenc_update_payload(unsigned long state,
3318 					  const void *src_data,
3319 					  size_t src_len, void *dst_data,
3320 					  uint64_t *dst_len)
3321 {
3322 	struct tee_ta_session *sess = NULL;
3323 	struct tee_cryp_state *cs = NULL;
3324 	TEE_Result res = TEE_SUCCESS;
3325 	size_t dlen = 0;
3326 
3327 	res = tee_ta_get_current_session(&sess);
3328 	if (res != TEE_SUCCESS)
3329 		return res;
3330 
3331 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3332 	if (res != TEE_SUCCESS)
3333 		return res;
3334 
3335 	if (cs->state != CRYP_STATE_INITIALIZED)
3336 		return TEE_ERROR_BAD_STATE;
3337 
3338 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3339 		return TEE_ERROR_BAD_STATE;
3340 
3341 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3342 					  TEE_MEMORY_ACCESS_READ |
3343 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3344 					  (uaddr_t)src_data, src_len);
3345 	if (res != TEE_SUCCESS)
3346 		return res;
3347 
3348 	res = get_user_u64_as_size_t(&dlen, dst_len);
3349 	if (res != TEE_SUCCESS)
3350 		return res;
3351 
3352 	res = tee_mmu_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3353 					  TEE_MEMORY_ACCESS_READ |
3354 					  TEE_MEMORY_ACCESS_WRITE |
3355 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3356 					  (uaddr_t)dst_data, dlen);
3357 	if (res != TEE_SUCCESS)
3358 		return res;
3359 
3360 	if (dlen < src_len) {
3361 		res = TEE_ERROR_SHORT_BUFFER;
3362 		goto out;
3363 	}
3364 
3365 	res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data,
3366 					    src_len, dst_data, &dlen);
3367 out:
3368 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3369 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3370 
3371 		if (res2 != TEE_SUCCESS)
3372 			res = res2;
3373 	}
3374 
3375 	return res;
3376 }
3377 
3378 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data,
3379 				     size_t src_len, void *dst_data,
3380 				     uint64_t *dst_len, void *tag,
3381 				     uint64_t *tag_len)
3382 {
3383 	struct tee_ta_session *sess = NULL;
3384 	struct user_mode_ctx *uctx = NULL;
3385 	struct tee_cryp_state *cs = NULL;
3386 	TEE_Result res = TEE_SUCCESS;
3387 	size_t dlen = 0;
3388 	size_t tlen = 0;
3389 
3390 	res = tee_ta_get_current_session(&sess);
3391 	if (res != TEE_SUCCESS)
3392 		return res;
3393 
3394 	uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3395 
3396 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3397 	if (res != TEE_SUCCESS)
3398 		return res;
3399 
3400 	if (cs->state != CRYP_STATE_INITIALIZED)
3401 		return TEE_ERROR_BAD_STATE;
3402 
3403 	if (cs->mode != TEE_MODE_ENCRYPT)
3404 		return TEE_ERROR_BAD_PARAMETERS;
3405 
3406 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3407 		return TEE_ERROR_BAD_STATE;
3408 
3409 	res = tee_mmu_check_access_rights(uctx,
3410 					  TEE_MEMORY_ACCESS_READ |
3411 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3412 					  (uaddr_t)src_data, src_len);
3413 	if (res != TEE_SUCCESS)
3414 		return res;
3415 
3416 	if (!dst_len) {
3417 		dlen = 0;
3418 	} else {
3419 		res = get_user_u64_as_size_t(&dlen, dst_len);
3420 		if (res != TEE_SUCCESS)
3421 			return res;
3422 
3423 		res = tee_mmu_check_access_rights(uctx,
3424 						  TEE_MEMORY_ACCESS_READ |
3425 						  TEE_MEMORY_ACCESS_WRITE |
3426 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3427 						  (uaddr_t)dst_data, dlen);
3428 		if (res != TEE_SUCCESS)
3429 			return res;
3430 	}
3431 
3432 	if (dlen < src_len) {
3433 		res = TEE_ERROR_SHORT_BUFFER;
3434 		goto out;
3435 	}
3436 
3437 	res = get_user_u64_as_size_t(&tlen, tag_len);
3438 	if (res != TEE_SUCCESS)
3439 		return res;
3440 
3441 	res = tee_mmu_check_access_rights(uctx,
3442 					  TEE_MEMORY_ACCESS_READ |
3443 					  TEE_MEMORY_ACCESS_WRITE |
3444 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3445 					  (uaddr_t)tag, tlen);
3446 	if (res != TEE_SUCCESS)
3447 		return res;
3448 
3449 	res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data,
3450 				       &dlen, tag, &tlen);
3451 
3452 out:
3453 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3454 		TEE_Result res2 = TEE_SUCCESS;
3455 
3456 		if (dst_len != NULL) {
3457 			res2 = put_user_u64(dst_len, dlen);
3458 			if (res2 != TEE_SUCCESS)
3459 				return res2;
3460 		}
3461 
3462 		res2 = put_user_u64(tag_len, tlen);
3463 		if (res2 != TEE_SUCCESS)
3464 			return res2;
3465 	}
3466 
3467 	return res;
3468 }
3469 
3470 TEE_Result syscall_authenc_dec_final(unsigned long state,
3471 			const void *src_data, size_t src_len, void *dst_data,
3472 			uint64_t *dst_len, const void *tag, size_t tag_len)
3473 {
3474 	struct tee_ta_session *sess = NULL;
3475 	struct user_mode_ctx *uctx = NULL;
3476 	struct tee_cryp_state *cs = NULL;
3477 	TEE_Result res = TEE_SUCCESS;
3478 	size_t dlen = 0;
3479 
3480 	res = tee_ta_get_current_session(&sess);
3481 	if (res != TEE_SUCCESS)
3482 		return res;
3483 
3484 	uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3485 
3486 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3487 	if (res != TEE_SUCCESS)
3488 		return res;
3489 
3490 	if (cs->state != CRYP_STATE_INITIALIZED)
3491 		return TEE_ERROR_BAD_STATE;
3492 
3493 	if (cs->mode != TEE_MODE_DECRYPT)
3494 		return TEE_ERROR_BAD_PARAMETERS;
3495 
3496 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3497 		return TEE_ERROR_BAD_STATE;
3498 
3499 	res = tee_mmu_check_access_rights(uctx,
3500 					  TEE_MEMORY_ACCESS_READ |
3501 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3502 					  (uaddr_t)src_data, src_len);
3503 	if (res != TEE_SUCCESS)
3504 		return res;
3505 
3506 	if (!dst_len) {
3507 		dlen = 0;
3508 	} else {
3509 		res = get_user_u64_as_size_t(&dlen, dst_len);
3510 		if (res != TEE_SUCCESS)
3511 			return res;
3512 
3513 		res = tee_mmu_check_access_rights(uctx,
3514 						  TEE_MEMORY_ACCESS_READ |
3515 						  TEE_MEMORY_ACCESS_WRITE |
3516 						  TEE_MEMORY_ACCESS_ANY_OWNER,
3517 						  (uaddr_t)dst_data, dlen);
3518 		if (res != TEE_SUCCESS)
3519 			return res;
3520 	}
3521 
3522 	if (dlen < src_len) {
3523 		res = TEE_ERROR_SHORT_BUFFER;
3524 		goto out;
3525 	}
3526 
3527 	res = tee_mmu_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ,
3528 					  (uaddr_t)tag, tag_len);
3529 	if (res != TEE_SUCCESS)
3530 		return res;
3531 
3532 	res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data,
3533 				       &dlen, tag, tag_len);
3534 
3535 out:
3536 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
3537 	    dst_len != NULL) {
3538 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3539 
3540 		if (res2 != TEE_SUCCESS)
3541 			return res2;
3542 	}
3543 
3544 	return res;
3545 }
3546 
3547 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params,
3548 			      size_t default_len)
3549 {
3550 	size_t n;
3551 
3552 	assert(default_len < INT_MAX);
3553 
3554 	for (n = 0; n < num_params; n++) {
3555 		if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) {
3556 			if (params[n].content.value.a < INT_MAX)
3557 				return params[n].content.value.a;
3558 			break;
3559 		}
3560 	}
3561 	/*
3562 	 * If salt length isn't provided use the default value which is
3563 	 * the length of the digest.
3564 	 */
3565 	return default_len;
3566 }
3567 
3568 TEE_Result syscall_asymm_operate(unsigned long state,
3569 			const struct utee_attribute *usr_params,
3570 			size_t num_params, const void *src_data, size_t src_len,
3571 			void *dst_data, uint64_t *dst_len)
3572 {
3573 	TEE_Result res;
3574 	struct tee_cryp_state *cs;
3575 	struct tee_ta_session *sess;
3576 	size_t dlen;
3577 	struct tee_obj *o;
3578 	void *label = NULL;
3579 	size_t label_len = 0;
3580 	size_t n;
3581 	int salt_len;
3582 	TEE_Attribute *params = NULL;
3583 	struct user_ta_ctx *utc;
3584 
3585 	res = tee_ta_get_current_session(&sess);
3586 	if (res != TEE_SUCCESS)
3587 		return res;
3588 	utc = to_user_ta_ctx(sess->ctx);
3589 
3590 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3591 	if (res != TEE_SUCCESS)
3592 		return res;
3593 
3594 	res = tee_mmu_check_access_rights(&utc->uctx,
3595 					  TEE_MEMORY_ACCESS_READ |
3596 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3597 					  (uaddr_t)src_data, src_len);
3598 	if (res != TEE_SUCCESS)
3599 		return res;
3600 
3601 	res = get_user_u64_as_size_t(&dlen, dst_len);
3602 	if (res != TEE_SUCCESS)
3603 		return res;
3604 
3605 	res = tee_mmu_check_access_rights(&utc->uctx,
3606 					  TEE_MEMORY_ACCESS_READ |
3607 					  TEE_MEMORY_ACCESS_WRITE |
3608 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3609 					  (uaddr_t)dst_data, dlen);
3610 	if (res != TEE_SUCCESS)
3611 		return res;
3612 
3613 	size_t alloc_size = 0;
3614 
3615 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3616 		return TEE_ERROR_OVERFLOW;
3617 
3618 	params = malloc(alloc_size);
3619 	if (!params)
3620 		return TEE_ERROR_OUT_OF_MEMORY;
3621 	res = copy_in_attrs(utc, usr_params, num_params, params);
3622 	if (res != TEE_SUCCESS)
3623 		goto out;
3624 
3625 	res = tee_obj_get(utc, cs->key1, &o);
3626 	if (res != TEE_SUCCESS)
3627 		goto out;
3628 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3629 		res = TEE_ERROR_GENERIC;
3630 		goto out;
3631 	}
3632 
3633 	switch (cs->algo) {
3634 	case TEE_ALG_RSA_NOPAD:
3635 		if (cs->mode == TEE_MODE_ENCRYPT) {
3636 			res = crypto_acipher_rsanopad_encrypt(o->attr, src_data,
3637 							      src_len, dst_data,
3638 							      &dlen);
3639 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3640 			res = crypto_acipher_rsanopad_decrypt(o->attr, src_data,
3641 							      src_len, dst_data,
3642 							      &dlen);
3643 		} else {
3644 			/*
3645 			 * We will panic because "the mode is not compatible
3646 			 * with the function"
3647 			 */
3648 			res = TEE_ERROR_GENERIC;
3649 		}
3650 		break;
3651 
3652 	case TEE_ALG_SM2_PKE:
3653 		if (cs->mode == TEE_MODE_ENCRYPT) {
3654 			res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data,
3655 							     src_len, dst_data,
3656 							     &dlen);
3657 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3658 			res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data,
3659 							     src_len, dst_data,
3660 							     &dlen);
3661 		} else {
3662 			res = TEE_ERROR_GENERIC;
3663 		}
3664 		break;
3665 
3666 	case TEE_ALG_RSAES_PKCS1_V1_5:
3667 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
3668 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
3669 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
3670 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
3671 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
3672 		for (n = 0; n < num_params; n++) {
3673 			if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) {
3674 				label = params[n].content.ref.buffer;
3675 				label_len = params[n].content.ref.length;
3676 				break;
3677 			}
3678 		}
3679 
3680 		if (cs->mode == TEE_MODE_ENCRYPT) {
3681 			res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr,
3682 							   label, label_len,
3683 							   src_data, src_len,
3684 							   dst_data, &dlen);
3685 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3686 			res = crypto_acipher_rsaes_decrypt(
3687 					cs->algo, o->attr, label, label_len,
3688 					src_data, src_len, dst_data, &dlen);
3689 		} else {
3690 			res = TEE_ERROR_BAD_PARAMETERS;
3691 		}
3692 		break;
3693 
3694 #if defined(CFG_CRYPTO_RSASSA_NA1)
3695 	case TEE_ALG_RSASSA_PKCS1_V1_5:
3696 #endif
3697 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
3698 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
3699 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
3700 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
3701 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
3702 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
3703 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
3704 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
3705 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
3706 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
3707 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
3708 		if (cs->mode != TEE_MODE_SIGN) {
3709 			res = TEE_ERROR_BAD_PARAMETERS;
3710 			break;
3711 		}
3712 		salt_len = pkcs1_get_salt_len(params, num_params, src_len);
3713 		res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len,
3714 						 src_data, src_len, dst_data,
3715 						 &dlen);
3716 		break;
3717 
3718 	case TEE_ALG_DSA_SHA1:
3719 	case TEE_ALG_DSA_SHA224:
3720 	case TEE_ALG_DSA_SHA256:
3721 		res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data,
3722 					      src_len, dst_data, &dlen);
3723 		break;
3724 	case TEE_ALG_ECDSA_P192:
3725 	case TEE_ALG_ECDSA_P224:
3726 	case TEE_ALG_ECDSA_P256:
3727 	case TEE_ALG_ECDSA_P384:
3728 	case TEE_ALG_ECDSA_P521:
3729 		res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data,
3730 					      src_len, dst_data, &dlen);
3731 		break;
3732 	case TEE_ALG_SM2_DSA_SM3:
3733 		res = crypto_acipher_sm2_dsa_sign(cs->algo, o->attr, src_data,
3734 						  src_len, dst_data, &dlen);
3735 		break;
3736 
3737 	default:
3738 		res = TEE_ERROR_BAD_PARAMETERS;
3739 		break;
3740 	}
3741 
3742 out:
3743 	free_wipe(params);
3744 
3745 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3746 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3747 
3748 		if (res2 != TEE_SUCCESS)
3749 			return res2;
3750 	}
3751 
3752 	return res;
3753 }
3754 
3755 TEE_Result syscall_asymm_verify(unsigned long state,
3756 			const struct utee_attribute *usr_params,
3757 			size_t num_params, const void *data, size_t data_len,
3758 			const void *sig, size_t sig_len)
3759 {
3760 	struct tee_ta_session *sess = NULL;
3761 	struct tee_cryp_state *cs = NULL;
3762 	struct user_ta_ctx *utc = NULL;
3763 	TEE_Result res = TEE_SUCCESS;
3764 	TEE_Attribute *params = NULL;
3765 	struct tee_obj *o = NULL;
3766 	size_t hash_size = 0;
3767 	uint32_t hash_algo = 0;
3768 	int salt_len = 0;
3769 
3770 	res = tee_ta_get_current_session(&sess);
3771 	if (res != TEE_SUCCESS)
3772 		return res;
3773 	utc = to_user_ta_ctx(sess->ctx);
3774 
3775 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3776 	if (res != TEE_SUCCESS)
3777 		return res;
3778 
3779 	if (cs->mode != TEE_MODE_VERIFY)
3780 		return TEE_ERROR_BAD_PARAMETERS;
3781 
3782 	res = tee_mmu_check_access_rights(&utc->uctx,
3783 					  TEE_MEMORY_ACCESS_READ |
3784 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3785 					  (uaddr_t)data, data_len);
3786 	if (res != TEE_SUCCESS)
3787 		return res;
3788 
3789 	res = tee_mmu_check_access_rights(&utc->uctx,
3790 					  TEE_MEMORY_ACCESS_READ |
3791 					  TEE_MEMORY_ACCESS_ANY_OWNER,
3792 					  (uaddr_t)sig, sig_len);
3793 	if (res != TEE_SUCCESS)
3794 		return res;
3795 
3796 	size_t alloc_size = 0;
3797 
3798 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3799 		return TEE_ERROR_OVERFLOW;
3800 
3801 	params = malloc(alloc_size);
3802 	if (!params)
3803 		return TEE_ERROR_OUT_OF_MEMORY;
3804 	res = copy_in_attrs(utc, usr_params, num_params, params);
3805 	if (res != TEE_SUCCESS)
3806 		goto out;
3807 
3808 	res = tee_obj_get(utc, cs->key1, &o);
3809 	if (res != TEE_SUCCESS)
3810 		goto out;
3811 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3812 		res = TEE_ERROR_BAD_PARAMETERS;
3813 		goto out;
3814 	}
3815 
3816 	switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) {
3817 	case TEE_MAIN_ALGO_RSA:
3818 		if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) {
3819 			hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3820 			res = tee_alg_get_digest_size(hash_algo, &hash_size);
3821 			if (res != TEE_SUCCESS)
3822 				break;
3823 			if (data_len != hash_size) {
3824 				res = TEE_ERROR_BAD_PARAMETERS;
3825 				break;
3826 			}
3827 			salt_len = pkcs1_get_salt_len(params, num_params,
3828 						      hash_size);
3829 		}
3830 		res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len,
3831 						   data, data_len, sig,
3832 						   sig_len);
3833 		break;
3834 
3835 	case TEE_MAIN_ALGO_DSA:
3836 		hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3837 		res = tee_alg_get_digest_size(hash_algo, &hash_size);
3838 		if (res != TEE_SUCCESS)
3839 			break;
3840 		/*
3841 		 * Depending on the DSA algorithm (NIST), the digital signature
3842 		 * output size may be truncated to the size of a key pair
3843 		 * (Q prime size). Q prime size must be less or equal than the
3844 		 * hash output length of the hash algorithm involved.
3845 		 */
3846 		if (data_len > hash_size) {
3847 			res = TEE_ERROR_BAD_PARAMETERS;
3848 			break;
3849 		}
3850 		res = crypto_acipher_dsa_verify(cs->algo, o->attr, data,
3851 						data_len, sig, sig_len);
3852 		break;
3853 
3854 	case TEE_MAIN_ALGO_ECDSA:
3855 		res = crypto_acipher_ecc_verify(cs->algo, o->attr, data,
3856 						data_len, sig, sig_len);
3857 		break;
3858 
3859 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
3860 		res = crypto_acipher_sm2_dsa_verify(cs->algo, o->attr, data,
3861 						    data_len, sig, sig_len);
3862 		break;
3863 
3864 	default:
3865 		res = TEE_ERROR_NOT_SUPPORTED;
3866 	}
3867 
3868 out:
3869 	free_wipe(params);
3870 	return res;
3871 }
3872