1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * Copyright (c) 2020, Linaro Limited 5 */ 6 7 #include <assert.h> 8 #include <bitstring.h> 9 #include <compiler.h> 10 #include <config.h> 11 #include <crypto/crypto.h> 12 #include <kernel/tee_ta_manager.h> 13 #include <kernel/user_access.h> 14 #include <mm/vm.h> 15 #include <stdlib_ext.h> 16 #include <string_ext.h> 17 #include <string.h> 18 #include <sys/queue.h> 19 #include <tee_api_defines_extensions.h> 20 #include <tee_api_types.h> 21 #include <tee/tee_cryp_utl.h> 22 #include <tee/tee_obj.h> 23 #include <tee/tee_svc_cryp.h> 24 #include <tee/tee_svc.h> 25 #include <trace.h> 26 #include <utee_defines.h> 27 #include <util.h> 28 #if defined(CFG_CRYPTO_HKDF) 29 #include <tee/tee_cryp_hkdf.h> 30 #endif 31 #if defined(CFG_CRYPTO_CONCAT_KDF) 32 #include <tee/tee_cryp_concat_kdf.h> 33 #endif 34 #if defined(CFG_CRYPTO_PBKDF2) 35 #include <tee/tee_cryp_pbkdf2.h> 36 #endif 37 38 enum cryp_state { 39 CRYP_STATE_INITIALIZED = 0, 40 CRYP_STATE_UNINITIALIZED 41 }; 42 43 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx); 44 struct tee_cryp_state { 45 TAILQ_ENTRY(tee_cryp_state) link; 46 uint32_t algo; 47 uint32_t mode; 48 vaddr_t key1; 49 vaddr_t key2; 50 void *ctx; 51 tee_cryp_ctx_finalize_func_t ctx_finalize; 52 enum cryp_state state; 53 }; 54 55 struct tee_cryp_obj_secret { 56 uint32_t key_size; 57 uint32_t alloc_size; 58 59 /* 60 * Pseudo code visualize layout of structure 61 * Next follows data, such as: 62 * uint8_t data[alloc_size] 63 * key_size must never exceed alloc_size 64 */ 65 }; 66 67 #define TEE_TYPE_ATTR_OPTIONAL BIT(0) 68 #define TEE_TYPE_ATTR_REQUIRED BIT(1) 69 #define TEE_TYPE_ATTR_OPTIONAL_GROUP BIT(2) 70 #define TEE_TYPE_ATTR_SIZE_INDICATOR BIT(3) 71 #define TEE_TYPE_ATTR_GEN_KEY_OPT BIT(4) 72 #define TEE_TYPE_ATTR_GEN_KEY_REQ BIT(5) 73 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS BIT(6) 74 75 /* Handle storing of generic secret keys of varying lengths */ 76 #define ATTR_OPS_INDEX_SECRET 0 77 /* Convert to/from big-endian byte array and provider-specific bignum */ 78 #define ATTR_OPS_INDEX_BIGNUM 1 79 /* Convert to/from value attribute depending on direction */ 80 #define ATTR_OPS_INDEX_VALUE 2 81 82 struct tee_cryp_obj_type_attrs { 83 uint32_t attr_id; 84 uint16_t flags; 85 uint16_t ops_index; 86 uint16_t raw_offs; 87 uint16_t raw_size; 88 }; 89 90 #define RAW_DATA(_x, _y) \ 91 .raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y) 92 93 static const struct tee_cryp_obj_type_attrs 94 tee_cryp_obj_secret_value_attrs[] = { 95 { 96 .attr_id = TEE_ATTR_SECRET_VALUE, 97 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 98 .ops_index = ATTR_OPS_INDEX_SECRET, 99 .raw_offs = 0, 100 .raw_size = 0 101 }, 102 }; 103 104 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = { 105 { 106 .attr_id = TEE_ATTR_RSA_MODULUS, 107 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 108 .ops_index = ATTR_OPS_INDEX_BIGNUM, 109 RAW_DATA(struct rsa_public_key, n) 110 }, 111 112 { 113 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 114 .flags = TEE_TYPE_ATTR_REQUIRED, 115 .ops_index = ATTR_OPS_INDEX_BIGNUM, 116 RAW_DATA(struct rsa_public_key, e) 117 }, 118 }; 119 120 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = { 121 { 122 .attr_id = TEE_ATTR_RSA_MODULUS, 123 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 124 .ops_index = ATTR_OPS_INDEX_BIGNUM, 125 RAW_DATA(struct rsa_keypair, n) 126 }, 127 128 { 129 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 130 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT, 131 .ops_index = ATTR_OPS_INDEX_BIGNUM, 132 RAW_DATA(struct rsa_keypair, e) 133 }, 134 135 { 136 .attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT, 137 .flags = TEE_TYPE_ATTR_REQUIRED, 138 .ops_index = ATTR_OPS_INDEX_BIGNUM, 139 RAW_DATA(struct rsa_keypair, d) 140 }, 141 142 { 143 .attr_id = TEE_ATTR_RSA_PRIME1, 144 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 145 .ops_index = ATTR_OPS_INDEX_BIGNUM, 146 RAW_DATA(struct rsa_keypair, p) 147 }, 148 149 { 150 .attr_id = TEE_ATTR_RSA_PRIME2, 151 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 152 .ops_index = ATTR_OPS_INDEX_BIGNUM, 153 RAW_DATA(struct rsa_keypair, q) 154 }, 155 156 { 157 .attr_id = TEE_ATTR_RSA_EXPONENT1, 158 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 159 .ops_index = ATTR_OPS_INDEX_BIGNUM, 160 RAW_DATA(struct rsa_keypair, dp) 161 }, 162 163 { 164 .attr_id = TEE_ATTR_RSA_EXPONENT2, 165 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 166 .ops_index = ATTR_OPS_INDEX_BIGNUM, 167 RAW_DATA(struct rsa_keypair, dq) 168 }, 169 170 { 171 .attr_id = TEE_ATTR_RSA_COEFFICIENT, 172 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 173 .ops_index = ATTR_OPS_INDEX_BIGNUM, 174 RAW_DATA(struct rsa_keypair, qp) 175 }, 176 }; 177 178 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = { 179 { 180 .attr_id = TEE_ATTR_DSA_PRIME, 181 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 182 .ops_index = ATTR_OPS_INDEX_BIGNUM, 183 RAW_DATA(struct dsa_public_key, p) 184 }, 185 186 { 187 .attr_id = TEE_ATTR_DSA_SUBPRIME, 188 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 189 .ops_index = ATTR_OPS_INDEX_BIGNUM, 190 RAW_DATA(struct dsa_public_key, q) 191 }, 192 193 { 194 .attr_id = TEE_ATTR_DSA_BASE, 195 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 196 .ops_index = ATTR_OPS_INDEX_BIGNUM, 197 RAW_DATA(struct dsa_public_key, g) 198 }, 199 200 { 201 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 202 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 203 .ops_index = ATTR_OPS_INDEX_BIGNUM, 204 RAW_DATA(struct dsa_public_key, y) 205 }, 206 }; 207 208 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = { 209 { 210 .attr_id = TEE_ATTR_DSA_PRIME, 211 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 212 TEE_TYPE_ATTR_BIGNUM_MAXBITS, 213 .ops_index = ATTR_OPS_INDEX_BIGNUM, 214 RAW_DATA(struct dsa_keypair, p) 215 }, 216 217 { 218 .attr_id = TEE_ATTR_DSA_SUBPRIME, 219 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 220 TEE_TYPE_ATTR_GEN_KEY_REQ, 221 .ops_index = ATTR_OPS_INDEX_BIGNUM, 222 RAW_DATA(struct dsa_keypair, q) 223 }, 224 225 { 226 .attr_id = TEE_ATTR_DSA_BASE, 227 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 228 TEE_TYPE_ATTR_BIGNUM_MAXBITS, 229 .ops_index = ATTR_OPS_INDEX_BIGNUM, 230 RAW_DATA(struct dsa_keypair, g) 231 }, 232 233 { 234 .attr_id = TEE_ATTR_DSA_PRIVATE_VALUE, 235 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 236 .ops_index = ATTR_OPS_INDEX_BIGNUM, 237 RAW_DATA(struct dsa_keypair, x) 238 }, 239 240 { 241 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 242 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 243 .ops_index = ATTR_OPS_INDEX_BIGNUM, 244 RAW_DATA(struct dsa_keypair, y) 245 }, 246 }; 247 248 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = { 249 { 250 .attr_id = TEE_ATTR_DH_PRIME, 251 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 252 TEE_TYPE_ATTR_GEN_KEY_REQ, 253 .ops_index = ATTR_OPS_INDEX_BIGNUM, 254 RAW_DATA(struct dh_keypair, p) 255 }, 256 257 { 258 .attr_id = TEE_ATTR_DH_BASE, 259 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, 260 .ops_index = ATTR_OPS_INDEX_BIGNUM, 261 RAW_DATA(struct dh_keypair, g) 262 }, 263 264 { 265 .attr_id = TEE_ATTR_DH_PUBLIC_VALUE, 266 .flags = TEE_TYPE_ATTR_REQUIRED, 267 .ops_index = ATTR_OPS_INDEX_BIGNUM, 268 RAW_DATA(struct dh_keypair, y) 269 }, 270 271 { 272 .attr_id = TEE_ATTR_DH_PRIVATE_VALUE, 273 .flags = TEE_TYPE_ATTR_REQUIRED, 274 .ops_index = ATTR_OPS_INDEX_BIGNUM, 275 RAW_DATA(struct dh_keypair, x) 276 }, 277 278 { 279 .attr_id = TEE_ATTR_DH_SUBPRIME, 280 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP | TEE_TYPE_ATTR_GEN_KEY_OPT, 281 .ops_index = ATTR_OPS_INDEX_BIGNUM, 282 RAW_DATA(struct dh_keypair, q) 283 }, 284 285 { 286 .attr_id = TEE_ATTR_DH_X_BITS, 287 .flags = TEE_TYPE_ATTR_GEN_KEY_OPT, 288 .ops_index = ATTR_OPS_INDEX_VALUE, 289 RAW_DATA(struct dh_keypair, xbits) 290 }, 291 }; 292 293 #if defined(CFG_CRYPTO_HKDF) 294 static const struct tee_cryp_obj_type_attrs 295 tee_cryp_obj_hkdf_ikm_attrs[] = { 296 { 297 .attr_id = TEE_ATTR_HKDF_IKM, 298 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 299 .ops_index = ATTR_OPS_INDEX_SECRET, 300 .raw_offs = 0, 301 .raw_size = 0 302 }, 303 }; 304 #endif 305 306 #if defined(CFG_CRYPTO_CONCAT_KDF) 307 static const struct tee_cryp_obj_type_attrs 308 tee_cryp_obj_concat_kdf_z_attrs[] = { 309 { 310 .attr_id = TEE_ATTR_CONCAT_KDF_Z, 311 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 312 .ops_index = ATTR_OPS_INDEX_SECRET, 313 .raw_offs = 0, 314 .raw_size = 0 315 }, 316 }; 317 #endif 318 319 #if defined(CFG_CRYPTO_PBKDF2) 320 static const struct tee_cryp_obj_type_attrs 321 tee_cryp_obj_pbkdf2_passwd_attrs[] = { 322 { 323 .attr_id = TEE_ATTR_PBKDF2_PASSWORD, 324 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 325 .ops_index = ATTR_OPS_INDEX_SECRET, 326 .raw_offs = 0, 327 .raw_size = 0 328 }, 329 }; 330 #endif 331 332 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = { 333 { 334 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 335 .flags = TEE_TYPE_ATTR_REQUIRED, 336 .ops_index = ATTR_OPS_INDEX_BIGNUM, 337 RAW_DATA(struct ecc_public_key, x) 338 }, 339 340 { 341 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 342 .flags = TEE_TYPE_ATTR_REQUIRED, 343 .ops_index = ATTR_OPS_INDEX_BIGNUM, 344 RAW_DATA(struct ecc_public_key, y) 345 }, 346 347 { 348 .attr_id = TEE_ATTR_ECC_CURVE, 349 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 350 .ops_index = ATTR_OPS_INDEX_VALUE, 351 RAW_DATA(struct ecc_public_key, curve) 352 }, 353 }; 354 355 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = { 356 { 357 .attr_id = TEE_ATTR_ECC_PRIVATE_VALUE, 358 .flags = TEE_TYPE_ATTR_REQUIRED, 359 .ops_index = ATTR_OPS_INDEX_BIGNUM, 360 RAW_DATA(struct ecc_keypair, d) 361 }, 362 363 { 364 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 365 .flags = TEE_TYPE_ATTR_REQUIRED, 366 .ops_index = ATTR_OPS_INDEX_BIGNUM, 367 RAW_DATA(struct ecc_keypair, x) 368 }, 369 370 { 371 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 372 .flags = TEE_TYPE_ATTR_REQUIRED, 373 .ops_index = ATTR_OPS_INDEX_BIGNUM, 374 RAW_DATA(struct ecc_keypair, y) 375 }, 376 377 { 378 .attr_id = TEE_ATTR_ECC_CURVE, 379 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 380 TEE_TYPE_ATTR_GEN_KEY_REQ, 381 .ops_index = ATTR_OPS_INDEX_VALUE, 382 RAW_DATA(struct ecc_keypair, curve) 383 }, 384 }; 385 386 struct tee_cryp_obj_type_props { 387 TEE_ObjectType obj_type; 388 uint16_t min_size; /* may not be smaller than this */ 389 uint16_t max_size; /* may not be larger than this */ 390 uint16_t alloc_size; /* this many bytes are allocated to hold data */ 391 uint8_t quanta; /* may only be an multiple of this */ 392 393 uint8_t num_type_attrs; 394 const struct tee_cryp_obj_type_attrs *type_attrs; 395 }; 396 397 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \ 398 { (obj_type), (min_size), (max_size), (alloc_size), (quanta), \ 399 ARRAY_SIZE(type_attrs), (type_attrs) } 400 401 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = { 402 PROP(TEE_TYPE_AES, 64, 128, 256, /* valid sizes 128, 192, 256 */ 403 256 / 8 + sizeof(struct tee_cryp_obj_secret), 404 tee_cryp_obj_secret_value_attrs), 405 PROP(TEE_TYPE_DES, 64, 64, 64, 406 /* Valid size 64 with parity */ 407 64 / 8 + sizeof(struct tee_cryp_obj_secret), 408 tee_cryp_obj_secret_value_attrs), 409 PROP(TEE_TYPE_DES3, 64, 128, 192, 410 /* Valid sizes 128, 192 with parity */ 411 192 / 8 + sizeof(struct tee_cryp_obj_secret), 412 tee_cryp_obj_secret_value_attrs), 413 PROP(TEE_TYPE_SM4, 128, 128, 128, 414 128 / 8 + sizeof(struct tee_cryp_obj_secret), 415 tee_cryp_obj_secret_value_attrs), 416 PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512, 417 512 / 8 + sizeof(struct tee_cryp_obj_secret), 418 tee_cryp_obj_secret_value_attrs), 419 PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512, 420 512 / 8 + sizeof(struct tee_cryp_obj_secret), 421 tee_cryp_obj_secret_value_attrs), 422 PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512, 423 512 / 8 + sizeof(struct tee_cryp_obj_secret), 424 tee_cryp_obj_secret_value_attrs), 425 PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024, 426 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 427 tee_cryp_obj_secret_value_attrs), 428 PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024, 429 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 430 tee_cryp_obj_secret_value_attrs), 431 PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024, 432 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 433 tee_cryp_obj_secret_value_attrs), 434 PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024, 435 512 / 8 + sizeof(struct tee_cryp_obj_secret), 436 tee_cryp_obj_secret_value_attrs), 437 PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096, 438 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 439 tee_cryp_obj_secret_value_attrs), 440 #if defined(CFG_CRYPTO_HKDF) 441 PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096, 442 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 443 tee_cryp_obj_hkdf_ikm_attrs), 444 #endif 445 #if defined(CFG_CRYPTO_CONCAT_KDF) 446 PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096, 447 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 448 tee_cryp_obj_concat_kdf_z_attrs), 449 #endif 450 #if defined(CFG_CRYPTO_PBKDF2) 451 PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096, 452 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 453 tee_cryp_obj_pbkdf2_passwd_attrs), 454 #endif 455 PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 456 sizeof(struct rsa_public_key), 457 tee_cryp_obj_rsa_pub_key_attrs), 458 459 PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 460 sizeof(struct rsa_keypair), 461 tee_cryp_obj_rsa_keypair_attrs), 462 463 PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072, 464 sizeof(struct dsa_public_key), 465 tee_cryp_obj_dsa_pub_key_attrs), 466 467 PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072, 468 sizeof(struct dsa_keypair), 469 tee_cryp_obj_dsa_keypair_attrs), 470 471 PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048, 472 sizeof(struct dh_keypair), 473 tee_cryp_obj_dh_keypair_attrs), 474 475 PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521, 476 sizeof(struct ecc_public_key), 477 tee_cryp_obj_ecc_pub_key_attrs), 478 479 PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521, 480 sizeof(struct ecc_keypair), 481 tee_cryp_obj_ecc_keypair_attrs), 482 483 PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521, 484 sizeof(struct ecc_public_key), 485 tee_cryp_obj_ecc_pub_key_attrs), 486 487 PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521, 488 sizeof(struct ecc_keypair), 489 tee_cryp_obj_ecc_keypair_attrs), 490 491 PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256, 492 sizeof(struct ecc_public_key), 493 tee_cryp_obj_ecc_pub_key_attrs), 494 495 PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256, 496 sizeof(struct ecc_keypair), 497 tee_cryp_obj_ecc_keypair_attrs), 498 499 PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256, 500 sizeof(struct ecc_public_key), 501 tee_cryp_obj_ecc_pub_key_attrs), 502 503 PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256, 504 sizeof(struct ecc_keypair), 505 tee_cryp_obj_ecc_keypair_attrs), 506 507 PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256, 508 sizeof(struct ecc_public_key), 509 tee_cryp_obj_ecc_pub_key_attrs), 510 511 PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256, 512 sizeof(struct ecc_keypair), 513 tee_cryp_obj_ecc_keypair_attrs), 514 }; 515 516 struct attr_ops { 517 TEE_Result (*from_user)(void *attr, const void *buffer, size_t size); 518 TEE_Result (*to_user)(void *attr, struct ts_session *sess, 519 void *buffer, uint64_t *size); 520 TEE_Result (*to_binary)(void *attr, void *data, size_t data_len, 521 size_t *offs); 522 bool (*from_binary)(void *attr, const void *data, size_t data_len, 523 size_t *offs); 524 TEE_Result (*from_obj)(void *attr, void *src_attr); 525 void (*free)(void *attr); 526 void (*clear)(void *attr); 527 }; 528 529 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data, 530 size_t data_len, size_t *offs) 531 { 532 uint32_t field; 533 size_t next_offs; 534 535 if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs)) 536 return TEE_ERROR_OVERFLOW; 537 538 if (data && next_offs <= data_len) { 539 field = TEE_U32_TO_BIG_ENDIAN(v); 540 memcpy(data + *offs, &field, sizeof(field)); 541 } 542 (*offs) = next_offs; 543 544 return TEE_SUCCESS; 545 } 546 547 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data, 548 size_t data_len, size_t *offs) 549 { 550 uint32_t field; 551 552 if (!data || (*offs + sizeof(field)) > data_len) 553 return false; 554 555 memcpy(&field, data + *offs, sizeof(field)); 556 *v = TEE_U32_FROM_BIG_ENDIAN(field); 557 (*offs) += sizeof(field); 558 return true; 559 } 560 561 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer, 562 size_t size) 563 { 564 struct tee_cryp_obj_secret *key = attr; 565 566 /* Data size has to fit in allocated buffer */ 567 if (size > key->alloc_size) 568 return TEE_ERROR_SECURITY; 569 memcpy(key + 1, buffer, size); 570 key->key_size = size; 571 return TEE_SUCCESS; 572 } 573 574 static TEE_Result op_attr_secret_value_to_user(void *attr, 575 struct ts_session *sess __unused, 576 void *buffer, uint64_t *size) 577 { 578 TEE_Result res; 579 struct tee_cryp_obj_secret *key = attr; 580 uint64_t s; 581 uint64_t key_size; 582 583 res = copy_from_user(&s, size, sizeof(s)); 584 if (res != TEE_SUCCESS) 585 return res; 586 587 key_size = key->key_size; 588 res = copy_to_user(size, &key_size, sizeof(key_size)); 589 if (res != TEE_SUCCESS) 590 return res; 591 592 if (s < key->key_size || !buffer) 593 return TEE_ERROR_SHORT_BUFFER; 594 595 return copy_to_user(buffer, key + 1, key->key_size); 596 } 597 598 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data, 599 size_t data_len, size_t *offs) 600 { 601 TEE_Result res; 602 struct tee_cryp_obj_secret *key = attr; 603 size_t next_offs; 604 605 res = op_u32_to_binary_helper(key->key_size, data, data_len, offs); 606 if (res != TEE_SUCCESS) 607 return res; 608 609 if (ADD_OVERFLOW(*offs, key->key_size, &next_offs)) 610 return TEE_ERROR_OVERFLOW; 611 612 if (data && next_offs <= data_len) 613 memcpy((uint8_t *)data + *offs, key + 1, key->key_size); 614 (*offs) = next_offs; 615 616 return TEE_SUCCESS; 617 } 618 619 static bool op_attr_secret_value_from_binary(void *attr, const void *data, 620 size_t data_len, size_t *offs) 621 { 622 struct tee_cryp_obj_secret *key = attr; 623 uint32_t s; 624 625 if (!op_u32_from_binary_helper(&s, data, data_len, offs)) 626 return false; 627 628 if ((*offs + s) > data_len) 629 return false; 630 631 /* Data size has to fit in allocated buffer */ 632 if (s > key->alloc_size) 633 return false; 634 key->key_size = s; 635 memcpy(key + 1, (const uint8_t *)data + *offs, s); 636 (*offs) += s; 637 return true; 638 } 639 640 641 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr) 642 { 643 struct tee_cryp_obj_secret *key = attr; 644 struct tee_cryp_obj_secret *src_key = src_attr; 645 646 if (src_key->key_size > key->alloc_size) 647 return TEE_ERROR_BAD_STATE; 648 memcpy(key + 1, src_key + 1, src_key->key_size); 649 key->key_size = src_key->key_size; 650 return TEE_SUCCESS; 651 } 652 653 static void op_attr_secret_value_clear(void *attr) 654 { 655 struct tee_cryp_obj_secret *key = attr; 656 657 key->key_size = 0; 658 memset(key + 1, 0, key->alloc_size); 659 } 660 661 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer, 662 size_t size) 663 { 664 struct bignum **bn = attr; 665 666 return crypto_bignum_bin2bn(buffer, size, *bn); 667 } 668 669 static TEE_Result op_attr_bignum_to_user(void *attr, 670 struct ts_session *sess, 671 void *buffer, uint64_t *size) 672 { 673 TEE_Result res = TEE_SUCCESS; 674 struct bignum **bn = attr; 675 uint64_t req_size = 0; 676 uint64_t s = 0; 677 678 res = copy_from_user(&s, size, sizeof(s)); 679 if (res != TEE_SUCCESS) 680 return res; 681 682 req_size = crypto_bignum_num_bytes(*bn); 683 res = copy_to_user(size, &req_size, sizeof(req_size)); 684 if (res != TEE_SUCCESS) 685 return res; 686 if (!req_size) 687 return TEE_SUCCESS; 688 if (s < req_size || !buffer) 689 return TEE_ERROR_SHORT_BUFFER; 690 691 /* Check we can access data using supplied user mode pointer */ 692 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 693 TEE_MEMORY_ACCESS_READ | 694 TEE_MEMORY_ACCESS_WRITE | 695 TEE_MEMORY_ACCESS_ANY_OWNER, 696 (uaddr_t)buffer, req_size); 697 if (res != TEE_SUCCESS) 698 return res; 699 /* 700 * Write the bignum (wich raw data points to) into an array of 701 * bytes (stored in buffer) 702 */ 703 crypto_bignum_bn2bin(*bn, buffer); 704 return TEE_SUCCESS; 705 } 706 707 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data, 708 size_t data_len, size_t *offs) 709 { 710 TEE_Result res; 711 struct bignum **bn = attr; 712 uint32_t n = crypto_bignum_num_bytes(*bn); 713 size_t next_offs; 714 715 res = op_u32_to_binary_helper(n, data, data_len, offs); 716 if (res != TEE_SUCCESS) 717 return res; 718 719 if (ADD_OVERFLOW(*offs, n, &next_offs)) 720 return TEE_ERROR_OVERFLOW; 721 722 if (data && next_offs <= data_len) 723 crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs); 724 (*offs) = next_offs; 725 726 return TEE_SUCCESS; 727 } 728 729 static bool op_attr_bignum_from_binary(void *attr, const void *data, 730 size_t data_len, size_t *offs) 731 { 732 struct bignum **bn = attr; 733 uint32_t n; 734 735 if (!op_u32_from_binary_helper(&n, data, data_len, offs)) 736 return false; 737 738 if ((*offs + n) > data_len) 739 return false; 740 if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn)) 741 return false; 742 (*offs) += n; 743 return true; 744 } 745 746 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr) 747 { 748 struct bignum **bn = attr; 749 struct bignum **src_bn = src_attr; 750 751 crypto_bignum_copy(*bn, *src_bn); 752 return TEE_SUCCESS; 753 } 754 755 static void op_attr_bignum_clear(void *attr) 756 { 757 struct bignum **bn = attr; 758 759 crypto_bignum_clear(*bn); 760 } 761 762 static void op_attr_bignum_free(void *attr) 763 { 764 struct bignum **bn = attr; 765 766 crypto_bignum_free(*bn); 767 *bn = NULL; 768 } 769 770 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer, 771 size_t size) 772 { 773 uint32_t *v = attr; 774 775 if (size != sizeof(uint32_t) * 2) 776 return TEE_ERROR_GENERIC; /* "can't happen */ 777 778 /* Note that only the first value is copied */ 779 memcpy(v, buffer, sizeof(uint32_t)); 780 return TEE_SUCCESS; 781 } 782 783 static TEE_Result op_attr_value_to_user(void *attr, 784 struct ts_session *sess __unused, 785 void *buffer, uint64_t *size) 786 { 787 TEE_Result res; 788 uint32_t *v = attr; 789 uint64_t s; 790 uint32_t value[2] = { *v }; 791 uint64_t req_size = sizeof(value); 792 793 res = copy_from_user(&s, size, sizeof(s)); 794 if (res != TEE_SUCCESS) 795 return res; 796 797 if (s < req_size || !buffer) 798 return TEE_ERROR_SHORT_BUFFER; 799 800 return copy_to_user(buffer, value, req_size); 801 } 802 803 static TEE_Result op_attr_value_to_binary(void *attr, void *data, 804 size_t data_len, size_t *offs) 805 { 806 uint32_t *v = attr; 807 808 return op_u32_to_binary_helper(*v, data, data_len, offs); 809 } 810 811 static bool op_attr_value_from_binary(void *attr, const void *data, 812 size_t data_len, size_t *offs) 813 { 814 uint32_t *v = attr; 815 816 return op_u32_from_binary_helper(v, data, data_len, offs); 817 } 818 819 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr) 820 { 821 uint32_t *v = attr; 822 uint32_t *src_v = src_attr; 823 824 *v = *src_v; 825 return TEE_SUCCESS; 826 } 827 828 static void op_attr_value_clear(void *attr) 829 { 830 uint32_t *v = attr; 831 832 *v = 0; 833 } 834 835 static const struct attr_ops attr_ops[] = { 836 [ATTR_OPS_INDEX_SECRET] = { 837 .from_user = op_attr_secret_value_from_user, 838 .to_user = op_attr_secret_value_to_user, 839 .to_binary = op_attr_secret_value_to_binary, 840 .from_binary = op_attr_secret_value_from_binary, 841 .from_obj = op_attr_secret_value_from_obj, 842 .free = op_attr_secret_value_clear, /* not a typo */ 843 .clear = op_attr_secret_value_clear, 844 }, 845 [ATTR_OPS_INDEX_BIGNUM] = { 846 .from_user = op_attr_bignum_from_user, 847 .to_user = op_attr_bignum_to_user, 848 .to_binary = op_attr_bignum_to_binary, 849 .from_binary = op_attr_bignum_from_binary, 850 .from_obj = op_attr_bignum_from_obj, 851 .free = op_attr_bignum_free, 852 .clear = op_attr_bignum_clear, 853 }, 854 [ATTR_OPS_INDEX_VALUE] = { 855 .from_user = op_attr_value_from_user, 856 .to_user = op_attr_value_to_user, 857 .to_binary = op_attr_value_to_binary, 858 .from_binary = op_attr_value_from_binary, 859 .from_obj = op_attr_value_from_obj, 860 .free = op_attr_value_clear, /* not a typo */ 861 .clear = op_attr_value_clear, 862 }, 863 }; 864 865 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src) 866 { 867 uint64_t d = 0; 868 TEE_Result res = copy_from_user(&d, src, sizeof(d)); 869 870 /* 871 * On 32-bit systems a size_t can't hold a uint64_t so we need to 872 * check that the value isn't too large. 873 */ 874 if (!res && ADD_OVERFLOW(0, d, dst)) 875 return TEE_ERROR_OVERFLOW; 876 877 return res; 878 } 879 880 static TEE_Result put_user_u64(uint64_t *dst, size_t value) 881 { 882 uint64_t v = value; 883 884 return copy_to_user(dst, &v, sizeof(v)); 885 } 886 887 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info) 888 { 889 struct ts_session *sess = ts_get_current_session(); 890 TEE_Result res = TEE_SUCCESS; 891 struct tee_obj *o = NULL; 892 893 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 894 uref_to_vaddr(obj), &o); 895 if (res != TEE_SUCCESS) 896 goto exit; 897 898 res = copy_to_user_private(info, &o->info, sizeof(o->info)); 899 900 exit: 901 return res; 902 } 903 904 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj, 905 unsigned long usage) 906 { 907 struct ts_session *sess = ts_get_current_session(); 908 TEE_Result res = TEE_SUCCESS; 909 struct tee_obj *o = NULL; 910 911 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 912 if (res != TEE_SUCCESS) 913 goto exit; 914 915 o->info.objectUsage &= usage; 916 917 exit: 918 return res; 919 } 920 921 static int tee_svc_cryp_obj_find_type_attr_idx( 922 uint32_t attr_id, 923 const struct tee_cryp_obj_type_props *type_props) 924 { 925 size_t n; 926 927 for (n = 0; n < type_props->num_type_attrs; n++) { 928 if (attr_id == type_props->type_attrs[n].attr_id) 929 return n; 930 } 931 return -1; 932 } 933 934 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props( 935 TEE_ObjectType obj_type) 936 { 937 size_t n; 938 939 for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) { 940 if (tee_cryp_obj_props[n].obj_type == obj_type) 941 return tee_cryp_obj_props + n; 942 } 943 944 return NULL; 945 } 946 947 /* Set an attribute on an object */ 948 static void set_attribute(struct tee_obj *o, 949 const struct tee_cryp_obj_type_props *props, 950 uint32_t attr) 951 { 952 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 953 954 if (idx < 0) 955 return; 956 o->have_attrs |= BIT(idx); 957 } 958 959 /* Get an attribute on an object */ 960 static uint32_t get_attribute(const struct tee_obj *o, 961 const struct tee_cryp_obj_type_props *props, 962 uint32_t attr) 963 { 964 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 965 966 if (idx < 0) 967 return 0; 968 return o->have_attrs & BIT(idx); 969 } 970 971 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id, 972 void *buffer, uint64_t *size) 973 { 974 struct ts_session *sess = ts_get_current_session(); 975 TEE_Result res = TEE_SUCCESS; 976 struct tee_obj *o = NULL; 977 const struct tee_cryp_obj_type_props *type_props = NULL; 978 int idx = 0; 979 const struct attr_ops *ops = NULL; 980 void *attr = NULL; 981 982 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 983 if (res != TEE_SUCCESS) 984 return TEE_ERROR_ITEM_NOT_FOUND; 985 986 /* Check that the object is initialized */ 987 if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED)) 988 return TEE_ERROR_BAD_PARAMETERS; 989 990 /* Check that getting the attribute is allowed */ 991 if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) && 992 !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE)) 993 return TEE_ERROR_BAD_PARAMETERS; 994 995 type_props = tee_svc_find_type_props(o->info.objectType); 996 if (!type_props) { 997 /* Unknown object type, "can't happen" */ 998 return TEE_ERROR_BAD_STATE; 999 } 1000 1001 idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props); 1002 if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0)) 1003 return TEE_ERROR_ITEM_NOT_FOUND; 1004 1005 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1006 attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs; 1007 return ops->to_user(attr, sess, buffer, size); 1008 } 1009 1010 void tee_obj_attr_free(struct tee_obj *o) 1011 { 1012 const struct tee_cryp_obj_type_props *tp; 1013 size_t n; 1014 1015 if (!o->attr) 1016 return; 1017 tp = tee_svc_find_type_props(o->info.objectType); 1018 if (!tp) 1019 return; 1020 1021 for (n = 0; n < tp->num_type_attrs; n++) { 1022 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1023 1024 attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs); 1025 } 1026 } 1027 1028 void tee_obj_attr_clear(struct tee_obj *o) 1029 { 1030 const struct tee_cryp_obj_type_props *tp; 1031 size_t n; 1032 1033 if (!o->attr) 1034 return; 1035 tp = tee_svc_find_type_props(o->info.objectType); 1036 if (!tp) 1037 return; 1038 1039 for (n = 0; n < tp->num_type_attrs; n++) { 1040 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1041 1042 attr_ops[ta->ops_index].clear((uint8_t *)o->attr + 1043 ta->raw_offs); 1044 } 1045 } 1046 1047 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data, 1048 size_t *data_len) 1049 { 1050 const struct tee_cryp_obj_type_props *tp; 1051 size_t n; 1052 size_t offs = 0; 1053 size_t len = data ? *data_len : 0; 1054 TEE_Result res; 1055 1056 if (o->info.objectType == TEE_TYPE_DATA) { 1057 *data_len = 0; 1058 return TEE_SUCCESS; /* pure data object */ 1059 } 1060 if (!o->attr) 1061 return TEE_ERROR_BAD_STATE; 1062 tp = tee_svc_find_type_props(o->info.objectType); 1063 if (!tp) 1064 return TEE_ERROR_BAD_STATE; 1065 1066 for (n = 0; n < tp->num_type_attrs; n++) { 1067 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1068 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1069 1070 res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs); 1071 if (res != TEE_SUCCESS) 1072 return res; 1073 } 1074 1075 *data_len = offs; 1076 if (data && offs > len) 1077 return TEE_ERROR_SHORT_BUFFER; 1078 return TEE_SUCCESS; 1079 } 1080 1081 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data, 1082 size_t data_len) 1083 { 1084 const struct tee_cryp_obj_type_props *tp; 1085 size_t n; 1086 size_t offs = 0; 1087 1088 if (o->info.objectType == TEE_TYPE_DATA) 1089 return TEE_SUCCESS; /* pure data object */ 1090 if (!o->attr) 1091 return TEE_ERROR_BAD_STATE; 1092 tp = tee_svc_find_type_props(o->info.objectType); 1093 if (!tp) 1094 return TEE_ERROR_BAD_STATE; 1095 1096 for (n = 0; n < tp->num_type_attrs; n++) { 1097 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1098 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1099 1100 if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len, 1101 &offs)) 1102 return TEE_ERROR_CORRUPT_OBJECT; 1103 } 1104 return TEE_SUCCESS; 1105 } 1106 1107 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src) 1108 { 1109 TEE_Result res; 1110 const struct tee_cryp_obj_type_props *tp; 1111 const struct tee_cryp_obj_type_attrs *ta; 1112 size_t n; 1113 uint32_t have_attrs = 0; 1114 void *attr; 1115 void *src_attr; 1116 1117 if (o->info.objectType == TEE_TYPE_DATA) 1118 return TEE_SUCCESS; /* pure data object */ 1119 if (!o->attr) 1120 return TEE_ERROR_BAD_STATE; 1121 tp = tee_svc_find_type_props(o->info.objectType); 1122 if (!tp) 1123 return TEE_ERROR_BAD_STATE; 1124 1125 if (o->info.objectType == src->info.objectType) { 1126 have_attrs = src->have_attrs; 1127 for (n = 0; n < tp->num_type_attrs; n++) { 1128 ta = tp->type_attrs + n; 1129 attr = (uint8_t *)o->attr + ta->raw_offs; 1130 src_attr = (uint8_t *)src->attr + ta->raw_offs; 1131 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1132 if (res != TEE_SUCCESS) 1133 return res; 1134 } 1135 } else { 1136 const struct tee_cryp_obj_type_props *tp_src; 1137 int idx; 1138 1139 if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) { 1140 if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR) 1141 return TEE_ERROR_BAD_PARAMETERS; 1142 } else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) { 1143 if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR) 1144 return TEE_ERROR_BAD_PARAMETERS; 1145 } else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) { 1146 if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR) 1147 return TEE_ERROR_BAD_PARAMETERS; 1148 } else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) { 1149 if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR) 1150 return TEE_ERROR_BAD_PARAMETERS; 1151 } else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) { 1152 if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR) 1153 return TEE_ERROR_BAD_PARAMETERS; 1154 } else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) { 1155 if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR) 1156 return TEE_ERROR_BAD_PARAMETERS; 1157 } else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) { 1158 if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR) 1159 return TEE_ERROR_BAD_PARAMETERS; 1160 } else { 1161 return TEE_ERROR_BAD_PARAMETERS; 1162 } 1163 1164 tp_src = tee_svc_find_type_props(src->info.objectType); 1165 if (!tp_src) 1166 return TEE_ERROR_BAD_STATE; 1167 1168 have_attrs = BIT32(tp->num_type_attrs) - 1; 1169 for (n = 0; n < tp->num_type_attrs; n++) { 1170 ta = tp->type_attrs + n; 1171 1172 idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id, 1173 tp_src); 1174 if (idx < 0) 1175 return TEE_ERROR_BAD_STATE; 1176 1177 attr = (uint8_t *)o->attr + ta->raw_offs; 1178 src_attr = (uint8_t *)src->attr + 1179 tp_src->type_attrs[idx].raw_offs; 1180 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1181 if (res != TEE_SUCCESS) 1182 return res; 1183 } 1184 } 1185 1186 o->have_attrs = have_attrs; 1187 return TEE_SUCCESS; 1188 } 1189 1190 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz) 1191 { 1192 return IS_ENABLED(CFG_COMPAT_GP10_DES) && 1193 ((type == TEE_TYPE_DES && sz == 56) || 1194 (type == TEE_TYPE_DES3 && (sz == 112 || sz == 168))); 1195 } 1196 1197 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props, 1198 size_t key_size) 1199 { 1200 size_t sz = key_size; 1201 1202 /* 1203 * In GP Internal API Specification 1.0 the partity bits aren't 1204 * counted when telling the size of the key in bits so add them 1205 * here if missing. 1206 */ 1207 if (is_gp_legacy_des_key_size(props->obj_type, sz)) 1208 sz += sz / 7; 1209 1210 if (sz % props->quanta != 0) 1211 return TEE_ERROR_NOT_SUPPORTED; 1212 if (sz < props->min_size) 1213 return TEE_ERROR_NOT_SUPPORTED; 1214 if (sz > props->max_size) 1215 return TEE_ERROR_NOT_SUPPORTED; 1216 1217 return TEE_SUCCESS; 1218 } 1219 1220 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type, 1221 size_t max_key_size) 1222 { 1223 TEE_Result res = TEE_SUCCESS; 1224 const struct tee_cryp_obj_type_props *type_props; 1225 1226 /* Can only set type for newly allocated objs */ 1227 if (o->attr) 1228 return TEE_ERROR_BAD_STATE; 1229 1230 /* 1231 * Verify that maxKeySize is supported and find out how 1232 * much should be allocated. 1233 */ 1234 1235 if (obj_type == TEE_TYPE_DATA) { 1236 if (max_key_size) 1237 return TEE_ERROR_NOT_SUPPORTED; 1238 } else { 1239 /* Find description of object */ 1240 type_props = tee_svc_find_type_props(obj_type); 1241 if (!type_props) 1242 return TEE_ERROR_NOT_SUPPORTED; 1243 1244 /* Check that max_key_size follows restrictions */ 1245 res = check_key_size(type_props, max_key_size); 1246 if (res) 1247 return res; 1248 1249 o->attr = calloc(1, type_props->alloc_size); 1250 if (!o->attr) 1251 return TEE_ERROR_OUT_OF_MEMORY; 1252 } 1253 1254 /* If we have a key structure, pre-allocate the bignums inside */ 1255 switch (obj_type) { 1256 case TEE_TYPE_RSA_PUBLIC_KEY: 1257 res = crypto_acipher_alloc_rsa_public_key(o->attr, 1258 max_key_size); 1259 break; 1260 case TEE_TYPE_RSA_KEYPAIR: 1261 res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size); 1262 break; 1263 case TEE_TYPE_DSA_PUBLIC_KEY: 1264 res = crypto_acipher_alloc_dsa_public_key(o->attr, 1265 max_key_size); 1266 break; 1267 case TEE_TYPE_DSA_KEYPAIR: 1268 res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size); 1269 break; 1270 case TEE_TYPE_DH_KEYPAIR: 1271 res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size); 1272 break; 1273 case TEE_TYPE_ECDSA_PUBLIC_KEY: 1274 case TEE_TYPE_ECDH_PUBLIC_KEY: 1275 case TEE_TYPE_SM2_DSA_PUBLIC_KEY: 1276 case TEE_TYPE_SM2_PKE_PUBLIC_KEY: 1277 case TEE_TYPE_SM2_KEP_PUBLIC_KEY: 1278 res = crypto_acipher_alloc_ecc_public_key(o->attr, 1279 max_key_size); 1280 break; 1281 case TEE_TYPE_ECDSA_KEYPAIR: 1282 case TEE_TYPE_ECDH_KEYPAIR: 1283 case TEE_TYPE_SM2_DSA_KEYPAIR: 1284 case TEE_TYPE_SM2_PKE_KEYPAIR: 1285 case TEE_TYPE_SM2_KEP_KEYPAIR: 1286 res = crypto_acipher_alloc_ecc_keypair(o->attr, max_key_size); 1287 break; 1288 default: 1289 if (obj_type != TEE_TYPE_DATA) { 1290 struct tee_cryp_obj_secret *key = o->attr; 1291 1292 key->alloc_size = type_props->alloc_size - 1293 sizeof(*key); 1294 } 1295 break; 1296 } 1297 1298 if (res != TEE_SUCCESS) 1299 return res; 1300 1301 o->info.objectType = obj_type; 1302 o->info.maxKeySize = max_key_size; 1303 o->info.objectUsage = TEE_USAGE_DEFAULT; 1304 1305 return TEE_SUCCESS; 1306 } 1307 1308 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type, 1309 unsigned long max_key_size, uint32_t *obj) 1310 { 1311 struct ts_session *sess = ts_get_current_session(); 1312 TEE_Result res = TEE_SUCCESS; 1313 struct tee_obj *o = NULL; 1314 1315 1316 o = tee_obj_alloc(); 1317 if (!o) 1318 return TEE_ERROR_OUT_OF_MEMORY; 1319 1320 res = tee_obj_set_type(o, obj_type, max_key_size); 1321 if (res != TEE_SUCCESS) { 1322 tee_obj_free(o); 1323 return res; 1324 } 1325 1326 tee_obj_add(to_user_ta_ctx(sess->ctx), o); 1327 1328 res = copy_kaddr_to_uref(obj, o); 1329 if (res != TEE_SUCCESS) 1330 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1331 return res; 1332 } 1333 1334 TEE_Result syscall_cryp_obj_close(unsigned long obj) 1335 { 1336 struct ts_session *sess = ts_get_current_session(); 1337 TEE_Result res = TEE_SUCCESS; 1338 struct tee_obj *o = NULL; 1339 1340 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1341 if (res != TEE_SUCCESS) 1342 return res; 1343 1344 /* 1345 * If it's busy it's used by an operation, a client should never have 1346 * this handle. 1347 */ 1348 if (o->busy) 1349 return TEE_ERROR_ITEM_NOT_FOUND; 1350 1351 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1352 return TEE_SUCCESS; 1353 } 1354 1355 TEE_Result syscall_cryp_obj_reset(unsigned long obj) 1356 { 1357 struct ts_session *sess = ts_get_current_session(); 1358 TEE_Result res = TEE_SUCCESS; 1359 struct tee_obj *o = NULL; 1360 1361 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1362 if (res != TEE_SUCCESS) 1363 return res; 1364 1365 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) { 1366 tee_obj_attr_clear(o); 1367 o->info.keySize = 0; 1368 o->info.objectUsage = TEE_USAGE_DEFAULT; 1369 } else { 1370 return TEE_ERROR_BAD_PARAMETERS; 1371 } 1372 1373 /* the object is no more initialized */ 1374 o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED; 1375 1376 return TEE_SUCCESS; 1377 } 1378 1379 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc, 1380 const struct utee_attribute *usr_attrs, 1381 uint32_t attr_count, TEE_Attribute *attrs) 1382 { 1383 TEE_Result res = TEE_SUCCESS; 1384 size_t size = 0; 1385 uint32_t n = 0; 1386 1387 if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size)) 1388 return TEE_ERROR_OVERFLOW; 1389 1390 res = vm_check_access_rights(&utc->uctx, 1391 TEE_MEMORY_ACCESS_READ | 1392 TEE_MEMORY_ACCESS_ANY_OWNER, 1393 (uaddr_t)usr_attrs, size); 1394 if (res != TEE_SUCCESS) 1395 return res; 1396 1397 for (n = 0; n < attr_count; n++) { 1398 attrs[n].attributeID = usr_attrs[n].attribute_id; 1399 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) { 1400 attrs[n].content.value.a = usr_attrs[n].a; 1401 attrs[n].content.value.b = usr_attrs[n].b; 1402 } else { 1403 uintptr_t buf = usr_attrs[n].a; 1404 size_t len = usr_attrs[n].b; 1405 uint32_t flags = TEE_MEMORY_ACCESS_READ | 1406 TEE_MEMORY_ACCESS_ANY_OWNER; 1407 1408 res = vm_check_access_rights(&utc->uctx, flags, buf, 1409 len); 1410 if (res != TEE_SUCCESS) 1411 return res; 1412 attrs[n].content.ref.buffer = (void *)buf; 1413 attrs[n].content.ref.length = len; 1414 } 1415 } 1416 1417 return TEE_SUCCESS; 1418 } 1419 1420 enum attr_usage { 1421 ATTR_USAGE_POPULATE, 1422 ATTR_USAGE_GENERATE_KEY 1423 }; 1424 1425 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage, 1426 const struct tee_cryp_obj_type_props 1427 *type_props, 1428 const TEE_Attribute *attrs, 1429 uint32_t attr_count) 1430 { 1431 uint32_t required_flag = 0; 1432 uint32_t opt_flag = 0; 1433 bool all_opt_needed = false; 1434 uint32_t req_attrs = 0; 1435 uint32_t opt_grp_attrs = 0; 1436 uint32_t attrs_found = 0; 1437 size_t n = 0; 1438 uint32_t bit = 0; 1439 uint32_t flags = 0; 1440 int idx = 0; 1441 1442 if (usage == ATTR_USAGE_POPULATE) { 1443 required_flag = TEE_TYPE_ATTR_REQUIRED; 1444 opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP; 1445 all_opt_needed = true; 1446 } else { 1447 required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ; 1448 opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT; 1449 all_opt_needed = false; 1450 } 1451 1452 /* 1453 * First find out which attributes are required and which belong to 1454 * the optional group 1455 */ 1456 for (n = 0; n < type_props->num_type_attrs; n++) { 1457 bit = 1 << n; 1458 flags = type_props->type_attrs[n].flags; 1459 1460 if (flags & required_flag) 1461 req_attrs |= bit; 1462 else if (flags & opt_flag) 1463 opt_grp_attrs |= bit; 1464 } 1465 1466 /* 1467 * Verify that all required attributes are in place and 1468 * that the same attribute isn't repeated. 1469 */ 1470 for (n = 0; n < attr_count; n++) { 1471 idx = tee_svc_cryp_obj_find_type_attr_idx( 1472 attrs[n].attributeID, 1473 type_props); 1474 1475 /* attribute not defined in current object type */ 1476 if (idx < 0) 1477 return TEE_ERROR_ITEM_NOT_FOUND; 1478 1479 bit = 1 << idx; 1480 1481 /* attribute not repeated */ 1482 if ((attrs_found & bit) != 0) 1483 return TEE_ERROR_ITEM_NOT_FOUND; 1484 1485 /* 1486 * Attribute not defined in current object type for this 1487 * usage. 1488 */ 1489 if (!(bit & (req_attrs | opt_grp_attrs))) 1490 return TEE_ERROR_ITEM_NOT_FOUND; 1491 1492 attrs_found |= bit; 1493 } 1494 /* Required attribute missing */ 1495 if ((attrs_found & req_attrs) != req_attrs) 1496 return TEE_ERROR_ITEM_NOT_FOUND; 1497 1498 /* 1499 * If the flag says that "if one of the optional attributes are included 1500 * all of them has to be included" this must be checked. 1501 */ 1502 if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 && 1503 (attrs_found & opt_grp_attrs) != opt_grp_attrs) 1504 return TEE_ERROR_ITEM_NOT_FOUND; 1505 1506 return TEE_SUCCESS; 1507 } 1508 1509 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size) 1510 { 1511 switch (curve) { 1512 case TEE_ECC_CURVE_NIST_P192: 1513 *key_size = 192; 1514 break; 1515 case TEE_ECC_CURVE_NIST_P224: 1516 *key_size = 224; 1517 break; 1518 case TEE_ECC_CURVE_NIST_P256: 1519 *key_size = 256; 1520 break; 1521 case TEE_ECC_CURVE_NIST_P384: 1522 *key_size = 384; 1523 break; 1524 case TEE_ECC_CURVE_NIST_P521: 1525 *key_size = 521; 1526 break; 1527 case TEE_ECC_CURVE_SM2: 1528 *key_size = 256; 1529 break; 1530 default: 1531 return TEE_ERROR_NOT_SUPPORTED; 1532 } 1533 1534 return TEE_SUCCESS; 1535 } 1536 1537 static size_t get_used_bits(const TEE_Attribute *a) 1538 { 1539 int nbits = a->content.ref.length * 8; 1540 int v = 0; 1541 1542 bit_ffs(a->content.ref.buffer, nbits, &v); 1543 return nbits - v; 1544 } 1545 1546 static TEE_Result tee_svc_cryp_obj_populate_type( 1547 struct tee_obj *o, 1548 const struct tee_cryp_obj_type_props *type_props, 1549 const TEE_Attribute *attrs, 1550 uint32_t attr_count) 1551 { 1552 TEE_Result res = TEE_SUCCESS; 1553 uint32_t have_attrs = 0; 1554 size_t obj_size = 0; 1555 size_t n = 0; 1556 int idx = 0; 1557 const struct attr_ops *ops = NULL; 1558 void *attr = NULL; 1559 1560 for (n = 0; n < attr_count; n++) { 1561 idx = tee_svc_cryp_obj_find_type_attr_idx( 1562 attrs[n].attributeID, 1563 type_props); 1564 /* attribute not defined in current object type */ 1565 if (idx < 0) 1566 return TEE_ERROR_ITEM_NOT_FOUND; 1567 1568 have_attrs |= BIT32(idx); 1569 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1570 attr = (uint8_t *)o->attr + 1571 type_props->type_attrs[idx].raw_offs; 1572 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) 1573 res = ops->from_user(attr, &attrs[n].content.value, 1574 sizeof(attrs[n].content.value)); 1575 else 1576 res = ops->from_user(attr, attrs[n].content.ref.buffer, 1577 attrs[n].content.ref.length); 1578 if (res != TEE_SUCCESS) 1579 return res; 1580 1581 /* 1582 * The attribute that gives the size of the object is 1583 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR. 1584 */ 1585 if (type_props->type_attrs[idx].flags & 1586 TEE_TYPE_ATTR_SIZE_INDICATOR) { 1587 /* There should be only one */ 1588 if (obj_size) 1589 return TEE_ERROR_BAD_STATE; 1590 1591 /* 1592 * For ECDSA/ECDH we need to translate curve into 1593 * object size 1594 */ 1595 if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) { 1596 res = get_ec_key_size(attrs[n].content.value.a, 1597 &obj_size); 1598 if (res != TEE_SUCCESS) 1599 return res; 1600 } else { 1601 TEE_ObjectType obj_type = o->info.objectType; 1602 size_t sz = o->info.maxKeySize; 1603 1604 obj_size = attrs[n].content.ref.length * 8; 1605 /* Drop the parity bits for legacy objects */ 1606 if (is_gp_legacy_des_key_size(obj_type, sz)) 1607 obj_size -= obj_size / 8; 1608 } 1609 if (obj_size > o->info.maxKeySize) 1610 return TEE_ERROR_BAD_STATE; 1611 } 1612 1613 /* 1614 * Bignum attributes limited by the number of bits in 1615 * o->info.keySize are flagged with 1616 * TEE_TYPE_ATTR_BIGNUM_MAXBITS. 1617 */ 1618 if (type_props->type_attrs[idx].flags & 1619 TEE_TYPE_ATTR_BIGNUM_MAXBITS) { 1620 if (get_used_bits(attrs + n) > o->info.maxKeySize) 1621 return TEE_ERROR_BAD_STATE; 1622 } 1623 } 1624 1625 o->have_attrs = have_attrs; 1626 o->info.keySize = obj_size; 1627 /* 1628 * In GP Internal API Specification 1.0 the partity bits aren't 1629 * counted when telling the size of the key in bits so remove the 1630 * parity bits here. 1631 */ 1632 if (is_gp_legacy_des_key_size(o->info.objectType, o->info.maxKeySize)) 1633 o->info.keySize -= o->info.keySize / 8; 1634 1635 return TEE_SUCCESS; 1636 } 1637 1638 TEE_Result syscall_cryp_obj_populate(unsigned long obj, 1639 struct utee_attribute *usr_attrs, 1640 unsigned long attr_count) 1641 { 1642 struct ts_session *sess = ts_get_current_session(); 1643 TEE_Result res = TEE_SUCCESS; 1644 struct tee_obj *o = NULL; 1645 const struct tee_cryp_obj_type_props *type_props = NULL; 1646 TEE_Attribute *attrs = NULL; 1647 1648 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1649 if (res != TEE_SUCCESS) 1650 return res; 1651 1652 /* Must be a transient object */ 1653 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1654 return TEE_ERROR_BAD_PARAMETERS; 1655 1656 /* Must not be initialized already */ 1657 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1658 return TEE_ERROR_BAD_PARAMETERS; 1659 1660 type_props = tee_svc_find_type_props(o->info.objectType); 1661 if (!type_props) 1662 return TEE_ERROR_NOT_IMPLEMENTED; 1663 1664 size_t alloc_size = 0; 1665 1666 if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size)) 1667 return TEE_ERROR_OVERFLOW; 1668 1669 attrs = malloc(alloc_size); 1670 if (!attrs) 1671 return TEE_ERROR_OUT_OF_MEMORY; 1672 1673 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count, 1674 attrs); 1675 if (res != TEE_SUCCESS) 1676 goto out; 1677 1678 res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props, 1679 attrs, attr_count); 1680 if (res != TEE_SUCCESS) 1681 goto out; 1682 1683 res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count); 1684 if (res == TEE_SUCCESS) 1685 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1686 1687 out: 1688 free_wipe(attrs); 1689 return res; 1690 } 1691 1692 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src) 1693 { 1694 struct ts_session *sess = ts_get_current_session(); 1695 TEE_Result res = TEE_SUCCESS; 1696 struct tee_obj *dst_o = NULL; 1697 struct tee_obj *src_o = NULL; 1698 1699 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1700 uref_to_vaddr(dst), &dst_o); 1701 if (res != TEE_SUCCESS) 1702 return res; 1703 1704 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1705 uref_to_vaddr(src), &src_o); 1706 if (res != TEE_SUCCESS) 1707 return res; 1708 1709 if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 1710 return TEE_ERROR_BAD_PARAMETERS; 1711 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1712 return TEE_ERROR_BAD_PARAMETERS; 1713 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1714 return TEE_ERROR_BAD_PARAMETERS; 1715 1716 res = tee_obj_attr_copy_from(dst_o, src_o); 1717 if (res != TEE_SUCCESS) 1718 return res; 1719 1720 dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1721 dst_o->info.keySize = src_o->info.keySize; 1722 dst_o->info.objectUsage = src_o->info.objectUsage; 1723 return TEE_SUCCESS; 1724 } 1725 1726 static TEE_Result check_pub_rsa_key(struct bignum *e) 1727 { 1728 size_t n = crypto_bignum_num_bytes(e); 1729 uint8_t bin_key[256 / 8] = { 0 }; 1730 1731 /* 1732 * NIST SP800-56B requires public RSA key to be an odd integer in 1733 * the range 65537 <= e < 2^256. 1734 */ 1735 1736 if (n > sizeof(bin_key) || n < 3) 1737 return TEE_ERROR_BAD_PARAMETERS; 1738 1739 crypto_bignum_bn2bin(e, bin_key); 1740 1741 if (!(bin_key[0] & 1)) /* key must be odd */ 1742 return TEE_ERROR_BAD_PARAMETERS; 1743 1744 if (n == 3) { 1745 uint32_t key = 0; 1746 1747 for (n = 0; n < 3; n++) { 1748 key <<= 8; 1749 key |= bin_key[n]; 1750 } 1751 1752 if (key < 65537) 1753 return TEE_ERROR_BAD_PARAMETERS; 1754 } 1755 1756 /* key is larger than 65537 */ 1757 return TEE_SUCCESS; 1758 } 1759 1760 static TEE_Result tee_svc_obj_generate_key_rsa( 1761 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1762 uint32_t key_size, 1763 const TEE_Attribute *params, uint32_t param_count) 1764 { 1765 TEE_Result res = TEE_SUCCESS; 1766 struct rsa_keypair *key = o->attr; 1767 uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537); 1768 1769 /* Copy the present attributes into the obj before starting */ 1770 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1771 param_count); 1772 if (res != TEE_SUCCESS) 1773 return res; 1774 if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) { 1775 res = check_pub_rsa_key(key->e); 1776 if (res) 1777 return res; 1778 } else { 1779 crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e); 1780 } 1781 res = crypto_acipher_gen_rsa_key(key, key_size); 1782 if (res != TEE_SUCCESS) 1783 return res; 1784 1785 /* Set bits for all known attributes for this object type */ 1786 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 1787 1788 return TEE_SUCCESS; 1789 } 1790 1791 static TEE_Result tee_svc_obj_generate_key_dsa( 1792 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1793 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 1794 { 1795 TEE_Result res; 1796 1797 /* Copy the present attributes into the obj before starting */ 1798 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1799 param_count); 1800 if (res != TEE_SUCCESS) 1801 return res; 1802 1803 res = crypto_acipher_gen_dsa_key(o->attr, key_size); 1804 if (res != TEE_SUCCESS) 1805 return res; 1806 1807 /* Set bits for all known attributes for this object type */ 1808 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 1809 1810 return TEE_SUCCESS; 1811 } 1812 1813 static TEE_Result tee_svc_obj_generate_key_dh( 1814 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1815 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 1816 { 1817 TEE_Result res; 1818 struct dh_keypair *tee_dh_key; 1819 struct bignum *dh_q = NULL; 1820 uint32_t dh_xbits = 0; 1821 1822 /* Copy the present attributes into the obj before starting */ 1823 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1824 param_count); 1825 if (res != TEE_SUCCESS) 1826 return res; 1827 1828 tee_dh_key = (struct dh_keypair *)o->attr; 1829 1830 if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME)) 1831 dh_q = tee_dh_key->q; 1832 if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS)) 1833 dh_xbits = tee_dh_key->xbits; 1834 res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size); 1835 if (res != TEE_SUCCESS) 1836 return res; 1837 1838 /* Set bits for the generated public and private key */ 1839 set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE); 1840 set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE); 1841 set_attribute(o, type_props, TEE_ATTR_DH_X_BITS); 1842 return TEE_SUCCESS; 1843 } 1844 1845 static TEE_Result tee_svc_obj_generate_key_ecc( 1846 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 1847 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 1848 { 1849 TEE_Result res; 1850 struct ecc_keypair *tee_ecc_key; 1851 1852 /* Copy the present attributes into the obj before starting */ 1853 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 1854 param_count); 1855 if (res != TEE_SUCCESS) 1856 return res; 1857 1858 tee_ecc_key = (struct ecc_keypair *)o->attr; 1859 1860 res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size); 1861 if (res != TEE_SUCCESS) 1862 return res; 1863 1864 /* Set bits for the generated public and private key */ 1865 set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE); 1866 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X); 1867 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y); 1868 set_attribute(o, type_props, TEE_ATTR_ECC_CURVE); 1869 return TEE_SUCCESS; 1870 } 1871 1872 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size, 1873 const struct utee_attribute *usr_params, 1874 unsigned long param_count) 1875 { 1876 struct ts_session *sess = ts_get_current_session(); 1877 TEE_Result res = TEE_SUCCESS; 1878 const struct tee_cryp_obj_type_props *type_props = NULL; 1879 struct tee_obj *o = NULL; 1880 struct tee_cryp_obj_secret *key = NULL; 1881 size_t byte_size = 0; 1882 TEE_Attribute *params = NULL; 1883 1884 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1885 if (res != TEE_SUCCESS) 1886 return res; 1887 1888 /* Must be a transient object */ 1889 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1890 return TEE_ERROR_BAD_STATE; 1891 1892 /* Must not be initialized already */ 1893 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1894 return TEE_ERROR_BAD_STATE; 1895 1896 /* Find description of object */ 1897 type_props = tee_svc_find_type_props(o->info.objectType); 1898 if (!type_props) 1899 return TEE_ERROR_NOT_SUPPORTED; 1900 1901 /* Check that key_size follows restrictions */ 1902 res = check_key_size(type_props, key_size); 1903 if (res) 1904 return res; 1905 1906 size_t alloc_size = 0; 1907 1908 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 1909 return TEE_ERROR_OVERFLOW; 1910 1911 params = malloc(alloc_size); 1912 if (!params) 1913 return TEE_ERROR_OUT_OF_MEMORY; 1914 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count, 1915 params); 1916 if (res != TEE_SUCCESS) 1917 goto out; 1918 1919 res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props, 1920 params, param_count); 1921 if (res != TEE_SUCCESS) 1922 goto out; 1923 1924 switch (o->info.objectType) { 1925 case TEE_TYPE_AES: 1926 case TEE_TYPE_DES: 1927 case TEE_TYPE_DES3: 1928 case TEE_TYPE_SM4: 1929 case TEE_TYPE_HMAC_MD5: 1930 case TEE_TYPE_HMAC_SHA1: 1931 case TEE_TYPE_HMAC_SHA224: 1932 case TEE_TYPE_HMAC_SHA256: 1933 case TEE_TYPE_HMAC_SHA384: 1934 case TEE_TYPE_HMAC_SHA512: 1935 case TEE_TYPE_HMAC_SM3: 1936 case TEE_TYPE_GENERIC_SECRET: 1937 byte_size = key_size / 8; 1938 1939 /* 1940 * In GP Internal API Specification 1.0 the partity bits 1941 * aren't counted when telling the size of the key in bits. 1942 */ 1943 if (is_gp_legacy_des_key_size(o->info.objectType, key_size)) 1944 byte_size = (key_size + key_size / 7) / 8; 1945 1946 key = (struct tee_cryp_obj_secret *)o->attr; 1947 if (byte_size > key->alloc_size) { 1948 res = TEE_ERROR_EXCESS_DATA; 1949 goto out; 1950 } 1951 1952 res = crypto_rng_read((void *)(key + 1), byte_size); 1953 if (res != TEE_SUCCESS) 1954 goto out; 1955 1956 key->key_size = byte_size; 1957 1958 /* Set bits for all known attributes for this object type */ 1959 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 1960 1961 break; 1962 1963 case TEE_TYPE_RSA_KEYPAIR: 1964 res = tee_svc_obj_generate_key_rsa(o, type_props, key_size, 1965 params, param_count); 1966 if (res != TEE_SUCCESS) 1967 goto out; 1968 break; 1969 1970 case TEE_TYPE_DSA_KEYPAIR: 1971 res = tee_svc_obj_generate_key_dsa(o, type_props, key_size, 1972 params, param_count); 1973 if (res != TEE_SUCCESS) 1974 goto out; 1975 break; 1976 1977 case TEE_TYPE_DH_KEYPAIR: 1978 res = tee_svc_obj_generate_key_dh(o, type_props, key_size, 1979 params, param_count); 1980 if (res != TEE_SUCCESS) 1981 goto out; 1982 break; 1983 1984 case TEE_TYPE_ECDSA_KEYPAIR: 1985 case TEE_TYPE_ECDH_KEYPAIR: 1986 case TEE_TYPE_SM2_PKE_KEYPAIR: 1987 res = tee_svc_obj_generate_key_ecc(o, type_props, key_size, 1988 params, param_count); 1989 if (res != TEE_SUCCESS) 1990 goto out; 1991 break; 1992 1993 default: 1994 res = TEE_ERROR_BAD_FORMAT; 1995 } 1996 1997 out: 1998 free_wipe(params); 1999 if (res == TEE_SUCCESS) { 2000 o->info.keySize = key_size; 2001 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 2002 } 2003 return res; 2004 } 2005 2006 static TEE_Result tee_svc_cryp_get_state(struct ts_session *sess, 2007 vaddr_t state_id, 2008 struct tee_cryp_state **state) 2009 { 2010 struct tee_cryp_state *s; 2011 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2012 2013 TAILQ_FOREACH(s, &utc->cryp_states, link) { 2014 if (state_id == (vaddr_t)s) { 2015 *state = s; 2016 return TEE_SUCCESS; 2017 } 2018 } 2019 return TEE_ERROR_BAD_PARAMETERS; 2020 } 2021 2022 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs) 2023 { 2024 struct tee_obj *o; 2025 2026 if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS) 2027 tee_obj_close(utc, o); 2028 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) 2029 tee_obj_close(utc, o); 2030 2031 TAILQ_REMOVE(&utc->cryp_states, cs, link); 2032 if (cs->ctx_finalize != NULL) 2033 cs->ctx_finalize(cs->ctx); 2034 2035 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2036 case TEE_OPERATION_CIPHER: 2037 crypto_cipher_free_ctx(cs->ctx); 2038 break; 2039 case TEE_OPERATION_AE: 2040 crypto_authenc_free_ctx(cs->ctx); 2041 break; 2042 case TEE_OPERATION_DIGEST: 2043 crypto_hash_free_ctx(cs->ctx); 2044 break; 2045 case TEE_OPERATION_MAC: 2046 crypto_mac_free_ctx(cs->ctx); 2047 break; 2048 default: 2049 assert(!cs->ctx); 2050 } 2051 2052 free(cs); 2053 } 2054 2055 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o, 2056 uint32_t algo, 2057 TEE_OperationMode mode) 2058 { 2059 uint32_t req_key_type; 2060 uint32_t req_key_type2 = 0; 2061 2062 switch (TEE_ALG_GET_MAIN_ALG(algo)) { 2063 case TEE_MAIN_ALGO_MD5: 2064 req_key_type = TEE_TYPE_HMAC_MD5; 2065 break; 2066 case TEE_MAIN_ALGO_SHA1: 2067 req_key_type = TEE_TYPE_HMAC_SHA1; 2068 break; 2069 case TEE_MAIN_ALGO_SHA224: 2070 req_key_type = TEE_TYPE_HMAC_SHA224; 2071 break; 2072 case TEE_MAIN_ALGO_SHA256: 2073 req_key_type = TEE_TYPE_HMAC_SHA256; 2074 break; 2075 case TEE_MAIN_ALGO_SHA384: 2076 req_key_type = TEE_TYPE_HMAC_SHA384; 2077 break; 2078 case TEE_MAIN_ALGO_SHA512: 2079 req_key_type = TEE_TYPE_HMAC_SHA512; 2080 break; 2081 case TEE_MAIN_ALGO_SM3: 2082 req_key_type = TEE_TYPE_HMAC_SM3; 2083 break; 2084 case TEE_MAIN_ALGO_AES: 2085 req_key_type = TEE_TYPE_AES; 2086 break; 2087 case TEE_MAIN_ALGO_DES: 2088 req_key_type = TEE_TYPE_DES; 2089 break; 2090 case TEE_MAIN_ALGO_DES3: 2091 req_key_type = TEE_TYPE_DES3; 2092 break; 2093 case TEE_MAIN_ALGO_SM4: 2094 req_key_type = TEE_TYPE_SM4; 2095 break; 2096 case TEE_MAIN_ALGO_RSA: 2097 req_key_type = TEE_TYPE_RSA_KEYPAIR; 2098 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2099 req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY; 2100 break; 2101 case TEE_MAIN_ALGO_DSA: 2102 req_key_type = TEE_TYPE_DSA_KEYPAIR; 2103 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2104 req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY; 2105 break; 2106 case TEE_MAIN_ALGO_DH: 2107 req_key_type = TEE_TYPE_DH_KEYPAIR; 2108 break; 2109 case TEE_MAIN_ALGO_ECDSA: 2110 req_key_type = TEE_TYPE_ECDSA_KEYPAIR; 2111 if (mode == TEE_MODE_VERIFY) 2112 req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY; 2113 break; 2114 case TEE_MAIN_ALGO_ECDH: 2115 req_key_type = TEE_TYPE_ECDH_KEYPAIR; 2116 break; 2117 case TEE_MAIN_ALGO_SM2_PKE: 2118 if (mode == TEE_MODE_ENCRYPT) 2119 req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY; 2120 else 2121 req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR; 2122 break; 2123 case TEE_MAIN_ALGO_SM2_DSA_SM3: 2124 if (mode == TEE_MODE_VERIFY) 2125 req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY; 2126 else 2127 req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR; 2128 break; 2129 #if defined(CFG_CRYPTO_SM2_KEP) 2130 case TEE_MAIN_ALGO_SM2_KEP: 2131 req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR; 2132 req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY; 2133 break; 2134 #endif 2135 #if defined(CFG_CRYPTO_HKDF) 2136 case TEE_MAIN_ALGO_HKDF: 2137 req_key_type = TEE_TYPE_HKDF_IKM; 2138 break; 2139 #endif 2140 #if defined(CFG_CRYPTO_CONCAT_KDF) 2141 case TEE_MAIN_ALGO_CONCAT_KDF: 2142 req_key_type = TEE_TYPE_CONCAT_KDF_Z; 2143 break; 2144 #endif 2145 #if defined(CFG_CRYPTO_PBKDF2) 2146 case TEE_MAIN_ALGO_PBKDF2: 2147 req_key_type = TEE_TYPE_PBKDF2_PASSWORD; 2148 break; 2149 #endif 2150 default: 2151 return TEE_ERROR_BAD_PARAMETERS; 2152 } 2153 2154 if (req_key_type != o->info.objectType && 2155 req_key_type2 != o->info.objectType) 2156 return TEE_ERROR_BAD_PARAMETERS; 2157 return TEE_SUCCESS; 2158 } 2159 2160 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode, 2161 unsigned long key1, unsigned long key2, 2162 uint32_t *state) 2163 { 2164 struct ts_session *sess = ts_get_current_session(); 2165 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2166 TEE_Result res = TEE_SUCCESS; 2167 struct tee_cryp_state *cs = NULL; 2168 struct tee_obj *o1 = NULL; 2169 struct tee_obj *o2 = NULL; 2170 2171 if (key1 != 0) { 2172 res = tee_obj_get(utc, uref_to_vaddr(key1), &o1); 2173 if (res != TEE_SUCCESS) 2174 return res; 2175 if (o1->busy) 2176 return TEE_ERROR_BAD_PARAMETERS; 2177 res = tee_svc_cryp_check_key_type(o1, algo, mode); 2178 if (res != TEE_SUCCESS) 2179 return res; 2180 } 2181 if (key2 != 0) { 2182 res = tee_obj_get(utc, uref_to_vaddr(key2), &o2); 2183 if (res != TEE_SUCCESS) 2184 return res; 2185 if (o2->busy) 2186 return TEE_ERROR_BAD_PARAMETERS; 2187 res = tee_svc_cryp_check_key_type(o2, algo, mode); 2188 if (res != TEE_SUCCESS) 2189 return res; 2190 } 2191 2192 cs = calloc(1, sizeof(struct tee_cryp_state)); 2193 if (!cs) 2194 return TEE_ERROR_OUT_OF_MEMORY; 2195 TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link); 2196 cs->algo = algo; 2197 cs->mode = mode; 2198 cs->state = CRYP_STATE_UNINITIALIZED; 2199 2200 switch (TEE_ALG_GET_CLASS(algo)) { 2201 case TEE_OPERATION_CIPHER: 2202 if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) || 2203 (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) { 2204 res = TEE_ERROR_BAD_PARAMETERS; 2205 } else { 2206 res = crypto_cipher_alloc_ctx(&cs->ctx, algo); 2207 if (res != TEE_SUCCESS) 2208 break; 2209 } 2210 break; 2211 case TEE_OPERATION_AE: 2212 if (key1 == 0 || key2 != 0) { 2213 res = TEE_ERROR_BAD_PARAMETERS; 2214 } else { 2215 res = crypto_authenc_alloc_ctx(&cs->ctx, algo); 2216 if (res != TEE_SUCCESS) 2217 break; 2218 } 2219 break; 2220 case TEE_OPERATION_MAC: 2221 if (key1 == 0 || key2 != 0) { 2222 res = TEE_ERROR_BAD_PARAMETERS; 2223 } else { 2224 res = crypto_mac_alloc_ctx(&cs->ctx, algo); 2225 if (res != TEE_SUCCESS) 2226 break; 2227 } 2228 break; 2229 case TEE_OPERATION_DIGEST: 2230 if (key1 != 0 || key2 != 0) { 2231 res = TEE_ERROR_BAD_PARAMETERS; 2232 } else { 2233 res = crypto_hash_alloc_ctx(&cs->ctx, algo); 2234 if (res != TEE_SUCCESS) 2235 break; 2236 } 2237 break; 2238 case TEE_OPERATION_ASYMMETRIC_CIPHER: 2239 case TEE_OPERATION_ASYMMETRIC_SIGNATURE: 2240 if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 && 2241 !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) { 2242 res = TEE_ERROR_NOT_SUPPORTED; 2243 break; 2244 } 2245 if (key1 == 0 || key2 != 0) 2246 res = TEE_ERROR_BAD_PARAMETERS; 2247 break; 2248 case TEE_OPERATION_KEY_DERIVATION: 2249 if (algo == TEE_ALG_SM2_KEP) { 2250 if (key1 == 0 || key2 == 0) 2251 res = TEE_ERROR_BAD_PARAMETERS; 2252 } else { 2253 if (key1 == 0 || key2 != 0) 2254 res = TEE_ERROR_BAD_PARAMETERS; 2255 } 2256 break; 2257 default: 2258 res = TEE_ERROR_NOT_SUPPORTED; 2259 break; 2260 } 2261 if (res != TEE_SUCCESS) 2262 goto out; 2263 2264 res = copy_kaddr_to_uref(state, cs); 2265 if (res != TEE_SUCCESS) 2266 goto out; 2267 2268 /* Register keys */ 2269 if (o1 != NULL) { 2270 o1->busy = true; 2271 cs->key1 = (vaddr_t)o1; 2272 } 2273 if (o2 != NULL) { 2274 o2->busy = true; 2275 cs->key2 = (vaddr_t)o2; 2276 } 2277 2278 out: 2279 if (res != TEE_SUCCESS) 2280 cryp_state_free(utc, cs); 2281 return res; 2282 } 2283 2284 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src) 2285 { 2286 struct ts_session *sess = ts_get_current_session(); 2287 TEE_Result res = TEE_SUCCESS; 2288 struct tee_cryp_state *cs_dst = NULL; 2289 struct tee_cryp_state *cs_src = NULL; 2290 2291 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst); 2292 if (res != TEE_SUCCESS) 2293 return res; 2294 2295 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src); 2296 if (res != TEE_SUCCESS) 2297 return res; 2298 if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode) 2299 return TEE_ERROR_BAD_PARAMETERS; 2300 2301 switch (TEE_ALG_GET_CLASS(cs_src->algo)) { 2302 case TEE_OPERATION_CIPHER: 2303 crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx); 2304 break; 2305 case TEE_OPERATION_AE: 2306 crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx); 2307 break; 2308 case TEE_OPERATION_DIGEST: 2309 crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx); 2310 break; 2311 case TEE_OPERATION_MAC: 2312 crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx); 2313 break; 2314 default: 2315 return TEE_ERROR_BAD_STATE; 2316 } 2317 2318 cs_dst->state = cs_src->state; 2319 2320 return TEE_SUCCESS; 2321 } 2322 2323 void tee_svc_cryp_free_states(struct user_ta_ctx *utc) 2324 { 2325 struct tee_cryp_state_head *states = &utc->cryp_states; 2326 2327 while (!TAILQ_EMPTY(states)) 2328 cryp_state_free(utc, TAILQ_FIRST(states)); 2329 } 2330 2331 TEE_Result syscall_cryp_state_free(unsigned long state) 2332 { 2333 struct ts_session *sess = ts_get_current_session(); 2334 TEE_Result res = TEE_SUCCESS; 2335 struct tee_cryp_state *cs = NULL; 2336 2337 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2338 if (res != TEE_SUCCESS) 2339 return res; 2340 cryp_state_free(to_user_ta_ctx(sess->ctx), cs); 2341 return TEE_SUCCESS; 2342 } 2343 2344 TEE_Result syscall_hash_init(unsigned long state, 2345 const void *iv __maybe_unused, 2346 size_t iv_len __maybe_unused) 2347 { 2348 struct ts_session *sess = ts_get_current_session(); 2349 TEE_Result res = TEE_SUCCESS; 2350 struct tee_cryp_state *cs = NULL; 2351 2352 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2353 if (res != TEE_SUCCESS) 2354 return res; 2355 2356 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2357 case TEE_OPERATION_DIGEST: 2358 res = crypto_hash_init(cs->ctx); 2359 if (res != TEE_SUCCESS) 2360 return res; 2361 break; 2362 case TEE_OPERATION_MAC: 2363 { 2364 struct tee_obj *o; 2365 struct tee_cryp_obj_secret *key; 2366 2367 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 2368 cs->key1, &o); 2369 if (res != TEE_SUCCESS) 2370 return res; 2371 if ((o->info.handleFlags & 2372 TEE_HANDLE_FLAG_INITIALIZED) == 0) 2373 return TEE_ERROR_BAD_PARAMETERS; 2374 2375 key = (struct tee_cryp_obj_secret *)o->attr; 2376 res = crypto_mac_init(cs->ctx, (void *)(key + 1), 2377 key->key_size); 2378 if (res != TEE_SUCCESS) 2379 return res; 2380 break; 2381 } 2382 default: 2383 return TEE_ERROR_BAD_PARAMETERS; 2384 } 2385 2386 cs->state = CRYP_STATE_INITIALIZED; 2387 2388 return TEE_SUCCESS; 2389 } 2390 2391 TEE_Result syscall_hash_update(unsigned long state, const void *chunk, 2392 size_t chunk_size) 2393 { 2394 struct ts_session *sess = ts_get_current_session(); 2395 struct tee_cryp_state *cs = NULL; 2396 TEE_Result res = TEE_SUCCESS; 2397 2398 /* No data, but size provided isn't valid parameters. */ 2399 if (!chunk && chunk_size) 2400 return TEE_ERROR_BAD_PARAMETERS; 2401 2402 /* Zero length hash is valid, but nothing we need to do. */ 2403 if (!chunk_size) 2404 return TEE_SUCCESS; 2405 2406 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2407 TEE_MEMORY_ACCESS_READ | 2408 TEE_MEMORY_ACCESS_ANY_OWNER, 2409 (uaddr_t)chunk, chunk_size); 2410 if (res != TEE_SUCCESS) 2411 return res; 2412 2413 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2414 if (res != TEE_SUCCESS) 2415 return res; 2416 2417 if (cs->state != CRYP_STATE_INITIALIZED) 2418 return TEE_ERROR_BAD_STATE; 2419 2420 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2421 case TEE_OPERATION_DIGEST: 2422 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2423 if (res != TEE_SUCCESS) 2424 return res; 2425 break; 2426 case TEE_OPERATION_MAC: 2427 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2428 if (res != TEE_SUCCESS) 2429 return res; 2430 break; 2431 default: 2432 return TEE_ERROR_BAD_PARAMETERS; 2433 } 2434 2435 return TEE_SUCCESS; 2436 } 2437 2438 TEE_Result syscall_hash_final(unsigned long state, const void *chunk, 2439 size_t chunk_size, void *hash, uint64_t *hash_len) 2440 { 2441 struct ts_session *sess = ts_get_current_session(); 2442 struct tee_cryp_state *cs = NULL; 2443 TEE_Result res2 = TEE_SUCCESS; 2444 TEE_Result res = TEE_SUCCESS; 2445 size_t hash_size = 0; 2446 size_t hlen = 0; 2447 2448 /* No data, but size provided isn't valid parameters. */ 2449 if (!chunk && chunk_size) 2450 return TEE_ERROR_BAD_PARAMETERS; 2451 2452 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2453 TEE_MEMORY_ACCESS_READ | 2454 TEE_MEMORY_ACCESS_ANY_OWNER, 2455 (uaddr_t)chunk, chunk_size); 2456 if (res != TEE_SUCCESS) 2457 return res; 2458 2459 res = get_user_u64_as_size_t(&hlen, hash_len); 2460 if (res != TEE_SUCCESS) 2461 return res; 2462 2463 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2464 TEE_MEMORY_ACCESS_READ | 2465 TEE_MEMORY_ACCESS_WRITE | 2466 TEE_MEMORY_ACCESS_ANY_OWNER, 2467 (uaddr_t)hash, hlen); 2468 if (res != TEE_SUCCESS) 2469 return res; 2470 2471 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2472 if (res != TEE_SUCCESS) 2473 return res; 2474 2475 if (cs->state != CRYP_STATE_INITIALIZED) 2476 return TEE_ERROR_BAD_STATE; 2477 2478 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2479 case TEE_OPERATION_DIGEST: 2480 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2481 if (res != TEE_SUCCESS) 2482 return res; 2483 if (hlen < hash_size) { 2484 res = TEE_ERROR_SHORT_BUFFER; 2485 goto out; 2486 } 2487 2488 if (chunk_size) { 2489 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2490 if (res != TEE_SUCCESS) 2491 return res; 2492 } 2493 2494 res = crypto_hash_final(cs->ctx, hash, hash_size); 2495 if (res != TEE_SUCCESS) 2496 return res; 2497 break; 2498 2499 case TEE_OPERATION_MAC: 2500 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2501 if (res != TEE_SUCCESS) 2502 return res; 2503 if (hlen < hash_size) { 2504 res = TEE_ERROR_SHORT_BUFFER; 2505 goto out; 2506 } 2507 2508 if (chunk_size) { 2509 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2510 if (res != TEE_SUCCESS) 2511 return res; 2512 } 2513 2514 res = crypto_mac_final(cs->ctx, hash, hash_size); 2515 if (res != TEE_SUCCESS) 2516 return res; 2517 break; 2518 2519 default: 2520 return TEE_ERROR_BAD_PARAMETERS; 2521 } 2522 out: 2523 res2 = put_user_u64(hash_len, hash_size); 2524 if (res2 != TEE_SUCCESS) 2525 return res2; 2526 return res; 2527 } 2528 2529 TEE_Result syscall_cipher_init(unsigned long state, const void *iv, 2530 size_t iv_len) 2531 { 2532 struct ts_session *sess = ts_get_current_session(); 2533 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2534 struct tee_cryp_obj_secret *key1 = NULL; 2535 struct tee_cryp_state *cs = NULL; 2536 TEE_Result res = TEE_SUCCESS; 2537 struct tee_obj *o = NULL; 2538 2539 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2540 if (res != TEE_SUCCESS) 2541 return res; 2542 2543 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER) 2544 return TEE_ERROR_BAD_STATE; 2545 2546 res = vm_check_access_rights(&utc->uctx, 2547 TEE_MEMORY_ACCESS_READ | 2548 TEE_MEMORY_ACCESS_ANY_OWNER, 2549 (uaddr_t)iv, iv_len); 2550 if (res != TEE_SUCCESS) 2551 return res; 2552 2553 res = tee_obj_get(utc, cs->key1, &o); 2554 if (res != TEE_SUCCESS) 2555 return res; 2556 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 2557 return TEE_ERROR_BAD_PARAMETERS; 2558 2559 key1 = o->attr; 2560 2561 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) { 2562 struct tee_cryp_obj_secret *key2 = o->attr; 2563 2564 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 2565 return TEE_ERROR_BAD_PARAMETERS; 2566 2567 res = crypto_cipher_init(cs->ctx, cs->mode, 2568 (uint8_t *)(key1 + 1), key1->key_size, 2569 (uint8_t *)(key2 + 1), key2->key_size, 2570 iv, iv_len); 2571 } else { 2572 res = crypto_cipher_init(cs->ctx, cs->mode, 2573 (uint8_t *)(key1 + 1), key1->key_size, 2574 NULL, 0, iv, iv_len); 2575 } 2576 if (res != TEE_SUCCESS) 2577 return res; 2578 2579 cs->ctx_finalize = crypto_cipher_final; 2580 cs->state = CRYP_STATE_INITIALIZED; 2581 2582 return TEE_SUCCESS; 2583 } 2584 2585 static TEE_Result tee_svc_cipher_update_helper(unsigned long state, 2586 bool last_block, const void *src, size_t src_len, 2587 void *dst, uint64_t *dst_len) 2588 { 2589 struct ts_session *sess = ts_get_current_session(); 2590 struct tee_cryp_state *cs = NULL; 2591 TEE_Result res = TEE_SUCCESS; 2592 size_t dlen = 0; 2593 2594 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2595 if (res != TEE_SUCCESS) 2596 return res; 2597 2598 if (cs->state != CRYP_STATE_INITIALIZED) 2599 return TEE_ERROR_BAD_STATE; 2600 2601 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2602 TEE_MEMORY_ACCESS_READ | 2603 TEE_MEMORY_ACCESS_ANY_OWNER, 2604 (uaddr_t)src, src_len); 2605 if (res != TEE_SUCCESS) 2606 return res; 2607 2608 if (!dst_len) { 2609 dlen = 0; 2610 } else { 2611 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 2612 uint32_t flags = TEE_MEMORY_ACCESS_READ | 2613 TEE_MEMORY_ACCESS_WRITE | 2614 TEE_MEMORY_ACCESS_ANY_OWNER; 2615 2616 res = get_user_u64_as_size_t(&dlen, dst_len); 2617 if (res != TEE_SUCCESS) 2618 return res; 2619 2620 res = vm_check_access_rights(uctx, flags, (uaddr_t)dst, dlen); 2621 if (res != TEE_SUCCESS) 2622 return res; 2623 } 2624 2625 if (dlen < src_len) { 2626 res = TEE_ERROR_SHORT_BUFFER; 2627 goto out; 2628 } 2629 2630 if (src_len > 0) { 2631 /* Permit src_len == 0 to finalize the operation */ 2632 res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode, 2633 last_block, src, src_len, dst); 2634 } 2635 2636 if (last_block && cs->ctx_finalize != NULL) { 2637 cs->ctx_finalize(cs->ctx); 2638 cs->ctx_finalize = NULL; 2639 } 2640 2641 out: 2642 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 2643 dst_len != NULL) { 2644 TEE_Result res2; 2645 2646 res2 = put_user_u64(dst_len, src_len); 2647 if (res2 != TEE_SUCCESS) 2648 res = res2; 2649 } 2650 2651 return res; 2652 } 2653 2654 TEE_Result syscall_cipher_update(unsigned long state, const void *src, 2655 size_t src_len, void *dst, uint64_t *dst_len) 2656 { 2657 return tee_svc_cipher_update_helper(state, false /* last_block */, 2658 src, src_len, dst, dst_len); 2659 } 2660 2661 TEE_Result syscall_cipher_final(unsigned long state, const void *src, 2662 size_t src_len, void *dst, uint64_t *dst_len) 2663 { 2664 return tee_svc_cipher_update_helper(state, true /* last_block */, 2665 src, src_len, dst, dst_len); 2666 } 2667 2668 #if defined(CFG_CRYPTO_HKDF) 2669 static TEE_Result get_hkdf_params(const TEE_Attribute *params, 2670 uint32_t param_count, 2671 void **salt, size_t *salt_len, void **info, 2672 size_t *info_len, size_t *okm_len) 2673 { 2674 size_t n; 2675 enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 }; 2676 uint8_t found = 0; 2677 2678 *salt = *info = NULL; 2679 *salt_len = *info_len = *okm_len = 0; 2680 2681 for (n = 0; n < param_count; n++) { 2682 switch (params[n].attributeID) { 2683 case TEE_ATTR_HKDF_SALT: 2684 if (!(found & SALT)) { 2685 *salt = params[n].content.ref.buffer; 2686 *salt_len = params[n].content.ref.length; 2687 found |= SALT; 2688 } 2689 break; 2690 case TEE_ATTR_HKDF_OKM_LENGTH: 2691 if (!(found & LENGTH)) { 2692 *okm_len = params[n].content.value.a; 2693 found |= LENGTH; 2694 } 2695 break; 2696 case TEE_ATTR_HKDF_INFO: 2697 if (!(found & INFO)) { 2698 *info = params[n].content.ref.buffer; 2699 *info_len = params[n].content.ref.length; 2700 found |= INFO; 2701 } 2702 break; 2703 default: 2704 /* Unexpected attribute */ 2705 return TEE_ERROR_BAD_PARAMETERS; 2706 } 2707 2708 } 2709 2710 if (!(found & LENGTH)) 2711 return TEE_ERROR_BAD_PARAMETERS; 2712 2713 return TEE_SUCCESS; 2714 } 2715 #endif 2716 2717 #if defined(CFG_CRYPTO_CONCAT_KDF) 2718 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params, 2719 uint32_t param_count, 2720 void **other_info, 2721 size_t *other_info_len, 2722 size_t *derived_key_len) 2723 { 2724 size_t n; 2725 enum { LENGTH = 0x1, INFO = 0x2 }; 2726 uint8_t found = 0; 2727 2728 *other_info = NULL; 2729 *other_info_len = *derived_key_len = 0; 2730 2731 for (n = 0; n < param_count; n++) { 2732 switch (params[n].attributeID) { 2733 case TEE_ATTR_CONCAT_KDF_OTHER_INFO: 2734 if (!(found & INFO)) { 2735 *other_info = params[n].content.ref.buffer; 2736 *other_info_len = params[n].content.ref.length; 2737 found |= INFO; 2738 } 2739 break; 2740 case TEE_ATTR_CONCAT_KDF_DKM_LENGTH: 2741 if (!(found & LENGTH)) { 2742 *derived_key_len = params[n].content.value.a; 2743 found |= LENGTH; 2744 } 2745 break; 2746 default: 2747 /* Unexpected attribute */ 2748 return TEE_ERROR_BAD_PARAMETERS; 2749 } 2750 } 2751 2752 if (!(found & LENGTH)) 2753 return TEE_ERROR_BAD_PARAMETERS; 2754 2755 return TEE_SUCCESS; 2756 } 2757 #endif 2758 2759 #if defined(CFG_CRYPTO_PBKDF2) 2760 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params, 2761 uint32_t param_count, void **salt, 2762 size_t *salt_len, size_t *derived_key_len, 2763 size_t *iteration_count) 2764 { 2765 size_t n; 2766 enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 }; 2767 uint8_t found = 0; 2768 2769 *salt = NULL; 2770 *salt_len = *derived_key_len = *iteration_count = 0; 2771 2772 for (n = 0; n < param_count; n++) { 2773 switch (params[n].attributeID) { 2774 case TEE_ATTR_PBKDF2_SALT: 2775 if (!(found & SALT)) { 2776 *salt = params[n].content.ref.buffer; 2777 *salt_len = params[n].content.ref.length; 2778 found |= SALT; 2779 } 2780 break; 2781 case TEE_ATTR_PBKDF2_DKM_LENGTH: 2782 if (!(found & LENGTH)) { 2783 *derived_key_len = params[n].content.value.a; 2784 found |= LENGTH; 2785 } 2786 break; 2787 case TEE_ATTR_PBKDF2_ITERATION_COUNT: 2788 if (!(found & COUNT)) { 2789 *iteration_count = params[n].content.value.a; 2790 found |= COUNT; 2791 } 2792 break; 2793 default: 2794 /* Unexpected attribute */ 2795 return TEE_ERROR_BAD_PARAMETERS; 2796 } 2797 } 2798 2799 if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT)) 2800 return TEE_ERROR_BAD_PARAMETERS; 2801 2802 return TEE_SUCCESS; 2803 } 2804 #endif 2805 2806 #if defined(CFG_CRYPTO_SM2_KEP) 2807 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params, 2808 uint32_t param_count, 2809 struct ecc_public_key *peer_key, 2810 struct ecc_public_key *peer_eph_key, 2811 struct sm2_kep_parms *kep_parms) 2812 { 2813 TEE_Result res = TEE_ERROR_GENERIC; 2814 size_t n; 2815 enum { 2816 IS_INITIATOR, 2817 PEER_KEY_X, 2818 PEER_KEY_Y, 2819 PEER_EPH_KEY_X, 2820 PEER_EPH_KEY_Y, 2821 INITIATOR_ID, 2822 RESPONDER_ID, 2823 }; 2824 uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) | 2825 BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) | 2826 BIT(INITIATOR_ID) | BIT(RESPONDER_ID); 2827 uint8_t found = 0; 2828 2829 res = crypto_acipher_alloc_ecc_public_key(peer_key, 256); 2830 if (res) 2831 goto out; 2832 2833 res = crypto_acipher_alloc_ecc_public_key(peer_eph_key, 256); 2834 if (res) 2835 goto out; 2836 2837 peer_key->curve = TEE_ECC_CURVE_SM2; 2838 peer_eph_key->curve = TEE_ECC_CURVE_SM2; 2839 2840 for (n = 0; n < param_count; n++) { 2841 const TEE_Attribute *p = ¶ms[n]; 2842 2843 switch (p->attributeID) { 2844 case TEE_ATTR_SM2_KEP_USER: 2845 kep_parms->is_initiator = !p->content.value.a; 2846 found |= BIT(IS_INITIATOR); 2847 break; 2848 case TEE_ATTR_ECC_PUBLIC_VALUE_X: 2849 crypto_bignum_bin2bn(p->content.ref.buffer, 2850 p->content.ref.length, 2851 peer_key->x); 2852 found |= BIT(PEER_KEY_X); 2853 break; 2854 case TEE_ATTR_ECC_PUBLIC_VALUE_Y: 2855 crypto_bignum_bin2bn(p->content.ref.buffer, 2856 p->content.ref.length, 2857 peer_key->y); 2858 found |= BIT(PEER_KEY_Y); 2859 break; 2860 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X: 2861 crypto_bignum_bin2bn(p->content.ref.buffer, 2862 p->content.ref.length, 2863 peer_eph_key->x); 2864 found |= BIT(PEER_EPH_KEY_X); 2865 break; 2866 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y: 2867 crypto_bignum_bin2bn(p->content.ref.buffer, 2868 p->content.ref.length, 2869 peer_eph_key->y); 2870 found |= BIT(PEER_EPH_KEY_Y); 2871 break; 2872 case TEE_ATTR_SM2_ID_INITIATOR: 2873 kep_parms->initiator_id = p->content.ref.buffer; 2874 kep_parms->initiator_id_len = p->content.ref.length; 2875 found |= BIT(INITIATOR_ID); 2876 break; 2877 case TEE_ATTR_SM2_ID_RESPONDER: 2878 kep_parms->responder_id = p->content.ref.buffer; 2879 kep_parms->responder_id_len = p->content.ref.length; 2880 found |= BIT(RESPONDER_ID); 2881 break; 2882 case TEE_ATTR_SM2_KEP_CONFIRMATION_IN: 2883 kep_parms->conf_in = p->content.ref.buffer; 2884 kep_parms->conf_in_len = p->content.ref.length; 2885 break; 2886 case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT: 2887 kep_parms->conf_out = p->content.ref.buffer; 2888 kep_parms->conf_out_len = p->content.ref.length; 2889 break; 2890 default: 2891 /* Unexpected attribute */ 2892 res = TEE_ERROR_BAD_PARAMETERS; 2893 goto out; 2894 } 2895 } 2896 2897 if ((found & mandatory) != mandatory) { 2898 res = TEE_ERROR_BAD_PARAMETERS; 2899 goto out; 2900 } 2901 2902 return TEE_SUCCESS; 2903 out: 2904 crypto_acipher_free_ecc_public_key(peer_key); 2905 crypto_acipher_free_ecc_public_key(peer_eph_key); 2906 return res; 2907 } 2908 #endif 2909 2910 TEE_Result syscall_cryp_derive_key(unsigned long state, 2911 const struct utee_attribute *usr_params, 2912 unsigned long param_count, unsigned long derived_key) 2913 { 2914 struct ts_session *sess = ts_get_current_session(); 2915 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2916 TEE_Result res = TEE_ERROR_NOT_SUPPORTED; 2917 struct tee_obj *ko = NULL; 2918 struct tee_obj *so = NULL; 2919 struct tee_cryp_state *cs = NULL; 2920 struct tee_cryp_obj_secret *sk = NULL; 2921 const struct tee_cryp_obj_type_props *type_props = NULL; 2922 TEE_Attribute *params = NULL; 2923 size_t alloc_size = 0; 2924 2925 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2926 if (res != TEE_SUCCESS) 2927 return res; 2928 2929 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 2930 return TEE_ERROR_OVERFLOW; 2931 2932 params = malloc(alloc_size); 2933 if (!params) 2934 return TEE_ERROR_OUT_OF_MEMORY; 2935 res = copy_in_attrs(utc, usr_params, param_count, params); 2936 if (res != TEE_SUCCESS) 2937 goto out; 2938 2939 /* Get key set in operation */ 2940 res = tee_obj_get(utc, cs->key1, &ko); 2941 if (res != TEE_SUCCESS) 2942 goto out; 2943 2944 res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so); 2945 if (res != TEE_SUCCESS) 2946 goto out; 2947 2948 /* Find information needed about the object to initialize */ 2949 sk = so->attr; 2950 2951 /* Find description of object */ 2952 type_props = tee_svc_find_type_props(so->info.objectType); 2953 if (!type_props) { 2954 res = TEE_ERROR_NOT_SUPPORTED; 2955 goto out; 2956 } 2957 2958 if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) { 2959 struct bignum *pub; 2960 struct bignum *ss; 2961 2962 if (param_count != 1 || 2963 params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) { 2964 res = TEE_ERROR_BAD_PARAMETERS; 2965 goto out; 2966 } 2967 2968 size_t bin_size = params[0].content.ref.length; 2969 2970 if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) { 2971 res = TEE_ERROR_OVERFLOW; 2972 goto out; 2973 } 2974 2975 pub = crypto_bignum_allocate(alloc_size); 2976 ss = crypto_bignum_allocate(alloc_size); 2977 if (pub && ss) { 2978 crypto_bignum_bin2bn(params[0].content.ref.buffer, 2979 bin_size, pub); 2980 res = crypto_acipher_dh_shared_secret(ko->attr, 2981 pub, ss); 2982 if (res == TEE_SUCCESS) { 2983 sk->key_size = crypto_bignum_num_bytes(ss); 2984 crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1)); 2985 so->info.handleFlags |= 2986 TEE_HANDLE_FLAG_INITIALIZED; 2987 set_attribute(so, type_props, 2988 TEE_ATTR_SECRET_VALUE); 2989 } 2990 } else { 2991 res = TEE_ERROR_OUT_OF_MEMORY; 2992 } 2993 crypto_bignum_free(pub); 2994 crypto_bignum_free(ss); 2995 } else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) { 2996 struct ecc_public_key key_public; 2997 uint8_t *pt_secret; 2998 unsigned long pt_secret_len; 2999 3000 if (param_count != 2 || 3001 params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X || 3002 params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) { 3003 res = TEE_ERROR_BAD_PARAMETERS; 3004 goto out; 3005 } 3006 3007 switch (cs->algo) { 3008 case TEE_ALG_ECDH_P192: 3009 alloc_size = 192; 3010 break; 3011 case TEE_ALG_ECDH_P224: 3012 alloc_size = 224; 3013 break; 3014 case TEE_ALG_ECDH_P256: 3015 alloc_size = 256; 3016 break; 3017 case TEE_ALG_ECDH_P384: 3018 alloc_size = 384; 3019 break; 3020 case TEE_ALG_ECDH_P521: 3021 alloc_size = 521; 3022 break; 3023 default: 3024 res = TEE_ERROR_NOT_IMPLEMENTED; 3025 goto out; 3026 } 3027 3028 /* Create the public key */ 3029 res = crypto_acipher_alloc_ecc_public_key(&key_public, 3030 alloc_size); 3031 if (res != TEE_SUCCESS) 3032 goto out; 3033 key_public.curve = ((struct ecc_keypair *)ko->attr)->curve; 3034 crypto_bignum_bin2bn(params[0].content.ref.buffer, 3035 params[0].content.ref.length, 3036 key_public.x); 3037 crypto_bignum_bin2bn(params[1].content.ref.buffer, 3038 params[1].content.ref.length, 3039 key_public.y); 3040 3041 pt_secret = (uint8_t *)(sk + 1); 3042 pt_secret_len = sk->alloc_size; 3043 res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public, 3044 pt_secret, 3045 &pt_secret_len); 3046 3047 if (res == TEE_SUCCESS) { 3048 sk->key_size = pt_secret_len; 3049 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3050 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3051 } 3052 3053 /* free the public key */ 3054 crypto_acipher_free_ecc_public_key(&key_public); 3055 } 3056 #if defined(CFG_CRYPTO_HKDF) 3057 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) { 3058 void *salt, *info; 3059 size_t salt_len, info_len, okm_len; 3060 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3061 struct tee_cryp_obj_secret *ik = ko->attr; 3062 const uint8_t *ikm = (const uint8_t *)(ik + 1); 3063 3064 res = get_hkdf_params(params, param_count, &salt, &salt_len, 3065 &info, &info_len, &okm_len); 3066 if (res != TEE_SUCCESS) 3067 goto out; 3068 3069 /* Requested size must fit into the output object's buffer */ 3070 if (okm_len > ik->alloc_size) { 3071 res = TEE_ERROR_BAD_PARAMETERS; 3072 goto out; 3073 } 3074 3075 res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len, 3076 info, info_len, (uint8_t *)(sk + 1), 3077 okm_len); 3078 if (res == TEE_SUCCESS) { 3079 sk->key_size = okm_len; 3080 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3081 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3082 } 3083 } 3084 #endif 3085 #if defined(CFG_CRYPTO_CONCAT_KDF) 3086 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) { 3087 void *info; 3088 size_t info_len, derived_key_len; 3089 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3090 struct tee_cryp_obj_secret *ss = ko->attr; 3091 const uint8_t *shared_secret = (const uint8_t *)(ss + 1); 3092 3093 res = get_concat_kdf_params(params, param_count, &info, 3094 &info_len, &derived_key_len); 3095 if (res != TEE_SUCCESS) 3096 goto out; 3097 3098 /* Requested size must fit into the output object's buffer */ 3099 if (derived_key_len > ss->alloc_size) { 3100 res = TEE_ERROR_BAD_PARAMETERS; 3101 goto out; 3102 } 3103 3104 res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size, 3105 info, info_len, (uint8_t *)(sk + 1), 3106 derived_key_len); 3107 if (res == TEE_SUCCESS) { 3108 sk->key_size = derived_key_len; 3109 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3110 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3111 } 3112 } 3113 #endif 3114 #if defined(CFG_CRYPTO_PBKDF2) 3115 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) { 3116 void *salt; 3117 size_t salt_len, iteration_count, derived_key_len; 3118 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3119 struct tee_cryp_obj_secret *ss = ko->attr; 3120 const uint8_t *password = (const uint8_t *)(ss + 1); 3121 3122 res = get_pbkdf2_params(params, param_count, &salt, &salt_len, 3123 &derived_key_len, &iteration_count); 3124 if (res != TEE_SUCCESS) 3125 goto out; 3126 3127 /* Requested size must fit into the output object's buffer */ 3128 if (derived_key_len > ss->alloc_size) { 3129 res = TEE_ERROR_BAD_PARAMETERS; 3130 goto out; 3131 } 3132 3133 res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt, 3134 salt_len, iteration_count, 3135 (uint8_t *)(sk + 1), derived_key_len); 3136 if (res == TEE_SUCCESS) { 3137 sk->key_size = derived_key_len; 3138 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3139 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3140 } 3141 } 3142 #endif 3143 #if defined(CFG_CRYPTO_SM2_KEP) 3144 else if (cs->algo == TEE_ALG_SM2_KEP) { 3145 struct ecc_public_key peer_eph_key = { }; 3146 struct ecc_public_key peer_key = { }; 3147 struct sm2_kep_parms kep_parms = { 3148 .out = (uint8_t *)(sk + 1), 3149 .out_len = so->info.maxKeySize, 3150 }; 3151 struct tee_obj *ko2 = NULL; 3152 3153 res = tee_obj_get(utc, cs->key2, &ko2); 3154 if (res != TEE_SUCCESS) 3155 goto out; 3156 3157 res = get_sm2_kep_params(params, param_count, &peer_key, 3158 &peer_eph_key, &kep_parms); 3159 if (res != TEE_SUCCESS) 3160 goto out; 3161 3162 /* 3163 * key1 is our private keypair, key2 is our ephemeral public key 3164 */ 3165 res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */ 3166 ko2->attr, /* key2 */ 3167 &peer_key, &peer_eph_key, 3168 &kep_parms); 3169 3170 if (res == TEE_SUCCESS) { 3171 sk->key_size = kep_parms.out_len; 3172 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3173 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3174 } 3175 crypto_acipher_free_ecc_public_key(&peer_key); 3176 crypto_acipher_free_ecc_public_key(&peer_eph_key); 3177 } 3178 #endif 3179 else 3180 res = TEE_ERROR_NOT_SUPPORTED; 3181 3182 out: 3183 free_wipe(params); 3184 return res; 3185 } 3186 3187 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen) 3188 { 3189 struct ts_session *sess = ts_get_current_session(); 3190 TEE_Result res = TEE_SUCCESS; 3191 3192 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3193 TEE_MEMORY_ACCESS_WRITE, 3194 (uaddr_t)buf, blen); 3195 if (res != TEE_SUCCESS) 3196 return res; 3197 3198 res = crypto_rng_read(buf, blen); 3199 if (res != TEE_SUCCESS) 3200 return res; 3201 3202 return res; 3203 } 3204 3205 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce, 3206 size_t nonce_len, size_t tag_len, 3207 size_t aad_len, size_t payload_len) 3208 { 3209 struct ts_session *sess = ts_get_current_session(); 3210 struct tee_cryp_obj_secret *key = NULL; 3211 struct tee_cryp_state *cs = NULL; 3212 TEE_Result res = TEE_SUCCESS; 3213 struct tee_obj *o = NULL; 3214 3215 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3216 TEE_MEMORY_ACCESS_READ | 3217 TEE_MEMORY_ACCESS_ANY_OWNER, 3218 (uaddr_t)nonce, nonce_len); 3219 if (res != TEE_SUCCESS) 3220 return res; 3221 3222 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3223 if (res != TEE_SUCCESS) 3224 return res; 3225 3226 res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o); 3227 if (res != TEE_SUCCESS) 3228 return res; 3229 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 3230 return TEE_ERROR_BAD_PARAMETERS; 3231 3232 key = o->attr; 3233 res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1), 3234 key->key_size, nonce, nonce_len, tag_len, 3235 aad_len, payload_len); 3236 if (res != TEE_SUCCESS) 3237 return res; 3238 3239 cs->ctx_finalize = crypto_authenc_final; 3240 cs->state = CRYP_STATE_INITIALIZED; 3241 3242 return TEE_SUCCESS; 3243 } 3244 3245 TEE_Result syscall_authenc_update_aad(unsigned long state, 3246 const void *aad_data, size_t aad_data_len) 3247 { 3248 struct ts_session *sess = ts_get_current_session(); 3249 TEE_Result res = TEE_SUCCESS; 3250 struct tee_cryp_state *cs = NULL; 3251 3252 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3253 TEE_MEMORY_ACCESS_READ | 3254 TEE_MEMORY_ACCESS_ANY_OWNER, 3255 (uaddr_t)aad_data, aad_data_len); 3256 if (res != TEE_SUCCESS) 3257 return res; 3258 3259 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3260 if (res != TEE_SUCCESS) 3261 return res; 3262 3263 if (cs->state != CRYP_STATE_INITIALIZED) 3264 return TEE_ERROR_BAD_STATE; 3265 3266 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3267 return TEE_ERROR_BAD_STATE; 3268 3269 res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data, 3270 aad_data_len); 3271 if (res != TEE_SUCCESS) 3272 return res; 3273 3274 return TEE_SUCCESS; 3275 } 3276 3277 TEE_Result syscall_authenc_update_payload(unsigned long state, 3278 const void *src_data, 3279 size_t src_len, void *dst_data, 3280 uint64_t *dst_len) 3281 { 3282 struct ts_session *sess = ts_get_current_session(); 3283 struct tee_cryp_state *cs = NULL; 3284 TEE_Result res = TEE_SUCCESS; 3285 size_t dlen = 0; 3286 3287 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3288 if (res != TEE_SUCCESS) 3289 return res; 3290 3291 if (cs->state != CRYP_STATE_INITIALIZED) 3292 return TEE_ERROR_BAD_STATE; 3293 3294 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3295 return TEE_ERROR_BAD_STATE; 3296 3297 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3298 TEE_MEMORY_ACCESS_READ | 3299 TEE_MEMORY_ACCESS_ANY_OWNER, 3300 (uaddr_t)src_data, src_len); 3301 if (res != TEE_SUCCESS) 3302 return res; 3303 3304 res = get_user_u64_as_size_t(&dlen, dst_len); 3305 if (res != TEE_SUCCESS) 3306 return res; 3307 3308 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3309 TEE_MEMORY_ACCESS_READ | 3310 TEE_MEMORY_ACCESS_WRITE | 3311 TEE_MEMORY_ACCESS_ANY_OWNER, 3312 (uaddr_t)dst_data, dlen); 3313 if (res != TEE_SUCCESS) 3314 return res; 3315 3316 if (dlen < src_len) { 3317 res = TEE_ERROR_SHORT_BUFFER; 3318 goto out; 3319 } 3320 3321 res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data, 3322 src_len, dst_data, &dlen); 3323 out: 3324 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3325 TEE_Result res2 = put_user_u64(dst_len, dlen); 3326 3327 if (res2 != TEE_SUCCESS) 3328 res = res2; 3329 } 3330 3331 return res; 3332 } 3333 3334 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data, 3335 size_t src_len, void *dst_data, 3336 uint64_t *dst_len, void *tag, 3337 uint64_t *tag_len) 3338 { 3339 struct ts_session *sess = ts_get_current_session(); 3340 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3341 struct tee_cryp_state *cs = NULL; 3342 TEE_Result res = TEE_SUCCESS; 3343 size_t dlen = 0; 3344 size_t tlen = 0; 3345 3346 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3347 if (res != TEE_SUCCESS) 3348 return res; 3349 3350 if (cs->state != CRYP_STATE_INITIALIZED) 3351 return TEE_ERROR_BAD_STATE; 3352 3353 if (cs->mode != TEE_MODE_ENCRYPT) 3354 return TEE_ERROR_BAD_PARAMETERS; 3355 3356 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3357 return TEE_ERROR_BAD_STATE; 3358 3359 res = vm_check_access_rights(uctx, 3360 TEE_MEMORY_ACCESS_READ | 3361 TEE_MEMORY_ACCESS_ANY_OWNER, 3362 (uaddr_t)src_data, src_len); 3363 if (res != TEE_SUCCESS) 3364 return res; 3365 3366 if (!dst_len) { 3367 dlen = 0; 3368 } else { 3369 res = get_user_u64_as_size_t(&dlen, dst_len); 3370 if (res != TEE_SUCCESS) 3371 return res; 3372 3373 res = vm_check_access_rights(uctx, 3374 TEE_MEMORY_ACCESS_READ | 3375 TEE_MEMORY_ACCESS_WRITE | 3376 TEE_MEMORY_ACCESS_ANY_OWNER, 3377 (uaddr_t)dst_data, dlen); 3378 if (res != TEE_SUCCESS) 3379 return res; 3380 } 3381 3382 if (dlen < src_len) { 3383 res = TEE_ERROR_SHORT_BUFFER; 3384 goto out; 3385 } 3386 3387 res = get_user_u64_as_size_t(&tlen, tag_len); 3388 if (res != TEE_SUCCESS) 3389 return res; 3390 3391 res = vm_check_access_rights(uctx, 3392 TEE_MEMORY_ACCESS_READ | 3393 TEE_MEMORY_ACCESS_WRITE | 3394 TEE_MEMORY_ACCESS_ANY_OWNER, 3395 (uaddr_t)tag, tlen); 3396 if (res != TEE_SUCCESS) 3397 return res; 3398 3399 res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data, 3400 &dlen, tag, &tlen); 3401 3402 out: 3403 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3404 TEE_Result res2 = TEE_SUCCESS; 3405 3406 if (dst_len != NULL) { 3407 res2 = put_user_u64(dst_len, dlen); 3408 if (res2 != TEE_SUCCESS) 3409 return res2; 3410 } 3411 3412 res2 = put_user_u64(tag_len, tlen); 3413 if (res2 != TEE_SUCCESS) 3414 return res2; 3415 } 3416 3417 return res; 3418 } 3419 3420 TEE_Result syscall_authenc_dec_final(unsigned long state, 3421 const void *src_data, size_t src_len, void *dst_data, 3422 uint64_t *dst_len, const void *tag, size_t tag_len) 3423 { 3424 struct ts_session *sess = ts_get_current_session(); 3425 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3426 struct tee_cryp_state *cs = NULL; 3427 TEE_Result res = TEE_SUCCESS; 3428 size_t dlen = 0; 3429 3430 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3431 if (res != TEE_SUCCESS) 3432 return res; 3433 3434 if (cs->state != CRYP_STATE_INITIALIZED) 3435 return TEE_ERROR_BAD_STATE; 3436 3437 if (cs->mode != TEE_MODE_DECRYPT) 3438 return TEE_ERROR_BAD_PARAMETERS; 3439 3440 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3441 return TEE_ERROR_BAD_STATE; 3442 3443 res = vm_check_access_rights(uctx, 3444 TEE_MEMORY_ACCESS_READ | 3445 TEE_MEMORY_ACCESS_ANY_OWNER, 3446 (uaddr_t)src_data, src_len); 3447 if (res != TEE_SUCCESS) 3448 return res; 3449 3450 if (!dst_len) { 3451 dlen = 0; 3452 } else { 3453 res = get_user_u64_as_size_t(&dlen, dst_len); 3454 if (res != TEE_SUCCESS) 3455 return res; 3456 3457 res = vm_check_access_rights(uctx, 3458 TEE_MEMORY_ACCESS_READ | 3459 TEE_MEMORY_ACCESS_WRITE | 3460 TEE_MEMORY_ACCESS_ANY_OWNER, 3461 (uaddr_t)dst_data, dlen); 3462 if (res != TEE_SUCCESS) 3463 return res; 3464 } 3465 3466 if (dlen < src_len) { 3467 res = TEE_ERROR_SHORT_BUFFER; 3468 goto out; 3469 } 3470 3471 res = vm_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ, 3472 (uaddr_t)tag, tag_len); 3473 if (res != TEE_SUCCESS) 3474 return res; 3475 3476 res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data, 3477 &dlen, tag, tag_len); 3478 3479 out: 3480 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 3481 dst_len != NULL) { 3482 TEE_Result res2 = put_user_u64(dst_len, dlen); 3483 3484 if (res2 != TEE_SUCCESS) 3485 return res2; 3486 } 3487 3488 return res; 3489 } 3490 3491 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params, 3492 size_t default_len) 3493 { 3494 size_t n; 3495 3496 assert(default_len < INT_MAX); 3497 3498 for (n = 0; n < num_params; n++) { 3499 if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) { 3500 if (params[n].content.value.a < INT_MAX) 3501 return params[n].content.value.a; 3502 break; 3503 } 3504 } 3505 /* 3506 * If salt length isn't provided use the default value which is 3507 * the length of the digest. 3508 */ 3509 return default_len; 3510 } 3511 3512 TEE_Result syscall_asymm_operate(unsigned long state, 3513 const struct utee_attribute *usr_params, 3514 size_t num_params, const void *src_data, size_t src_len, 3515 void *dst_data, uint64_t *dst_len) 3516 { 3517 struct ts_session *sess = ts_get_current_session(); 3518 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 3519 TEE_Result res = TEE_SUCCESS; 3520 struct tee_cryp_state *cs = NULL; 3521 size_t dlen = 0; 3522 struct tee_obj *o = NULL; 3523 void *label = NULL; 3524 size_t label_len = 0; 3525 size_t n = 0; 3526 int salt_len = 0; 3527 TEE_Attribute *params = NULL; 3528 3529 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3530 if (res != TEE_SUCCESS) 3531 return res; 3532 3533 res = vm_check_access_rights(&utc->uctx, 3534 TEE_MEMORY_ACCESS_READ | 3535 TEE_MEMORY_ACCESS_ANY_OWNER, 3536 (uaddr_t)src_data, src_len); 3537 if (res != TEE_SUCCESS) 3538 return res; 3539 3540 res = get_user_u64_as_size_t(&dlen, dst_len); 3541 if (res != TEE_SUCCESS) 3542 return res; 3543 3544 res = vm_check_access_rights(&utc->uctx, 3545 TEE_MEMORY_ACCESS_READ | 3546 TEE_MEMORY_ACCESS_WRITE | 3547 TEE_MEMORY_ACCESS_ANY_OWNER, 3548 (uaddr_t)dst_data, dlen); 3549 if (res != TEE_SUCCESS) 3550 return res; 3551 3552 size_t alloc_size = 0; 3553 3554 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 3555 return TEE_ERROR_OVERFLOW; 3556 3557 params = malloc(alloc_size); 3558 if (!params) 3559 return TEE_ERROR_OUT_OF_MEMORY; 3560 res = copy_in_attrs(utc, usr_params, num_params, params); 3561 if (res != TEE_SUCCESS) 3562 goto out; 3563 3564 res = tee_obj_get(utc, cs->key1, &o); 3565 if (res != TEE_SUCCESS) 3566 goto out; 3567 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 3568 res = TEE_ERROR_GENERIC; 3569 goto out; 3570 } 3571 3572 switch (cs->algo) { 3573 case TEE_ALG_RSA_NOPAD: 3574 if (cs->mode == TEE_MODE_ENCRYPT) { 3575 res = crypto_acipher_rsanopad_encrypt(o->attr, src_data, 3576 src_len, dst_data, 3577 &dlen); 3578 } else if (cs->mode == TEE_MODE_DECRYPT) { 3579 res = crypto_acipher_rsanopad_decrypt(o->attr, src_data, 3580 src_len, dst_data, 3581 &dlen); 3582 } else { 3583 /* 3584 * We will panic because "the mode is not compatible 3585 * with the function" 3586 */ 3587 res = TEE_ERROR_GENERIC; 3588 } 3589 break; 3590 3591 case TEE_ALG_SM2_PKE: 3592 if (cs->mode == TEE_MODE_ENCRYPT) { 3593 res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data, 3594 src_len, dst_data, 3595 &dlen); 3596 } else if (cs->mode == TEE_MODE_DECRYPT) { 3597 res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data, 3598 src_len, dst_data, 3599 &dlen); 3600 } else { 3601 res = TEE_ERROR_GENERIC; 3602 } 3603 break; 3604 3605 case TEE_ALG_RSAES_PKCS1_V1_5: 3606 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1: 3607 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224: 3608 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256: 3609 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384: 3610 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512: 3611 for (n = 0; n < num_params; n++) { 3612 if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) { 3613 label = params[n].content.ref.buffer; 3614 label_len = params[n].content.ref.length; 3615 break; 3616 } 3617 } 3618 3619 if (cs->mode == TEE_MODE_ENCRYPT) { 3620 res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr, 3621 label, label_len, 3622 src_data, src_len, 3623 dst_data, &dlen); 3624 } else if (cs->mode == TEE_MODE_DECRYPT) { 3625 res = crypto_acipher_rsaes_decrypt( 3626 cs->algo, o->attr, label, label_len, 3627 src_data, src_len, dst_data, &dlen); 3628 } else { 3629 res = TEE_ERROR_BAD_PARAMETERS; 3630 } 3631 break; 3632 3633 #if defined(CFG_CRYPTO_RSASSA_NA1) 3634 case TEE_ALG_RSASSA_PKCS1_V1_5: 3635 #endif 3636 case TEE_ALG_RSASSA_PKCS1_V1_5_MD5: 3637 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1: 3638 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224: 3639 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256: 3640 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384: 3641 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512: 3642 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1: 3643 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224: 3644 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256: 3645 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384: 3646 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512: 3647 if (cs->mode != TEE_MODE_SIGN) { 3648 res = TEE_ERROR_BAD_PARAMETERS; 3649 break; 3650 } 3651 salt_len = pkcs1_get_salt_len(params, num_params, src_len); 3652 res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len, 3653 src_data, src_len, dst_data, 3654 &dlen); 3655 break; 3656 3657 case TEE_ALG_DSA_SHA1: 3658 case TEE_ALG_DSA_SHA224: 3659 case TEE_ALG_DSA_SHA256: 3660 res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data, 3661 src_len, dst_data, &dlen); 3662 break; 3663 case TEE_ALG_ECDSA_P192: 3664 case TEE_ALG_ECDSA_P224: 3665 case TEE_ALG_ECDSA_P256: 3666 case TEE_ALG_ECDSA_P384: 3667 case TEE_ALG_ECDSA_P521: 3668 res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data, 3669 src_len, dst_data, &dlen); 3670 break; 3671 case TEE_ALG_SM2_DSA_SM3: 3672 res = crypto_acipher_sm2_dsa_sign(cs->algo, o->attr, src_data, 3673 src_len, dst_data, &dlen); 3674 break; 3675 3676 default: 3677 res = TEE_ERROR_BAD_PARAMETERS; 3678 break; 3679 } 3680 3681 out: 3682 free_wipe(params); 3683 3684 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3685 TEE_Result res2 = put_user_u64(dst_len, dlen); 3686 3687 if (res2 != TEE_SUCCESS) 3688 return res2; 3689 } 3690 3691 return res; 3692 } 3693 3694 TEE_Result syscall_asymm_verify(unsigned long state, 3695 const struct utee_attribute *usr_params, 3696 size_t num_params, const void *data, size_t data_len, 3697 const void *sig, size_t sig_len) 3698 { 3699 struct ts_session *sess = ts_get_current_session(); 3700 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 3701 struct tee_cryp_state *cs = NULL; 3702 TEE_Result res = TEE_SUCCESS; 3703 TEE_Attribute *params = NULL; 3704 struct tee_obj *o = NULL; 3705 size_t hash_size = 0; 3706 uint32_t hash_algo = 0; 3707 int salt_len = 0; 3708 3709 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3710 if (res != TEE_SUCCESS) 3711 return res; 3712 3713 if (cs->mode != TEE_MODE_VERIFY) 3714 return TEE_ERROR_BAD_PARAMETERS; 3715 3716 res = vm_check_access_rights(&utc->uctx, 3717 TEE_MEMORY_ACCESS_READ | 3718 TEE_MEMORY_ACCESS_ANY_OWNER, 3719 (uaddr_t)data, data_len); 3720 if (res != TEE_SUCCESS) 3721 return res; 3722 3723 res = vm_check_access_rights(&utc->uctx, 3724 TEE_MEMORY_ACCESS_READ | 3725 TEE_MEMORY_ACCESS_ANY_OWNER, 3726 (uaddr_t)sig, sig_len); 3727 if (res != TEE_SUCCESS) 3728 return res; 3729 3730 size_t alloc_size = 0; 3731 3732 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 3733 return TEE_ERROR_OVERFLOW; 3734 3735 params = malloc(alloc_size); 3736 if (!params) 3737 return TEE_ERROR_OUT_OF_MEMORY; 3738 res = copy_in_attrs(utc, usr_params, num_params, params); 3739 if (res != TEE_SUCCESS) 3740 goto out; 3741 3742 res = tee_obj_get(utc, cs->key1, &o); 3743 if (res != TEE_SUCCESS) 3744 goto out; 3745 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 3746 res = TEE_ERROR_BAD_PARAMETERS; 3747 goto out; 3748 } 3749 3750 switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) { 3751 case TEE_MAIN_ALGO_RSA: 3752 if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) { 3753 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 3754 res = tee_alg_get_digest_size(hash_algo, &hash_size); 3755 if (res != TEE_SUCCESS) 3756 break; 3757 if (data_len != hash_size) { 3758 res = TEE_ERROR_BAD_PARAMETERS; 3759 break; 3760 } 3761 salt_len = pkcs1_get_salt_len(params, num_params, 3762 hash_size); 3763 } 3764 res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len, 3765 data, data_len, sig, 3766 sig_len); 3767 break; 3768 3769 case TEE_MAIN_ALGO_DSA: 3770 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 3771 res = tee_alg_get_digest_size(hash_algo, &hash_size); 3772 if (res != TEE_SUCCESS) 3773 break; 3774 3775 if (data_len != hash_size) { 3776 struct dsa_public_key *key = o->attr; 3777 3778 /* 3779 * Depending on the DSA algorithm (NIST), the 3780 * digital signature output size may be truncated 3781 * to the size of a key pair (Q prime size). Q 3782 * prime size must be less or equal than the hash 3783 * output length of the hash algorithm involved. 3784 * 3785 * We're checking here in order to be able to 3786 * return this particular error code, which will 3787 * cause TEE_AsymmetricVerifyDigest() to panic as 3788 * required by GP. crypto_acipher_dsa_verify() is 3789 * implemented in the glue layer of the crypto 3790 * library and it might be a bit harder to catch 3791 * this particular case there or lead to duplicated 3792 * code in different crypto glue layers. 3793 * 3794 * The GP spec says that we SHOULD panic if 3795 * data_len != hash_size, but that would break a 3796 * few of the DSA tests in xtest where the 3797 * hash_size is larger than possible data_len. So 3798 * the compromise is in case data_len != hash_size 3799 * check that it's not smaller than what makes 3800 * sense. 3801 */ 3802 if (data_len != crypto_bignum_num_bytes(key->q)) { 3803 res = TEE_ERROR_BAD_PARAMETERS; 3804 break; 3805 } 3806 } 3807 res = crypto_acipher_dsa_verify(cs->algo, o->attr, data, 3808 data_len, sig, sig_len); 3809 break; 3810 3811 case TEE_MAIN_ALGO_ECDSA: 3812 res = crypto_acipher_ecc_verify(cs->algo, o->attr, data, 3813 data_len, sig, sig_len); 3814 break; 3815 3816 case TEE_MAIN_ALGO_SM2_DSA_SM3: 3817 res = crypto_acipher_sm2_dsa_verify(cs->algo, o->attr, data, 3818 data_len, sig, sig_len); 3819 break; 3820 3821 default: 3822 res = TEE_ERROR_NOT_SUPPORTED; 3823 } 3824 3825 out: 3826 free_wipe(params); 3827 return res; 3828 } 3829