xref: /optee_os/core/tee/tee_svc_cryp.c (revision 4af447d4084e293800d4e463d65003c016b91f29)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <assert.h>
8 #include <bitstring.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <crypto/crypto.h>
12 #include <kernel/tee_ta_manager.h>
13 #include <kernel/user_access.h>
14 #include <mm/vm.h>
15 #include <stdlib_ext.h>
16 #include <string_ext.h>
17 #include <string.h>
18 #include <sys/queue.h>
19 #include <tee_api_defines_extensions.h>
20 #include <tee_api_types.h>
21 #include <tee/tee_cryp_utl.h>
22 #include <tee/tee_obj.h>
23 #include <tee/tee_svc_cryp.h>
24 #include <tee/tee_svc.h>
25 #include <trace.h>
26 #include <utee_defines.h>
27 #include <util.h>
28 #if defined(CFG_CRYPTO_HKDF)
29 #include <tee/tee_cryp_hkdf.h>
30 #endif
31 #if defined(CFG_CRYPTO_CONCAT_KDF)
32 #include <tee/tee_cryp_concat_kdf.h>
33 #endif
34 #if defined(CFG_CRYPTO_PBKDF2)
35 #include <tee/tee_cryp_pbkdf2.h>
36 #endif
37 
38 enum cryp_state {
39 	CRYP_STATE_INITIALIZED = 0,
40 	CRYP_STATE_UNINITIALIZED
41 };
42 
43 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx);
44 struct tee_cryp_state {
45 	TAILQ_ENTRY(tee_cryp_state) link;
46 	uint32_t algo;
47 	uint32_t mode;
48 	vaddr_t key1;
49 	vaddr_t key2;
50 	void *ctx;
51 	tee_cryp_ctx_finalize_func_t ctx_finalize;
52 	enum cryp_state state;
53 };
54 
55 struct tee_cryp_obj_secret {
56 	uint32_t key_size;
57 	uint32_t alloc_size;
58 
59 	/*
60 	 * Pseudo code visualize layout of structure
61 	 * Next follows data, such as:
62 	 *	uint8_t data[alloc_size]
63 	 * key_size must never exceed alloc_size
64 	 */
65 };
66 
67 #define TEE_TYPE_ATTR_OPTIONAL		BIT(0)
68 #define TEE_TYPE_ATTR_REQUIRED		BIT(1)
69 #define TEE_TYPE_ATTR_OPTIONAL_GROUP	BIT(2)
70 #define TEE_TYPE_ATTR_SIZE_INDICATOR	BIT(3)
71 #define TEE_TYPE_ATTR_GEN_KEY_OPT	BIT(4)
72 #define TEE_TYPE_ATTR_GEN_KEY_REQ	BIT(5)
73 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS	BIT(6)
74 
75     /* Handle storing of generic secret keys of varying lengths */
76 #define ATTR_OPS_INDEX_SECRET     0
77     /* Convert to/from big-endian byte array and provider-specific bignum */
78 #define ATTR_OPS_INDEX_BIGNUM     1
79     /* Convert to/from value attribute depending on direction */
80 #define ATTR_OPS_INDEX_VALUE      2
81 
82 struct tee_cryp_obj_type_attrs {
83 	uint32_t attr_id;
84 	uint16_t flags;
85 	uint16_t ops_index;
86 	uint16_t raw_offs;
87 	uint16_t raw_size;
88 };
89 
90 #define RAW_DATA(_x, _y)	\
91 	.raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y)
92 
93 static const struct tee_cryp_obj_type_attrs
94 	tee_cryp_obj_secret_value_attrs[] = {
95 	{
96 	.attr_id = TEE_ATTR_SECRET_VALUE,
97 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
98 	.ops_index = ATTR_OPS_INDEX_SECRET,
99 	.raw_offs = 0,
100 	.raw_size = 0
101 	},
102 };
103 
104 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = {
105 	{
106 	.attr_id = TEE_ATTR_RSA_MODULUS,
107 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
108 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
109 	RAW_DATA(struct rsa_public_key, n)
110 	},
111 
112 	{
113 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
114 	.flags = TEE_TYPE_ATTR_REQUIRED,
115 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
116 	RAW_DATA(struct rsa_public_key, e)
117 	},
118 };
119 
120 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = {
121 	{
122 	.attr_id = TEE_ATTR_RSA_MODULUS,
123 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
124 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
125 	RAW_DATA(struct rsa_keypair, n)
126 	},
127 
128 	{
129 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
130 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT,
131 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
132 	RAW_DATA(struct rsa_keypair, e)
133 	},
134 
135 	{
136 	.attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT,
137 	.flags = TEE_TYPE_ATTR_REQUIRED,
138 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
139 	RAW_DATA(struct rsa_keypair, d)
140 	},
141 
142 	{
143 	.attr_id = TEE_ATTR_RSA_PRIME1,
144 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
145 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
146 	RAW_DATA(struct rsa_keypair, p)
147 	},
148 
149 	{
150 	.attr_id = TEE_ATTR_RSA_PRIME2,
151 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
152 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
153 	RAW_DATA(struct rsa_keypair, q)
154 	},
155 
156 	{
157 	.attr_id = TEE_ATTR_RSA_EXPONENT1,
158 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
159 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
160 	RAW_DATA(struct rsa_keypair, dp)
161 	},
162 
163 	{
164 	.attr_id = TEE_ATTR_RSA_EXPONENT2,
165 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
166 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
167 	RAW_DATA(struct rsa_keypair, dq)
168 	},
169 
170 	{
171 	.attr_id = TEE_ATTR_RSA_COEFFICIENT,
172 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
173 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
174 	RAW_DATA(struct rsa_keypair, qp)
175 	},
176 };
177 
178 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = {
179 	{
180 	.attr_id = TEE_ATTR_DSA_PRIME,
181 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
182 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
183 	RAW_DATA(struct dsa_public_key, p)
184 	},
185 
186 	{
187 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
188 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
189 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
190 	RAW_DATA(struct dsa_public_key, q)
191 	},
192 
193 	{
194 	.attr_id = TEE_ATTR_DSA_BASE,
195 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
196 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
197 	RAW_DATA(struct dsa_public_key, g)
198 	},
199 
200 	{
201 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
202 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
203 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
204 	RAW_DATA(struct dsa_public_key, y)
205 	},
206 };
207 
208 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = {
209 	{
210 	.attr_id = TEE_ATTR_DSA_PRIME,
211 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
212 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS,
213 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
214 	RAW_DATA(struct dsa_keypair, p)
215 	},
216 
217 	{
218 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
219 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
220 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
221 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
222 	RAW_DATA(struct dsa_keypair, q)
223 	},
224 
225 	{
226 	.attr_id = TEE_ATTR_DSA_BASE,
227 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
228 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS,
229 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
230 	RAW_DATA(struct dsa_keypair, g)
231 	},
232 
233 	{
234 	.attr_id = TEE_ATTR_DSA_PRIVATE_VALUE,
235 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
236 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
237 	RAW_DATA(struct dsa_keypair, x)
238 	},
239 
240 	{
241 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
242 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
243 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
244 	RAW_DATA(struct dsa_keypair, y)
245 	},
246 };
247 
248 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = {
249 	{
250 	.attr_id = TEE_ATTR_DH_PRIME,
251 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
252 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
253 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
254 	RAW_DATA(struct dh_keypair, p)
255 	},
256 
257 	{
258 	.attr_id = TEE_ATTR_DH_BASE,
259 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
260 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
261 	RAW_DATA(struct dh_keypair, g)
262 	},
263 
264 	{
265 	.attr_id = TEE_ATTR_DH_PUBLIC_VALUE,
266 	.flags = TEE_TYPE_ATTR_REQUIRED,
267 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
268 	RAW_DATA(struct dh_keypair, y)
269 	},
270 
271 	{
272 	.attr_id = TEE_ATTR_DH_PRIVATE_VALUE,
273 	.flags = TEE_TYPE_ATTR_REQUIRED,
274 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
275 	RAW_DATA(struct dh_keypair, x)
276 	},
277 
278 	{
279 	.attr_id = TEE_ATTR_DH_SUBPRIME,
280 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP |	 TEE_TYPE_ATTR_GEN_KEY_OPT,
281 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
282 	RAW_DATA(struct dh_keypair, q)
283 	},
284 
285 	{
286 	.attr_id = TEE_ATTR_DH_X_BITS,
287 	.flags = TEE_TYPE_ATTR_GEN_KEY_OPT,
288 	.ops_index = ATTR_OPS_INDEX_VALUE,
289 	RAW_DATA(struct dh_keypair, xbits)
290 	},
291 };
292 
293 #if defined(CFG_CRYPTO_HKDF)
294 static const struct tee_cryp_obj_type_attrs
295 	tee_cryp_obj_hkdf_ikm_attrs[] = {
296 	{
297 	.attr_id = TEE_ATTR_HKDF_IKM,
298 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
299 	.ops_index = ATTR_OPS_INDEX_SECRET,
300 	.raw_offs = 0,
301 	.raw_size = 0
302 	},
303 };
304 #endif
305 
306 #if defined(CFG_CRYPTO_CONCAT_KDF)
307 static const struct tee_cryp_obj_type_attrs
308 	tee_cryp_obj_concat_kdf_z_attrs[] = {
309 	{
310 	.attr_id = TEE_ATTR_CONCAT_KDF_Z,
311 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
312 	.ops_index = ATTR_OPS_INDEX_SECRET,
313 	.raw_offs = 0,
314 	.raw_size = 0
315 	},
316 };
317 #endif
318 
319 #if defined(CFG_CRYPTO_PBKDF2)
320 static const struct tee_cryp_obj_type_attrs
321 	tee_cryp_obj_pbkdf2_passwd_attrs[] = {
322 	{
323 	.attr_id = TEE_ATTR_PBKDF2_PASSWORD,
324 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
325 	.ops_index = ATTR_OPS_INDEX_SECRET,
326 	.raw_offs = 0,
327 	.raw_size = 0
328 	},
329 };
330 #endif
331 
332 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = {
333 	{
334 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
335 	.flags = TEE_TYPE_ATTR_REQUIRED,
336 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
337 	RAW_DATA(struct ecc_public_key, x)
338 	},
339 
340 	{
341 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
342 	.flags = TEE_TYPE_ATTR_REQUIRED,
343 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
344 	RAW_DATA(struct ecc_public_key, y)
345 	},
346 
347 	{
348 	.attr_id = TEE_ATTR_ECC_CURVE,
349 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
350 	.ops_index = ATTR_OPS_INDEX_VALUE,
351 	RAW_DATA(struct ecc_public_key, curve)
352 	},
353 };
354 
355 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = {
356 	{
357 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
358 	.flags = TEE_TYPE_ATTR_REQUIRED,
359 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
360 	RAW_DATA(struct ecc_keypair, d)
361 	},
362 
363 	{
364 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
365 	.flags = TEE_TYPE_ATTR_REQUIRED,
366 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
367 	RAW_DATA(struct ecc_keypair, x)
368 	},
369 
370 	{
371 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
372 	.flags = TEE_TYPE_ATTR_REQUIRED,
373 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
374 	RAW_DATA(struct ecc_keypair, y)
375 	},
376 
377 	{
378 	.attr_id = TEE_ATTR_ECC_CURVE,
379 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
380 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
381 	.ops_index = ATTR_OPS_INDEX_VALUE,
382 	RAW_DATA(struct ecc_keypair, curve)
383 	},
384 };
385 
386 struct tee_cryp_obj_type_props {
387 	TEE_ObjectType obj_type;
388 	uint16_t min_size;	/* may not be smaller than this */
389 	uint16_t max_size;	/* may not be larger than this */
390 	uint16_t alloc_size;	/* this many bytes are allocated to hold data */
391 	uint8_t quanta;		/* may only be an multiple of this */
392 
393 	uint8_t num_type_attrs;
394 	const struct tee_cryp_obj_type_attrs *type_attrs;
395 };
396 
397 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \
398 		{ (obj_type), (min_size), (max_size), (alloc_size), (quanta), \
399 		  ARRAY_SIZE(type_attrs), (type_attrs) }
400 
401 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = {
402 	PROP(TEE_TYPE_AES, 64, 128, 256,	/* valid sizes 128, 192, 256 */
403 		256 / 8 + sizeof(struct tee_cryp_obj_secret),
404 		tee_cryp_obj_secret_value_attrs),
405 	PROP(TEE_TYPE_DES, 64, 64, 64,
406 	     /* Valid size 64 with parity */
407 	     64 / 8 + sizeof(struct tee_cryp_obj_secret),
408 	     tee_cryp_obj_secret_value_attrs),
409 	PROP(TEE_TYPE_DES3, 64, 128, 192,
410 	     /* Valid sizes 128, 192 with parity */
411 	     192 / 8 + sizeof(struct tee_cryp_obj_secret),
412 	     tee_cryp_obj_secret_value_attrs),
413 	PROP(TEE_TYPE_SM4, 128, 128, 128,
414 		128 / 8 + sizeof(struct tee_cryp_obj_secret),
415 		tee_cryp_obj_secret_value_attrs),
416 	PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512,
417 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
418 		tee_cryp_obj_secret_value_attrs),
419 	PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512,
420 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
421 		tee_cryp_obj_secret_value_attrs),
422 	PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512,
423 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
424 		tee_cryp_obj_secret_value_attrs),
425 	PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024,
426 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
427 		tee_cryp_obj_secret_value_attrs),
428 	PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024,
429 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
430 		tee_cryp_obj_secret_value_attrs),
431 	PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024,
432 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
433 		tee_cryp_obj_secret_value_attrs),
434 	PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024,
435 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
436 		tee_cryp_obj_secret_value_attrs),
437 	PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096,
438 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
439 		tee_cryp_obj_secret_value_attrs),
440 #if defined(CFG_CRYPTO_HKDF)
441 	PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096,
442 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
443 		tee_cryp_obj_hkdf_ikm_attrs),
444 #endif
445 #if defined(CFG_CRYPTO_CONCAT_KDF)
446 	PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096,
447 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
448 		tee_cryp_obj_concat_kdf_z_attrs),
449 #endif
450 #if defined(CFG_CRYPTO_PBKDF2)
451 	PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096,
452 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
453 		tee_cryp_obj_pbkdf2_passwd_attrs),
454 #endif
455 	PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
456 		sizeof(struct rsa_public_key),
457 		tee_cryp_obj_rsa_pub_key_attrs),
458 
459 	PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
460 		sizeof(struct rsa_keypair),
461 		tee_cryp_obj_rsa_keypair_attrs),
462 
463 	PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072,
464 		sizeof(struct dsa_public_key),
465 		tee_cryp_obj_dsa_pub_key_attrs),
466 
467 	PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072,
468 		sizeof(struct dsa_keypair),
469 		tee_cryp_obj_dsa_keypair_attrs),
470 
471 	PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048,
472 		sizeof(struct dh_keypair),
473 		tee_cryp_obj_dh_keypair_attrs),
474 
475 	PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521,
476 		sizeof(struct ecc_public_key),
477 		tee_cryp_obj_ecc_pub_key_attrs),
478 
479 	PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521,
480 		sizeof(struct ecc_keypair),
481 		tee_cryp_obj_ecc_keypair_attrs),
482 
483 	PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521,
484 		sizeof(struct ecc_public_key),
485 		tee_cryp_obj_ecc_pub_key_attrs),
486 
487 	PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521,
488 		sizeof(struct ecc_keypair),
489 		tee_cryp_obj_ecc_keypair_attrs),
490 
491 	PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256,
492 	     sizeof(struct ecc_public_key),
493 	     tee_cryp_obj_ecc_pub_key_attrs),
494 
495 	PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256,
496 	     sizeof(struct ecc_keypair),
497 	     tee_cryp_obj_ecc_keypair_attrs),
498 
499 	PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256,
500 	     sizeof(struct ecc_public_key),
501 	     tee_cryp_obj_ecc_pub_key_attrs),
502 
503 	PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256,
504 	     sizeof(struct ecc_keypair),
505 	     tee_cryp_obj_ecc_keypair_attrs),
506 
507 	PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256,
508 	     sizeof(struct ecc_public_key),
509 	     tee_cryp_obj_ecc_pub_key_attrs),
510 
511 	PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256,
512 	     sizeof(struct ecc_keypair),
513 	     tee_cryp_obj_ecc_keypair_attrs),
514 };
515 
516 struct attr_ops {
517 	TEE_Result (*from_user)(void *attr, const void *buffer, size_t size);
518 	TEE_Result (*to_user)(void *attr, struct ts_session *sess,
519 			      void *buffer, uint64_t *size);
520 	TEE_Result (*to_binary)(void *attr, void *data, size_t data_len,
521 			    size_t *offs);
522 	bool (*from_binary)(void *attr, const void *data, size_t data_len,
523 			    size_t *offs);
524 	TEE_Result (*from_obj)(void *attr, void *src_attr);
525 	void (*free)(void *attr);
526 	void (*clear)(void *attr);
527 };
528 
529 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data,
530 				    size_t data_len, size_t *offs)
531 {
532 	uint32_t field;
533 	size_t next_offs;
534 
535 	if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs))
536 		return TEE_ERROR_OVERFLOW;
537 
538 	if (data && next_offs <= data_len) {
539 		field = TEE_U32_TO_BIG_ENDIAN(v);
540 		memcpy(data + *offs, &field, sizeof(field));
541 	}
542 	(*offs) = next_offs;
543 
544 	return TEE_SUCCESS;
545 }
546 
547 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data,
548 				      size_t data_len, size_t *offs)
549 {
550 	uint32_t field;
551 
552 	if (!data || (*offs + sizeof(field)) > data_len)
553 		return false;
554 
555 	memcpy(&field, data + *offs, sizeof(field));
556 	*v = TEE_U32_FROM_BIG_ENDIAN(field);
557 	(*offs) += sizeof(field);
558 	return true;
559 }
560 
561 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer,
562 						 size_t size)
563 {
564 	struct tee_cryp_obj_secret *key = attr;
565 
566 	/* Data size has to fit in allocated buffer */
567 	if (size > key->alloc_size)
568 		return TEE_ERROR_SECURITY;
569 	memcpy(key + 1, buffer, size);
570 	key->key_size = size;
571 	return TEE_SUCCESS;
572 }
573 
574 static TEE_Result op_attr_secret_value_to_user(void *attr,
575 					       struct ts_session *sess __unused,
576 					       void *buffer, uint64_t *size)
577 {
578 	TEE_Result res;
579 	struct tee_cryp_obj_secret *key = attr;
580 	uint64_t s;
581 	uint64_t key_size;
582 
583 	res = copy_from_user(&s, size, sizeof(s));
584 	if (res != TEE_SUCCESS)
585 		return res;
586 
587 	key_size = key->key_size;
588 	res = copy_to_user(size, &key_size, sizeof(key_size));
589 	if (res != TEE_SUCCESS)
590 		return res;
591 
592 	if (s < key->key_size || !buffer)
593 		return TEE_ERROR_SHORT_BUFFER;
594 
595 	return copy_to_user(buffer, key + 1, key->key_size);
596 }
597 
598 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data,
599 					   size_t data_len, size_t *offs)
600 {
601 	TEE_Result res;
602 	struct tee_cryp_obj_secret *key = attr;
603 	size_t next_offs;
604 
605 	res = op_u32_to_binary_helper(key->key_size, data, data_len, offs);
606 	if (res != TEE_SUCCESS)
607 		return res;
608 
609 	if (ADD_OVERFLOW(*offs, key->key_size, &next_offs))
610 		return TEE_ERROR_OVERFLOW;
611 
612 	if (data && next_offs <= data_len)
613 		memcpy((uint8_t *)data + *offs, key + 1, key->key_size);
614 	(*offs) = next_offs;
615 
616 	return TEE_SUCCESS;
617 }
618 
619 static bool op_attr_secret_value_from_binary(void *attr, const void *data,
620 					     size_t data_len, size_t *offs)
621 {
622 	struct tee_cryp_obj_secret *key = attr;
623 	uint32_t s;
624 
625 	if (!op_u32_from_binary_helper(&s, data, data_len, offs))
626 		return false;
627 
628 	if ((*offs + s) > data_len)
629 		return false;
630 
631 	/* Data size has to fit in allocated buffer */
632 	if (s > key->alloc_size)
633 		return false;
634 	key->key_size = s;
635 	memcpy(key + 1, (const uint8_t *)data + *offs, s);
636 	(*offs) += s;
637 	return true;
638 }
639 
640 
641 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr)
642 {
643 	struct tee_cryp_obj_secret *key = attr;
644 	struct tee_cryp_obj_secret *src_key = src_attr;
645 
646 	if (src_key->key_size > key->alloc_size)
647 		return TEE_ERROR_BAD_STATE;
648 	memcpy(key + 1, src_key + 1, src_key->key_size);
649 	key->key_size = src_key->key_size;
650 	return TEE_SUCCESS;
651 }
652 
653 static void op_attr_secret_value_clear(void *attr)
654 {
655 	struct tee_cryp_obj_secret *key = attr;
656 
657 	key->key_size = 0;
658 	memzero_explicit(key + 1, key->alloc_size);
659 }
660 
661 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer,
662 					   size_t size)
663 {
664 	struct bignum **bn = attr;
665 
666 	return crypto_bignum_bin2bn(buffer, size, *bn);
667 }
668 
669 static TEE_Result op_attr_bignum_to_user(void *attr,
670 					 struct ts_session *sess,
671 					 void *buffer, uint64_t *size)
672 {
673 	TEE_Result res = TEE_SUCCESS;
674 	struct bignum **bn = attr;
675 	uint64_t req_size = 0;
676 	uint64_t s = 0;
677 
678 	res = copy_from_user(&s, size, sizeof(s));
679 	if (res != TEE_SUCCESS)
680 		return res;
681 
682 	req_size = crypto_bignum_num_bytes(*bn);
683 	res = copy_to_user(size, &req_size, sizeof(req_size));
684 	if (res != TEE_SUCCESS)
685 		return res;
686 	if (!req_size)
687 		return TEE_SUCCESS;
688 	if (s < req_size || !buffer)
689 		return TEE_ERROR_SHORT_BUFFER;
690 
691 	/* Check we can access data using supplied user mode pointer */
692 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
693 				     TEE_MEMORY_ACCESS_READ |
694 				     TEE_MEMORY_ACCESS_WRITE |
695 				     TEE_MEMORY_ACCESS_ANY_OWNER,
696 				     (uaddr_t)buffer, req_size);
697 	if (res != TEE_SUCCESS)
698 		return res;
699 	/*
700 	* Write the bignum (wich raw data points to) into an array of
701 	* bytes (stored in buffer)
702 	*/
703 	crypto_bignum_bn2bin(*bn, buffer);
704 	return TEE_SUCCESS;
705 }
706 
707 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data,
708 					   size_t data_len, size_t *offs)
709 {
710 	TEE_Result res;
711 	struct bignum **bn = attr;
712 	uint32_t n = crypto_bignum_num_bytes(*bn);
713 	size_t next_offs;
714 
715 	res = op_u32_to_binary_helper(n, data, data_len, offs);
716 	if (res != TEE_SUCCESS)
717 		return res;
718 
719 	if (ADD_OVERFLOW(*offs, n, &next_offs))
720 		return TEE_ERROR_OVERFLOW;
721 
722 	if (data && next_offs <= data_len)
723 		crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs);
724 	(*offs) = next_offs;
725 
726 	return TEE_SUCCESS;
727 }
728 
729 static bool op_attr_bignum_from_binary(void *attr, const void *data,
730 				       size_t data_len, size_t *offs)
731 {
732 	struct bignum **bn = attr;
733 	uint32_t n;
734 
735 	if (!op_u32_from_binary_helper(&n, data, data_len, offs))
736 		return false;
737 
738 	if ((*offs + n) > data_len)
739 		return false;
740 	if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn))
741 		return false;
742 	(*offs) += n;
743 	return true;
744 }
745 
746 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr)
747 {
748 	struct bignum **bn = attr;
749 	struct bignum **src_bn = src_attr;
750 
751 	crypto_bignum_copy(*bn, *src_bn);
752 	return TEE_SUCCESS;
753 }
754 
755 static void op_attr_bignum_clear(void *attr)
756 {
757 	struct bignum **bn = attr;
758 
759 	crypto_bignum_clear(*bn);
760 }
761 
762 static void op_attr_bignum_free(void *attr)
763 {
764 	struct bignum **bn = attr;
765 
766 	crypto_bignum_free(*bn);
767 	*bn = NULL;
768 }
769 
770 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer,
771 					  size_t size)
772 {
773 	uint32_t *v = attr;
774 
775 	if (size != sizeof(uint32_t) * 2)
776 		return TEE_ERROR_GENERIC; /* "can't happen */
777 
778 	/* Note that only the first value is copied */
779 	memcpy(v, buffer, sizeof(uint32_t));
780 	return TEE_SUCCESS;
781 }
782 
783 static TEE_Result op_attr_value_to_user(void *attr,
784 					struct ts_session *sess __unused,
785 					void *buffer, uint64_t *size)
786 {
787 	TEE_Result res;
788 	uint32_t *v = attr;
789 	uint64_t s;
790 	uint32_t value[2] = { *v };
791 	uint64_t req_size = sizeof(value);
792 
793 	res = copy_from_user(&s, size, sizeof(s));
794 	if (res != TEE_SUCCESS)
795 		return res;
796 
797 	if (s < req_size || !buffer)
798 		return TEE_ERROR_SHORT_BUFFER;
799 
800 	return copy_to_user(buffer, value, req_size);
801 }
802 
803 static TEE_Result op_attr_value_to_binary(void *attr, void *data,
804 					  size_t data_len, size_t *offs)
805 {
806 	uint32_t *v = attr;
807 
808 	return op_u32_to_binary_helper(*v, data, data_len, offs);
809 }
810 
811 static bool op_attr_value_from_binary(void *attr, const void *data,
812 				      size_t data_len, size_t *offs)
813 {
814 	uint32_t *v = attr;
815 
816 	return op_u32_from_binary_helper(v, data, data_len, offs);
817 }
818 
819 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr)
820 {
821 	uint32_t *v = attr;
822 	uint32_t *src_v = src_attr;
823 
824 	*v = *src_v;
825 	return TEE_SUCCESS;
826 }
827 
828 static void op_attr_value_clear(void *attr)
829 {
830 	uint32_t *v = attr;
831 
832 	*v = 0;
833 }
834 
835 static const struct attr_ops attr_ops[] = {
836 	[ATTR_OPS_INDEX_SECRET] = {
837 		.from_user = op_attr_secret_value_from_user,
838 		.to_user = op_attr_secret_value_to_user,
839 		.to_binary = op_attr_secret_value_to_binary,
840 		.from_binary = op_attr_secret_value_from_binary,
841 		.from_obj = op_attr_secret_value_from_obj,
842 		.free = op_attr_secret_value_clear, /* not a typo */
843 		.clear = op_attr_secret_value_clear,
844 	},
845 	[ATTR_OPS_INDEX_BIGNUM] = {
846 		.from_user = op_attr_bignum_from_user,
847 		.to_user = op_attr_bignum_to_user,
848 		.to_binary = op_attr_bignum_to_binary,
849 		.from_binary = op_attr_bignum_from_binary,
850 		.from_obj = op_attr_bignum_from_obj,
851 		.free = op_attr_bignum_free,
852 		.clear = op_attr_bignum_clear,
853 	},
854 	[ATTR_OPS_INDEX_VALUE] = {
855 		.from_user = op_attr_value_from_user,
856 		.to_user = op_attr_value_to_user,
857 		.to_binary = op_attr_value_to_binary,
858 		.from_binary = op_attr_value_from_binary,
859 		.from_obj = op_attr_value_from_obj,
860 		.free = op_attr_value_clear, /* not a typo */
861 		.clear = op_attr_value_clear,
862 	},
863 };
864 
865 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src)
866 {
867 	uint64_t d = 0;
868 	TEE_Result res = copy_from_user(&d, src, sizeof(d));
869 
870 	/*
871 	 * On 32-bit systems a size_t can't hold a uint64_t so we need to
872 	 * check that the value isn't too large.
873 	 */
874 	if (!res && ADD_OVERFLOW(0, d, dst))
875 		return TEE_ERROR_OVERFLOW;
876 
877 	return res;
878 }
879 
880 static TEE_Result put_user_u64(uint64_t *dst, size_t value)
881 {
882 	uint64_t v = value;
883 
884 	return copy_to_user(dst, &v, sizeof(v));
885 }
886 
887 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info)
888 {
889 	struct ts_session *sess = ts_get_current_session();
890 	TEE_Result res = TEE_SUCCESS;
891 	struct tee_obj *o = NULL;
892 
893 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
894 			  uref_to_vaddr(obj), &o);
895 	if (res != TEE_SUCCESS)
896 		goto exit;
897 
898 	res = copy_to_user_private(info, &o->info, sizeof(o->info));
899 
900 exit:
901 	return res;
902 }
903 
904 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj,
905 			unsigned long usage)
906 {
907 	struct ts_session *sess = ts_get_current_session();
908 	TEE_Result res = TEE_SUCCESS;
909 	struct tee_obj *o = NULL;
910 
911 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
912 	if (res != TEE_SUCCESS)
913 		goto exit;
914 
915 	o->info.objectUsage &= usage;
916 
917 exit:
918 	return res;
919 }
920 
921 static int tee_svc_cryp_obj_find_type_attr_idx(
922 		uint32_t attr_id,
923 		const struct tee_cryp_obj_type_props *type_props)
924 {
925 	size_t n;
926 
927 	for (n = 0; n < type_props->num_type_attrs; n++) {
928 		if (attr_id == type_props->type_attrs[n].attr_id)
929 			return n;
930 	}
931 	return -1;
932 }
933 
934 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props(
935 		TEE_ObjectType obj_type)
936 {
937 	size_t n;
938 
939 	for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) {
940 		if (tee_cryp_obj_props[n].obj_type == obj_type)
941 			return tee_cryp_obj_props + n;
942 	}
943 
944 	return NULL;
945 }
946 
947 /* Set an attribute on an object */
948 static void set_attribute(struct tee_obj *o,
949 			  const struct tee_cryp_obj_type_props *props,
950 			  uint32_t attr)
951 {
952 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
953 
954 	if (idx < 0)
955 		return;
956 	o->have_attrs |= BIT(idx);
957 }
958 
959 /* Get an attribute on an object */
960 static uint32_t get_attribute(const struct tee_obj *o,
961 			      const struct tee_cryp_obj_type_props *props,
962 			      uint32_t attr)
963 {
964 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
965 
966 	if (idx < 0)
967 		return 0;
968 	return o->have_attrs & BIT(idx);
969 }
970 
971 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id,
972 			void *buffer, uint64_t *size)
973 {
974 	struct ts_session *sess = ts_get_current_session();
975 	TEE_Result res = TEE_SUCCESS;
976 	struct tee_obj *o = NULL;
977 	const struct tee_cryp_obj_type_props *type_props = NULL;
978 	int idx = 0;
979 	const struct attr_ops *ops = NULL;
980 	void *attr = NULL;
981 
982 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
983 	if (res != TEE_SUCCESS)
984 		return TEE_ERROR_ITEM_NOT_FOUND;
985 
986 	/* Check that the object is initialized */
987 	if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED))
988 		return TEE_ERROR_BAD_PARAMETERS;
989 
990 	/* Check that getting the attribute is allowed */
991 	if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) &&
992 	    !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE))
993 		return TEE_ERROR_BAD_PARAMETERS;
994 
995 	type_props = tee_svc_find_type_props(o->info.objectType);
996 	if (!type_props) {
997 		/* Unknown object type, "can't happen" */
998 		return TEE_ERROR_BAD_STATE;
999 	}
1000 
1001 	idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props);
1002 	if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0))
1003 		return TEE_ERROR_ITEM_NOT_FOUND;
1004 
1005 	ops = attr_ops + type_props->type_attrs[idx].ops_index;
1006 	attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs;
1007 	return ops->to_user(attr, sess, buffer, size);
1008 }
1009 
1010 void tee_obj_attr_free(struct tee_obj *o)
1011 {
1012 	const struct tee_cryp_obj_type_props *tp;
1013 	size_t n;
1014 
1015 	if (!o->attr)
1016 		return;
1017 	tp = tee_svc_find_type_props(o->info.objectType);
1018 	if (!tp)
1019 		return;
1020 
1021 	for (n = 0; n < tp->num_type_attrs; n++) {
1022 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1023 
1024 		attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs);
1025 	}
1026 }
1027 
1028 void tee_obj_attr_clear(struct tee_obj *o)
1029 {
1030 	const struct tee_cryp_obj_type_props *tp;
1031 	size_t n;
1032 
1033 	if (!o->attr)
1034 		return;
1035 	tp = tee_svc_find_type_props(o->info.objectType);
1036 	if (!tp)
1037 		return;
1038 
1039 	for (n = 0; n < tp->num_type_attrs; n++) {
1040 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1041 
1042 		attr_ops[ta->ops_index].clear((uint8_t *)o->attr +
1043 					      ta->raw_offs);
1044 	}
1045 }
1046 
1047 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data,
1048 				  size_t *data_len)
1049 {
1050 	const struct tee_cryp_obj_type_props *tp;
1051 	size_t n;
1052 	size_t offs = 0;
1053 	size_t len = data ? *data_len : 0;
1054 	TEE_Result res;
1055 
1056 	if (o->info.objectType == TEE_TYPE_DATA) {
1057 		*data_len = 0;
1058 		return TEE_SUCCESS; /* pure data object */
1059 	}
1060 	if (!o->attr)
1061 		return TEE_ERROR_BAD_STATE;
1062 	tp = tee_svc_find_type_props(o->info.objectType);
1063 	if (!tp)
1064 		return TEE_ERROR_BAD_STATE;
1065 
1066 	for (n = 0; n < tp->num_type_attrs; n++) {
1067 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1068 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1069 
1070 		res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs);
1071 		if (res != TEE_SUCCESS)
1072 			return res;
1073 	}
1074 
1075 	*data_len = offs;
1076 	if (data && offs > len)
1077 		return TEE_ERROR_SHORT_BUFFER;
1078 	return TEE_SUCCESS;
1079 }
1080 
1081 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data,
1082 				    size_t data_len)
1083 {
1084 	const struct tee_cryp_obj_type_props *tp;
1085 	size_t n;
1086 	size_t offs = 0;
1087 
1088 	if (o->info.objectType == TEE_TYPE_DATA)
1089 		return TEE_SUCCESS; /* pure data object */
1090 	if (!o->attr)
1091 		return TEE_ERROR_BAD_STATE;
1092 	tp = tee_svc_find_type_props(o->info.objectType);
1093 	if (!tp)
1094 		return TEE_ERROR_BAD_STATE;
1095 
1096 	for (n = 0; n < tp->num_type_attrs; n++) {
1097 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1098 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1099 
1100 		if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len,
1101 							 &offs))
1102 			return TEE_ERROR_CORRUPT_OBJECT;
1103 	}
1104 	return TEE_SUCCESS;
1105 }
1106 
1107 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src)
1108 {
1109 	TEE_Result res;
1110 	const struct tee_cryp_obj_type_props *tp;
1111 	const struct tee_cryp_obj_type_attrs *ta;
1112 	size_t n;
1113 	uint32_t have_attrs = 0;
1114 	void *attr;
1115 	void *src_attr;
1116 
1117 	if (o->info.objectType == TEE_TYPE_DATA)
1118 		return TEE_SUCCESS; /* pure data object */
1119 	if (!o->attr)
1120 		return TEE_ERROR_BAD_STATE;
1121 	tp = tee_svc_find_type_props(o->info.objectType);
1122 	if (!tp)
1123 		return TEE_ERROR_BAD_STATE;
1124 
1125 	if (o->info.objectType == src->info.objectType) {
1126 		have_attrs = src->have_attrs;
1127 		for (n = 0; n < tp->num_type_attrs; n++) {
1128 			ta = tp->type_attrs + n;
1129 			attr = (uint8_t *)o->attr + ta->raw_offs;
1130 			src_attr = (uint8_t *)src->attr + ta->raw_offs;
1131 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1132 			if (res != TEE_SUCCESS)
1133 				return res;
1134 		}
1135 	} else {
1136 		const struct tee_cryp_obj_type_props *tp_src;
1137 		int idx;
1138 
1139 		if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) {
1140 			if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR)
1141 				return TEE_ERROR_BAD_PARAMETERS;
1142 		} else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) {
1143 			if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR)
1144 				return TEE_ERROR_BAD_PARAMETERS;
1145 		} else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) {
1146 			if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR)
1147 				return TEE_ERROR_BAD_PARAMETERS;
1148 		} else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) {
1149 			if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR)
1150 				return TEE_ERROR_BAD_PARAMETERS;
1151 		} else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) {
1152 			if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR)
1153 				return TEE_ERROR_BAD_PARAMETERS;
1154 		} else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) {
1155 			if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR)
1156 				return TEE_ERROR_BAD_PARAMETERS;
1157 		} else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) {
1158 			if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR)
1159 				return TEE_ERROR_BAD_PARAMETERS;
1160 		} else {
1161 			return TEE_ERROR_BAD_PARAMETERS;
1162 		}
1163 
1164 		tp_src = tee_svc_find_type_props(src->info.objectType);
1165 		if (!tp_src)
1166 			return TEE_ERROR_BAD_STATE;
1167 
1168 		have_attrs = BIT32(tp->num_type_attrs) - 1;
1169 		for (n = 0; n < tp->num_type_attrs; n++) {
1170 			ta = tp->type_attrs + n;
1171 
1172 			idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id,
1173 								  tp_src);
1174 			if (idx < 0)
1175 				return TEE_ERROR_BAD_STATE;
1176 
1177 			attr = (uint8_t *)o->attr + ta->raw_offs;
1178 			src_attr = (uint8_t *)src->attr +
1179 				   tp_src->type_attrs[idx].raw_offs;
1180 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1181 			if (res != TEE_SUCCESS)
1182 				return res;
1183 		}
1184 	}
1185 
1186 	o->have_attrs = have_attrs;
1187 	return TEE_SUCCESS;
1188 }
1189 
1190 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz)
1191 {
1192 	return IS_ENABLED(CFG_COMPAT_GP10_DES) &&
1193 	       ((type == TEE_TYPE_DES && sz == 56) ||
1194 		(type == TEE_TYPE_DES3 && (sz == 112 || sz == 168)));
1195 }
1196 
1197 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props,
1198 				 size_t key_size)
1199 {
1200 	size_t sz = key_size;
1201 
1202 	/*
1203 	 * In GP Internal API Specification 1.0 the partity bits aren't
1204 	 * counted when telling the size of the key in bits so add them
1205 	 * here if missing.
1206 	 */
1207 	if (is_gp_legacy_des_key_size(props->obj_type, sz))
1208 		sz += sz / 7;
1209 
1210 	if (sz % props->quanta != 0)
1211 		return TEE_ERROR_NOT_SUPPORTED;
1212 	if (sz < props->min_size)
1213 		return TEE_ERROR_NOT_SUPPORTED;
1214 	if (sz > props->max_size)
1215 		return TEE_ERROR_NOT_SUPPORTED;
1216 
1217 	return TEE_SUCCESS;
1218 }
1219 
1220 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type,
1221 			    size_t max_key_size)
1222 {
1223 	TEE_Result res = TEE_SUCCESS;
1224 	const struct tee_cryp_obj_type_props *type_props;
1225 
1226 	/* Can only set type for newly allocated objs */
1227 	if (o->attr)
1228 		return TEE_ERROR_BAD_STATE;
1229 
1230 	/*
1231 	 * Verify that maxKeySize is supported and find out how
1232 	 * much should be allocated.
1233 	 */
1234 
1235 	if (obj_type == TEE_TYPE_DATA) {
1236 		if (max_key_size)
1237 			return TEE_ERROR_NOT_SUPPORTED;
1238 	} else {
1239 		/* Find description of object */
1240 		type_props = tee_svc_find_type_props(obj_type);
1241 		if (!type_props)
1242 			return TEE_ERROR_NOT_SUPPORTED;
1243 
1244 		/* Check that max_key_size follows restrictions */
1245 		res = check_key_size(type_props, max_key_size);
1246 		if (res)
1247 			return res;
1248 
1249 		o->attr = calloc(1, type_props->alloc_size);
1250 		if (!o->attr)
1251 			return TEE_ERROR_OUT_OF_MEMORY;
1252 	}
1253 
1254 	/* If we have a key structure, pre-allocate the bignums inside */
1255 	switch (obj_type) {
1256 	case TEE_TYPE_RSA_PUBLIC_KEY:
1257 		res = crypto_acipher_alloc_rsa_public_key(o->attr,
1258 							  max_key_size);
1259 		break;
1260 	case TEE_TYPE_RSA_KEYPAIR:
1261 		res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size);
1262 		break;
1263 	case TEE_TYPE_DSA_PUBLIC_KEY:
1264 		res = crypto_acipher_alloc_dsa_public_key(o->attr,
1265 							  max_key_size);
1266 		break;
1267 	case TEE_TYPE_DSA_KEYPAIR:
1268 		res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size);
1269 		break;
1270 	case TEE_TYPE_DH_KEYPAIR:
1271 		res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size);
1272 		break;
1273 	case TEE_TYPE_ECDSA_PUBLIC_KEY:
1274 	case TEE_TYPE_ECDH_PUBLIC_KEY:
1275 	case TEE_TYPE_SM2_DSA_PUBLIC_KEY:
1276 	case TEE_TYPE_SM2_PKE_PUBLIC_KEY:
1277 	case TEE_TYPE_SM2_KEP_PUBLIC_KEY:
1278 		res = crypto_acipher_alloc_ecc_public_key(o->attr, obj_type,
1279 							  max_key_size);
1280 		break;
1281 	case TEE_TYPE_ECDSA_KEYPAIR:
1282 	case TEE_TYPE_ECDH_KEYPAIR:
1283 	case TEE_TYPE_SM2_DSA_KEYPAIR:
1284 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1285 	case TEE_TYPE_SM2_KEP_KEYPAIR:
1286 		res = crypto_acipher_alloc_ecc_keypair(o->attr, obj_type,
1287 						       max_key_size);
1288 		break;
1289 	default:
1290 		if (obj_type != TEE_TYPE_DATA) {
1291 			struct tee_cryp_obj_secret *key = o->attr;
1292 
1293 			key->alloc_size = type_props->alloc_size -
1294 					  sizeof(*key);
1295 		}
1296 		break;
1297 	}
1298 
1299 	if (res != TEE_SUCCESS)
1300 		return res;
1301 
1302 	o->info.objectType = obj_type;
1303 	o->info.maxKeySize = max_key_size;
1304 	o->info.objectUsage = TEE_USAGE_DEFAULT;
1305 
1306 	return TEE_SUCCESS;
1307 }
1308 
1309 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type,
1310 			unsigned long max_key_size, uint32_t *obj)
1311 {
1312 	struct ts_session *sess = ts_get_current_session();
1313 	TEE_Result res = TEE_SUCCESS;
1314 	struct tee_obj *o = NULL;
1315 
1316 
1317 	o = tee_obj_alloc();
1318 	if (!o)
1319 		return TEE_ERROR_OUT_OF_MEMORY;
1320 
1321 	res = tee_obj_set_type(o, obj_type, max_key_size);
1322 	if (res != TEE_SUCCESS) {
1323 		tee_obj_free(o);
1324 		return res;
1325 	}
1326 
1327 	tee_obj_add(to_user_ta_ctx(sess->ctx), o);
1328 
1329 	res = copy_kaddr_to_uref(obj, o);
1330 	if (res != TEE_SUCCESS)
1331 		tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1332 	return res;
1333 }
1334 
1335 TEE_Result syscall_cryp_obj_close(unsigned long obj)
1336 {
1337 	struct ts_session *sess = ts_get_current_session();
1338 	TEE_Result res = TEE_SUCCESS;
1339 	struct tee_obj *o = NULL;
1340 
1341 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1342 	if (res != TEE_SUCCESS)
1343 		return res;
1344 
1345 	/*
1346 	 * If it's busy it's used by an operation, a client should never have
1347 	 * this handle.
1348 	 */
1349 	if (o->busy)
1350 		return TEE_ERROR_ITEM_NOT_FOUND;
1351 
1352 	tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1353 	return TEE_SUCCESS;
1354 }
1355 
1356 TEE_Result syscall_cryp_obj_reset(unsigned long obj)
1357 {
1358 	struct ts_session *sess = ts_get_current_session();
1359 	TEE_Result res = TEE_SUCCESS;
1360 	struct tee_obj *o = NULL;
1361 
1362 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1363 	if (res != TEE_SUCCESS)
1364 		return res;
1365 
1366 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) {
1367 		tee_obj_attr_clear(o);
1368 		o->info.keySize = 0;
1369 		o->info.objectUsage = TEE_USAGE_DEFAULT;
1370 	} else {
1371 		return TEE_ERROR_BAD_PARAMETERS;
1372 	}
1373 
1374 	/* the object is no more initialized */
1375 	o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;
1376 
1377 	return TEE_SUCCESS;
1378 }
1379 
1380 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,
1381 			const struct utee_attribute *usr_attrs,
1382 			uint32_t attr_count, TEE_Attribute *attrs)
1383 {
1384 	TEE_Result res = TEE_SUCCESS;
1385 	size_t size = 0;
1386 	uint32_t n = 0;
1387 
1388 	if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size))
1389 		return TEE_ERROR_OVERFLOW;
1390 
1391 	res = vm_check_access_rights(&utc->uctx,
1392 				     TEE_MEMORY_ACCESS_READ |
1393 				     TEE_MEMORY_ACCESS_ANY_OWNER,
1394 				     (uaddr_t)usr_attrs, size);
1395 	if (res != TEE_SUCCESS)
1396 		return res;
1397 
1398 	for (n = 0; n < attr_count; n++) {
1399 		attrs[n].attributeID = usr_attrs[n].attribute_id;
1400 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) {
1401 			attrs[n].content.value.a = usr_attrs[n].a;
1402 			attrs[n].content.value.b = usr_attrs[n].b;
1403 		} else {
1404 			uintptr_t buf = usr_attrs[n].a;
1405 			size_t len = usr_attrs[n].b;
1406 			uint32_t flags = TEE_MEMORY_ACCESS_READ |
1407 					 TEE_MEMORY_ACCESS_ANY_OWNER;
1408 
1409 			res = vm_check_access_rights(&utc->uctx, flags, buf,
1410 						     len);
1411 			if (res != TEE_SUCCESS)
1412 				return res;
1413 			attrs[n].content.ref.buffer = (void *)buf;
1414 			attrs[n].content.ref.length = len;
1415 		}
1416 	}
1417 
1418 	return TEE_SUCCESS;
1419 }
1420 
1421 enum attr_usage {
1422 	ATTR_USAGE_POPULATE,
1423 	ATTR_USAGE_GENERATE_KEY
1424 };
1425 
1426 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage,
1427 					  const struct tee_cryp_obj_type_props
1428 						*type_props,
1429 					  const TEE_Attribute *attrs,
1430 					  uint32_t attr_count)
1431 {
1432 	uint32_t required_flag = 0;
1433 	uint32_t opt_flag = 0;
1434 	bool all_opt_needed = false;
1435 	uint32_t req_attrs = 0;
1436 	uint32_t opt_grp_attrs = 0;
1437 	uint32_t attrs_found = 0;
1438 	size_t n = 0;
1439 	uint32_t bit = 0;
1440 	uint32_t flags = 0;
1441 	int idx = 0;
1442 
1443 	if (usage == ATTR_USAGE_POPULATE) {
1444 		required_flag = TEE_TYPE_ATTR_REQUIRED;
1445 		opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP;
1446 		all_opt_needed = true;
1447 	} else {
1448 		required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ;
1449 		opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT;
1450 		all_opt_needed = false;
1451 	}
1452 
1453 	/*
1454 	 * First find out which attributes are required and which belong to
1455 	 * the optional group
1456 	 */
1457 	for (n = 0; n < type_props->num_type_attrs; n++) {
1458 		bit = 1 << n;
1459 		flags = type_props->type_attrs[n].flags;
1460 
1461 		if (flags & required_flag)
1462 			req_attrs |= bit;
1463 		else if (flags & opt_flag)
1464 			opt_grp_attrs |= bit;
1465 	}
1466 
1467 	/*
1468 	 * Verify that all required attributes are in place and
1469 	 * that the same attribute isn't repeated.
1470 	 */
1471 	for (n = 0; n < attr_count; n++) {
1472 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1473 							attrs[n].attributeID,
1474 							type_props);
1475 
1476 		/* attribute not defined in current object type */
1477 		if (idx < 0)
1478 			return TEE_ERROR_ITEM_NOT_FOUND;
1479 
1480 		bit = 1 << idx;
1481 
1482 		/* attribute not repeated */
1483 		if ((attrs_found & bit) != 0)
1484 			return TEE_ERROR_ITEM_NOT_FOUND;
1485 
1486 		/*
1487 		 * Attribute not defined in current object type for this
1488 		 * usage.
1489 		 */
1490 		if (!(bit & (req_attrs | opt_grp_attrs)))
1491 			return TEE_ERROR_ITEM_NOT_FOUND;
1492 
1493 		attrs_found |= bit;
1494 	}
1495 	/* Required attribute missing */
1496 	if ((attrs_found & req_attrs) != req_attrs)
1497 		return TEE_ERROR_ITEM_NOT_FOUND;
1498 
1499 	/*
1500 	 * If the flag says that "if one of the optional attributes are included
1501 	 * all of them has to be included" this must be checked.
1502 	 */
1503 	if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 &&
1504 	    (attrs_found & opt_grp_attrs) != opt_grp_attrs)
1505 		return TEE_ERROR_ITEM_NOT_FOUND;
1506 
1507 	return TEE_SUCCESS;
1508 }
1509 
1510 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size)
1511 {
1512 	switch (curve) {
1513 	case TEE_ECC_CURVE_NIST_P192:
1514 		*key_size = 192;
1515 		break;
1516 	case TEE_ECC_CURVE_NIST_P224:
1517 		*key_size = 224;
1518 		break;
1519 	case TEE_ECC_CURVE_NIST_P256:
1520 		*key_size = 256;
1521 		break;
1522 	case TEE_ECC_CURVE_NIST_P384:
1523 		*key_size = 384;
1524 		break;
1525 	case TEE_ECC_CURVE_NIST_P521:
1526 		*key_size = 521;
1527 		break;
1528 	case TEE_ECC_CURVE_SM2:
1529 		*key_size = 256;
1530 		break;
1531 	default:
1532 		return TEE_ERROR_NOT_SUPPORTED;
1533 	}
1534 
1535 	return TEE_SUCCESS;
1536 }
1537 
1538 static size_t get_used_bits(const TEE_Attribute *a)
1539 {
1540 	int nbits = a->content.ref.length * 8;
1541 	int v = 0;
1542 
1543 	bit_ffs(a->content.ref.buffer, nbits, &v);
1544 	return nbits - v;
1545 }
1546 
1547 static TEE_Result tee_svc_cryp_obj_populate_type(
1548 		struct tee_obj *o,
1549 		const struct tee_cryp_obj_type_props *type_props,
1550 		const TEE_Attribute *attrs,
1551 		uint32_t attr_count)
1552 {
1553 	TEE_Result res = TEE_SUCCESS;
1554 	uint32_t have_attrs = 0;
1555 	size_t obj_size = 0;
1556 	size_t n = 0;
1557 	int idx = 0;
1558 	const struct attr_ops *ops = NULL;
1559 	void *attr = NULL;
1560 
1561 	for (n = 0; n < attr_count; n++) {
1562 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1563 							attrs[n].attributeID,
1564 							type_props);
1565 		/* attribute not defined in current object type */
1566 		if (idx < 0)
1567 			return TEE_ERROR_ITEM_NOT_FOUND;
1568 
1569 		have_attrs |= BIT32(idx);
1570 		ops = attr_ops + type_props->type_attrs[idx].ops_index;
1571 		attr = (uint8_t *)o->attr +
1572 		       type_props->type_attrs[idx].raw_offs;
1573 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE)
1574 			res = ops->from_user(attr, &attrs[n].content.value,
1575 					     sizeof(attrs[n].content.value));
1576 		else
1577 			res = ops->from_user(attr, attrs[n].content.ref.buffer,
1578 					     attrs[n].content.ref.length);
1579 		if (res != TEE_SUCCESS)
1580 			return res;
1581 
1582 		/*
1583 		 * The attribute that gives the size of the object is
1584 		 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR.
1585 		 */
1586 		if (type_props->type_attrs[idx].flags &
1587 		    TEE_TYPE_ATTR_SIZE_INDICATOR) {
1588 			/* There should be only one */
1589 			if (obj_size)
1590 				return TEE_ERROR_BAD_STATE;
1591 
1592 			/*
1593 			 * For ECDSA/ECDH we need to translate curve into
1594 			 * object size
1595 			 */
1596 			if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) {
1597 				res = get_ec_key_size(attrs[n].content.value.a,
1598 						      &obj_size);
1599 				if (res != TEE_SUCCESS)
1600 					return res;
1601 			} else {
1602 				TEE_ObjectType obj_type = o->info.objectType;
1603 				size_t sz = o->info.maxKeySize;
1604 
1605 				obj_size = attrs[n].content.ref.length * 8;
1606 				/* Drop the parity bits for legacy objects */
1607 				if (is_gp_legacy_des_key_size(obj_type, sz))
1608 					obj_size -= obj_size / 8;
1609 			}
1610 			if (obj_size > o->info.maxKeySize)
1611 				return TEE_ERROR_BAD_STATE;
1612 		}
1613 
1614 		/*
1615 		 * Bignum attributes limited by the number of bits in
1616 		 * o->info.keySize are flagged with
1617 		 * TEE_TYPE_ATTR_BIGNUM_MAXBITS.
1618 		 */
1619 		if (type_props->type_attrs[idx].flags &
1620 		    TEE_TYPE_ATTR_BIGNUM_MAXBITS) {
1621 			if (get_used_bits(attrs + n) > o->info.maxKeySize)
1622 				return TEE_ERROR_BAD_STATE;
1623 		}
1624 	}
1625 
1626 	o->have_attrs = have_attrs;
1627 	o->info.keySize = obj_size;
1628 	/*
1629 	 * In GP Internal API Specification 1.0 the partity bits aren't
1630 	 * counted when telling the size of the key in bits so remove the
1631 	 * parity bits here.
1632 	 */
1633 	if (is_gp_legacy_des_key_size(o->info.objectType, o->info.maxKeySize))
1634 		o->info.keySize -= o->info.keySize / 8;
1635 
1636 	return TEE_SUCCESS;
1637 }
1638 
1639 TEE_Result syscall_cryp_obj_populate(unsigned long obj,
1640 			struct utee_attribute *usr_attrs,
1641 			unsigned long attr_count)
1642 {
1643 	struct ts_session *sess = ts_get_current_session();
1644 	TEE_Result res = TEE_SUCCESS;
1645 	struct tee_obj *o = NULL;
1646 	const struct tee_cryp_obj_type_props *type_props = NULL;
1647 	TEE_Attribute *attrs = NULL;
1648 
1649 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1650 	if (res != TEE_SUCCESS)
1651 		return res;
1652 
1653 	/* Must be a transient object */
1654 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1655 		return TEE_ERROR_BAD_PARAMETERS;
1656 
1657 	/* Must not be initialized already */
1658 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1659 		return TEE_ERROR_BAD_PARAMETERS;
1660 
1661 	type_props = tee_svc_find_type_props(o->info.objectType);
1662 	if (!type_props)
1663 		return TEE_ERROR_NOT_IMPLEMENTED;
1664 
1665 	size_t alloc_size = 0;
1666 
1667 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size))
1668 		return TEE_ERROR_OVERFLOW;
1669 
1670 	attrs = malloc(alloc_size);
1671 	if (!attrs)
1672 		return TEE_ERROR_OUT_OF_MEMORY;
1673 
1674 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
1675 			    attrs);
1676 	if (res != TEE_SUCCESS)
1677 		goto out;
1678 
1679 	res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
1680 				      attrs, attr_count);
1681 	if (res != TEE_SUCCESS)
1682 		goto out;
1683 
1684 	res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
1685 	if (res == TEE_SUCCESS)
1686 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1687 
1688 out:
1689 	free_wipe(attrs);
1690 	return res;
1691 }
1692 
1693 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src)
1694 {
1695 	struct ts_session *sess = ts_get_current_session();
1696 	TEE_Result res = TEE_SUCCESS;
1697 	struct tee_obj *dst_o = NULL;
1698 	struct tee_obj *src_o = NULL;
1699 
1700 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1701 			  uref_to_vaddr(dst), &dst_o);
1702 	if (res != TEE_SUCCESS)
1703 		return res;
1704 
1705 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1706 			  uref_to_vaddr(src), &src_o);
1707 	if (res != TEE_SUCCESS)
1708 		return res;
1709 
1710 	if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1711 		return TEE_ERROR_BAD_PARAMETERS;
1712 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1713 		return TEE_ERROR_BAD_PARAMETERS;
1714 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1715 		return TEE_ERROR_BAD_PARAMETERS;
1716 
1717 	res = tee_obj_attr_copy_from(dst_o, src_o);
1718 	if (res != TEE_SUCCESS)
1719 		return res;
1720 
1721 	dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1722 	dst_o->info.keySize = src_o->info.keySize;
1723 	dst_o->info.objectUsage = src_o->info.objectUsage;
1724 	return TEE_SUCCESS;
1725 }
1726 
1727 static TEE_Result check_pub_rsa_key(struct bignum *e)
1728 {
1729 	size_t n = crypto_bignum_num_bytes(e);
1730 	uint8_t bin_key[256 / 8] = { 0 };
1731 
1732 	/*
1733 	 * NIST SP800-56B requires public RSA key to be an odd integer in
1734 	 * the range 65537 <= e < 2^256.
1735 	 */
1736 
1737 	if (n > sizeof(bin_key) || n < 3)
1738 		return TEE_ERROR_BAD_PARAMETERS;
1739 
1740 	crypto_bignum_bn2bin(e, bin_key);
1741 
1742 	if (!(bin_key[n - 1] & 1)) /* key must be odd */
1743 		return TEE_ERROR_BAD_PARAMETERS;
1744 
1745 	if (n == 3) {
1746 		uint32_t key = 0;
1747 
1748 		for (n = 0; n < 3; n++) {
1749 			key <<= 8;
1750 			key |= bin_key[n];
1751 		}
1752 
1753 		if (key < 65537)
1754 			return TEE_ERROR_BAD_PARAMETERS;
1755 	}
1756 
1757 	/* key is larger than 65537 */
1758 	return TEE_SUCCESS;
1759 }
1760 
1761 static TEE_Result tee_svc_obj_generate_key_rsa(
1762 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1763 	uint32_t key_size,
1764 	const TEE_Attribute *params, uint32_t param_count)
1765 {
1766 	TEE_Result res = TEE_SUCCESS;
1767 	struct rsa_keypair *key = o->attr;
1768 	uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537);
1769 
1770 	/* Copy the present attributes into the obj before starting */
1771 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1772 					     param_count);
1773 	if (res != TEE_SUCCESS)
1774 		return res;
1775 	if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) {
1776 		res = check_pub_rsa_key(key->e);
1777 		if (res)
1778 			return res;
1779 	} else {
1780 		crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e);
1781 	}
1782 	res = crypto_acipher_gen_rsa_key(key, key_size);
1783 	if (res != TEE_SUCCESS)
1784 		return res;
1785 
1786 	/* Set bits for all known attributes for this object type */
1787 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1788 
1789 	return TEE_SUCCESS;
1790 }
1791 
1792 static TEE_Result tee_svc_obj_generate_key_dsa(
1793 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1794 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1795 {
1796 	TEE_Result res;
1797 
1798 	/* Copy the present attributes into the obj before starting */
1799 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1800 					     param_count);
1801 	if (res != TEE_SUCCESS)
1802 		return res;
1803 
1804 	res = crypto_acipher_gen_dsa_key(o->attr, key_size);
1805 	if (res != TEE_SUCCESS)
1806 		return res;
1807 
1808 	/* Set bits for all known attributes for this object type */
1809 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1810 
1811 	return TEE_SUCCESS;
1812 }
1813 
1814 static TEE_Result tee_svc_obj_generate_key_dh(
1815 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1816 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1817 {
1818 	TEE_Result res;
1819 	struct dh_keypair *tee_dh_key;
1820 	struct bignum *dh_q = NULL;
1821 	uint32_t dh_xbits = 0;
1822 
1823 	/* Copy the present attributes into the obj before starting */
1824 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1825 					     param_count);
1826 	if (res != TEE_SUCCESS)
1827 		return res;
1828 
1829 	tee_dh_key = (struct dh_keypair *)o->attr;
1830 
1831 	if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME))
1832 		dh_q = tee_dh_key->q;
1833 	if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS))
1834 		dh_xbits = tee_dh_key->xbits;
1835 	res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size);
1836 	if (res != TEE_SUCCESS)
1837 		return res;
1838 
1839 	/* Set bits for the generated public and private key */
1840 	set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE);
1841 	set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE);
1842 	set_attribute(o, type_props, TEE_ATTR_DH_X_BITS);
1843 	return TEE_SUCCESS;
1844 }
1845 
1846 static TEE_Result tee_svc_obj_generate_key_ecc(
1847 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1848 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1849 {
1850 	TEE_Result res;
1851 	struct ecc_keypair *tee_ecc_key;
1852 
1853 	/* Copy the present attributes into the obj before starting */
1854 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1855 					     param_count);
1856 	if (res != TEE_SUCCESS)
1857 		return res;
1858 
1859 	tee_ecc_key = (struct ecc_keypair *)o->attr;
1860 
1861 	res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size);
1862 	if (res != TEE_SUCCESS)
1863 		return res;
1864 
1865 	/* Set bits for the generated public and private key */
1866 	set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE);
1867 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X);
1868 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y);
1869 	set_attribute(o, type_props, TEE_ATTR_ECC_CURVE);
1870 	return TEE_SUCCESS;
1871 }
1872 
1873 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size,
1874 			const struct utee_attribute *usr_params,
1875 			unsigned long param_count)
1876 {
1877 	struct ts_session *sess = ts_get_current_session();
1878 	TEE_Result res = TEE_SUCCESS;
1879 	const struct tee_cryp_obj_type_props *type_props = NULL;
1880 	struct tee_obj *o = NULL;
1881 	struct tee_cryp_obj_secret *key = NULL;
1882 	size_t byte_size = 0;
1883 	TEE_Attribute *params = NULL;
1884 
1885 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1886 	if (res != TEE_SUCCESS)
1887 		return res;
1888 
1889 	/* Must be a transient object */
1890 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1891 		return TEE_ERROR_BAD_STATE;
1892 
1893 	/* Must not be initialized already */
1894 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1895 		return TEE_ERROR_BAD_STATE;
1896 
1897 	/* Find description of object */
1898 	type_props = tee_svc_find_type_props(o->info.objectType);
1899 	if (!type_props)
1900 		return TEE_ERROR_NOT_SUPPORTED;
1901 
1902 	/* Check that key_size follows restrictions */
1903 	res = check_key_size(type_props, key_size);
1904 	if (res)
1905 		return res;
1906 
1907 	size_t alloc_size = 0;
1908 
1909 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
1910 		return TEE_ERROR_OVERFLOW;
1911 
1912 	params = malloc(alloc_size);
1913 	if (!params)
1914 		return TEE_ERROR_OUT_OF_MEMORY;
1915 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count,
1916 			    params);
1917 	if (res != TEE_SUCCESS)
1918 		goto out;
1919 
1920 	res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props,
1921 				      params, param_count);
1922 	if (res != TEE_SUCCESS)
1923 		goto out;
1924 
1925 	switch (o->info.objectType) {
1926 	case TEE_TYPE_AES:
1927 	case TEE_TYPE_DES:
1928 	case TEE_TYPE_DES3:
1929 	case TEE_TYPE_SM4:
1930 	case TEE_TYPE_HMAC_MD5:
1931 	case TEE_TYPE_HMAC_SHA1:
1932 	case TEE_TYPE_HMAC_SHA224:
1933 	case TEE_TYPE_HMAC_SHA256:
1934 	case TEE_TYPE_HMAC_SHA384:
1935 	case TEE_TYPE_HMAC_SHA512:
1936 	case TEE_TYPE_HMAC_SM3:
1937 	case TEE_TYPE_GENERIC_SECRET:
1938 		byte_size = key_size / 8;
1939 
1940 		/*
1941 		 * In GP Internal API Specification 1.0 the partity bits
1942 		 * aren't counted when telling the size of the key in bits.
1943 		 */
1944 		if (is_gp_legacy_des_key_size(o->info.objectType, key_size))
1945 			byte_size = (key_size + key_size / 7) / 8;
1946 
1947 		key = (struct tee_cryp_obj_secret *)o->attr;
1948 		if (byte_size > key->alloc_size) {
1949 			res = TEE_ERROR_EXCESS_DATA;
1950 			goto out;
1951 		}
1952 
1953 		res = crypto_rng_read((void *)(key + 1), byte_size);
1954 		if (res != TEE_SUCCESS)
1955 			goto out;
1956 
1957 		key->key_size = byte_size;
1958 
1959 		/* Set bits for all known attributes for this object type */
1960 		o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1961 
1962 		break;
1963 
1964 	case TEE_TYPE_RSA_KEYPAIR:
1965 		res = tee_svc_obj_generate_key_rsa(o, type_props, key_size,
1966 						   params, param_count);
1967 		if (res != TEE_SUCCESS)
1968 			goto out;
1969 		break;
1970 
1971 	case TEE_TYPE_DSA_KEYPAIR:
1972 		res = tee_svc_obj_generate_key_dsa(o, type_props, key_size,
1973 						   params, param_count);
1974 		if (res != TEE_SUCCESS)
1975 			goto out;
1976 		break;
1977 
1978 	case TEE_TYPE_DH_KEYPAIR:
1979 		res = tee_svc_obj_generate_key_dh(o, type_props, key_size,
1980 						  params, param_count);
1981 		if (res != TEE_SUCCESS)
1982 			goto out;
1983 		break;
1984 
1985 	case TEE_TYPE_ECDSA_KEYPAIR:
1986 	case TEE_TYPE_ECDH_KEYPAIR:
1987 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1988 		res = tee_svc_obj_generate_key_ecc(o, type_props, key_size,
1989 						  params, param_count);
1990 		if (res != TEE_SUCCESS)
1991 			goto out;
1992 		break;
1993 
1994 	default:
1995 		res = TEE_ERROR_BAD_FORMAT;
1996 	}
1997 
1998 out:
1999 	free_wipe(params);
2000 	if (res == TEE_SUCCESS) {
2001 		o->info.keySize = key_size;
2002 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2003 	}
2004 	return res;
2005 }
2006 
2007 static TEE_Result tee_svc_cryp_get_state(struct ts_session *sess,
2008 					 vaddr_t state_id,
2009 					 struct tee_cryp_state **state)
2010 {
2011 	struct tee_cryp_state *s;
2012 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2013 
2014 	TAILQ_FOREACH(s, &utc->cryp_states, link) {
2015 		if (state_id == (vaddr_t)s) {
2016 			*state = s;
2017 			return TEE_SUCCESS;
2018 		}
2019 	}
2020 	return TEE_ERROR_BAD_PARAMETERS;
2021 }
2022 
2023 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs)
2024 {
2025 	struct tee_obj *o;
2026 
2027 	if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS)
2028 		tee_obj_close(utc, o);
2029 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS)
2030 		tee_obj_close(utc, o);
2031 
2032 	TAILQ_REMOVE(&utc->cryp_states, cs, link);
2033 	if (cs->ctx_finalize != NULL)
2034 		cs->ctx_finalize(cs->ctx);
2035 
2036 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2037 	case TEE_OPERATION_CIPHER:
2038 		crypto_cipher_free_ctx(cs->ctx);
2039 		break;
2040 	case TEE_OPERATION_AE:
2041 		crypto_authenc_free_ctx(cs->ctx);
2042 		break;
2043 	case TEE_OPERATION_DIGEST:
2044 		crypto_hash_free_ctx(cs->ctx);
2045 		break;
2046 	case TEE_OPERATION_MAC:
2047 		crypto_mac_free_ctx(cs->ctx);
2048 		break;
2049 	default:
2050 		assert(!cs->ctx);
2051 	}
2052 
2053 	free(cs);
2054 }
2055 
2056 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o,
2057 					      uint32_t algo,
2058 					      TEE_OperationMode mode)
2059 {
2060 	uint32_t req_key_type;
2061 	uint32_t req_key_type2 = 0;
2062 
2063 	switch (TEE_ALG_GET_MAIN_ALG(algo)) {
2064 	case TEE_MAIN_ALGO_MD5:
2065 		req_key_type = TEE_TYPE_HMAC_MD5;
2066 		break;
2067 	case TEE_MAIN_ALGO_SHA1:
2068 		req_key_type = TEE_TYPE_HMAC_SHA1;
2069 		break;
2070 	case TEE_MAIN_ALGO_SHA224:
2071 		req_key_type = TEE_TYPE_HMAC_SHA224;
2072 		break;
2073 	case TEE_MAIN_ALGO_SHA256:
2074 		req_key_type = TEE_TYPE_HMAC_SHA256;
2075 		break;
2076 	case TEE_MAIN_ALGO_SHA384:
2077 		req_key_type = TEE_TYPE_HMAC_SHA384;
2078 		break;
2079 	case TEE_MAIN_ALGO_SHA512:
2080 		req_key_type = TEE_TYPE_HMAC_SHA512;
2081 		break;
2082 	case TEE_MAIN_ALGO_SM3:
2083 		req_key_type = TEE_TYPE_HMAC_SM3;
2084 		break;
2085 	case TEE_MAIN_ALGO_AES:
2086 		req_key_type = TEE_TYPE_AES;
2087 		break;
2088 	case TEE_MAIN_ALGO_DES:
2089 		req_key_type = TEE_TYPE_DES;
2090 		break;
2091 	case TEE_MAIN_ALGO_DES3:
2092 		req_key_type = TEE_TYPE_DES3;
2093 		break;
2094 	case TEE_MAIN_ALGO_SM4:
2095 		req_key_type = TEE_TYPE_SM4;
2096 		break;
2097 	case TEE_MAIN_ALGO_RSA:
2098 		req_key_type = TEE_TYPE_RSA_KEYPAIR;
2099 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2100 			req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY;
2101 		break;
2102 	case TEE_MAIN_ALGO_DSA:
2103 		req_key_type = TEE_TYPE_DSA_KEYPAIR;
2104 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2105 			req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY;
2106 		break;
2107 	case TEE_MAIN_ALGO_DH:
2108 		req_key_type = TEE_TYPE_DH_KEYPAIR;
2109 		break;
2110 	case TEE_MAIN_ALGO_ECDSA:
2111 		req_key_type = TEE_TYPE_ECDSA_KEYPAIR;
2112 		if (mode == TEE_MODE_VERIFY)
2113 			req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY;
2114 		break;
2115 	case TEE_MAIN_ALGO_ECDH:
2116 		req_key_type = TEE_TYPE_ECDH_KEYPAIR;
2117 		break;
2118 	case TEE_MAIN_ALGO_SM2_PKE:
2119 		if (mode == TEE_MODE_ENCRYPT)
2120 			req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY;
2121 		else
2122 			req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR;
2123 		break;
2124 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
2125 		if (mode == TEE_MODE_VERIFY)
2126 			req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY;
2127 		else
2128 			req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR;
2129 		break;
2130 #if defined(CFG_CRYPTO_SM2_KEP)
2131 	case TEE_MAIN_ALGO_SM2_KEP:
2132 		req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR;
2133 		req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY;
2134 		break;
2135 #endif
2136 #if defined(CFG_CRYPTO_HKDF)
2137 	case TEE_MAIN_ALGO_HKDF:
2138 		req_key_type = TEE_TYPE_HKDF_IKM;
2139 		break;
2140 #endif
2141 #if defined(CFG_CRYPTO_CONCAT_KDF)
2142 	case TEE_MAIN_ALGO_CONCAT_KDF:
2143 		req_key_type = TEE_TYPE_CONCAT_KDF_Z;
2144 		break;
2145 #endif
2146 #if defined(CFG_CRYPTO_PBKDF2)
2147 	case TEE_MAIN_ALGO_PBKDF2:
2148 		req_key_type = TEE_TYPE_PBKDF2_PASSWORD;
2149 		break;
2150 #endif
2151 	default:
2152 		return TEE_ERROR_BAD_PARAMETERS;
2153 	}
2154 
2155 	if (req_key_type != o->info.objectType &&
2156 	    req_key_type2 != o->info.objectType)
2157 		return TEE_ERROR_BAD_PARAMETERS;
2158 	return TEE_SUCCESS;
2159 }
2160 
2161 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode,
2162 			unsigned long key1, unsigned long key2,
2163 			uint32_t *state)
2164 {
2165 	struct ts_session *sess = ts_get_current_session();
2166 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2167 	TEE_Result res = TEE_SUCCESS;
2168 	struct tee_cryp_state *cs = NULL;
2169 	struct tee_obj *o1 = NULL;
2170 	struct tee_obj *o2 = NULL;
2171 
2172 	if (key1 != 0) {
2173 		res = tee_obj_get(utc, uref_to_vaddr(key1), &o1);
2174 		if (res != TEE_SUCCESS)
2175 			return res;
2176 		if (o1->busy)
2177 			return TEE_ERROR_BAD_PARAMETERS;
2178 		res = tee_svc_cryp_check_key_type(o1, algo, mode);
2179 		if (res != TEE_SUCCESS)
2180 			return res;
2181 	}
2182 	if (key2 != 0) {
2183 		res = tee_obj_get(utc, uref_to_vaddr(key2), &o2);
2184 		if (res != TEE_SUCCESS)
2185 			return res;
2186 		if (o2->busy)
2187 			return TEE_ERROR_BAD_PARAMETERS;
2188 		res = tee_svc_cryp_check_key_type(o2, algo, mode);
2189 		if (res != TEE_SUCCESS)
2190 			return res;
2191 	}
2192 
2193 	cs = calloc(1, sizeof(struct tee_cryp_state));
2194 	if (!cs)
2195 		return TEE_ERROR_OUT_OF_MEMORY;
2196 	TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link);
2197 	cs->algo = algo;
2198 	cs->mode = mode;
2199 	cs->state = CRYP_STATE_UNINITIALIZED;
2200 
2201 	switch (TEE_ALG_GET_CLASS(algo)) {
2202 	case TEE_OPERATION_CIPHER:
2203 		if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) ||
2204 		    (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) {
2205 			res = TEE_ERROR_BAD_PARAMETERS;
2206 		} else {
2207 			res = crypto_cipher_alloc_ctx(&cs->ctx, algo);
2208 			if (res != TEE_SUCCESS)
2209 				break;
2210 		}
2211 		break;
2212 	case TEE_OPERATION_AE:
2213 		if (key1 == 0 || key2 != 0) {
2214 			res = TEE_ERROR_BAD_PARAMETERS;
2215 		} else {
2216 			res = crypto_authenc_alloc_ctx(&cs->ctx, algo);
2217 			if (res != TEE_SUCCESS)
2218 				break;
2219 		}
2220 		break;
2221 	case TEE_OPERATION_MAC:
2222 		if (key1 == 0 || key2 != 0) {
2223 			res = TEE_ERROR_BAD_PARAMETERS;
2224 		} else {
2225 			res = crypto_mac_alloc_ctx(&cs->ctx, algo);
2226 			if (res != TEE_SUCCESS)
2227 				break;
2228 		}
2229 		break;
2230 	case TEE_OPERATION_DIGEST:
2231 		if (key1 != 0 || key2 != 0) {
2232 			res = TEE_ERROR_BAD_PARAMETERS;
2233 		} else {
2234 			res = crypto_hash_alloc_ctx(&cs->ctx, algo);
2235 			if (res != TEE_SUCCESS)
2236 				break;
2237 		}
2238 		break;
2239 	case TEE_OPERATION_ASYMMETRIC_CIPHER:
2240 	case TEE_OPERATION_ASYMMETRIC_SIGNATURE:
2241 		if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 &&
2242 		    !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) {
2243 			res = TEE_ERROR_NOT_SUPPORTED;
2244 			break;
2245 		}
2246 		if (key1 == 0 || key2 != 0)
2247 			res = TEE_ERROR_BAD_PARAMETERS;
2248 		break;
2249 	case TEE_OPERATION_KEY_DERIVATION:
2250 		if (algo == TEE_ALG_SM2_KEP) {
2251 			if (key1 == 0 || key2 == 0)
2252 				res = TEE_ERROR_BAD_PARAMETERS;
2253 		} else {
2254 			if (key1 == 0 || key2 != 0)
2255 				res = TEE_ERROR_BAD_PARAMETERS;
2256 		}
2257 		break;
2258 	default:
2259 		res = TEE_ERROR_NOT_SUPPORTED;
2260 		break;
2261 	}
2262 	if (res != TEE_SUCCESS)
2263 		goto out;
2264 
2265 	res = copy_kaddr_to_uref(state, cs);
2266 	if (res != TEE_SUCCESS)
2267 		goto out;
2268 
2269 	/* Register keys */
2270 	if (o1 != NULL) {
2271 		o1->busy = true;
2272 		cs->key1 = (vaddr_t)o1;
2273 	}
2274 	if (o2 != NULL) {
2275 		o2->busy = true;
2276 		cs->key2 = (vaddr_t)o2;
2277 	}
2278 
2279 out:
2280 	if (res != TEE_SUCCESS)
2281 		cryp_state_free(utc, cs);
2282 	return res;
2283 }
2284 
2285 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src)
2286 {
2287 	struct ts_session *sess = ts_get_current_session();
2288 	TEE_Result res = TEE_SUCCESS;
2289 	struct tee_cryp_state *cs_dst = NULL;
2290 	struct tee_cryp_state *cs_src = NULL;
2291 
2292 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst);
2293 	if (res != TEE_SUCCESS)
2294 		return res;
2295 
2296 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src);
2297 	if (res != TEE_SUCCESS)
2298 		return res;
2299 	if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode)
2300 		return TEE_ERROR_BAD_PARAMETERS;
2301 
2302 	switch (TEE_ALG_GET_CLASS(cs_src->algo)) {
2303 	case TEE_OPERATION_CIPHER:
2304 		crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx);
2305 		break;
2306 	case TEE_OPERATION_AE:
2307 		crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx);
2308 		break;
2309 	case TEE_OPERATION_DIGEST:
2310 		crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx);
2311 		break;
2312 	case TEE_OPERATION_MAC:
2313 		crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx);
2314 		break;
2315 	default:
2316 		return TEE_ERROR_BAD_STATE;
2317 	}
2318 
2319 	cs_dst->state = cs_src->state;
2320 	cs_dst->ctx_finalize = cs_src->ctx_finalize;
2321 
2322 	return TEE_SUCCESS;
2323 }
2324 
2325 void tee_svc_cryp_free_states(struct user_ta_ctx *utc)
2326 {
2327 	struct tee_cryp_state_head *states = &utc->cryp_states;
2328 
2329 	while (!TAILQ_EMPTY(states))
2330 		cryp_state_free(utc, TAILQ_FIRST(states));
2331 }
2332 
2333 TEE_Result syscall_cryp_state_free(unsigned long state)
2334 {
2335 	struct ts_session *sess = ts_get_current_session();
2336 	TEE_Result res = TEE_SUCCESS;
2337 	struct tee_cryp_state *cs = NULL;
2338 
2339 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2340 	if (res != TEE_SUCCESS)
2341 		return res;
2342 	cryp_state_free(to_user_ta_ctx(sess->ctx), cs);
2343 	return TEE_SUCCESS;
2344 }
2345 
2346 TEE_Result syscall_hash_init(unsigned long state,
2347 			     const void *iv __maybe_unused,
2348 			     size_t iv_len __maybe_unused)
2349 {
2350 	struct ts_session *sess = ts_get_current_session();
2351 	TEE_Result res = TEE_SUCCESS;
2352 	struct tee_cryp_state *cs = NULL;
2353 
2354 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2355 	if (res != TEE_SUCCESS)
2356 		return res;
2357 
2358 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2359 	case TEE_OPERATION_DIGEST:
2360 		res = crypto_hash_init(cs->ctx);
2361 		if (res != TEE_SUCCESS)
2362 			return res;
2363 		break;
2364 	case TEE_OPERATION_MAC:
2365 		{
2366 			struct tee_obj *o;
2367 			struct tee_cryp_obj_secret *key;
2368 
2369 			res = tee_obj_get(to_user_ta_ctx(sess->ctx),
2370 					  cs->key1, &o);
2371 			if (res != TEE_SUCCESS)
2372 				return res;
2373 			if ((o->info.handleFlags &
2374 			     TEE_HANDLE_FLAG_INITIALIZED) == 0)
2375 				return TEE_ERROR_BAD_PARAMETERS;
2376 
2377 			key = (struct tee_cryp_obj_secret *)o->attr;
2378 			res = crypto_mac_init(cs->ctx, (void *)(key + 1),
2379 					      key->key_size);
2380 			if (res != TEE_SUCCESS)
2381 				return res;
2382 			break;
2383 		}
2384 	default:
2385 		return TEE_ERROR_BAD_PARAMETERS;
2386 	}
2387 
2388 	cs->state = CRYP_STATE_INITIALIZED;
2389 
2390 	return TEE_SUCCESS;
2391 }
2392 
2393 TEE_Result syscall_hash_update(unsigned long state, const void *chunk,
2394 			size_t chunk_size)
2395 {
2396 	struct ts_session *sess = ts_get_current_session();
2397 	struct tee_cryp_state *cs = NULL;
2398 	TEE_Result res = TEE_SUCCESS;
2399 
2400 	/* No data, but size provided isn't valid parameters. */
2401 	if (!chunk && chunk_size)
2402 		return TEE_ERROR_BAD_PARAMETERS;
2403 
2404 	/* Zero length hash is valid, but nothing we need to do. */
2405 	if (!chunk_size)
2406 		return TEE_SUCCESS;
2407 
2408 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2409 				     TEE_MEMORY_ACCESS_READ |
2410 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2411 				     (uaddr_t)chunk, chunk_size);
2412 	if (res != TEE_SUCCESS)
2413 		return res;
2414 
2415 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2416 	if (res != TEE_SUCCESS)
2417 		return res;
2418 
2419 	if (cs->state != CRYP_STATE_INITIALIZED)
2420 		return TEE_ERROR_BAD_STATE;
2421 
2422 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2423 	case TEE_OPERATION_DIGEST:
2424 		res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2425 		if (res != TEE_SUCCESS)
2426 			return res;
2427 		break;
2428 	case TEE_OPERATION_MAC:
2429 		res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2430 		if (res != TEE_SUCCESS)
2431 			return res;
2432 		break;
2433 	default:
2434 		return TEE_ERROR_BAD_PARAMETERS;
2435 	}
2436 
2437 	return TEE_SUCCESS;
2438 }
2439 
2440 TEE_Result syscall_hash_final(unsigned long state, const void *chunk,
2441 			size_t chunk_size, void *hash, uint64_t *hash_len)
2442 {
2443 	struct ts_session *sess = ts_get_current_session();
2444 	struct tee_cryp_state *cs = NULL;
2445 	TEE_Result res2 = TEE_SUCCESS;
2446 	TEE_Result res = TEE_SUCCESS;
2447 	size_t hash_size = 0;
2448 	size_t hlen = 0;
2449 
2450 	/* No data, but size provided isn't valid parameters. */
2451 	if (!chunk && chunk_size)
2452 		return TEE_ERROR_BAD_PARAMETERS;
2453 
2454 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2455 				     TEE_MEMORY_ACCESS_READ |
2456 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2457 				     (uaddr_t)chunk, chunk_size);
2458 	if (res != TEE_SUCCESS)
2459 		return res;
2460 
2461 	res = get_user_u64_as_size_t(&hlen, hash_len);
2462 	if (res != TEE_SUCCESS)
2463 		return res;
2464 
2465 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2466 				     TEE_MEMORY_ACCESS_READ |
2467 				     TEE_MEMORY_ACCESS_WRITE |
2468 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2469 				     (uaddr_t)hash, hlen);
2470 	if (res != TEE_SUCCESS)
2471 		return res;
2472 
2473 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2474 	if (res != TEE_SUCCESS)
2475 		return res;
2476 
2477 	if (cs->state != CRYP_STATE_INITIALIZED)
2478 		return TEE_ERROR_BAD_STATE;
2479 
2480 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2481 	case TEE_OPERATION_DIGEST:
2482 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2483 		if (res != TEE_SUCCESS)
2484 			return res;
2485 		if (hlen < hash_size) {
2486 			res = TEE_ERROR_SHORT_BUFFER;
2487 			goto out;
2488 		}
2489 
2490 		if (chunk_size) {
2491 			res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2492 			if (res != TEE_SUCCESS)
2493 				return res;
2494 		}
2495 
2496 		res = crypto_hash_final(cs->ctx, hash, hash_size);
2497 		if (res != TEE_SUCCESS)
2498 			return res;
2499 		break;
2500 
2501 	case TEE_OPERATION_MAC:
2502 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2503 		if (res != TEE_SUCCESS)
2504 			return res;
2505 		if (hlen < hash_size) {
2506 			res = TEE_ERROR_SHORT_BUFFER;
2507 			goto out;
2508 		}
2509 
2510 		if (chunk_size) {
2511 			res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2512 			if (res != TEE_SUCCESS)
2513 				return res;
2514 		}
2515 
2516 		res = crypto_mac_final(cs->ctx, hash, hash_size);
2517 		if (res != TEE_SUCCESS)
2518 			return res;
2519 		break;
2520 
2521 	default:
2522 		return TEE_ERROR_BAD_PARAMETERS;
2523 	}
2524 out:
2525 	res2 = put_user_u64(hash_len, hash_size);
2526 	if (res2 != TEE_SUCCESS)
2527 		return res2;
2528 	return res;
2529 }
2530 
2531 TEE_Result syscall_cipher_init(unsigned long state, const void *iv,
2532 			size_t iv_len)
2533 {
2534 	struct ts_session *sess = ts_get_current_session();
2535 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2536 	struct tee_cryp_obj_secret *key1 = NULL;
2537 	struct tee_cryp_state *cs = NULL;
2538 	TEE_Result res = TEE_SUCCESS;
2539 	struct tee_obj *o = NULL;
2540 
2541 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2542 	if (res != TEE_SUCCESS)
2543 		return res;
2544 
2545 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER)
2546 		return TEE_ERROR_BAD_STATE;
2547 
2548 	res = vm_check_access_rights(&utc->uctx,
2549 				     TEE_MEMORY_ACCESS_READ |
2550 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2551 				     (uaddr_t)iv, iv_len);
2552 	if (res != TEE_SUCCESS)
2553 		return res;
2554 
2555 	res = tee_obj_get(utc, cs->key1, &o);
2556 	if (res != TEE_SUCCESS)
2557 		return res;
2558 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2559 		return TEE_ERROR_BAD_PARAMETERS;
2560 
2561 	key1 = o->attr;
2562 
2563 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) {
2564 		struct tee_cryp_obj_secret *key2 = o->attr;
2565 
2566 		if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2567 			return TEE_ERROR_BAD_PARAMETERS;
2568 
2569 		res = crypto_cipher_init(cs->ctx, cs->mode,
2570 					 (uint8_t *)(key1 + 1), key1->key_size,
2571 					 (uint8_t *)(key2 + 1), key2->key_size,
2572 					 iv, iv_len);
2573 	} else {
2574 		res = crypto_cipher_init(cs->ctx, cs->mode,
2575 					 (uint8_t *)(key1 + 1), key1->key_size,
2576 					 NULL, 0, iv, iv_len);
2577 	}
2578 	if (res != TEE_SUCCESS)
2579 		return res;
2580 
2581 	cs->ctx_finalize = crypto_cipher_final;
2582 	cs->state = CRYP_STATE_INITIALIZED;
2583 
2584 	return TEE_SUCCESS;
2585 }
2586 
2587 static TEE_Result tee_svc_cipher_update_helper(unsigned long state,
2588 			bool last_block, const void *src, size_t src_len,
2589 			void *dst, uint64_t *dst_len)
2590 {
2591 	struct ts_session *sess = ts_get_current_session();
2592 	struct tee_cryp_state *cs = NULL;
2593 	TEE_Result res = TEE_SUCCESS;
2594 	size_t dlen = 0;
2595 
2596 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2597 	if (res != TEE_SUCCESS)
2598 		return res;
2599 
2600 	if (cs->state != CRYP_STATE_INITIALIZED)
2601 		return TEE_ERROR_BAD_STATE;
2602 
2603 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2604 				     TEE_MEMORY_ACCESS_READ |
2605 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2606 				     (uaddr_t)src, src_len);
2607 	if (res != TEE_SUCCESS)
2608 		return res;
2609 
2610 	if (!dst_len) {
2611 		dlen = 0;
2612 	} else {
2613 		struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
2614 		uint32_t flags = TEE_MEMORY_ACCESS_READ |
2615 				 TEE_MEMORY_ACCESS_WRITE |
2616 				 TEE_MEMORY_ACCESS_ANY_OWNER;
2617 
2618 		res = get_user_u64_as_size_t(&dlen, dst_len);
2619 		if (res != TEE_SUCCESS)
2620 			return res;
2621 
2622 		res = vm_check_access_rights(uctx, flags, (uaddr_t)dst, dlen);
2623 		if (res != TEE_SUCCESS)
2624 			return res;
2625 	}
2626 
2627 	if (dlen < src_len) {
2628 		res = TEE_ERROR_SHORT_BUFFER;
2629 		goto out;
2630 	}
2631 
2632 	if (src_len > 0) {
2633 		/* Permit src_len == 0 to finalize the operation */
2634 		res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode,
2635 					   last_block, src, src_len, dst);
2636 	}
2637 
2638 	if (last_block && cs->ctx_finalize != NULL) {
2639 		cs->ctx_finalize(cs->ctx);
2640 		cs->ctx_finalize = NULL;
2641 	}
2642 
2643 out:
2644 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
2645 	    dst_len != NULL) {
2646 		TEE_Result res2;
2647 
2648 		res2 = put_user_u64(dst_len, src_len);
2649 		if (res2 != TEE_SUCCESS)
2650 			res = res2;
2651 	}
2652 
2653 	return res;
2654 }
2655 
2656 TEE_Result syscall_cipher_update(unsigned long state, const void *src,
2657 			size_t src_len, void *dst, uint64_t *dst_len)
2658 {
2659 	return tee_svc_cipher_update_helper(state, false /* last_block */,
2660 					    src, src_len, dst, dst_len);
2661 }
2662 
2663 TEE_Result syscall_cipher_final(unsigned long state, const void *src,
2664 			size_t src_len, void *dst, uint64_t *dst_len)
2665 {
2666 	return tee_svc_cipher_update_helper(state, true /* last_block */,
2667 					    src, src_len, dst, dst_len);
2668 }
2669 
2670 #if defined(CFG_CRYPTO_HKDF)
2671 static TEE_Result get_hkdf_params(const TEE_Attribute *params,
2672 				  uint32_t param_count,
2673 				  void **salt, size_t *salt_len, void **info,
2674 				  size_t *info_len, size_t *okm_len)
2675 {
2676 	size_t n;
2677 	enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 };
2678 	uint8_t found = 0;
2679 
2680 	*salt = *info = NULL;
2681 	*salt_len = *info_len = *okm_len = 0;
2682 
2683 	for (n = 0; n < param_count; n++) {
2684 		switch (params[n].attributeID) {
2685 		case TEE_ATTR_HKDF_SALT:
2686 			if (!(found & SALT)) {
2687 				*salt = params[n].content.ref.buffer;
2688 				*salt_len = params[n].content.ref.length;
2689 				found |= SALT;
2690 			}
2691 			break;
2692 		case TEE_ATTR_HKDF_OKM_LENGTH:
2693 			if (!(found & LENGTH)) {
2694 				*okm_len = params[n].content.value.a;
2695 				found |= LENGTH;
2696 			}
2697 			break;
2698 		case TEE_ATTR_HKDF_INFO:
2699 			if (!(found & INFO)) {
2700 				*info = params[n].content.ref.buffer;
2701 				*info_len = params[n].content.ref.length;
2702 				found |= INFO;
2703 			}
2704 			break;
2705 		default:
2706 			/* Unexpected attribute */
2707 			return TEE_ERROR_BAD_PARAMETERS;
2708 		}
2709 
2710 	}
2711 
2712 	if (!(found & LENGTH))
2713 		return TEE_ERROR_BAD_PARAMETERS;
2714 
2715 	return TEE_SUCCESS;
2716 }
2717 #endif
2718 
2719 #if defined(CFG_CRYPTO_CONCAT_KDF)
2720 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params,
2721 					uint32_t param_count,
2722 					void **other_info,
2723 					size_t *other_info_len,
2724 					size_t *derived_key_len)
2725 {
2726 	size_t n;
2727 	enum { LENGTH = 0x1, INFO = 0x2 };
2728 	uint8_t found = 0;
2729 
2730 	*other_info = NULL;
2731 	*other_info_len = *derived_key_len = 0;
2732 
2733 	for (n = 0; n < param_count; n++) {
2734 		switch (params[n].attributeID) {
2735 		case TEE_ATTR_CONCAT_KDF_OTHER_INFO:
2736 			if (!(found & INFO)) {
2737 				*other_info = params[n].content.ref.buffer;
2738 				*other_info_len = params[n].content.ref.length;
2739 				found |= INFO;
2740 			}
2741 			break;
2742 		case TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
2743 			if (!(found & LENGTH)) {
2744 				*derived_key_len = params[n].content.value.a;
2745 				found |= LENGTH;
2746 			}
2747 			break;
2748 		default:
2749 			/* Unexpected attribute */
2750 			return TEE_ERROR_BAD_PARAMETERS;
2751 		}
2752 	}
2753 
2754 	if (!(found & LENGTH))
2755 		return TEE_ERROR_BAD_PARAMETERS;
2756 
2757 	return TEE_SUCCESS;
2758 }
2759 #endif
2760 
2761 #if defined(CFG_CRYPTO_PBKDF2)
2762 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params,
2763 				   uint32_t param_count, void **salt,
2764 				   size_t *salt_len, size_t *derived_key_len,
2765 				   size_t *iteration_count)
2766 {
2767 	size_t n;
2768 	enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 };
2769 	uint8_t found = 0;
2770 
2771 	*salt = NULL;
2772 	*salt_len = *derived_key_len = *iteration_count = 0;
2773 
2774 	for (n = 0; n < param_count; n++) {
2775 		switch (params[n].attributeID) {
2776 		case TEE_ATTR_PBKDF2_SALT:
2777 			if (!(found & SALT)) {
2778 				*salt = params[n].content.ref.buffer;
2779 				*salt_len = params[n].content.ref.length;
2780 				found |= SALT;
2781 			}
2782 			break;
2783 		case TEE_ATTR_PBKDF2_DKM_LENGTH:
2784 			if (!(found & LENGTH)) {
2785 				*derived_key_len = params[n].content.value.a;
2786 				found |= LENGTH;
2787 			}
2788 			break;
2789 		case TEE_ATTR_PBKDF2_ITERATION_COUNT:
2790 			if (!(found & COUNT)) {
2791 				*iteration_count = params[n].content.value.a;
2792 				found |= COUNT;
2793 			}
2794 			break;
2795 		default:
2796 			/* Unexpected attribute */
2797 			return TEE_ERROR_BAD_PARAMETERS;
2798 		}
2799 	}
2800 
2801 	if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT))
2802 		return TEE_ERROR_BAD_PARAMETERS;
2803 
2804 	return TEE_SUCCESS;
2805 }
2806 #endif
2807 
2808 #if defined(CFG_CRYPTO_SM2_KEP)
2809 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params,
2810 				     uint32_t param_count,
2811 				     struct ecc_public_key *peer_key,
2812 				     struct ecc_public_key *peer_eph_key,
2813 				     struct sm2_kep_parms *kep_parms)
2814 {
2815 	TEE_Result res = TEE_ERROR_GENERIC;
2816 	size_t n;
2817 	enum {
2818 		IS_INITIATOR,
2819 		PEER_KEY_X,
2820 		PEER_KEY_Y,
2821 		PEER_EPH_KEY_X,
2822 		PEER_EPH_KEY_Y,
2823 		INITIATOR_ID,
2824 		RESPONDER_ID,
2825 	};
2826 	uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) |
2827 		BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) |
2828 		BIT(INITIATOR_ID) | BIT(RESPONDER_ID);
2829 	uint8_t found = 0;
2830 
2831 	res = crypto_acipher_alloc_ecc_public_key(peer_key,
2832 						  TEE_TYPE_SM2_KEP_PUBLIC_KEY,
2833 						  256);
2834 	if (res)
2835 		return res;
2836 
2837 	res = crypto_acipher_alloc_ecc_public_key(peer_eph_key,
2838 						  TEE_TYPE_SM2_KEP_PUBLIC_KEY,
2839 						  256);
2840 	if (res)
2841 		goto out_p;
2842 
2843 	peer_key->curve = TEE_ECC_CURVE_SM2;
2844 	peer_eph_key->curve = TEE_ECC_CURVE_SM2;
2845 
2846 	for (n = 0; n < param_count; n++) {
2847 		const TEE_Attribute *p = &params[n];
2848 
2849 		switch (p->attributeID) {
2850 		case TEE_ATTR_SM2_KEP_USER:
2851 			kep_parms->is_initiator = !p->content.value.a;
2852 			found |= BIT(IS_INITIATOR);
2853 			break;
2854 		case TEE_ATTR_ECC_PUBLIC_VALUE_X:
2855 			crypto_bignum_bin2bn(p->content.ref.buffer,
2856 					     p->content.ref.length,
2857 					     peer_key->x);
2858 			found |= BIT(PEER_KEY_X);
2859 			break;
2860 		case TEE_ATTR_ECC_PUBLIC_VALUE_Y:
2861 			crypto_bignum_bin2bn(p->content.ref.buffer,
2862 					     p->content.ref.length,
2863 					     peer_key->y);
2864 			found |= BIT(PEER_KEY_Y);
2865 			break;
2866 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X:
2867 			crypto_bignum_bin2bn(p->content.ref.buffer,
2868 					     p->content.ref.length,
2869 					     peer_eph_key->x);
2870 			found |= BIT(PEER_EPH_KEY_X);
2871 			break;
2872 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y:
2873 			crypto_bignum_bin2bn(p->content.ref.buffer,
2874 					     p->content.ref.length,
2875 					     peer_eph_key->y);
2876 			found |= BIT(PEER_EPH_KEY_Y);
2877 			break;
2878 		case TEE_ATTR_SM2_ID_INITIATOR:
2879 			kep_parms->initiator_id = p->content.ref.buffer;
2880 			kep_parms->initiator_id_len = p->content.ref.length;
2881 			found |= BIT(INITIATOR_ID);
2882 			break;
2883 		case TEE_ATTR_SM2_ID_RESPONDER:
2884 			kep_parms->responder_id = p->content.ref.buffer;
2885 			kep_parms->responder_id_len = p->content.ref.length;
2886 			found |= BIT(RESPONDER_ID);
2887 			break;
2888 		case TEE_ATTR_SM2_KEP_CONFIRMATION_IN:
2889 			kep_parms->conf_in = p->content.ref.buffer;
2890 			kep_parms->conf_in_len = p->content.ref.length;
2891 			break;
2892 		case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT:
2893 			kep_parms->conf_out = p->content.ref.buffer;
2894 			kep_parms->conf_out_len = p->content.ref.length;
2895 			break;
2896 		default:
2897 			/* Unexpected attribute */
2898 			res = TEE_ERROR_BAD_PARAMETERS;
2899 			goto out;
2900 		}
2901 	}
2902 
2903 	if ((found & mandatory) != mandatory) {
2904 		res = TEE_ERROR_BAD_PARAMETERS;
2905 		goto out;
2906 	}
2907 
2908 	return TEE_SUCCESS;
2909 out:
2910 	crypto_acipher_free_ecc_public_key(peer_eph_key);
2911 out_p:
2912 	crypto_acipher_free_ecc_public_key(peer_key);
2913 	return res;
2914 }
2915 #endif
2916 
2917 TEE_Result syscall_cryp_derive_key(unsigned long state,
2918 			const struct utee_attribute *usr_params,
2919 			unsigned long param_count, unsigned long derived_key)
2920 {
2921 	struct ts_session *sess = ts_get_current_session();
2922 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2923 	TEE_Result res = TEE_ERROR_NOT_SUPPORTED;
2924 	struct tee_obj *ko = NULL;
2925 	struct tee_obj *so = NULL;
2926 	struct tee_cryp_state *cs = NULL;
2927 	struct tee_cryp_obj_secret *sk = NULL;
2928 	const struct tee_cryp_obj_type_props *type_props = NULL;
2929 	TEE_Attribute *params = NULL;
2930 	size_t alloc_size = 0;
2931 
2932 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2933 	if (res != TEE_SUCCESS)
2934 		return res;
2935 
2936 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
2937 		return TEE_ERROR_OVERFLOW;
2938 
2939 	params = malloc(alloc_size);
2940 	if (!params)
2941 		return TEE_ERROR_OUT_OF_MEMORY;
2942 	res = copy_in_attrs(utc, usr_params, param_count, params);
2943 	if (res != TEE_SUCCESS)
2944 		goto out;
2945 
2946 	/* Get key set in operation */
2947 	res = tee_obj_get(utc, cs->key1, &ko);
2948 	if (res != TEE_SUCCESS)
2949 		goto out;
2950 
2951 	res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so);
2952 	if (res != TEE_SUCCESS)
2953 		goto out;
2954 
2955 	/* Find information needed about the object to initialize */
2956 	sk = so->attr;
2957 
2958 	/* Find description of object */
2959 	type_props = tee_svc_find_type_props(so->info.objectType);
2960 	if (!type_props) {
2961 		res = TEE_ERROR_NOT_SUPPORTED;
2962 		goto out;
2963 	}
2964 
2965 	if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) {
2966 		struct bignum *pub;
2967 		struct bignum *ss;
2968 
2969 		if (param_count != 1 ||
2970 		    params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) {
2971 			res = TEE_ERROR_BAD_PARAMETERS;
2972 			goto out;
2973 		}
2974 
2975 		size_t bin_size = params[0].content.ref.length;
2976 
2977 		if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) {
2978 			res = TEE_ERROR_OVERFLOW;
2979 			goto out;
2980 		}
2981 
2982 		pub = crypto_bignum_allocate(alloc_size);
2983 		ss = crypto_bignum_allocate(alloc_size);
2984 		if (pub && ss) {
2985 			crypto_bignum_bin2bn(params[0].content.ref.buffer,
2986 					     bin_size, pub);
2987 			res = crypto_acipher_dh_shared_secret(ko->attr,
2988 							      pub, ss);
2989 			if (res == TEE_SUCCESS) {
2990 				sk->key_size = crypto_bignum_num_bytes(ss);
2991 				crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1));
2992 				so->info.handleFlags |=
2993 						TEE_HANDLE_FLAG_INITIALIZED;
2994 				set_attribute(so, type_props,
2995 					      TEE_ATTR_SECRET_VALUE);
2996 			}
2997 		} else {
2998 			res = TEE_ERROR_OUT_OF_MEMORY;
2999 		}
3000 		crypto_bignum_free(pub);
3001 		crypto_bignum_free(ss);
3002 	} else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) {
3003 		struct ecc_public_key key_public;
3004 		uint8_t *pt_secret;
3005 		unsigned long pt_secret_len;
3006 		uint32_t key_type = TEE_TYPE_ECDH_PUBLIC_KEY;
3007 
3008 		if (param_count != 2 ||
3009 		    params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X ||
3010 		    params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) {
3011 			res = TEE_ERROR_BAD_PARAMETERS;
3012 			goto out;
3013 		}
3014 
3015 		switch (cs->algo) {
3016 		case TEE_ALG_ECDH_P192:
3017 			alloc_size = 192;
3018 			break;
3019 		case TEE_ALG_ECDH_P224:
3020 			alloc_size = 224;
3021 			break;
3022 		case TEE_ALG_ECDH_P256:
3023 			alloc_size = 256;
3024 			break;
3025 		case TEE_ALG_ECDH_P384:
3026 			alloc_size = 384;
3027 			break;
3028 		case TEE_ALG_ECDH_P521:
3029 			alloc_size = 521;
3030 			break;
3031 		default:
3032 			res = TEE_ERROR_NOT_IMPLEMENTED;
3033 			goto out;
3034 		}
3035 
3036 		/* Create the public key */
3037 		res = crypto_acipher_alloc_ecc_public_key(&key_public, key_type,
3038 							  alloc_size);
3039 		if (res != TEE_SUCCESS)
3040 			goto out;
3041 		key_public.curve = ((struct ecc_keypair *)ko->attr)->curve;
3042 		crypto_bignum_bin2bn(params[0].content.ref.buffer,
3043 				     params[0].content.ref.length,
3044 				     key_public.x);
3045 		crypto_bignum_bin2bn(params[1].content.ref.buffer,
3046 				     params[1].content.ref.length,
3047 				     key_public.y);
3048 
3049 		pt_secret = (uint8_t *)(sk + 1);
3050 		pt_secret_len = sk->alloc_size;
3051 		res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public,
3052 						       pt_secret,
3053 						       &pt_secret_len);
3054 
3055 		if (res == TEE_SUCCESS) {
3056 			sk->key_size = pt_secret_len;
3057 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3058 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3059 		}
3060 
3061 		/* free the public key */
3062 		crypto_acipher_free_ecc_public_key(&key_public);
3063 	}
3064 #if defined(CFG_CRYPTO_HKDF)
3065 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) {
3066 		void *salt, *info;
3067 		size_t salt_len, info_len, okm_len;
3068 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3069 		struct tee_cryp_obj_secret *ik = ko->attr;
3070 		const uint8_t *ikm = (const uint8_t *)(ik + 1);
3071 
3072 		res = get_hkdf_params(params, param_count, &salt, &salt_len,
3073 				      &info, &info_len, &okm_len);
3074 		if (res != TEE_SUCCESS)
3075 			goto out;
3076 
3077 		/* Requested size must fit into the output object's buffer */
3078 		if (okm_len > ik->alloc_size) {
3079 			res = TEE_ERROR_BAD_PARAMETERS;
3080 			goto out;
3081 		}
3082 
3083 		res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len,
3084 				    info, info_len, (uint8_t *)(sk + 1),
3085 				    okm_len);
3086 		if (res == TEE_SUCCESS) {
3087 			sk->key_size = okm_len;
3088 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3089 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3090 		}
3091 	}
3092 #endif
3093 #if defined(CFG_CRYPTO_CONCAT_KDF)
3094 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) {
3095 		void *info;
3096 		size_t info_len, derived_key_len;
3097 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3098 		struct tee_cryp_obj_secret *ss = ko->attr;
3099 		const uint8_t *shared_secret = (const uint8_t *)(ss + 1);
3100 
3101 		res = get_concat_kdf_params(params, param_count, &info,
3102 					    &info_len, &derived_key_len);
3103 		if (res != TEE_SUCCESS)
3104 			goto out;
3105 
3106 		/* Requested size must fit into the output object's buffer */
3107 		if (derived_key_len > ss->alloc_size) {
3108 			res = TEE_ERROR_BAD_PARAMETERS;
3109 			goto out;
3110 		}
3111 
3112 		res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size,
3113 					  info, info_len, (uint8_t *)(sk + 1),
3114 					  derived_key_len);
3115 		if (res == TEE_SUCCESS) {
3116 			sk->key_size = derived_key_len;
3117 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3118 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3119 		}
3120 	}
3121 #endif
3122 #if defined(CFG_CRYPTO_PBKDF2)
3123 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) {
3124 		void *salt;
3125 		size_t salt_len, iteration_count, derived_key_len;
3126 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3127 		struct tee_cryp_obj_secret *ss = ko->attr;
3128 		const uint8_t *password = (const uint8_t *)(ss + 1);
3129 
3130 		res = get_pbkdf2_params(params, param_count, &salt, &salt_len,
3131 					&derived_key_len, &iteration_count);
3132 		if (res != TEE_SUCCESS)
3133 			goto out;
3134 
3135 		/* Requested size must fit into the output object's buffer */
3136 		if (derived_key_len > ss->alloc_size) {
3137 			res = TEE_ERROR_BAD_PARAMETERS;
3138 			goto out;
3139 		}
3140 
3141 		res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt,
3142 				      salt_len, iteration_count,
3143 				      (uint8_t *)(sk + 1), derived_key_len);
3144 		if (res == TEE_SUCCESS) {
3145 			sk->key_size = derived_key_len;
3146 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3147 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3148 		}
3149 	}
3150 #endif
3151 #if defined(CFG_CRYPTO_SM2_KEP)
3152 	else if (cs->algo == TEE_ALG_SM2_KEP) {
3153 		struct ecc_public_key peer_eph_key = { };
3154 		struct ecc_public_key peer_key = { };
3155 		struct sm2_kep_parms kep_parms = {
3156 			.out = (uint8_t *)(sk + 1),
3157 			.out_len = so->info.maxKeySize,
3158 		};
3159 		struct tee_obj *ko2 = NULL;
3160 
3161 		res = tee_obj_get(utc, cs->key2, &ko2);
3162 		if (res != TEE_SUCCESS)
3163 			goto out;
3164 
3165 		res = get_sm2_kep_params(params, param_count, &peer_key,
3166 					 &peer_eph_key, &kep_parms);
3167 		if (res != TEE_SUCCESS)
3168 			goto out;
3169 
3170 		/*
3171 		 * key1 is our private keypair, key2 is our ephemeral public key
3172 		 */
3173 		res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */
3174 						    ko2->attr, /* key2 */
3175 						    &peer_key, &peer_eph_key,
3176 						    &kep_parms);
3177 
3178 		if (res == TEE_SUCCESS) {
3179 			sk->key_size = kep_parms.out_len;
3180 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3181 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3182 		}
3183 		crypto_acipher_free_ecc_public_key(&peer_key);
3184 		crypto_acipher_free_ecc_public_key(&peer_eph_key);
3185 	}
3186 #endif
3187 	else
3188 		res = TEE_ERROR_NOT_SUPPORTED;
3189 
3190 out:
3191 	free_wipe(params);
3192 	return res;
3193 }
3194 
3195 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen)
3196 {
3197 	struct ts_session *sess = ts_get_current_session();
3198 	TEE_Result res = TEE_SUCCESS;
3199 
3200 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3201 				     TEE_MEMORY_ACCESS_WRITE,
3202 				     (uaddr_t)buf, blen);
3203 	if (res != TEE_SUCCESS)
3204 		return res;
3205 
3206 	res = crypto_rng_read(buf, blen);
3207 	if (res != TEE_SUCCESS)
3208 		return res;
3209 
3210 	return res;
3211 }
3212 
3213 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce,
3214 				size_t nonce_len, size_t tag_len,
3215 				size_t aad_len, size_t payload_len)
3216 {
3217 	struct ts_session *sess = ts_get_current_session();
3218 	struct tee_cryp_obj_secret *key = NULL;
3219 	struct tee_cryp_state *cs = NULL;
3220 	TEE_Result res = TEE_SUCCESS;
3221 	struct tee_obj *o = NULL;
3222 
3223 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3224 				     TEE_MEMORY_ACCESS_READ |
3225 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3226 				     (uaddr_t)nonce, nonce_len);
3227 	if (res != TEE_SUCCESS)
3228 		return res;
3229 
3230 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3231 	if (res != TEE_SUCCESS)
3232 		return res;
3233 
3234 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o);
3235 	if (res != TEE_SUCCESS)
3236 		return res;
3237 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
3238 		return TEE_ERROR_BAD_PARAMETERS;
3239 
3240 	key = o->attr;
3241 	res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1),
3242 				  key->key_size, nonce, nonce_len, tag_len,
3243 				  aad_len, payload_len);
3244 	if (res != TEE_SUCCESS)
3245 		return res;
3246 
3247 	cs->ctx_finalize = crypto_authenc_final;
3248 	cs->state = CRYP_STATE_INITIALIZED;
3249 
3250 	return TEE_SUCCESS;
3251 }
3252 
3253 TEE_Result syscall_authenc_update_aad(unsigned long state,
3254 				      const void *aad_data, size_t aad_data_len)
3255 {
3256 	struct ts_session *sess = ts_get_current_session();
3257 	TEE_Result res = TEE_SUCCESS;
3258 	struct tee_cryp_state *cs = NULL;
3259 
3260 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3261 				     TEE_MEMORY_ACCESS_READ |
3262 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3263 				     (uaddr_t)aad_data, aad_data_len);
3264 	if (res != TEE_SUCCESS)
3265 		return res;
3266 
3267 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3268 	if (res != TEE_SUCCESS)
3269 		return res;
3270 
3271 	if (cs->state != CRYP_STATE_INITIALIZED)
3272 		return TEE_ERROR_BAD_STATE;
3273 
3274 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3275 		return TEE_ERROR_BAD_STATE;
3276 
3277 	res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data,
3278 					aad_data_len);
3279 	if (res != TEE_SUCCESS)
3280 		return res;
3281 
3282 	return TEE_SUCCESS;
3283 }
3284 
3285 TEE_Result syscall_authenc_update_payload(unsigned long state,
3286 					  const void *src_data,
3287 					  size_t src_len, void *dst_data,
3288 					  uint64_t *dst_len)
3289 {
3290 	struct ts_session *sess = ts_get_current_session();
3291 	struct tee_cryp_state *cs = NULL;
3292 	TEE_Result res = TEE_SUCCESS;
3293 	size_t dlen = 0;
3294 
3295 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3296 	if (res != TEE_SUCCESS)
3297 		return res;
3298 
3299 	if (cs->state != CRYP_STATE_INITIALIZED)
3300 		return TEE_ERROR_BAD_STATE;
3301 
3302 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3303 		return TEE_ERROR_BAD_STATE;
3304 
3305 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3306 				     TEE_MEMORY_ACCESS_READ |
3307 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3308 				     (uaddr_t)src_data, src_len);
3309 	if (res != TEE_SUCCESS)
3310 		return res;
3311 
3312 	res = get_user_u64_as_size_t(&dlen, dst_len);
3313 	if (res != TEE_SUCCESS)
3314 		return res;
3315 
3316 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3317 				     TEE_MEMORY_ACCESS_READ |
3318 				     TEE_MEMORY_ACCESS_WRITE |
3319 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3320 				     (uaddr_t)dst_data, dlen);
3321 	if (res != TEE_SUCCESS)
3322 		return res;
3323 
3324 	if (dlen < src_len) {
3325 		res = TEE_ERROR_SHORT_BUFFER;
3326 		goto out;
3327 	}
3328 
3329 	res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data,
3330 					    src_len, dst_data, &dlen);
3331 out:
3332 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3333 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3334 
3335 		if (res2 != TEE_SUCCESS)
3336 			res = res2;
3337 	}
3338 
3339 	return res;
3340 }
3341 
3342 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data,
3343 				     size_t src_len, void *dst_data,
3344 				     uint64_t *dst_len, void *tag,
3345 				     uint64_t *tag_len)
3346 {
3347 	struct ts_session *sess = ts_get_current_session();
3348 	struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3349 	struct tee_cryp_state *cs = NULL;
3350 	TEE_Result res = TEE_SUCCESS;
3351 	size_t dlen = 0;
3352 	size_t tlen = 0;
3353 
3354 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3355 	if (res != TEE_SUCCESS)
3356 		return res;
3357 
3358 	if (cs->state != CRYP_STATE_INITIALIZED)
3359 		return TEE_ERROR_BAD_STATE;
3360 
3361 	if (cs->mode != TEE_MODE_ENCRYPT)
3362 		return TEE_ERROR_BAD_PARAMETERS;
3363 
3364 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3365 		return TEE_ERROR_BAD_STATE;
3366 
3367 	res = vm_check_access_rights(uctx,
3368 				     TEE_MEMORY_ACCESS_READ |
3369 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3370 				     (uaddr_t)src_data, src_len);
3371 	if (res != TEE_SUCCESS)
3372 		return res;
3373 
3374 	if (!dst_len) {
3375 		dlen = 0;
3376 	} else {
3377 		res = get_user_u64_as_size_t(&dlen, dst_len);
3378 		if (res != TEE_SUCCESS)
3379 			return res;
3380 
3381 		res = vm_check_access_rights(uctx,
3382 					     TEE_MEMORY_ACCESS_READ |
3383 					     TEE_MEMORY_ACCESS_WRITE |
3384 					     TEE_MEMORY_ACCESS_ANY_OWNER,
3385 					     (uaddr_t)dst_data, dlen);
3386 		if (res != TEE_SUCCESS)
3387 			return res;
3388 	}
3389 
3390 	if (dlen < src_len) {
3391 		res = TEE_ERROR_SHORT_BUFFER;
3392 		goto out;
3393 	}
3394 
3395 	res = get_user_u64_as_size_t(&tlen, tag_len);
3396 	if (res != TEE_SUCCESS)
3397 		return res;
3398 
3399 	res = vm_check_access_rights(uctx,
3400 				     TEE_MEMORY_ACCESS_READ |
3401 				     TEE_MEMORY_ACCESS_WRITE |
3402 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3403 				     (uaddr_t)tag, tlen);
3404 	if (res != TEE_SUCCESS)
3405 		return res;
3406 
3407 	res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data,
3408 				       &dlen, tag, &tlen);
3409 
3410 out:
3411 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3412 		TEE_Result res2 = TEE_SUCCESS;
3413 
3414 		if (dst_len != NULL) {
3415 			res2 = put_user_u64(dst_len, dlen);
3416 			if (res2 != TEE_SUCCESS)
3417 				return res2;
3418 		}
3419 
3420 		res2 = put_user_u64(tag_len, tlen);
3421 		if (res2 != TEE_SUCCESS)
3422 			return res2;
3423 	}
3424 
3425 	return res;
3426 }
3427 
3428 TEE_Result syscall_authenc_dec_final(unsigned long state,
3429 			const void *src_data, size_t src_len, void *dst_data,
3430 			uint64_t *dst_len, const void *tag, size_t tag_len)
3431 {
3432 	struct ts_session *sess = ts_get_current_session();
3433 	struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3434 	struct tee_cryp_state *cs = NULL;
3435 	TEE_Result res = TEE_SUCCESS;
3436 	size_t dlen = 0;
3437 
3438 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3439 	if (res != TEE_SUCCESS)
3440 		return res;
3441 
3442 	if (cs->state != CRYP_STATE_INITIALIZED)
3443 		return TEE_ERROR_BAD_STATE;
3444 
3445 	if (cs->mode != TEE_MODE_DECRYPT)
3446 		return TEE_ERROR_BAD_PARAMETERS;
3447 
3448 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3449 		return TEE_ERROR_BAD_STATE;
3450 
3451 	res = vm_check_access_rights(uctx,
3452 				     TEE_MEMORY_ACCESS_READ |
3453 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3454 				     (uaddr_t)src_data, src_len);
3455 	if (res != TEE_SUCCESS)
3456 		return res;
3457 
3458 	if (!dst_len) {
3459 		dlen = 0;
3460 	} else {
3461 		res = get_user_u64_as_size_t(&dlen, dst_len);
3462 		if (res != TEE_SUCCESS)
3463 			return res;
3464 
3465 		res = vm_check_access_rights(uctx,
3466 					     TEE_MEMORY_ACCESS_READ |
3467 					     TEE_MEMORY_ACCESS_WRITE |
3468 					     TEE_MEMORY_ACCESS_ANY_OWNER,
3469 					     (uaddr_t)dst_data, dlen);
3470 		if (res != TEE_SUCCESS)
3471 			return res;
3472 	}
3473 
3474 	if (dlen < src_len) {
3475 		res = TEE_ERROR_SHORT_BUFFER;
3476 		goto out;
3477 	}
3478 
3479 	res = vm_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ,
3480 				     (uaddr_t)tag, tag_len);
3481 	if (res != TEE_SUCCESS)
3482 		return res;
3483 
3484 	res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data,
3485 				       &dlen, tag, tag_len);
3486 
3487 out:
3488 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
3489 	    dst_len != NULL) {
3490 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3491 
3492 		if (res2 != TEE_SUCCESS)
3493 			return res2;
3494 	}
3495 
3496 	return res;
3497 }
3498 
3499 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params,
3500 			      size_t default_len)
3501 {
3502 	size_t n;
3503 
3504 	assert(default_len < INT_MAX);
3505 
3506 	for (n = 0; n < num_params; n++) {
3507 		if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) {
3508 			if (params[n].content.value.a < INT_MAX)
3509 				return params[n].content.value.a;
3510 			break;
3511 		}
3512 	}
3513 	/*
3514 	 * If salt length isn't provided use the default value which is
3515 	 * the length of the digest.
3516 	 */
3517 	return default_len;
3518 }
3519 
3520 TEE_Result syscall_asymm_operate(unsigned long state,
3521 			const struct utee_attribute *usr_params,
3522 			size_t num_params, const void *src_data, size_t src_len,
3523 			void *dst_data, uint64_t *dst_len)
3524 {
3525 	struct ts_session *sess = ts_get_current_session();
3526 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
3527 	TEE_Result res = TEE_SUCCESS;
3528 	struct tee_cryp_state *cs = NULL;
3529 	size_t dlen = 0;
3530 	struct tee_obj *o = NULL;
3531 	void *label = NULL;
3532 	size_t label_len = 0;
3533 	size_t n = 0;
3534 	int salt_len = 0;
3535 	TEE_Attribute *params = NULL;
3536 
3537 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3538 	if (res != TEE_SUCCESS)
3539 		return res;
3540 
3541 	res = vm_check_access_rights(&utc->uctx,
3542 				     TEE_MEMORY_ACCESS_READ |
3543 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3544 				     (uaddr_t)src_data, src_len);
3545 	if (res != TEE_SUCCESS)
3546 		return res;
3547 
3548 	res = get_user_u64_as_size_t(&dlen, dst_len);
3549 	if (res != TEE_SUCCESS)
3550 		return res;
3551 
3552 	res = vm_check_access_rights(&utc->uctx,
3553 				     TEE_MEMORY_ACCESS_READ |
3554 				     TEE_MEMORY_ACCESS_WRITE |
3555 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3556 				     (uaddr_t)dst_data, dlen);
3557 	if (res != TEE_SUCCESS)
3558 		return res;
3559 
3560 	size_t alloc_size = 0;
3561 
3562 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3563 		return TEE_ERROR_OVERFLOW;
3564 
3565 	params = malloc(alloc_size);
3566 	if (!params)
3567 		return TEE_ERROR_OUT_OF_MEMORY;
3568 	res = copy_in_attrs(utc, usr_params, num_params, params);
3569 	if (res != TEE_SUCCESS)
3570 		goto out;
3571 
3572 	res = tee_obj_get(utc, cs->key1, &o);
3573 	if (res != TEE_SUCCESS)
3574 		goto out;
3575 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3576 		res = TEE_ERROR_GENERIC;
3577 		goto out;
3578 	}
3579 
3580 	switch (cs->algo) {
3581 	case TEE_ALG_RSA_NOPAD:
3582 		if (cs->mode == TEE_MODE_ENCRYPT) {
3583 			res = crypto_acipher_rsanopad_encrypt(o->attr, src_data,
3584 							      src_len, dst_data,
3585 							      &dlen);
3586 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3587 			res = crypto_acipher_rsanopad_decrypt(o->attr, src_data,
3588 							      src_len, dst_data,
3589 							      &dlen);
3590 		} else {
3591 			/*
3592 			 * We will panic because "the mode is not compatible
3593 			 * with the function"
3594 			 */
3595 			res = TEE_ERROR_GENERIC;
3596 		}
3597 		break;
3598 
3599 	case TEE_ALG_SM2_PKE:
3600 		if (cs->mode == TEE_MODE_ENCRYPT) {
3601 			res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data,
3602 							     src_len, dst_data,
3603 							     &dlen);
3604 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3605 			res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data,
3606 							     src_len, dst_data,
3607 							     &dlen);
3608 		} else {
3609 			res = TEE_ERROR_GENERIC;
3610 		}
3611 		break;
3612 
3613 	case TEE_ALG_RSAES_PKCS1_V1_5:
3614 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
3615 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
3616 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
3617 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
3618 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
3619 		for (n = 0; n < num_params; n++) {
3620 			if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) {
3621 				label = params[n].content.ref.buffer;
3622 				label_len = params[n].content.ref.length;
3623 				break;
3624 			}
3625 		}
3626 
3627 		if (cs->mode == TEE_MODE_ENCRYPT) {
3628 			res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr,
3629 							   label, label_len,
3630 							   src_data, src_len,
3631 							   dst_data, &dlen);
3632 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3633 			res = crypto_acipher_rsaes_decrypt(
3634 					cs->algo, o->attr, label, label_len,
3635 					src_data, src_len, dst_data, &dlen);
3636 		} else {
3637 			res = TEE_ERROR_BAD_PARAMETERS;
3638 		}
3639 		break;
3640 
3641 #if defined(CFG_CRYPTO_RSASSA_NA1)
3642 	case TEE_ALG_RSASSA_PKCS1_V1_5:
3643 #endif
3644 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
3645 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
3646 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
3647 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
3648 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
3649 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
3650 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
3651 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
3652 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
3653 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
3654 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
3655 		if (cs->mode != TEE_MODE_SIGN) {
3656 			res = TEE_ERROR_BAD_PARAMETERS;
3657 			break;
3658 		}
3659 		salt_len = pkcs1_get_salt_len(params, num_params, src_len);
3660 		res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len,
3661 						 src_data, src_len, dst_data,
3662 						 &dlen);
3663 		break;
3664 
3665 	case TEE_ALG_DSA_SHA1:
3666 	case TEE_ALG_DSA_SHA224:
3667 	case TEE_ALG_DSA_SHA256:
3668 		res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data,
3669 					      src_len, dst_data, &dlen);
3670 		break;
3671 	case TEE_ALG_ECDSA_P192:
3672 	case TEE_ALG_ECDSA_P224:
3673 	case TEE_ALG_ECDSA_P256:
3674 	case TEE_ALG_ECDSA_P384:
3675 	case TEE_ALG_ECDSA_P521:
3676 	case TEE_ALG_SM2_DSA_SM3:
3677 		res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data,
3678 					      src_len, dst_data, &dlen);
3679 		break;
3680 	default:
3681 		res = TEE_ERROR_BAD_PARAMETERS;
3682 		break;
3683 	}
3684 
3685 out:
3686 	free_wipe(params);
3687 
3688 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3689 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3690 
3691 		if (res2 != TEE_SUCCESS)
3692 			return res2;
3693 	}
3694 
3695 	return res;
3696 }
3697 
3698 TEE_Result syscall_asymm_verify(unsigned long state,
3699 			const struct utee_attribute *usr_params,
3700 			size_t num_params, const void *data, size_t data_len,
3701 			const void *sig, size_t sig_len)
3702 {
3703 	struct ts_session *sess = ts_get_current_session();
3704 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
3705 	struct tee_cryp_state *cs = NULL;
3706 	TEE_Result res = TEE_SUCCESS;
3707 	TEE_Attribute *params = NULL;
3708 	struct tee_obj *o = NULL;
3709 	size_t hash_size = 0;
3710 	uint32_t hash_algo = 0;
3711 	int salt_len = 0;
3712 
3713 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3714 	if (res != TEE_SUCCESS)
3715 		return res;
3716 
3717 	if (cs->mode != TEE_MODE_VERIFY)
3718 		return TEE_ERROR_BAD_PARAMETERS;
3719 
3720 	res = vm_check_access_rights(&utc->uctx,
3721 				     TEE_MEMORY_ACCESS_READ |
3722 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3723 				     (uaddr_t)data, data_len);
3724 	if (res != TEE_SUCCESS)
3725 		return res;
3726 
3727 	res = vm_check_access_rights(&utc->uctx,
3728 				     TEE_MEMORY_ACCESS_READ |
3729 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3730 				     (uaddr_t)sig, sig_len);
3731 	if (res != TEE_SUCCESS)
3732 		return res;
3733 
3734 	size_t alloc_size = 0;
3735 
3736 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3737 		return TEE_ERROR_OVERFLOW;
3738 
3739 	params = malloc(alloc_size);
3740 	if (!params)
3741 		return TEE_ERROR_OUT_OF_MEMORY;
3742 	res = copy_in_attrs(utc, usr_params, num_params, params);
3743 	if (res != TEE_SUCCESS)
3744 		goto out;
3745 
3746 	res = tee_obj_get(utc, cs->key1, &o);
3747 	if (res != TEE_SUCCESS)
3748 		goto out;
3749 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3750 		res = TEE_ERROR_BAD_PARAMETERS;
3751 		goto out;
3752 	}
3753 
3754 	switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) {
3755 	case TEE_MAIN_ALGO_RSA:
3756 		if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) {
3757 			hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3758 			res = tee_alg_get_digest_size(hash_algo, &hash_size);
3759 			if (res != TEE_SUCCESS)
3760 				break;
3761 			if (data_len != hash_size) {
3762 				res = TEE_ERROR_BAD_PARAMETERS;
3763 				break;
3764 			}
3765 			salt_len = pkcs1_get_salt_len(params, num_params,
3766 						      hash_size);
3767 		}
3768 		res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len,
3769 						   data, data_len, sig,
3770 						   sig_len);
3771 		break;
3772 
3773 	case TEE_MAIN_ALGO_DSA:
3774 		hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3775 		res = tee_alg_get_digest_size(hash_algo, &hash_size);
3776 		if (res != TEE_SUCCESS)
3777 			break;
3778 
3779 		if (data_len != hash_size) {
3780 			struct dsa_public_key *key = o->attr;
3781 
3782 			/*
3783 			 * Depending on the DSA algorithm (NIST), the
3784 			 * digital signature output size may be truncated
3785 			 * to the size of a key pair (Q prime size). Q
3786 			 * prime size must be less or equal than the hash
3787 			 * output length of the hash algorithm involved.
3788 			 *
3789 			 * We're checking here in order to be able to
3790 			 * return this particular error code, which will
3791 			 * cause TEE_AsymmetricVerifyDigest() to panic as
3792 			 * required by GP. crypto_acipher_dsa_verify() is
3793 			 * implemented in the glue layer of the crypto
3794 			 * library and it might be a bit harder to catch
3795 			 * this particular case there or lead to duplicated
3796 			 * code in different crypto glue layers.
3797 			 *
3798 			 * The GP spec says that we SHOULD panic if
3799 			 * data_len != hash_size, but that would break a
3800 			 * few of the DSA tests in xtest where the
3801 			 * hash_size is larger than possible data_len. So
3802 			 * the compromise is in case data_len != hash_size
3803 			 * check that it's not smaller than what makes
3804 			 * sense.
3805 			 */
3806 			if (data_len != crypto_bignum_num_bytes(key->q)) {
3807 				res = TEE_ERROR_BAD_PARAMETERS;
3808 				break;
3809 			}
3810 		}
3811 		res = crypto_acipher_dsa_verify(cs->algo, o->attr, data,
3812 						data_len, sig, sig_len);
3813 		break;
3814 
3815 	case TEE_MAIN_ALGO_ECDSA:
3816 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
3817 		res = crypto_acipher_ecc_verify(cs->algo, o->attr, data,
3818 						data_len, sig, sig_len);
3819 		break;
3820 
3821 	default:
3822 		res = TEE_ERROR_NOT_SUPPORTED;
3823 	}
3824 
3825 out:
3826 	free_wipe(params);
3827 	return res;
3828 }
3829