xref: /optee_os/core/tee/tee_svc_cryp.c (revision 15cb27823e7907524a225c4d348403902e6ef1c7)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * Copyright (c) 2020, 2022 Linaro Limited
5  */
6 
7 #include <assert.h>
8 #include <bitstring.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <crypto/crypto.h>
12 #include <kernel/tee_ta_manager.h>
13 #include <kernel/user_access.h>
14 #include <memtag.h>
15 #include <mm/vm.h>
16 #include <stdlib_ext.h>
17 #include <string_ext.h>
18 #include <string.h>
19 #include <sys/queue.h>
20 #include <tee_api_defines_extensions.h>
21 #include <tee_api_types.h>
22 #include <tee/tee_cryp_utl.h>
23 #include <tee/tee_obj.h>
24 #include <tee/tee_svc_cryp.h>
25 #include <tee/tee_svc.h>
26 #include <trace.h>
27 #include <utee_defines.h>
28 #include <util.h>
29 #if defined(CFG_CRYPTO_HKDF)
30 #include <tee/tee_cryp_hkdf.h>
31 #endif
32 #if defined(CFG_CRYPTO_CONCAT_KDF)
33 #include <tee/tee_cryp_concat_kdf.h>
34 #endif
35 #if defined(CFG_CRYPTO_PBKDF2)
36 #include <tee/tee_cryp_pbkdf2.h>
37 #endif
38 
39 enum cryp_state {
40 	CRYP_STATE_INITIALIZED = 0,
41 	CRYP_STATE_UNINITIALIZED
42 };
43 
44 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx);
45 struct tee_cryp_state {
46 	TAILQ_ENTRY(tee_cryp_state) link;
47 	uint32_t algo;
48 	uint32_t mode;
49 	vaddr_t key1;
50 	vaddr_t key2;
51 	void *ctx;
52 	tee_cryp_ctx_finalize_func_t ctx_finalize;
53 	enum cryp_state state;
54 };
55 
56 struct tee_cryp_obj_secret {
57 	uint32_t key_size;
58 	uint32_t alloc_size;
59 
60 	/*
61 	 * Pseudo code visualize layout of structure
62 	 * Next follows data, such as:
63 	 *	uint8_t data[alloc_size]
64 	 * key_size must never exceed alloc_size
65 	 */
66 };
67 
68 #define TEE_TYPE_ATTR_OPTIONAL		BIT(0)
69 #define TEE_TYPE_ATTR_REQUIRED		BIT(1)
70 #define TEE_TYPE_ATTR_OPTIONAL_GROUP	BIT(2)
71 #define TEE_TYPE_ATTR_SIZE_INDICATOR	BIT(3)
72 #define TEE_TYPE_ATTR_GEN_KEY_OPT	BIT(4)
73 #define TEE_TYPE_ATTR_GEN_KEY_REQ	BIT(5)
74 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS	BIT(6)
75 
76     /* Handle storing of generic secret keys of varying lengths */
77 #define ATTR_OPS_INDEX_SECRET     0
78     /* Convert to/from big-endian byte array and provider-specific bignum */
79 #define ATTR_OPS_INDEX_BIGNUM     1
80     /* Convert to/from value attribute depending on direction */
81 #define ATTR_OPS_INDEX_VALUE      2
82 
83 struct tee_cryp_obj_type_attrs {
84 	uint32_t attr_id;
85 	uint16_t flags;
86 	uint16_t ops_index;
87 	uint16_t raw_offs;
88 	uint16_t raw_size;
89 };
90 
91 #define RAW_DATA(_x, _y)	\
92 	.raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y)
93 
94 static const struct tee_cryp_obj_type_attrs
95 	tee_cryp_obj_secret_value_attrs[] = {
96 	{
97 	.attr_id = TEE_ATTR_SECRET_VALUE,
98 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
99 	.ops_index = ATTR_OPS_INDEX_SECRET,
100 	.raw_offs = 0,
101 	.raw_size = 0
102 	},
103 };
104 
105 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = {
106 	{
107 	.attr_id = TEE_ATTR_RSA_MODULUS,
108 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
109 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
110 	RAW_DATA(struct rsa_public_key, n)
111 	},
112 
113 	{
114 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
115 	.flags = TEE_TYPE_ATTR_REQUIRED,
116 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
117 	RAW_DATA(struct rsa_public_key, e)
118 	},
119 };
120 
121 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = {
122 	{
123 	.attr_id = TEE_ATTR_RSA_MODULUS,
124 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
125 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
126 	RAW_DATA(struct rsa_keypair, n)
127 	},
128 
129 	{
130 	.attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT,
131 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT,
132 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
133 	RAW_DATA(struct rsa_keypair, e)
134 	},
135 
136 	{
137 	.attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT,
138 	.flags = TEE_TYPE_ATTR_REQUIRED,
139 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
140 	RAW_DATA(struct rsa_keypair, d)
141 	},
142 
143 	{
144 	.attr_id = TEE_ATTR_RSA_PRIME1,
145 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
146 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
147 	RAW_DATA(struct rsa_keypair, p)
148 	},
149 
150 	{
151 	.attr_id = TEE_ATTR_RSA_PRIME2,
152 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
153 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
154 	RAW_DATA(struct rsa_keypair, q)
155 	},
156 
157 	{
158 	.attr_id = TEE_ATTR_RSA_EXPONENT1,
159 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
160 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
161 	RAW_DATA(struct rsa_keypair, dp)
162 	},
163 
164 	{
165 	.attr_id = TEE_ATTR_RSA_EXPONENT2,
166 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
167 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
168 	RAW_DATA(struct rsa_keypair, dq)
169 	},
170 
171 	{
172 	.attr_id = TEE_ATTR_RSA_COEFFICIENT,
173 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP,
174 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
175 	RAW_DATA(struct rsa_keypair, qp)
176 	},
177 };
178 
179 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = {
180 	{
181 	.attr_id = TEE_ATTR_DSA_PRIME,
182 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS |
183 		 TEE_TYPE_ATTR_SIZE_INDICATOR,
184 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
185 	RAW_DATA(struct dsa_public_key, p)
186 	},
187 
188 	{
189 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
190 	.flags = TEE_TYPE_ATTR_REQUIRED,
191 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
192 	RAW_DATA(struct dsa_public_key, q)
193 	},
194 
195 	{
196 	.attr_id = TEE_ATTR_DSA_BASE,
197 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
198 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
199 	RAW_DATA(struct dsa_public_key, g)
200 	},
201 
202 	{
203 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
204 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
205 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
206 	RAW_DATA(struct dsa_public_key, y)
207 	},
208 };
209 
210 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = {
211 	{
212 	.attr_id = TEE_ATTR_DSA_PRIME,
213 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
214 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS | TEE_TYPE_ATTR_SIZE_INDICATOR,
215 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
216 	RAW_DATA(struct dsa_keypair, p)
217 	},
218 
219 	{
220 	.attr_id = TEE_ATTR_DSA_SUBPRIME,
221 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
222 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
223 	RAW_DATA(struct dsa_keypair, q)
224 	},
225 
226 	{
227 	.attr_id = TEE_ATTR_DSA_BASE,
228 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ |
229 		 TEE_TYPE_ATTR_BIGNUM_MAXBITS,
230 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
231 	RAW_DATA(struct dsa_keypair, g)
232 	},
233 
234 	{
235 	.attr_id = TEE_ATTR_DSA_PRIVATE_VALUE,
236 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
237 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
238 	RAW_DATA(struct dsa_keypair, x)
239 	},
240 
241 	{
242 	.attr_id = TEE_ATTR_DSA_PUBLIC_VALUE,
243 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS,
244 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
245 	RAW_DATA(struct dsa_keypair, y)
246 	},
247 };
248 
249 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = {
250 	{
251 	.attr_id = TEE_ATTR_DH_PRIME,
252 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
253 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
254 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
255 	RAW_DATA(struct dh_keypair, p)
256 	},
257 
258 	{
259 	.attr_id = TEE_ATTR_DH_BASE,
260 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ,
261 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
262 	RAW_DATA(struct dh_keypair, g)
263 	},
264 
265 	{
266 	.attr_id = TEE_ATTR_DH_PUBLIC_VALUE,
267 	.flags = TEE_TYPE_ATTR_REQUIRED,
268 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
269 	RAW_DATA(struct dh_keypair, y)
270 	},
271 
272 	{
273 	.attr_id = TEE_ATTR_DH_PRIVATE_VALUE,
274 	.flags = TEE_TYPE_ATTR_REQUIRED,
275 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
276 	RAW_DATA(struct dh_keypair, x)
277 	},
278 
279 	{
280 	.attr_id = TEE_ATTR_DH_SUBPRIME,
281 	.flags = TEE_TYPE_ATTR_OPTIONAL_GROUP |	 TEE_TYPE_ATTR_GEN_KEY_OPT,
282 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
283 	RAW_DATA(struct dh_keypair, q)
284 	},
285 
286 	{
287 	.attr_id = TEE_ATTR_DH_X_BITS,
288 	.flags = TEE_TYPE_ATTR_GEN_KEY_OPT,
289 	.ops_index = ATTR_OPS_INDEX_VALUE,
290 	RAW_DATA(struct dh_keypair, xbits)
291 	},
292 };
293 
294 #if defined(CFG_CRYPTO_HKDF)
295 static const struct tee_cryp_obj_type_attrs
296 	tee_cryp_obj_hkdf_ikm_attrs[] = {
297 	{
298 	.attr_id = TEE_ATTR_HKDF_IKM,
299 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
300 	.ops_index = ATTR_OPS_INDEX_SECRET,
301 	.raw_offs = 0,
302 	.raw_size = 0
303 	},
304 };
305 #endif
306 
307 #if defined(CFG_CRYPTO_CONCAT_KDF)
308 static const struct tee_cryp_obj_type_attrs
309 	tee_cryp_obj_concat_kdf_z_attrs[] = {
310 	{
311 	.attr_id = TEE_ATTR_CONCAT_KDF_Z,
312 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
313 	.ops_index = ATTR_OPS_INDEX_SECRET,
314 	.raw_offs = 0,
315 	.raw_size = 0
316 	},
317 };
318 #endif
319 
320 #if defined(CFG_CRYPTO_PBKDF2)
321 static const struct tee_cryp_obj_type_attrs
322 	tee_cryp_obj_pbkdf2_passwd_attrs[] = {
323 	{
324 	.attr_id = TEE_ATTR_PBKDF2_PASSWORD,
325 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
326 	.ops_index = ATTR_OPS_INDEX_SECRET,
327 	.raw_offs = 0,
328 	.raw_size = 0
329 	},
330 };
331 #endif
332 
333 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = {
334 	{
335 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
336 	.flags = TEE_TYPE_ATTR_REQUIRED,
337 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
338 	RAW_DATA(struct ecc_public_key, x)
339 	},
340 
341 	{
342 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
343 	.flags = TEE_TYPE_ATTR_REQUIRED,
344 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
345 	RAW_DATA(struct ecc_public_key, y)
346 	},
347 
348 	{
349 	.attr_id = TEE_ATTR_ECC_CURVE,
350 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR,
351 	.ops_index = ATTR_OPS_INDEX_VALUE,
352 	RAW_DATA(struct ecc_public_key, curve)
353 	},
354 };
355 
356 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = {
357 	{
358 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
359 	.flags = TEE_TYPE_ATTR_REQUIRED,
360 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
361 	RAW_DATA(struct ecc_keypair, d)
362 	},
363 
364 	{
365 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
366 	.flags = TEE_TYPE_ATTR_REQUIRED,
367 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
368 	RAW_DATA(struct ecc_keypair, x)
369 	},
370 
371 	{
372 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
373 	.flags = TEE_TYPE_ATTR_REQUIRED,
374 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
375 	RAW_DATA(struct ecc_keypair, y)
376 	},
377 
378 	{
379 	.attr_id = TEE_ATTR_ECC_CURVE,
380 	.flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR |
381 		 TEE_TYPE_ATTR_GEN_KEY_REQ,
382 	.ops_index = ATTR_OPS_INDEX_VALUE,
383 	RAW_DATA(struct ecc_keypair, curve)
384 	},
385 };
386 
387 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_sm2_pub_key_attrs[] = {
388 	{
389 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
390 	.flags = TEE_TYPE_ATTR_REQUIRED,
391 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
392 	RAW_DATA(struct ecc_public_key, x)
393 	},
394 
395 	{
396 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
397 	.flags = TEE_TYPE_ATTR_REQUIRED,
398 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
399 	RAW_DATA(struct ecc_public_key, y)
400 	},
401 };
402 
403 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_sm2_keypair_attrs[] = {
404 	{
405 	.attr_id = TEE_ATTR_ECC_PRIVATE_VALUE,
406 	.flags = TEE_TYPE_ATTR_REQUIRED,
407 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
408 	RAW_DATA(struct ecc_keypair, d)
409 	},
410 
411 	{
412 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X,
413 	.flags = TEE_TYPE_ATTR_REQUIRED,
414 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
415 	RAW_DATA(struct ecc_keypair, x)
416 	},
417 
418 	{
419 	.attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y,
420 	.flags = TEE_TYPE_ATTR_REQUIRED,
421 	.ops_index = ATTR_OPS_INDEX_BIGNUM,
422 	RAW_DATA(struct ecc_keypair, y)
423 	},
424 };
425 
426 struct tee_cryp_obj_type_props {
427 	TEE_ObjectType obj_type;
428 	uint16_t min_size;	/* may not be smaller than this */
429 	uint16_t max_size;	/* may not be larger than this */
430 	uint16_t alloc_size;	/* this many bytes are allocated to hold data */
431 	uint8_t quanta;		/* may only be an multiple of this */
432 
433 	uint8_t num_type_attrs;
434 	const struct tee_cryp_obj_type_attrs *type_attrs;
435 };
436 
437 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \
438 		{ (obj_type), (min_size), (max_size), (alloc_size), (quanta), \
439 		  ARRAY_SIZE(type_attrs), (type_attrs) }
440 
441 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = {
442 	PROP(TEE_TYPE_AES, 64, 128, 256,	/* valid sizes 128, 192, 256 */
443 		256 / 8 + sizeof(struct tee_cryp_obj_secret),
444 		tee_cryp_obj_secret_value_attrs),
445 	PROP(TEE_TYPE_DES, 64, 64, 64,
446 	     /* Valid size 64 with parity */
447 	     64 / 8 + sizeof(struct tee_cryp_obj_secret),
448 	     tee_cryp_obj_secret_value_attrs),
449 	PROP(TEE_TYPE_DES3, 64, 128, 192,
450 	     /* Valid sizes 128, 192 with parity */
451 	     192 / 8 + sizeof(struct tee_cryp_obj_secret),
452 	     tee_cryp_obj_secret_value_attrs),
453 	PROP(TEE_TYPE_SM4, 128, 128, 128,
454 		128 / 8 + sizeof(struct tee_cryp_obj_secret),
455 		tee_cryp_obj_secret_value_attrs),
456 	PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512,
457 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
458 		tee_cryp_obj_secret_value_attrs),
459 	PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512,
460 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
461 		tee_cryp_obj_secret_value_attrs),
462 	PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512,
463 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
464 		tee_cryp_obj_secret_value_attrs),
465 	PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024,
466 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
467 		tee_cryp_obj_secret_value_attrs),
468 	PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024,
469 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
470 		tee_cryp_obj_secret_value_attrs),
471 	PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024,
472 		1024 / 8 + sizeof(struct tee_cryp_obj_secret),
473 		tee_cryp_obj_secret_value_attrs),
474 	PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024,
475 		512 / 8 + sizeof(struct tee_cryp_obj_secret),
476 		tee_cryp_obj_secret_value_attrs),
477 	PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096,
478 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
479 		tee_cryp_obj_secret_value_attrs),
480 #if defined(CFG_CRYPTO_HKDF)
481 	PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096,
482 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
483 		tee_cryp_obj_hkdf_ikm_attrs),
484 #endif
485 #if defined(CFG_CRYPTO_CONCAT_KDF)
486 	PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096,
487 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
488 		tee_cryp_obj_concat_kdf_z_attrs),
489 #endif
490 #if defined(CFG_CRYPTO_PBKDF2)
491 	PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096,
492 		4096 / 8 + sizeof(struct tee_cryp_obj_secret),
493 		tee_cryp_obj_pbkdf2_passwd_attrs),
494 #endif
495 	PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
496 		sizeof(struct rsa_public_key),
497 		tee_cryp_obj_rsa_pub_key_attrs),
498 
499 	PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS,
500 		sizeof(struct rsa_keypair),
501 		tee_cryp_obj_rsa_keypair_attrs),
502 
503 	PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072,
504 		sizeof(struct dsa_public_key),
505 		tee_cryp_obj_dsa_pub_key_attrs),
506 
507 	PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072,
508 		sizeof(struct dsa_keypair),
509 		tee_cryp_obj_dsa_keypair_attrs),
510 
511 	PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048,
512 		sizeof(struct dh_keypair),
513 		tee_cryp_obj_dh_keypair_attrs),
514 
515 	PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521,
516 		sizeof(struct ecc_public_key),
517 		tee_cryp_obj_ecc_pub_key_attrs),
518 
519 	PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521,
520 		sizeof(struct ecc_keypair),
521 		tee_cryp_obj_ecc_keypair_attrs),
522 
523 	PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521,
524 		sizeof(struct ecc_public_key),
525 		tee_cryp_obj_ecc_pub_key_attrs),
526 
527 	PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521,
528 		sizeof(struct ecc_keypair),
529 		tee_cryp_obj_ecc_keypair_attrs),
530 
531 	PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256,
532 	     sizeof(struct ecc_public_key),
533 	     tee_cryp_obj_sm2_pub_key_attrs),
534 
535 	PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256,
536 	     sizeof(struct ecc_keypair),
537 	     tee_cryp_obj_sm2_keypair_attrs),
538 
539 	PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256,
540 	     sizeof(struct ecc_public_key),
541 	     tee_cryp_obj_sm2_pub_key_attrs),
542 
543 	PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256,
544 	     sizeof(struct ecc_keypair),
545 	     tee_cryp_obj_sm2_keypair_attrs),
546 
547 	PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256,
548 	     sizeof(struct ecc_public_key),
549 	     tee_cryp_obj_sm2_pub_key_attrs),
550 
551 	PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256,
552 	     sizeof(struct ecc_keypair),
553 	     tee_cryp_obj_sm2_keypair_attrs),
554 };
555 
556 struct attr_ops {
557 	TEE_Result (*from_user)(void *attr, const void *buffer, size_t size);
558 	TEE_Result (*to_user)(void *attr, struct ts_session *sess,
559 			      void *buffer, uint64_t *size);
560 	TEE_Result (*to_binary)(void *attr, void *data, size_t data_len,
561 			    size_t *offs);
562 	bool (*from_binary)(void *attr, const void *data, size_t data_len,
563 			    size_t *offs);
564 	TEE_Result (*from_obj)(void *attr, void *src_attr);
565 	void (*free)(void *attr);
566 	void (*clear)(void *attr);
567 };
568 
569 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data,
570 				    size_t data_len, size_t *offs)
571 {
572 	uint32_t field;
573 	size_t next_offs;
574 
575 	if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs))
576 		return TEE_ERROR_OVERFLOW;
577 
578 	if (data && next_offs <= data_len) {
579 		field = TEE_U32_TO_BIG_ENDIAN(v);
580 		memcpy(data + *offs, &field, sizeof(field));
581 	}
582 	(*offs) = next_offs;
583 
584 	return TEE_SUCCESS;
585 }
586 
587 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data,
588 				      size_t data_len, size_t *offs)
589 {
590 	uint32_t field;
591 
592 	if (!data || (*offs + sizeof(field)) > data_len)
593 		return false;
594 
595 	memcpy(&field, data + *offs, sizeof(field));
596 	*v = TEE_U32_FROM_BIG_ENDIAN(field);
597 	(*offs) += sizeof(field);
598 	return true;
599 }
600 
601 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer,
602 						 size_t size)
603 {
604 	struct tee_cryp_obj_secret *key = attr;
605 
606 	/* Data size has to fit in allocated buffer */
607 	if (size > key->alloc_size)
608 		return TEE_ERROR_SECURITY;
609 	memcpy(key + 1, buffer, size);
610 	key->key_size = size;
611 	return TEE_SUCCESS;
612 }
613 
614 static TEE_Result op_attr_secret_value_to_user(void *attr,
615 					       struct ts_session *sess __unused,
616 					       void *buffer, uint64_t *size)
617 {
618 	TEE_Result res;
619 	struct tee_cryp_obj_secret *key = attr;
620 	uint64_t s;
621 	uint64_t key_size;
622 
623 	res = copy_from_user(&s, size, sizeof(s));
624 	if (res != TEE_SUCCESS)
625 		return res;
626 
627 	key_size = key->key_size;
628 	res = copy_to_user(size, &key_size, sizeof(key_size));
629 	if (res != TEE_SUCCESS)
630 		return res;
631 
632 	if (s < key->key_size || !buffer)
633 		return TEE_ERROR_SHORT_BUFFER;
634 
635 	return copy_to_user(buffer, key + 1, key->key_size);
636 }
637 
638 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data,
639 					   size_t data_len, size_t *offs)
640 {
641 	TEE_Result res;
642 	struct tee_cryp_obj_secret *key = attr;
643 	size_t next_offs;
644 
645 	res = op_u32_to_binary_helper(key->key_size, data, data_len, offs);
646 	if (res != TEE_SUCCESS)
647 		return res;
648 
649 	if (ADD_OVERFLOW(*offs, key->key_size, &next_offs))
650 		return TEE_ERROR_OVERFLOW;
651 
652 	if (data && next_offs <= data_len)
653 		memcpy((uint8_t *)data + *offs, key + 1, key->key_size);
654 	(*offs) = next_offs;
655 
656 	return TEE_SUCCESS;
657 }
658 
659 static bool op_attr_secret_value_from_binary(void *attr, const void *data,
660 					     size_t data_len, size_t *offs)
661 {
662 	struct tee_cryp_obj_secret *key = attr;
663 	uint32_t s;
664 
665 	if (!op_u32_from_binary_helper(&s, data, data_len, offs))
666 		return false;
667 
668 	if ((*offs + s) > data_len)
669 		return false;
670 
671 	/* Data size has to fit in allocated buffer */
672 	if (s > key->alloc_size)
673 		return false;
674 	key->key_size = s;
675 	memcpy(key + 1, (const uint8_t *)data + *offs, s);
676 	(*offs) += s;
677 	return true;
678 }
679 
680 
681 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr)
682 {
683 	struct tee_cryp_obj_secret *key = attr;
684 	struct tee_cryp_obj_secret *src_key = src_attr;
685 
686 	if (src_key->key_size > key->alloc_size)
687 		return TEE_ERROR_BAD_STATE;
688 	memcpy(key + 1, src_key + 1, src_key->key_size);
689 	key->key_size = src_key->key_size;
690 	return TEE_SUCCESS;
691 }
692 
693 static void op_attr_secret_value_clear(void *attr)
694 {
695 	struct tee_cryp_obj_secret *key = attr;
696 
697 	key->key_size = 0;
698 	memzero_explicit(key + 1, key->alloc_size);
699 }
700 
701 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer,
702 					   size_t size)
703 {
704 	struct bignum **bn = attr;
705 
706 	return crypto_bignum_bin2bn(buffer, size, *bn);
707 }
708 
709 static TEE_Result op_attr_bignum_to_user(void *attr,
710 					 struct ts_session *sess,
711 					 void *buffer, uint64_t *size)
712 {
713 	TEE_Result res = TEE_SUCCESS;
714 	struct bignum **bn = attr;
715 	uint64_t req_size = 0;
716 	uint64_t s = 0;
717 
718 	res = copy_from_user(&s, size, sizeof(s));
719 	if (res != TEE_SUCCESS)
720 		return res;
721 
722 	req_size = crypto_bignum_num_bytes(*bn);
723 	res = copy_to_user(size, &req_size, sizeof(req_size));
724 	if (res != TEE_SUCCESS)
725 		return res;
726 	if (!req_size)
727 		return TEE_SUCCESS;
728 	if (s < req_size || !buffer)
729 		return TEE_ERROR_SHORT_BUFFER;
730 
731 	/* Check we can access data using supplied user mode pointer */
732 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
733 				     TEE_MEMORY_ACCESS_READ |
734 				     TEE_MEMORY_ACCESS_WRITE |
735 				     TEE_MEMORY_ACCESS_ANY_OWNER,
736 				     (uaddr_t)buffer, req_size);
737 	if (res != TEE_SUCCESS)
738 		return res;
739 	/*
740 	* Write the bignum (wich raw data points to) into an array of
741 	* bytes (stored in buffer)
742 	*/
743 	crypto_bignum_bn2bin(*bn, buffer);
744 	return TEE_SUCCESS;
745 }
746 
747 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data,
748 					   size_t data_len, size_t *offs)
749 {
750 	TEE_Result res;
751 	struct bignum **bn = attr;
752 	uint32_t n = crypto_bignum_num_bytes(*bn);
753 	size_t next_offs;
754 
755 	res = op_u32_to_binary_helper(n, data, data_len, offs);
756 	if (res != TEE_SUCCESS)
757 		return res;
758 
759 	if (ADD_OVERFLOW(*offs, n, &next_offs))
760 		return TEE_ERROR_OVERFLOW;
761 
762 	if (data && next_offs <= data_len)
763 		crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs);
764 	(*offs) = next_offs;
765 
766 	return TEE_SUCCESS;
767 }
768 
769 static bool op_attr_bignum_from_binary(void *attr, const void *data,
770 				       size_t data_len, size_t *offs)
771 {
772 	struct bignum **bn = attr;
773 	uint32_t n;
774 
775 	if (!op_u32_from_binary_helper(&n, data, data_len, offs))
776 		return false;
777 
778 	if ((*offs + n) > data_len)
779 		return false;
780 	if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn))
781 		return false;
782 	(*offs) += n;
783 	return true;
784 }
785 
786 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr)
787 {
788 	struct bignum **bn = attr;
789 	struct bignum **src_bn = src_attr;
790 
791 	crypto_bignum_copy(*bn, *src_bn);
792 	return TEE_SUCCESS;
793 }
794 
795 static void op_attr_bignum_clear(void *attr)
796 {
797 	struct bignum **bn = attr;
798 
799 	crypto_bignum_clear(*bn);
800 }
801 
802 static void op_attr_bignum_free(void *attr)
803 {
804 	struct bignum **bn = attr;
805 
806 	crypto_bignum_free(*bn);
807 	*bn = NULL;
808 }
809 
810 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer,
811 					  size_t size)
812 {
813 	uint32_t *v = attr;
814 
815 	if (size != sizeof(uint32_t) * 2)
816 		return TEE_ERROR_GENERIC; /* "can't happen */
817 
818 	/* Note that only the first value is copied */
819 	memcpy(v, buffer, sizeof(uint32_t));
820 	return TEE_SUCCESS;
821 }
822 
823 static TEE_Result op_attr_value_to_user(void *attr,
824 					struct ts_session *sess __unused,
825 					void *buffer, uint64_t *size)
826 {
827 	TEE_Result res;
828 	uint32_t *v = attr;
829 	uint64_t s;
830 	uint32_t value[2] = { *v };
831 	uint64_t req_size = sizeof(value);
832 
833 	res = copy_from_user(&s, size, sizeof(s));
834 	if (res != TEE_SUCCESS)
835 		return res;
836 
837 	if (s < req_size || !buffer)
838 		return TEE_ERROR_SHORT_BUFFER;
839 
840 	return copy_to_user(buffer, value, req_size);
841 }
842 
843 static TEE_Result op_attr_value_to_binary(void *attr, void *data,
844 					  size_t data_len, size_t *offs)
845 {
846 	uint32_t *v = attr;
847 
848 	return op_u32_to_binary_helper(*v, data, data_len, offs);
849 }
850 
851 static bool op_attr_value_from_binary(void *attr, const void *data,
852 				      size_t data_len, size_t *offs)
853 {
854 	uint32_t *v = attr;
855 
856 	return op_u32_from_binary_helper(v, data, data_len, offs);
857 }
858 
859 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr)
860 {
861 	uint32_t *v = attr;
862 	uint32_t *src_v = src_attr;
863 
864 	*v = *src_v;
865 	return TEE_SUCCESS;
866 }
867 
868 static void op_attr_value_clear(void *attr)
869 {
870 	uint32_t *v = attr;
871 
872 	*v = 0;
873 }
874 
875 static const struct attr_ops attr_ops[] = {
876 	[ATTR_OPS_INDEX_SECRET] = {
877 		.from_user = op_attr_secret_value_from_user,
878 		.to_user = op_attr_secret_value_to_user,
879 		.to_binary = op_attr_secret_value_to_binary,
880 		.from_binary = op_attr_secret_value_from_binary,
881 		.from_obj = op_attr_secret_value_from_obj,
882 		.free = op_attr_secret_value_clear, /* not a typo */
883 		.clear = op_attr_secret_value_clear,
884 	},
885 	[ATTR_OPS_INDEX_BIGNUM] = {
886 		.from_user = op_attr_bignum_from_user,
887 		.to_user = op_attr_bignum_to_user,
888 		.to_binary = op_attr_bignum_to_binary,
889 		.from_binary = op_attr_bignum_from_binary,
890 		.from_obj = op_attr_bignum_from_obj,
891 		.free = op_attr_bignum_free,
892 		.clear = op_attr_bignum_clear,
893 	},
894 	[ATTR_OPS_INDEX_VALUE] = {
895 		.from_user = op_attr_value_from_user,
896 		.to_user = op_attr_value_to_user,
897 		.to_binary = op_attr_value_to_binary,
898 		.from_binary = op_attr_value_from_binary,
899 		.from_obj = op_attr_value_from_obj,
900 		.free = op_attr_value_clear, /* not a typo */
901 		.clear = op_attr_value_clear,
902 	},
903 };
904 
905 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src)
906 {
907 	uint64_t d = 0;
908 	TEE_Result res = copy_from_user(&d, src, sizeof(d));
909 
910 	/*
911 	 * On 32-bit systems a size_t can't hold a uint64_t so we need to
912 	 * check that the value isn't too large.
913 	 */
914 	if (!res && ADD_OVERFLOW(0, d, dst))
915 		return TEE_ERROR_OVERFLOW;
916 
917 	return res;
918 }
919 
920 static TEE_Result put_user_u64(uint64_t *dst, size_t value)
921 {
922 	uint64_t v = value;
923 
924 	return copy_to_user(dst, &v, sizeof(v));
925 }
926 
927 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, TEE_ObjectInfo *info)
928 {
929 	struct ts_session *sess = ts_get_current_session();
930 	TEE_Result res = TEE_SUCCESS;
931 	struct tee_obj *o = NULL;
932 
933 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
934 			  uref_to_vaddr(obj), &o);
935 	if (res != TEE_SUCCESS)
936 		goto exit;
937 
938 	res = copy_to_user_private(info, &o->info, sizeof(o->info));
939 
940 exit:
941 	return res;
942 }
943 
944 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj,
945 			unsigned long usage)
946 {
947 	struct ts_session *sess = ts_get_current_session();
948 	TEE_Result res = TEE_SUCCESS;
949 	struct tee_obj *o = NULL;
950 
951 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
952 	if (res != TEE_SUCCESS)
953 		goto exit;
954 
955 	o->info.objectUsage &= usage;
956 
957 exit:
958 	return res;
959 }
960 
961 static int tee_svc_cryp_obj_find_type_attr_idx(
962 		uint32_t attr_id,
963 		const struct tee_cryp_obj_type_props *type_props)
964 {
965 	size_t n;
966 
967 	for (n = 0; n < type_props->num_type_attrs; n++) {
968 		if (attr_id == type_props->type_attrs[n].attr_id)
969 			return n;
970 	}
971 	return -1;
972 }
973 
974 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props(
975 		TEE_ObjectType obj_type)
976 {
977 	size_t n;
978 
979 	for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) {
980 		if (tee_cryp_obj_props[n].obj_type == obj_type)
981 			return tee_cryp_obj_props + n;
982 	}
983 
984 	return NULL;
985 }
986 
987 /* Set an attribute on an object */
988 static void set_attribute(struct tee_obj *o,
989 			  const struct tee_cryp_obj_type_props *props,
990 			  uint32_t attr)
991 {
992 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
993 
994 	if (idx < 0)
995 		return;
996 	o->have_attrs |= BIT(idx);
997 }
998 
999 /* Get an attribute on an object */
1000 static uint32_t get_attribute(const struct tee_obj *o,
1001 			      const struct tee_cryp_obj_type_props *props,
1002 			      uint32_t attr)
1003 {
1004 	int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props);
1005 
1006 	if (idx < 0)
1007 		return 0;
1008 	return o->have_attrs & BIT(idx);
1009 }
1010 
1011 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id,
1012 			void *buffer, uint64_t *size)
1013 {
1014 	struct ts_session *sess = ts_get_current_session();
1015 	TEE_Result res = TEE_SUCCESS;
1016 	struct tee_obj *o = NULL;
1017 	const struct tee_cryp_obj_type_props *type_props = NULL;
1018 	int idx = 0;
1019 	const struct attr_ops *ops = NULL;
1020 	void *attr = NULL;
1021 
1022 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1023 	if (res != TEE_SUCCESS)
1024 		return TEE_ERROR_ITEM_NOT_FOUND;
1025 
1026 	/* Check that the object is initialized */
1027 	if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED))
1028 		return TEE_ERROR_BAD_PARAMETERS;
1029 
1030 	/* Check that getting the attribute is allowed */
1031 	if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) &&
1032 	    !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE))
1033 		return TEE_ERROR_BAD_PARAMETERS;
1034 
1035 	type_props = tee_svc_find_type_props(o->info.objectType);
1036 	if (!type_props) {
1037 		/* Unknown object type, "can't happen" */
1038 		return TEE_ERROR_BAD_STATE;
1039 	}
1040 
1041 	idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props);
1042 	if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0))
1043 		return TEE_ERROR_ITEM_NOT_FOUND;
1044 
1045 	ops = attr_ops + type_props->type_attrs[idx].ops_index;
1046 	attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs;
1047 	return ops->to_user(attr, sess, buffer, size);
1048 }
1049 
1050 void tee_obj_attr_free(struct tee_obj *o)
1051 {
1052 	const struct tee_cryp_obj_type_props *tp;
1053 	size_t n;
1054 
1055 	if (!o->attr)
1056 		return;
1057 	tp = tee_svc_find_type_props(o->info.objectType);
1058 	if (!tp)
1059 		return;
1060 
1061 	for (n = 0; n < tp->num_type_attrs; n++) {
1062 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1063 
1064 		attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs);
1065 	}
1066 }
1067 
1068 void tee_obj_attr_clear(struct tee_obj *o)
1069 {
1070 	const struct tee_cryp_obj_type_props *tp;
1071 	size_t n;
1072 
1073 	if (!o->attr)
1074 		return;
1075 	tp = tee_svc_find_type_props(o->info.objectType);
1076 	if (!tp)
1077 		return;
1078 
1079 	for (n = 0; n < tp->num_type_attrs; n++) {
1080 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1081 
1082 		attr_ops[ta->ops_index].clear((uint8_t *)o->attr +
1083 					      ta->raw_offs);
1084 	}
1085 }
1086 
1087 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data,
1088 				  size_t *data_len)
1089 {
1090 	const struct tee_cryp_obj_type_props *tp;
1091 	size_t n;
1092 	size_t offs = 0;
1093 	size_t len = data ? *data_len : 0;
1094 	TEE_Result res;
1095 
1096 	if (o->info.objectType == TEE_TYPE_DATA) {
1097 		*data_len = 0;
1098 		return TEE_SUCCESS; /* pure data object */
1099 	}
1100 	if (!o->attr)
1101 		return TEE_ERROR_BAD_STATE;
1102 	tp = tee_svc_find_type_props(o->info.objectType);
1103 	if (!tp)
1104 		return TEE_ERROR_BAD_STATE;
1105 
1106 	for (n = 0; n < tp->num_type_attrs; n++) {
1107 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1108 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1109 
1110 		res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs);
1111 		if (res != TEE_SUCCESS)
1112 			return res;
1113 	}
1114 
1115 	*data_len = offs;
1116 	if (data && offs > len)
1117 		return TEE_ERROR_SHORT_BUFFER;
1118 	return TEE_SUCCESS;
1119 }
1120 
1121 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data,
1122 				    size_t data_len)
1123 {
1124 	const struct tee_cryp_obj_type_props *tp;
1125 	size_t n;
1126 	size_t offs = 0;
1127 
1128 	if (o->info.objectType == TEE_TYPE_DATA)
1129 		return TEE_SUCCESS; /* pure data object */
1130 	if (!o->attr)
1131 		return TEE_ERROR_BAD_STATE;
1132 	tp = tee_svc_find_type_props(o->info.objectType);
1133 	if (!tp)
1134 		return TEE_ERROR_BAD_STATE;
1135 
1136 	for (n = 0; n < tp->num_type_attrs; n++) {
1137 		const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n;
1138 		void *attr = (uint8_t *)o->attr + ta->raw_offs;
1139 
1140 		if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len,
1141 							 &offs))
1142 			return TEE_ERROR_CORRUPT_OBJECT;
1143 	}
1144 	return TEE_SUCCESS;
1145 }
1146 
1147 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src)
1148 {
1149 	TEE_Result res;
1150 	const struct tee_cryp_obj_type_props *tp;
1151 	const struct tee_cryp_obj_type_attrs *ta;
1152 	size_t n;
1153 	uint32_t have_attrs = 0;
1154 	void *attr;
1155 	void *src_attr;
1156 
1157 	if (o->info.objectType == TEE_TYPE_DATA)
1158 		return TEE_SUCCESS; /* pure data object */
1159 	if (!o->attr)
1160 		return TEE_ERROR_BAD_STATE;
1161 	tp = tee_svc_find_type_props(o->info.objectType);
1162 	if (!tp)
1163 		return TEE_ERROR_BAD_STATE;
1164 
1165 	if (o->info.objectType == src->info.objectType) {
1166 		have_attrs = src->have_attrs;
1167 		for (n = 0; n < tp->num_type_attrs; n++) {
1168 			ta = tp->type_attrs + n;
1169 			attr = (uint8_t *)o->attr + ta->raw_offs;
1170 			src_attr = (uint8_t *)src->attr + ta->raw_offs;
1171 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1172 			if (res != TEE_SUCCESS)
1173 				return res;
1174 		}
1175 	} else {
1176 		const struct tee_cryp_obj_type_props *tp_src;
1177 		int idx;
1178 
1179 		if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) {
1180 			if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR)
1181 				return TEE_ERROR_BAD_PARAMETERS;
1182 		} else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) {
1183 			if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR)
1184 				return TEE_ERROR_BAD_PARAMETERS;
1185 		} else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) {
1186 			if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR)
1187 				return TEE_ERROR_BAD_PARAMETERS;
1188 		} else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) {
1189 			if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR)
1190 				return TEE_ERROR_BAD_PARAMETERS;
1191 		} else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) {
1192 			if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR)
1193 				return TEE_ERROR_BAD_PARAMETERS;
1194 		} else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) {
1195 			if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR)
1196 				return TEE_ERROR_BAD_PARAMETERS;
1197 		} else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) {
1198 			if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR)
1199 				return TEE_ERROR_BAD_PARAMETERS;
1200 		} else {
1201 			return TEE_ERROR_BAD_PARAMETERS;
1202 		}
1203 
1204 		tp_src = tee_svc_find_type_props(src->info.objectType);
1205 		if (!tp_src)
1206 			return TEE_ERROR_BAD_STATE;
1207 
1208 		have_attrs = BIT32(tp->num_type_attrs) - 1;
1209 		for (n = 0; n < tp->num_type_attrs; n++) {
1210 			ta = tp->type_attrs + n;
1211 
1212 			idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id,
1213 								  tp_src);
1214 			if (idx < 0)
1215 				return TEE_ERROR_BAD_STATE;
1216 
1217 			attr = (uint8_t *)o->attr + ta->raw_offs;
1218 			src_attr = (uint8_t *)src->attr +
1219 				   tp_src->type_attrs[idx].raw_offs;
1220 			res = attr_ops[ta->ops_index].from_obj(attr, src_attr);
1221 			if (res != TEE_SUCCESS)
1222 				return res;
1223 		}
1224 	}
1225 
1226 	o->have_attrs = have_attrs;
1227 	return TEE_SUCCESS;
1228 }
1229 
1230 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz)
1231 {
1232 	return IS_ENABLED(CFG_COMPAT_GP10_DES) &&
1233 	       ((type == TEE_TYPE_DES && sz == 56) ||
1234 		(type == TEE_TYPE_DES3 && (sz == 112 || sz == 168)));
1235 }
1236 
1237 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props,
1238 				 size_t key_size)
1239 {
1240 	size_t sz = key_size;
1241 
1242 	/*
1243 	 * In GP Internal API Specification 1.0 the partity bits aren't
1244 	 * counted when telling the size of the key in bits so add them
1245 	 * here if missing.
1246 	 */
1247 	if (is_gp_legacy_des_key_size(props->obj_type, sz))
1248 		sz += sz / 7;
1249 
1250 	if (sz % props->quanta != 0)
1251 		return TEE_ERROR_NOT_SUPPORTED;
1252 	if (sz < props->min_size)
1253 		return TEE_ERROR_NOT_SUPPORTED;
1254 	if (sz > props->max_size)
1255 		return TEE_ERROR_NOT_SUPPORTED;
1256 
1257 	return TEE_SUCCESS;
1258 }
1259 
1260 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type,
1261 			    size_t max_key_size)
1262 {
1263 	TEE_Result res = TEE_SUCCESS;
1264 	const struct tee_cryp_obj_type_props *type_props;
1265 
1266 	/* Can only set type for newly allocated objs */
1267 	if (o->attr)
1268 		return TEE_ERROR_BAD_STATE;
1269 
1270 	/*
1271 	 * Verify that maxKeySize is supported and find out how
1272 	 * much should be allocated.
1273 	 */
1274 
1275 	if (obj_type == TEE_TYPE_DATA) {
1276 		if (max_key_size)
1277 			return TEE_ERROR_NOT_SUPPORTED;
1278 	} else {
1279 		/* Find description of object */
1280 		type_props = tee_svc_find_type_props(obj_type);
1281 		if (!type_props)
1282 			return TEE_ERROR_NOT_SUPPORTED;
1283 
1284 		/* Check that max_key_size follows restrictions */
1285 		res = check_key_size(type_props, max_key_size);
1286 		if (res)
1287 			return res;
1288 
1289 		o->attr = calloc(1, type_props->alloc_size);
1290 		if (!o->attr)
1291 			return TEE_ERROR_OUT_OF_MEMORY;
1292 	}
1293 
1294 	/* If we have a key structure, pre-allocate the bignums inside */
1295 	switch (obj_type) {
1296 	case TEE_TYPE_RSA_PUBLIC_KEY:
1297 		res = crypto_acipher_alloc_rsa_public_key(o->attr,
1298 							  max_key_size);
1299 		break;
1300 	case TEE_TYPE_RSA_KEYPAIR:
1301 		res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size);
1302 		break;
1303 	case TEE_TYPE_DSA_PUBLIC_KEY:
1304 		res = crypto_acipher_alloc_dsa_public_key(o->attr,
1305 							  max_key_size);
1306 		break;
1307 	case TEE_TYPE_DSA_KEYPAIR:
1308 		res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size);
1309 		break;
1310 	case TEE_TYPE_DH_KEYPAIR:
1311 		res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size);
1312 		break;
1313 	case TEE_TYPE_ECDSA_PUBLIC_KEY:
1314 	case TEE_TYPE_ECDH_PUBLIC_KEY:
1315 	case TEE_TYPE_SM2_DSA_PUBLIC_KEY:
1316 	case TEE_TYPE_SM2_PKE_PUBLIC_KEY:
1317 	case TEE_TYPE_SM2_KEP_PUBLIC_KEY:
1318 		res = crypto_acipher_alloc_ecc_public_key(o->attr, obj_type,
1319 							  max_key_size);
1320 		break;
1321 	case TEE_TYPE_ECDSA_KEYPAIR:
1322 	case TEE_TYPE_ECDH_KEYPAIR:
1323 	case TEE_TYPE_SM2_DSA_KEYPAIR:
1324 	case TEE_TYPE_SM2_PKE_KEYPAIR:
1325 	case TEE_TYPE_SM2_KEP_KEYPAIR:
1326 		res = crypto_acipher_alloc_ecc_keypair(o->attr, obj_type,
1327 						       max_key_size);
1328 		break;
1329 	default:
1330 		if (obj_type != TEE_TYPE_DATA) {
1331 			struct tee_cryp_obj_secret *key = o->attr;
1332 
1333 			key->alloc_size = type_props->alloc_size -
1334 					  sizeof(*key);
1335 		}
1336 		break;
1337 	}
1338 
1339 	if (res != TEE_SUCCESS)
1340 		return res;
1341 
1342 	o->info.objectType = obj_type;
1343 	o->info.maxKeySize = max_key_size;
1344 	o->info.objectUsage = TEE_USAGE_DEFAULT;
1345 
1346 	return TEE_SUCCESS;
1347 }
1348 
1349 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type,
1350 			unsigned long max_key_size, uint32_t *obj)
1351 {
1352 	struct ts_session *sess = ts_get_current_session();
1353 	TEE_Result res = TEE_SUCCESS;
1354 	struct tee_obj *o = NULL;
1355 
1356 
1357 	o = tee_obj_alloc();
1358 	if (!o)
1359 		return TEE_ERROR_OUT_OF_MEMORY;
1360 
1361 	res = tee_obj_set_type(o, obj_type, max_key_size);
1362 	if (res != TEE_SUCCESS) {
1363 		tee_obj_free(o);
1364 		return res;
1365 	}
1366 
1367 	tee_obj_add(to_user_ta_ctx(sess->ctx), o);
1368 
1369 	res = copy_kaddr_to_uref(obj, o);
1370 	if (res != TEE_SUCCESS)
1371 		tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1372 	return res;
1373 }
1374 
1375 TEE_Result syscall_cryp_obj_close(unsigned long obj)
1376 {
1377 	struct ts_session *sess = ts_get_current_session();
1378 	TEE_Result res = TEE_SUCCESS;
1379 	struct tee_obj *o = NULL;
1380 
1381 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1382 	if (res != TEE_SUCCESS)
1383 		return res;
1384 
1385 	/*
1386 	 * If it's busy it's used by an operation, a client should never have
1387 	 * this handle.
1388 	 */
1389 	if (o->busy)
1390 		return TEE_ERROR_ITEM_NOT_FOUND;
1391 
1392 	tee_obj_close(to_user_ta_ctx(sess->ctx), o);
1393 	return TEE_SUCCESS;
1394 }
1395 
1396 TEE_Result syscall_cryp_obj_reset(unsigned long obj)
1397 {
1398 	struct ts_session *sess = ts_get_current_session();
1399 	TEE_Result res = TEE_SUCCESS;
1400 	struct tee_obj *o = NULL;
1401 
1402 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1403 	if (res != TEE_SUCCESS)
1404 		return res;
1405 
1406 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) {
1407 		tee_obj_attr_clear(o);
1408 		o->info.keySize = 0;
1409 		o->info.objectUsage = TEE_USAGE_DEFAULT;
1410 	} else {
1411 		return TEE_ERROR_BAD_PARAMETERS;
1412 	}
1413 
1414 	/* the object is no more initialized */
1415 	o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED;
1416 
1417 	return TEE_SUCCESS;
1418 }
1419 
1420 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc,
1421 			const struct utee_attribute *usr_attrs,
1422 			uint32_t attr_count, TEE_Attribute *attrs)
1423 {
1424 	TEE_Result res = TEE_SUCCESS;
1425 	size_t size = 0;
1426 	uint32_t n = 0;
1427 
1428 	if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size))
1429 		return TEE_ERROR_OVERFLOW;
1430 
1431 	usr_attrs = memtag_strip_tag_const(usr_attrs);
1432 
1433 	res = vm_check_access_rights(&utc->uctx,
1434 				     TEE_MEMORY_ACCESS_READ |
1435 				     TEE_MEMORY_ACCESS_ANY_OWNER,
1436 				     (uaddr_t)usr_attrs, size);
1437 	if (res != TEE_SUCCESS)
1438 		return res;
1439 
1440 	for (n = 0; n < attr_count; n++) {
1441 		attrs[n].attributeID = usr_attrs[n].attribute_id;
1442 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) {
1443 			attrs[n].content.value.a = usr_attrs[n].a;
1444 			attrs[n].content.value.b = usr_attrs[n].b;
1445 		} else {
1446 			uintptr_t buf = usr_attrs[n].a;
1447 			size_t len = usr_attrs[n].b;
1448 			uint32_t flags = TEE_MEMORY_ACCESS_READ |
1449 					 TEE_MEMORY_ACCESS_ANY_OWNER;
1450 
1451 			buf = memtag_strip_tag_vaddr((void *)buf);
1452 
1453 			res = vm_check_access_rights(&utc->uctx, flags, buf,
1454 						     len);
1455 			if (res != TEE_SUCCESS)
1456 				return res;
1457 			attrs[n].content.ref.buffer = (void *)buf;
1458 			attrs[n].content.ref.length = len;
1459 		}
1460 	}
1461 
1462 	return TEE_SUCCESS;
1463 }
1464 
1465 enum attr_usage {
1466 	ATTR_USAGE_POPULATE,
1467 	ATTR_USAGE_GENERATE_KEY
1468 };
1469 
1470 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage,
1471 					  const struct tee_cryp_obj_type_props
1472 						*type_props,
1473 					  const TEE_Attribute *attrs,
1474 					  uint32_t attr_count)
1475 {
1476 	uint32_t required_flag = 0;
1477 	uint32_t opt_flag = 0;
1478 	bool all_opt_needed = false;
1479 	uint32_t req_attrs = 0;
1480 	uint32_t opt_grp_attrs = 0;
1481 	uint32_t attrs_found = 0;
1482 	size_t n = 0;
1483 	uint32_t bit = 0;
1484 	uint32_t flags = 0;
1485 	int idx = 0;
1486 
1487 	if (usage == ATTR_USAGE_POPULATE) {
1488 		required_flag = TEE_TYPE_ATTR_REQUIRED;
1489 		opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP;
1490 		all_opt_needed = true;
1491 	} else {
1492 		required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ;
1493 		opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT;
1494 		all_opt_needed = false;
1495 	}
1496 
1497 	/*
1498 	 * First find out which attributes are required and which belong to
1499 	 * the optional group
1500 	 */
1501 	for (n = 0; n < type_props->num_type_attrs; n++) {
1502 		bit = 1 << n;
1503 		flags = type_props->type_attrs[n].flags;
1504 
1505 		if (flags & required_flag)
1506 			req_attrs |= bit;
1507 		else if (flags & opt_flag)
1508 			opt_grp_attrs |= bit;
1509 	}
1510 
1511 	/*
1512 	 * Verify that all required attributes are in place and
1513 	 * that the same attribute isn't repeated.
1514 	 */
1515 	for (n = 0; n < attr_count; n++) {
1516 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1517 							attrs[n].attributeID,
1518 							type_props);
1519 
1520 		/* attribute not defined in current object type */
1521 		if (idx < 0)
1522 			return TEE_ERROR_ITEM_NOT_FOUND;
1523 
1524 		bit = 1 << idx;
1525 
1526 		/* attribute not repeated */
1527 		if ((attrs_found & bit) != 0)
1528 			return TEE_ERROR_ITEM_NOT_FOUND;
1529 
1530 		/*
1531 		 * Attribute not defined in current object type for this
1532 		 * usage.
1533 		 */
1534 		if (!(bit & (req_attrs | opt_grp_attrs)))
1535 			return TEE_ERROR_ITEM_NOT_FOUND;
1536 
1537 		attrs_found |= bit;
1538 	}
1539 	/* Required attribute missing */
1540 	if ((attrs_found & req_attrs) != req_attrs)
1541 		return TEE_ERROR_ITEM_NOT_FOUND;
1542 
1543 	/*
1544 	 * If the flag says that "if one of the optional attributes are included
1545 	 * all of them has to be included" this must be checked.
1546 	 */
1547 	if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 &&
1548 	    (attrs_found & opt_grp_attrs) != opt_grp_attrs)
1549 		return TEE_ERROR_ITEM_NOT_FOUND;
1550 
1551 	return TEE_SUCCESS;
1552 }
1553 
1554 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size)
1555 {
1556 	switch (curve) {
1557 	case TEE_ECC_CURVE_NIST_P192:
1558 		*key_size = 192;
1559 		break;
1560 	case TEE_ECC_CURVE_NIST_P224:
1561 		*key_size = 224;
1562 		break;
1563 	case TEE_ECC_CURVE_NIST_P256:
1564 		*key_size = 256;
1565 		break;
1566 	case TEE_ECC_CURVE_NIST_P384:
1567 		*key_size = 384;
1568 		break;
1569 	case TEE_ECC_CURVE_NIST_P521:
1570 		*key_size = 521;
1571 		break;
1572 	case TEE_ECC_CURVE_SM2:
1573 		*key_size = 256;
1574 		break;
1575 	default:
1576 		return TEE_ERROR_NOT_SUPPORTED;
1577 	}
1578 
1579 	return TEE_SUCCESS;
1580 }
1581 
1582 static size_t get_used_bits(const TEE_Attribute *a)
1583 {
1584 	int nbits = a->content.ref.length * 8;
1585 	int v = 0;
1586 
1587 	bit_ffs(a->content.ref.buffer, nbits, &v);
1588 	return nbits - v;
1589 }
1590 
1591 static TEE_Result tee_svc_cryp_obj_populate_type(
1592 		struct tee_obj *o,
1593 		const struct tee_cryp_obj_type_props *type_props,
1594 		const TEE_Attribute *attrs,
1595 		uint32_t attr_count)
1596 {
1597 	TEE_Result res = TEE_SUCCESS;
1598 	uint32_t have_attrs = 0;
1599 	size_t obj_size = 0;
1600 	size_t n = 0;
1601 	int idx = 0;
1602 	const struct attr_ops *ops = NULL;
1603 	void *attr = NULL;
1604 
1605 	for (n = 0; n < attr_count; n++) {
1606 		idx = tee_svc_cryp_obj_find_type_attr_idx(
1607 							attrs[n].attributeID,
1608 							type_props);
1609 		/* attribute not defined in current object type */
1610 		if (idx < 0)
1611 			return TEE_ERROR_ITEM_NOT_FOUND;
1612 
1613 		have_attrs |= BIT32(idx);
1614 		ops = attr_ops + type_props->type_attrs[idx].ops_index;
1615 		attr = (uint8_t *)o->attr +
1616 		       type_props->type_attrs[idx].raw_offs;
1617 		if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE)
1618 			res = ops->from_user(attr, &attrs[n].content.value,
1619 					     sizeof(attrs[n].content.value));
1620 		else
1621 			res = ops->from_user(attr, attrs[n].content.ref.buffer,
1622 					     attrs[n].content.ref.length);
1623 		if (res != TEE_SUCCESS)
1624 			return res;
1625 
1626 		/*
1627 		 * The attribute that gives the size of the object is
1628 		 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR.
1629 		 */
1630 		if (type_props->type_attrs[idx].flags &
1631 		    TEE_TYPE_ATTR_SIZE_INDICATOR) {
1632 			/* There should be only one */
1633 			if (obj_size)
1634 				return TEE_ERROR_BAD_STATE;
1635 
1636 			/*
1637 			 * For ECDSA/ECDH we need to translate curve into
1638 			 * object size
1639 			 */
1640 			if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) {
1641 				res = get_ec_key_size(attrs[n].content.value.a,
1642 						      &obj_size);
1643 				if (res != TEE_SUCCESS)
1644 					return res;
1645 			} else {
1646 				TEE_ObjectType obj_type = o->info.objectType;
1647 				size_t sz = o->info.maxKeySize;
1648 
1649 				obj_size = attrs[n].content.ref.length * 8;
1650 				/* Drop the parity bits for legacy objects */
1651 				if (is_gp_legacy_des_key_size(obj_type, sz))
1652 					obj_size -= obj_size / 8;
1653 			}
1654 			if (obj_size > o->info.maxKeySize)
1655 				return TEE_ERROR_BAD_STATE;
1656 			res = check_key_size(type_props, obj_size);
1657 			if (res != TEE_SUCCESS)
1658 				return TEE_ERROR_BAD_PARAMETERS;
1659 		}
1660 
1661 		/*
1662 		 * Bignum attributes limited by the number of bits in
1663 		 * o->info.keySize are flagged with
1664 		 * TEE_TYPE_ATTR_BIGNUM_MAXBITS.
1665 		 */
1666 		if (type_props->type_attrs[idx].flags &
1667 		    TEE_TYPE_ATTR_BIGNUM_MAXBITS) {
1668 			if (get_used_bits(attrs + n) > o->info.maxKeySize)
1669 				return TEE_ERROR_BAD_STATE;
1670 		}
1671 	}
1672 
1673 	o->have_attrs = have_attrs;
1674 	o->info.keySize = obj_size;
1675 	/*
1676 	 * In GP Internal API Specification 1.0 the partity bits aren't
1677 	 * counted when telling the size of the key in bits so remove the
1678 	 * parity bits here.
1679 	 */
1680 	if (is_gp_legacy_des_key_size(o->info.objectType, o->info.maxKeySize))
1681 		o->info.keySize -= o->info.keySize / 8;
1682 
1683 	return TEE_SUCCESS;
1684 }
1685 
1686 TEE_Result syscall_cryp_obj_populate(unsigned long obj,
1687 			struct utee_attribute *usr_attrs,
1688 			unsigned long attr_count)
1689 {
1690 	struct ts_session *sess = ts_get_current_session();
1691 	TEE_Result res = TEE_SUCCESS;
1692 	struct tee_obj *o = NULL;
1693 	const struct tee_cryp_obj_type_props *type_props = NULL;
1694 	TEE_Attribute *attrs = NULL;
1695 	size_t alloc_size = 0;
1696 
1697 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1698 	if (res != TEE_SUCCESS)
1699 		return res;
1700 
1701 	/* Must be a transient object */
1702 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1703 		return TEE_ERROR_BAD_PARAMETERS;
1704 
1705 	/* Must not be initialized already */
1706 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1707 		return TEE_ERROR_BAD_PARAMETERS;
1708 
1709 	type_props = tee_svc_find_type_props(o->info.objectType);
1710 	if (!type_props)
1711 		return TEE_ERROR_NOT_IMPLEMENTED;
1712 
1713 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size))
1714 		return TEE_ERROR_OVERFLOW;
1715 
1716 	attrs = malloc(alloc_size);
1717 	if (!attrs)
1718 		return TEE_ERROR_OUT_OF_MEMORY;
1719 
1720 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count,
1721 			    attrs);
1722 	if (res != TEE_SUCCESS)
1723 		goto out;
1724 
1725 	res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props,
1726 				      attrs, attr_count);
1727 	if (res != TEE_SUCCESS)
1728 		goto out;
1729 
1730 	res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count);
1731 	if (res == TEE_SUCCESS)
1732 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1733 
1734 out:
1735 	free_wipe(attrs);
1736 	return res;
1737 }
1738 
1739 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src)
1740 {
1741 	struct ts_session *sess = ts_get_current_session();
1742 	TEE_Result res = TEE_SUCCESS;
1743 	struct tee_obj *dst_o = NULL;
1744 	struct tee_obj *src_o = NULL;
1745 
1746 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1747 			  uref_to_vaddr(dst), &dst_o);
1748 	if (res != TEE_SUCCESS)
1749 		return res;
1750 
1751 	res = tee_obj_get(to_user_ta_ctx(sess->ctx),
1752 			  uref_to_vaddr(src), &src_o);
1753 	if (res != TEE_SUCCESS)
1754 		return res;
1755 
1756 	if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
1757 		return TEE_ERROR_BAD_PARAMETERS;
1758 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1759 		return TEE_ERROR_BAD_PARAMETERS;
1760 	if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1761 		return TEE_ERROR_BAD_PARAMETERS;
1762 
1763 	res = tee_obj_attr_copy_from(dst_o, src_o);
1764 	if (res != TEE_SUCCESS)
1765 		return res;
1766 
1767 	dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
1768 	dst_o->info.keySize = src_o->info.keySize;
1769 	dst_o->info.objectUsage = src_o->info.objectUsage;
1770 	return TEE_SUCCESS;
1771 }
1772 
1773 static TEE_Result check_pub_rsa_key(struct bignum *e)
1774 {
1775 	size_t n = crypto_bignum_num_bytes(e);
1776 	uint8_t bin_key[256 / 8] = { 0 };
1777 
1778 	/*
1779 	 * NIST SP800-56B requires public RSA key to be an odd integer in
1780 	 * the range 65537 <= e < 2^256.
1781 	 */
1782 
1783 	if (n > sizeof(bin_key) || n < 3)
1784 		return TEE_ERROR_BAD_PARAMETERS;
1785 
1786 	crypto_bignum_bn2bin(e, bin_key);
1787 
1788 	if (!(bin_key[n - 1] & 1)) /* key must be odd */
1789 		return TEE_ERROR_BAD_PARAMETERS;
1790 
1791 	if (n == 3) {
1792 		uint32_t key = 0;
1793 
1794 		for (n = 0; n < 3; n++) {
1795 			key <<= 8;
1796 			key |= bin_key[n];
1797 		}
1798 
1799 		if (key < 65537)
1800 			return TEE_ERROR_BAD_PARAMETERS;
1801 	}
1802 
1803 	/* key is larger than 65537 */
1804 	return TEE_SUCCESS;
1805 }
1806 
1807 static TEE_Result tee_svc_obj_generate_key_rsa(
1808 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1809 	uint32_t key_size,
1810 	const TEE_Attribute *params, uint32_t param_count)
1811 {
1812 	TEE_Result res = TEE_SUCCESS;
1813 	struct rsa_keypair *key = o->attr;
1814 	uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537);
1815 
1816 	/* Copy the present attributes into the obj before starting */
1817 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1818 					     param_count);
1819 	if (res != TEE_SUCCESS)
1820 		return res;
1821 	if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) {
1822 		res = check_pub_rsa_key(key->e);
1823 		if (res)
1824 			return res;
1825 	} else {
1826 		crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e);
1827 	}
1828 	res = crypto_acipher_gen_rsa_key(key, key_size);
1829 	if (res != TEE_SUCCESS)
1830 		return res;
1831 
1832 	/* Set bits for all known attributes for this object type */
1833 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1834 
1835 	return TEE_SUCCESS;
1836 }
1837 
1838 static TEE_Result tee_svc_obj_generate_key_dsa(
1839 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1840 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1841 {
1842 	TEE_Result res;
1843 
1844 	/* Copy the present attributes into the obj before starting */
1845 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1846 					     param_count);
1847 	if (res != TEE_SUCCESS)
1848 		return res;
1849 
1850 	res = crypto_acipher_gen_dsa_key(o->attr, key_size);
1851 	if (res != TEE_SUCCESS)
1852 		return res;
1853 
1854 	/* Set bits for all known attributes for this object type */
1855 	o->have_attrs = (1 << type_props->num_type_attrs) - 1;
1856 
1857 	return TEE_SUCCESS;
1858 }
1859 
1860 static TEE_Result tee_svc_obj_generate_key_dh(
1861 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1862 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1863 {
1864 	TEE_Result res;
1865 	struct dh_keypair *tee_dh_key;
1866 	struct bignum *dh_q = NULL;
1867 	uint32_t dh_xbits = 0;
1868 
1869 	/* Copy the present attributes into the obj before starting */
1870 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1871 					     param_count);
1872 	if (res != TEE_SUCCESS)
1873 		return res;
1874 
1875 	tee_dh_key = (struct dh_keypair *)o->attr;
1876 
1877 	if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME))
1878 		dh_q = tee_dh_key->q;
1879 	if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS))
1880 		dh_xbits = tee_dh_key->xbits;
1881 	res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size);
1882 	if (res != TEE_SUCCESS)
1883 		return res;
1884 
1885 	/* Set bits for the generated public and private key */
1886 	set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE);
1887 	set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE);
1888 	set_attribute(o, type_props, TEE_ATTR_DH_X_BITS);
1889 	return TEE_SUCCESS;
1890 }
1891 
1892 static TEE_Result tee_svc_obj_generate_key_ecc(
1893 	struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props,
1894 	uint32_t key_size, const TEE_Attribute *params, uint32_t param_count)
1895 {
1896 	TEE_Result res;
1897 	struct ecc_keypair *tee_ecc_key;
1898 
1899 	/* Copy the present attributes into the obj before starting */
1900 	res = tee_svc_cryp_obj_populate_type(o, type_props, params,
1901 					     param_count);
1902 	if (res != TEE_SUCCESS)
1903 		return res;
1904 
1905 	tee_ecc_key = (struct ecc_keypair *)o->attr;
1906 
1907 	res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size);
1908 	if (res != TEE_SUCCESS)
1909 		return res;
1910 
1911 	/* Set bits for the generated public and private key */
1912 	set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE);
1913 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X);
1914 	set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y);
1915 	set_attribute(o, type_props, TEE_ATTR_ECC_CURVE);
1916 	return TEE_SUCCESS;
1917 }
1918 
1919 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size,
1920 			const struct utee_attribute *usr_params,
1921 			unsigned long param_count)
1922 {
1923 	struct ts_session *sess = ts_get_current_session();
1924 	TEE_Result res = TEE_SUCCESS;
1925 	const struct tee_cryp_obj_type_props *type_props = NULL;
1926 	struct tee_obj *o = NULL;
1927 	struct tee_cryp_obj_secret *key = NULL;
1928 	size_t byte_size = 0;
1929 	TEE_Attribute *params = NULL;
1930 	size_t alloc_size = 0;
1931 
1932 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o);
1933 	if (res != TEE_SUCCESS)
1934 		return res;
1935 
1936 	/* Must be a transient object */
1937 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0)
1938 		return TEE_ERROR_BAD_STATE;
1939 
1940 	/* Must not be initialized already */
1941 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0)
1942 		return TEE_ERROR_BAD_STATE;
1943 
1944 	/* Find description of object */
1945 	type_props = tee_svc_find_type_props(o->info.objectType);
1946 	if (!type_props)
1947 		return TEE_ERROR_NOT_SUPPORTED;
1948 
1949 	/* Check that key_size follows restrictions */
1950 	res = check_key_size(type_props, key_size);
1951 	if (res)
1952 		return res;
1953 
1954 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
1955 		return TEE_ERROR_OVERFLOW;
1956 
1957 	params = malloc(alloc_size);
1958 	if (!params)
1959 		return TEE_ERROR_OUT_OF_MEMORY;
1960 	res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count,
1961 			    params);
1962 	if (res != TEE_SUCCESS)
1963 		goto out;
1964 
1965 	res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props,
1966 				      params, param_count);
1967 	if (res != TEE_SUCCESS)
1968 		goto out;
1969 
1970 	switch (o->info.objectType) {
1971 	case TEE_TYPE_AES:
1972 	case TEE_TYPE_DES:
1973 	case TEE_TYPE_DES3:
1974 	case TEE_TYPE_SM4:
1975 	case TEE_TYPE_HMAC_MD5:
1976 	case TEE_TYPE_HMAC_SHA1:
1977 	case TEE_TYPE_HMAC_SHA224:
1978 	case TEE_TYPE_HMAC_SHA256:
1979 	case TEE_TYPE_HMAC_SHA384:
1980 	case TEE_TYPE_HMAC_SHA512:
1981 	case TEE_TYPE_HMAC_SM3:
1982 	case TEE_TYPE_GENERIC_SECRET:
1983 		byte_size = key_size / 8;
1984 
1985 		/*
1986 		 * In GP Internal API Specification 1.0 the partity bits
1987 		 * aren't counted when telling the size of the key in bits.
1988 		 */
1989 		if (is_gp_legacy_des_key_size(o->info.objectType, key_size))
1990 			byte_size = (key_size + key_size / 7) / 8;
1991 
1992 		key = (struct tee_cryp_obj_secret *)o->attr;
1993 		if (byte_size > key->alloc_size) {
1994 			res = TEE_ERROR_EXCESS_DATA;
1995 			goto out;
1996 		}
1997 
1998 		res = crypto_rng_read((void *)(key + 1), byte_size);
1999 		if (res != TEE_SUCCESS)
2000 			goto out;
2001 
2002 		key->key_size = byte_size;
2003 
2004 		/* Set bits for all known attributes for this object type */
2005 		o->have_attrs = (1 << type_props->num_type_attrs) - 1;
2006 
2007 		break;
2008 
2009 	case TEE_TYPE_RSA_KEYPAIR:
2010 		res = tee_svc_obj_generate_key_rsa(o, type_props, key_size,
2011 						   params, param_count);
2012 		if (res != TEE_SUCCESS)
2013 			goto out;
2014 		break;
2015 
2016 	case TEE_TYPE_DSA_KEYPAIR:
2017 		res = tee_svc_obj_generate_key_dsa(o, type_props, key_size,
2018 						   params, param_count);
2019 		if (res != TEE_SUCCESS)
2020 			goto out;
2021 		break;
2022 
2023 	case TEE_TYPE_DH_KEYPAIR:
2024 		res = tee_svc_obj_generate_key_dh(o, type_props, key_size,
2025 						  params, param_count);
2026 		if (res != TEE_SUCCESS)
2027 			goto out;
2028 		break;
2029 
2030 	case TEE_TYPE_ECDSA_KEYPAIR:
2031 	case TEE_TYPE_ECDH_KEYPAIR:
2032 	case TEE_TYPE_SM2_DSA_KEYPAIR:
2033 	case TEE_TYPE_SM2_KEP_KEYPAIR:
2034 	case TEE_TYPE_SM2_PKE_KEYPAIR:
2035 		res = tee_svc_obj_generate_key_ecc(o, type_props, key_size,
2036 						  params, param_count);
2037 		if (res != TEE_SUCCESS)
2038 			goto out;
2039 		break;
2040 
2041 	default:
2042 		res = TEE_ERROR_BAD_FORMAT;
2043 	}
2044 
2045 out:
2046 	free_wipe(params);
2047 	if (res == TEE_SUCCESS) {
2048 		o->info.keySize = key_size;
2049 		o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
2050 	}
2051 	return res;
2052 }
2053 
2054 static TEE_Result tee_svc_cryp_get_state(struct ts_session *sess,
2055 					 vaddr_t state_id,
2056 					 struct tee_cryp_state **state)
2057 {
2058 	struct tee_cryp_state *s;
2059 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2060 
2061 	TAILQ_FOREACH(s, &utc->cryp_states, link) {
2062 		if (state_id == (vaddr_t)s) {
2063 			*state = s;
2064 			return TEE_SUCCESS;
2065 		}
2066 	}
2067 	return TEE_ERROR_BAD_PARAMETERS;
2068 }
2069 
2070 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs)
2071 {
2072 	struct tee_obj *o;
2073 
2074 	if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS)
2075 		tee_obj_close(utc, o);
2076 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS)
2077 		tee_obj_close(utc, o);
2078 
2079 	TAILQ_REMOVE(&utc->cryp_states, cs, link);
2080 	if (cs->ctx_finalize != NULL)
2081 		cs->ctx_finalize(cs->ctx);
2082 
2083 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2084 	case TEE_OPERATION_CIPHER:
2085 		crypto_cipher_free_ctx(cs->ctx);
2086 		break;
2087 	case TEE_OPERATION_AE:
2088 		crypto_authenc_free_ctx(cs->ctx);
2089 		break;
2090 	case TEE_OPERATION_DIGEST:
2091 		crypto_hash_free_ctx(cs->ctx);
2092 		break;
2093 	case TEE_OPERATION_MAC:
2094 		crypto_mac_free_ctx(cs->ctx);
2095 		break;
2096 	default:
2097 		assert(!cs->ctx);
2098 	}
2099 
2100 	free(cs);
2101 }
2102 
2103 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o,
2104 					      uint32_t algo,
2105 					      TEE_OperationMode mode)
2106 {
2107 	uint32_t req_key_type;
2108 	uint32_t req_key_type2 = 0;
2109 
2110 	switch (TEE_ALG_GET_MAIN_ALG(algo)) {
2111 	case TEE_MAIN_ALGO_MD5:
2112 		req_key_type = TEE_TYPE_HMAC_MD5;
2113 		break;
2114 	case TEE_MAIN_ALGO_SHA1:
2115 		req_key_type = TEE_TYPE_HMAC_SHA1;
2116 		break;
2117 	case TEE_MAIN_ALGO_SHA224:
2118 		req_key_type = TEE_TYPE_HMAC_SHA224;
2119 		break;
2120 	case TEE_MAIN_ALGO_SHA256:
2121 		req_key_type = TEE_TYPE_HMAC_SHA256;
2122 		break;
2123 	case TEE_MAIN_ALGO_SHA384:
2124 		req_key_type = TEE_TYPE_HMAC_SHA384;
2125 		break;
2126 	case TEE_MAIN_ALGO_SHA512:
2127 		req_key_type = TEE_TYPE_HMAC_SHA512;
2128 		break;
2129 	case TEE_MAIN_ALGO_SM3:
2130 		req_key_type = TEE_TYPE_HMAC_SM3;
2131 		break;
2132 	case TEE_MAIN_ALGO_AES:
2133 		req_key_type = TEE_TYPE_AES;
2134 		break;
2135 	case TEE_MAIN_ALGO_DES:
2136 		req_key_type = TEE_TYPE_DES;
2137 		break;
2138 	case TEE_MAIN_ALGO_DES3:
2139 		req_key_type = TEE_TYPE_DES3;
2140 		break;
2141 	case TEE_MAIN_ALGO_SM4:
2142 		req_key_type = TEE_TYPE_SM4;
2143 		break;
2144 	case TEE_MAIN_ALGO_RSA:
2145 		req_key_type = TEE_TYPE_RSA_KEYPAIR;
2146 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2147 			req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY;
2148 		break;
2149 	case TEE_MAIN_ALGO_DSA:
2150 		req_key_type = TEE_TYPE_DSA_KEYPAIR;
2151 		if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY)
2152 			req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY;
2153 		break;
2154 	case TEE_MAIN_ALGO_DH:
2155 		req_key_type = TEE_TYPE_DH_KEYPAIR;
2156 		break;
2157 	case TEE_MAIN_ALGO_ECDSA:
2158 		req_key_type = TEE_TYPE_ECDSA_KEYPAIR;
2159 		if (mode == TEE_MODE_VERIFY)
2160 			req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY;
2161 		break;
2162 	case TEE_MAIN_ALGO_ECDH:
2163 		req_key_type = TEE_TYPE_ECDH_KEYPAIR;
2164 		break;
2165 	case TEE_MAIN_ALGO_SM2_PKE:
2166 		if (mode == TEE_MODE_ENCRYPT)
2167 			req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY;
2168 		else
2169 			req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR;
2170 		break;
2171 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
2172 		if (mode == TEE_MODE_VERIFY)
2173 			req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY;
2174 		else
2175 			req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR;
2176 		break;
2177 #if defined(CFG_CRYPTO_SM2_KEP)
2178 	case TEE_MAIN_ALGO_SM2_KEP:
2179 		req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR;
2180 		req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY;
2181 		break;
2182 #endif
2183 #if defined(CFG_CRYPTO_HKDF)
2184 	case TEE_MAIN_ALGO_HKDF:
2185 		req_key_type = TEE_TYPE_HKDF_IKM;
2186 		break;
2187 #endif
2188 #if defined(CFG_CRYPTO_CONCAT_KDF)
2189 	case TEE_MAIN_ALGO_CONCAT_KDF:
2190 		req_key_type = TEE_TYPE_CONCAT_KDF_Z;
2191 		break;
2192 #endif
2193 #if defined(CFG_CRYPTO_PBKDF2)
2194 	case TEE_MAIN_ALGO_PBKDF2:
2195 		req_key_type = TEE_TYPE_PBKDF2_PASSWORD;
2196 		break;
2197 #endif
2198 	default:
2199 		return TEE_ERROR_BAD_PARAMETERS;
2200 	}
2201 
2202 	if (req_key_type != o->info.objectType &&
2203 	    req_key_type2 != o->info.objectType)
2204 		return TEE_ERROR_BAD_PARAMETERS;
2205 	return TEE_SUCCESS;
2206 }
2207 
2208 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode,
2209 			unsigned long key1, unsigned long key2,
2210 			uint32_t *state)
2211 {
2212 	struct ts_session *sess = ts_get_current_session();
2213 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2214 	TEE_Result res = TEE_SUCCESS;
2215 	struct tee_cryp_state *cs = NULL;
2216 	struct tee_obj *o1 = NULL;
2217 	struct tee_obj *o2 = NULL;
2218 
2219 	if (key1 != 0) {
2220 		res = tee_obj_get(utc, uref_to_vaddr(key1), &o1);
2221 		if (res != TEE_SUCCESS)
2222 			return res;
2223 		if (o1->busy)
2224 			return TEE_ERROR_BAD_PARAMETERS;
2225 		res = tee_svc_cryp_check_key_type(o1, algo, mode);
2226 		if (res != TEE_SUCCESS)
2227 			return res;
2228 	}
2229 	if (key2 != 0) {
2230 		res = tee_obj_get(utc, uref_to_vaddr(key2), &o2);
2231 		if (res != TEE_SUCCESS)
2232 			return res;
2233 		if (o2->busy)
2234 			return TEE_ERROR_BAD_PARAMETERS;
2235 		res = tee_svc_cryp_check_key_type(o2, algo, mode);
2236 		if (res != TEE_SUCCESS)
2237 			return res;
2238 	}
2239 
2240 	cs = calloc(1, sizeof(struct tee_cryp_state));
2241 	if (!cs)
2242 		return TEE_ERROR_OUT_OF_MEMORY;
2243 	TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link);
2244 	cs->algo = algo;
2245 	cs->mode = mode;
2246 	cs->state = CRYP_STATE_UNINITIALIZED;
2247 
2248 	switch (TEE_ALG_GET_CLASS(algo)) {
2249 	case TEE_OPERATION_CIPHER:
2250 		if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) ||
2251 		    (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) {
2252 			res = TEE_ERROR_BAD_PARAMETERS;
2253 		} else {
2254 			res = crypto_cipher_alloc_ctx(&cs->ctx, algo);
2255 			if (res != TEE_SUCCESS)
2256 				break;
2257 		}
2258 		break;
2259 	case TEE_OPERATION_AE:
2260 		if (key1 == 0 || key2 != 0) {
2261 			res = TEE_ERROR_BAD_PARAMETERS;
2262 		} else {
2263 			res = crypto_authenc_alloc_ctx(&cs->ctx, algo);
2264 			if (res != TEE_SUCCESS)
2265 				break;
2266 		}
2267 		break;
2268 	case TEE_OPERATION_MAC:
2269 		if (key1 == 0 || key2 != 0) {
2270 			res = TEE_ERROR_BAD_PARAMETERS;
2271 		} else {
2272 			res = crypto_mac_alloc_ctx(&cs->ctx, algo);
2273 			if (res != TEE_SUCCESS)
2274 				break;
2275 		}
2276 		break;
2277 	case TEE_OPERATION_DIGEST:
2278 		if (key1 != 0 || key2 != 0) {
2279 			res = TEE_ERROR_BAD_PARAMETERS;
2280 		} else {
2281 			res = crypto_hash_alloc_ctx(&cs->ctx, algo);
2282 			if (res != TEE_SUCCESS)
2283 				break;
2284 		}
2285 		break;
2286 	case TEE_OPERATION_ASYMMETRIC_CIPHER:
2287 	case TEE_OPERATION_ASYMMETRIC_SIGNATURE:
2288 		if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 &&
2289 		    !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) {
2290 			res = TEE_ERROR_NOT_SUPPORTED;
2291 			break;
2292 		}
2293 		if (key1 == 0 || key2 != 0)
2294 			res = TEE_ERROR_BAD_PARAMETERS;
2295 		break;
2296 	case TEE_OPERATION_KEY_DERIVATION:
2297 		if (algo == TEE_ALG_SM2_KEP) {
2298 			if (key1 == 0 || key2 == 0)
2299 				res = TEE_ERROR_BAD_PARAMETERS;
2300 		} else {
2301 			if (key1 == 0 || key2 != 0)
2302 				res = TEE_ERROR_BAD_PARAMETERS;
2303 		}
2304 		break;
2305 	default:
2306 		res = TEE_ERROR_NOT_SUPPORTED;
2307 		break;
2308 	}
2309 	if (res != TEE_SUCCESS)
2310 		goto out;
2311 
2312 	res = copy_kaddr_to_uref(state, cs);
2313 	if (res != TEE_SUCCESS)
2314 		goto out;
2315 
2316 	/* Register keys */
2317 	if (o1 != NULL) {
2318 		o1->busy = true;
2319 		cs->key1 = (vaddr_t)o1;
2320 	}
2321 	if (o2 != NULL) {
2322 		o2->busy = true;
2323 		cs->key2 = (vaddr_t)o2;
2324 	}
2325 
2326 out:
2327 	if (res != TEE_SUCCESS)
2328 		cryp_state_free(utc, cs);
2329 	return res;
2330 }
2331 
2332 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src)
2333 {
2334 	struct ts_session *sess = ts_get_current_session();
2335 	TEE_Result res = TEE_SUCCESS;
2336 	struct tee_cryp_state *cs_dst = NULL;
2337 	struct tee_cryp_state *cs_src = NULL;
2338 
2339 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst);
2340 	if (res != TEE_SUCCESS)
2341 		return res;
2342 
2343 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src);
2344 	if (res != TEE_SUCCESS)
2345 		return res;
2346 	if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode)
2347 		return TEE_ERROR_BAD_PARAMETERS;
2348 
2349 	switch (TEE_ALG_GET_CLASS(cs_src->algo)) {
2350 	case TEE_OPERATION_CIPHER:
2351 		crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx);
2352 		break;
2353 	case TEE_OPERATION_AE:
2354 		crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx);
2355 		break;
2356 	case TEE_OPERATION_DIGEST:
2357 		crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx);
2358 		break;
2359 	case TEE_OPERATION_MAC:
2360 		crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx);
2361 		break;
2362 	default:
2363 		return TEE_ERROR_BAD_STATE;
2364 	}
2365 
2366 	cs_dst->state = cs_src->state;
2367 	cs_dst->ctx_finalize = cs_src->ctx_finalize;
2368 
2369 	return TEE_SUCCESS;
2370 }
2371 
2372 void tee_svc_cryp_free_states(struct user_ta_ctx *utc)
2373 {
2374 	struct tee_cryp_state_head *states = &utc->cryp_states;
2375 
2376 	while (!TAILQ_EMPTY(states))
2377 		cryp_state_free(utc, TAILQ_FIRST(states));
2378 }
2379 
2380 TEE_Result syscall_cryp_state_free(unsigned long state)
2381 {
2382 	struct ts_session *sess = ts_get_current_session();
2383 	TEE_Result res = TEE_SUCCESS;
2384 	struct tee_cryp_state *cs = NULL;
2385 
2386 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2387 	if (res != TEE_SUCCESS)
2388 		return res;
2389 	cryp_state_free(to_user_ta_ctx(sess->ctx), cs);
2390 	return TEE_SUCCESS;
2391 }
2392 
2393 TEE_Result syscall_hash_init(unsigned long state,
2394 			     const void *iv __maybe_unused,
2395 			     size_t iv_len __maybe_unused)
2396 {
2397 	struct ts_session *sess = ts_get_current_session();
2398 	TEE_Result res = TEE_SUCCESS;
2399 	struct tee_cryp_state *cs = NULL;
2400 
2401 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2402 	if (res != TEE_SUCCESS)
2403 		return res;
2404 
2405 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2406 	case TEE_OPERATION_DIGEST:
2407 		res = crypto_hash_init(cs->ctx);
2408 		if (res != TEE_SUCCESS)
2409 			return res;
2410 		break;
2411 	case TEE_OPERATION_MAC:
2412 		{
2413 			struct tee_obj *o;
2414 			struct tee_cryp_obj_secret *key;
2415 
2416 			res = tee_obj_get(to_user_ta_ctx(sess->ctx),
2417 					  cs->key1, &o);
2418 			if (res != TEE_SUCCESS)
2419 				return res;
2420 			if ((o->info.handleFlags &
2421 			     TEE_HANDLE_FLAG_INITIALIZED) == 0)
2422 				return TEE_ERROR_BAD_PARAMETERS;
2423 
2424 			key = (struct tee_cryp_obj_secret *)o->attr;
2425 			res = crypto_mac_init(cs->ctx, (void *)(key + 1),
2426 					      key->key_size);
2427 			if (res != TEE_SUCCESS)
2428 				return res;
2429 			break;
2430 		}
2431 	default:
2432 		return TEE_ERROR_BAD_PARAMETERS;
2433 	}
2434 
2435 	cs->state = CRYP_STATE_INITIALIZED;
2436 
2437 	return TEE_SUCCESS;
2438 }
2439 
2440 TEE_Result syscall_hash_update(unsigned long state, const void *chunk,
2441 			size_t chunk_size)
2442 {
2443 	struct ts_session *sess = ts_get_current_session();
2444 	struct tee_cryp_state *cs = NULL;
2445 	TEE_Result res = TEE_SUCCESS;
2446 
2447 	/* No data, but size provided isn't valid parameters. */
2448 	if (!chunk && chunk_size)
2449 		return TEE_ERROR_BAD_PARAMETERS;
2450 
2451 	/* Zero length hash is valid, but nothing we need to do. */
2452 	if (!chunk_size)
2453 		return TEE_SUCCESS;
2454 
2455 	chunk = memtag_strip_tag_const(chunk);
2456 
2457 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2458 				     TEE_MEMORY_ACCESS_READ |
2459 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2460 				     (uaddr_t)chunk, chunk_size);
2461 	if (res != TEE_SUCCESS)
2462 		return res;
2463 
2464 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2465 	if (res != TEE_SUCCESS)
2466 		return res;
2467 
2468 	if (cs->state != CRYP_STATE_INITIALIZED)
2469 		return TEE_ERROR_BAD_STATE;
2470 
2471 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2472 	case TEE_OPERATION_DIGEST:
2473 		res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2474 		if (res != TEE_SUCCESS)
2475 			return res;
2476 		break;
2477 	case TEE_OPERATION_MAC:
2478 		res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2479 		if (res != TEE_SUCCESS)
2480 			return res;
2481 		break;
2482 	default:
2483 		return TEE_ERROR_BAD_PARAMETERS;
2484 	}
2485 
2486 	return TEE_SUCCESS;
2487 }
2488 
2489 TEE_Result syscall_hash_final(unsigned long state, const void *chunk,
2490 			size_t chunk_size, void *hash, uint64_t *hash_len)
2491 {
2492 	struct ts_session *sess = ts_get_current_session();
2493 	struct tee_cryp_state *cs = NULL;
2494 	TEE_Result res2 = TEE_SUCCESS;
2495 	TEE_Result res = TEE_SUCCESS;
2496 	size_t hash_size = 0;
2497 	size_t hlen = 0;
2498 
2499 	/* No data, but size provided isn't valid parameters. */
2500 	if (!chunk && chunk_size)
2501 		return TEE_ERROR_BAD_PARAMETERS;
2502 
2503 	chunk = memtag_strip_tag_const(chunk);
2504 	hash = memtag_strip_tag(hash);
2505 
2506 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2507 				     TEE_MEMORY_ACCESS_READ |
2508 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2509 				     (uaddr_t)chunk, chunk_size);
2510 	if (res != TEE_SUCCESS)
2511 		return res;
2512 
2513 	res = get_user_u64_as_size_t(&hlen, hash_len);
2514 	if (res != TEE_SUCCESS)
2515 		return res;
2516 
2517 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2518 				     TEE_MEMORY_ACCESS_READ |
2519 				     TEE_MEMORY_ACCESS_WRITE |
2520 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2521 				     (uaddr_t)hash, hlen);
2522 	if (res != TEE_SUCCESS)
2523 		return res;
2524 
2525 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2526 	if (res != TEE_SUCCESS)
2527 		return res;
2528 
2529 	if (cs->state != CRYP_STATE_INITIALIZED)
2530 		return TEE_ERROR_BAD_STATE;
2531 
2532 	switch (TEE_ALG_GET_CLASS(cs->algo)) {
2533 	case TEE_OPERATION_DIGEST:
2534 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2535 		if (res != TEE_SUCCESS)
2536 			return res;
2537 		if (hlen < hash_size) {
2538 			res = TEE_ERROR_SHORT_BUFFER;
2539 			goto out;
2540 		}
2541 
2542 		if (chunk_size) {
2543 			res = crypto_hash_update(cs->ctx, chunk, chunk_size);
2544 			if (res != TEE_SUCCESS)
2545 				return res;
2546 		}
2547 
2548 		res = crypto_hash_final(cs->ctx, hash, hash_size);
2549 		if (res != TEE_SUCCESS)
2550 			return res;
2551 		break;
2552 
2553 	case TEE_OPERATION_MAC:
2554 		res = tee_alg_get_digest_size(cs->algo, &hash_size);
2555 		if (res != TEE_SUCCESS)
2556 			return res;
2557 		if (hlen < hash_size) {
2558 			res = TEE_ERROR_SHORT_BUFFER;
2559 			goto out;
2560 		}
2561 
2562 		if (chunk_size) {
2563 			res = crypto_mac_update(cs->ctx, chunk, chunk_size);
2564 			if (res != TEE_SUCCESS)
2565 				return res;
2566 		}
2567 
2568 		res = crypto_mac_final(cs->ctx, hash, hash_size);
2569 		if (res != TEE_SUCCESS)
2570 			return res;
2571 		break;
2572 
2573 	default:
2574 		return TEE_ERROR_BAD_PARAMETERS;
2575 	}
2576 out:
2577 	res2 = put_user_u64(hash_len, hash_size);
2578 	if (res2 != TEE_SUCCESS)
2579 		return res2;
2580 	return res;
2581 }
2582 
2583 TEE_Result syscall_cipher_init(unsigned long state, const void *iv,
2584 			size_t iv_len)
2585 {
2586 	struct ts_session *sess = ts_get_current_session();
2587 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2588 	struct tee_cryp_obj_secret *key1 = NULL;
2589 	struct tee_cryp_state *cs = NULL;
2590 	TEE_Result res = TEE_SUCCESS;
2591 	struct tee_obj *o = NULL;
2592 
2593 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2594 	if (res != TEE_SUCCESS)
2595 		return res;
2596 
2597 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER)
2598 		return TEE_ERROR_BAD_STATE;
2599 
2600 	iv = memtag_strip_tag_const(iv);
2601 
2602 	res = vm_check_access_rights(&utc->uctx,
2603 				     TEE_MEMORY_ACCESS_READ |
2604 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2605 				     (uaddr_t)iv, iv_len);
2606 	if (res != TEE_SUCCESS)
2607 		return res;
2608 
2609 	res = tee_obj_get(utc, cs->key1, &o);
2610 	if (res != TEE_SUCCESS)
2611 		return res;
2612 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2613 		return TEE_ERROR_BAD_PARAMETERS;
2614 
2615 	key1 = o->attr;
2616 
2617 	if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) {
2618 		struct tee_cryp_obj_secret *key2 = o->attr;
2619 
2620 		if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
2621 			return TEE_ERROR_BAD_PARAMETERS;
2622 
2623 		res = crypto_cipher_init(cs->ctx, cs->mode,
2624 					 (uint8_t *)(key1 + 1), key1->key_size,
2625 					 (uint8_t *)(key2 + 1), key2->key_size,
2626 					 iv, iv_len);
2627 	} else {
2628 		res = crypto_cipher_init(cs->ctx, cs->mode,
2629 					 (uint8_t *)(key1 + 1), key1->key_size,
2630 					 NULL, 0, iv, iv_len);
2631 	}
2632 	if (res != TEE_SUCCESS)
2633 		return res;
2634 
2635 	cs->ctx_finalize = crypto_cipher_final;
2636 	cs->state = CRYP_STATE_INITIALIZED;
2637 
2638 	return TEE_SUCCESS;
2639 }
2640 
2641 static TEE_Result tee_svc_cipher_update_helper(unsigned long state,
2642 			bool last_block, const void *src, size_t src_len,
2643 			void *dst, uint64_t *dst_len)
2644 {
2645 	struct ts_session *sess = ts_get_current_session();
2646 	struct tee_cryp_state *cs = NULL;
2647 	TEE_Result res = TEE_SUCCESS;
2648 	size_t dlen = 0;
2649 
2650 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2651 	if (res != TEE_SUCCESS)
2652 		return res;
2653 
2654 	if (cs->state != CRYP_STATE_INITIALIZED)
2655 		return TEE_ERROR_BAD_STATE;
2656 
2657 	src = memtag_strip_tag_const(src);
2658 	dst = memtag_strip_tag(dst);
2659 
2660 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
2661 				     TEE_MEMORY_ACCESS_READ |
2662 				     TEE_MEMORY_ACCESS_ANY_OWNER,
2663 				     (uaddr_t)src, src_len);
2664 	if (res != TEE_SUCCESS)
2665 		return res;
2666 
2667 	if (!dst_len) {
2668 		dlen = 0;
2669 	} else {
2670 		struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
2671 		uint32_t flags = TEE_MEMORY_ACCESS_READ |
2672 				 TEE_MEMORY_ACCESS_WRITE |
2673 				 TEE_MEMORY_ACCESS_ANY_OWNER;
2674 
2675 		res = get_user_u64_as_size_t(&dlen, dst_len);
2676 		if (res != TEE_SUCCESS)
2677 			return res;
2678 
2679 		res = vm_check_access_rights(uctx, flags, (uaddr_t)dst, dlen);
2680 		if (res != TEE_SUCCESS)
2681 			return res;
2682 	}
2683 
2684 	if (dlen < src_len) {
2685 		res = TEE_ERROR_SHORT_BUFFER;
2686 		goto out;
2687 	}
2688 
2689 	if (src_len > 0) {
2690 		/* Permit src_len == 0 to finalize the operation */
2691 		res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode,
2692 					   last_block, src, src_len, dst);
2693 	}
2694 
2695 	if (last_block && cs->ctx_finalize != NULL) {
2696 		cs->ctx_finalize(cs->ctx);
2697 		cs->ctx_finalize = NULL;
2698 	}
2699 
2700 out:
2701 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
2702 	    dst_len != NULL) {
2703 		TEE_Result res2;
2704 
2705 		res2 = put_user_u64(dst_len, src_len);
2706 		if (res2 != TEE_SUCCESS)
2707 			res = res2;
2708 	}
2709 
2710 	return res;
2711 }
2712 
2713 TEE_Result syscall_cipher_update(unsigned long state, const void *src,
2714 			size_t src_len, void *dst, uint64_t *dst_len)
2715 {
2716 	return tee_svc_cipher_update_helper(state, false /* last_block */,
2717 					    src, src_len, dst, dst_len);
2718 }
2719 
2720 TEE_Result syscall_cipher_final(unsigned long state, const void *src,
2721 			size_t src_len, void *dst, uint64_t *dst_len)
2722 {
2723 	return tee_svc_cipher_update_helper(state, true /* last_block */,
2724 					    src, src_len, dst, dst_len);
2725 }
2726 
2727 #if defined(CFG_CRYPTO_HKDF)
2728 static TEE_Result get_hkdf_params(const TEE_Attribute *params,
2729 				  uint32_t param_count,
2730 				  void **salt, size_t *salt_len, void **info,
2731 				  size_t *info_len, size_t *okm_len)
2732 {
2733 	size_t n;
2734 	enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 };
2735 	uint8_t found = 0;
2736 
2737 	*salt = *info = NULL;
2738 	*salt_len = *info_len = *okm_len = 0;
2739 
2740 	for (n = 0; n < param_count; n++) {
2741 		switch (params[n].attributeID) {
2742 		case TEE_ATTR_HKDF_SALT:
2743 			if (!(found & SALT)) {
2744 				*salt = params[n].content.ref.buffer;
2745 				*salt_len = params[n].content.ref.length;
2746 				found |= SALT;
2747 			}
2748 			break;
2749 		case TEE_ATTR_HKDF_OKM_LENGTH:
2750 			if (!(found & LENGTH)) {
2751 				*okm_len = params[n].content.value.a;
2752 				found |= LENGTH;
2753 			}
2754 			break;
2755 		case TEE_ATTR_HKDF_INFO:
2756 			if (!(found & INFO)) {
2757 				*info = params[n].content.ref.buffer;
2758 				*info_len = params[n].content.ref.length;
2759 				found |= INFO;
2760 			}
2761 			break;
2762 		default:
2763 			/* Unexpected attribute */
2764 			return TEE_ERROR_BAD_PARAMETERS;
2765 		}
2766 
2767 	}
2768 
2769 	if (!(found & LENGTH))
2770 		return TEE_ERROR_BAD_PARAMETERS;
2771 
2772 	return TEE_SUCCESS;
2773 }
2774 #endif
2775 
2776 #if defined(CFG_CRYPTO_CONCAT_KDF)
2777 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params,
2778 					uint32_t param_count,
2779 					void **other_info,
2780 					size_t *other_info_len,
2781 					size_t *derived_key_len)
2782 {
2783 	size_t n;
2784 	enum { LENGTH = 0x1, INFO = 0x2 };
2785 	uint8_t found = 0;
2786 
2787 	*other_info = NULL;
2788 	*other_info_len = *derived_key_len = 0;
2789 
2790 	for (n = 0; n < param_count; n++) {
2791 		switch (params[n].attributeID) {
2792 		case TEE_ATTR_CONCAT_KDF_OTHER_INFO:
2793 			if (!(found & INFO)) {
2794 				*other_info = params[n].content.ref.buffer;
2795 				*other_info_len = params[n].content.ref.length;
2796 				found |= INFO;
2797 			}
2798 			break;
2799 		case TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
2800 			if (!(found & LENGTH)) {
2801 				*derived_key_len = params[n].content.value.a;
2802 				found |= LENGTH;
2803 			}
2804 			break;
2805 		default:
2806 			/* Unexpected attribute */
2807 			return TEE_ERROR_BAD_PARAMETERS;
2808 		}
2809 	}
2810 
2811 	if (!(found & LENGTH))
2812 		return TEE_ERROR_BAD_PARAMETERS;
2813 
2814 	return TEE_SUCCESS;
2815 }
2816 #endif
2817 
2818 #if defined(CFG_CRYPTO_PBKDF2)
2819 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params,
2820 				   uint32_t param_count, void **salt,
2821 				   size_t *salt_len, size_t *derived_key_len,
2822 				   size_t *iteration_count)
2823 {
2824 	size_t n;
2825 	enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 };
2826 	uint8_t found = 0;
2827 
2828 	*salt = NULL;
2829 	*salt_len = *derived_key_len = *iteration_count = 0;
2830 
2831 	for (n = 0; n < param_count; n++) {
2832 		switch (params[n].attributeID) {
2833 		case TEE_ATTR_PBKDF2_SALT:
2834 			if (!(found & SALT)) {
2835 				*salt = params[n].content.ref.buffer;
2836 				*salt_len = params[n].content.ref.length;
2837 				found |= SALT;
2838 			}
2839 			break;
2840 		case TEE_ATTR_PBKDF2_DKM_LENGTH:
2841 			if (!(found & LENGTH)) {
2842 				*derived_key_len = params[n].content.value.a;
2843 				found |= LENGTH;
2844 			}
2845 			break;
2846 		case TEE_ATTR_PBKDF2_ITERATION_COUNT:
2847 			if (!(found & COUNT)) {
2848 				*iteration_count = params[n].content.value.a;
2849 				found |= COUNT;
2850 			}
2851 			break;
2852 		default:
2853 			/* Unexpected attribute */
2854 			return TEE_ERROR_BAD_PARAMETERS;
2855 		}
2856 	}
2857 
2858 	if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT))
2859 		return TEE_ERROR_BAD_PARAMETERS;
2860 
2861 	return TEE_SUCCESS;
2862 }
2863 #endif
2864 
2865 #if defined(CFG_CRYPTO_SM2_KEP)
2866 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params,
2867 				     uint32_t param_count,
2868 				     struct ecc_public_key *peer_key,
2869 				     struct ecc_public_key *peer_eph_key,
2870 				     struct sm2_kep_parms *kep_parms)
2871 {
2872 	TEE_Result res = TEE_ERROR_GENERIC;
2873 	size_t n;
2874 	enum {
2875 		IS_INITIATOR,
2876 		PEER_KEY_X,
2877 		PEER_KEY_Y,
2878 		PEER_EPH_KEY_X,
2879 		PEER_EPH_KEY_Y,
2880 		INITIATOR_ID,
2881 		RESPONDER_ID,
2882 	};
2883 	uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) |
2884 		BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) |
2885 		BIT(INITIATOR_ID) | BIT(RESPONDER_ID);
2886 	uint8_t found = 0;
2887 
2888 	res = crypto_acipher_alloc_ecc_public_key(peer_key,
2889 						  TEE_TYPE_SM2_KEP_PUBLIC_KEY,
2890 						  256);
2891 	if (res)
2892 		return res;
2893 
2894 	res = crypto_acipher_alloc_ecc_public_key(peer_eph_key,
2895 						  TEE_TYPE_SM2_KEP_PUBLIC_KEY,
2896 						  256);
2897 	if (res)
2898 		goto out_p;
2899 
2900 	peer_key->curve = TEE_ECC_CURVE_SM2;
2901 	peer_eph_key->curve = TEE_ECC_CURVE_SM2;
2902 
2903 	for (n = 0; n < param_count; n++) {
2904 		const TEE_Attribute *p = &params[n];
2905 
2906 		switch (p->attributeID) {
2907 		case TEE_ATTR_SM2_KEP_USER:
2908 			kep_parms->is_initiator = !p->content.value.a;
2909 			found |= BIT(IS_INITIATOR);
2910 			break;
2911 		case TEE_ATTR_ECC_PUBLIC_VALUE_X:
2912 			crypto_bignum_bin2bn(p->content.ref.buffer,
2913 					     p->content.ref.length,
2914 					     peer_key->x);
2915 			found |= BIT(PEER_KEY_X);
2916 			break;
2917 		case TEE_ATTR_ECC_PUBLIC_VALUE_Y:
2918 			crypto_bignum_bin2bn(p->content.ref.buffer,
2919 					     p->content.ref.length,
2920 					     peer_key->y);
2921 			found |= BIT(PEER_KEY_Y);
2922 			break;
2923 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X:
2924 			crypto_bignum_bin2bn(p->content.ref.buffer,
2925 					     p->content.ref.length,
2926 					     peer_eph_key->x);
2927 			found |= BIT(PEER_EPH_KEY_X);
2928 			break;
2929 		case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y:
2930 			crypto_bignum_bin2bn(p->content.ref.buffer,
2931 					     p->content.ref.length,
2932 					     peer_eph_key->y);
2933 			found |= BIT(PEER_EPH_KEY_Y);
2934 			break;
2935 		case TEE_ATTR_SM2_ID_INITIATOR:
2936 			kep_parms->initiator_id = p->content.ref.buffer;
2937 			kep_parms->initiator_id_len = p->content.ref.length;
2938 			found |= BIT(INITIATOR_ID);
2939 			break;
2940 		case TEE_ATTR_SM2_ID_RESPONDER:
2941 			kep_parms->responder_id = p->content.ref.buffer;
2942 			kep_parms->responder_id_len = p->content.ref.length;
2943 			found |= BIT(RESPONDER_ID);
2944 			break;
2945 		case TEE_ATTR_SM2_KEP_CONFIRMATION_IN:
2946 			kep_parms->conf_in = p->content.ref.buffer;
2947 			kep_parms->conf_in_len = p->content.ref.length;
2948 			break;
2949 		case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT:
2950 			kep_parms->conf_out = p->content.ref.buffer;
2951 			kep_parms->conf_out_len = p->content.ref.length;
2952 			break;
2953 		default:
2954 			/* Unexpected attribute */
2955 			res = TEE_ERROR_BAD_PARAMETERS;
2956 			goto out;
2957 		}
2958 	}
2959 
2960 	if ((found & mandatory) != mandatory) {
2961 		res = TEE_ERROR_BAD_PARAMETERS;
2962 		goto out;
2963 	}
2964 
2965 	return TEE_SUCCESS;
2966 out:
2967 	crypto_acipher_free_ecc_public_key(peer_eph_key);
2968 out_p:
2969 	crypto_acipher_free_ecc_public_key(peer_key);
2970 	return res;
2971 }
2972 #endif
2973 
2974 TEE_Result syscall_cryp_derive_key(unsigned long state,
2975 			const struct utee_attribute *usr_params,
2976 			unsigned long param_count, unsigned long derived_key)
2977 {
2978 	struct ts_session *sess = ts_get_current_session();
2979 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
2980 	TEE_Result res = TEE_ERROR_NOT_SUPPORTED;
2981 	struct tee_obj *ko = NULL;
2982 	struct tee_obj *so = NULL;
2983 	struct tee_cryp_state *cs = NULL;
2984 	struct tee_cryp_obj_secret *sk = NULL;
2985 	const struct tee_cryp_obj_type_props *type_props = NULL;
2986 	TEE_Attribute *params = NULL;
2987 	size_t alloc_size = 0;
2988 
2989 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
2990 	if (res != TEE_SUCCESS)
2991 		return res;
2992 
2993 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size))
2994 		return TEE_ERROR_OVERFLOW;
2995 
2996 	params = malloc(alloc_size);
2997 	if (!params)
2998 		return TEE_ERROR_OUT_OF_MEMORY;
2999 	res = copy_in_attrs(utc, usr_params, param_count, params);
3000 	if (res != TEE_SUCCESS)
3001 		goto out;
3002 
3003 	/* Get key set in operation */
3004 	res = tee_obj_get(utc, cs->key1, &ko);
3005 	if (res != TEE_SUCCESS)
3006 		goto out;
3007 
3008 	res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so);
3009 	if (res != TEE_SUCCESS)
3010 		goto out;
3011 
3012 	/* Find information needed about the object to initialize */
3013 	sk = so->attr;
3014 
3015 	/* Find description of object */
3016 	type_props = tee_svc_find_type_props(so->info.objectType);
3017 	if (!type_props) {
3018 		res = TEE_ERROR_NOT_SUPPORTED;
3019 		goto out;
3020 	}
3021 
3022 	if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) {
3023 		struct bignum *pub = NULL;
3024 		struct bignum *ss = NULL;
3025 		size_t bin_size = 0;
3026 
3027 		if (param_count != 1 ||
3028 		    params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) {
3029 			res = TEE_ERROR_BAD_PARAMETERS;
3030 			goto out;
3031 		}
3032 
3033 		bin_size = params[0].content.ref.length;
3034 
3035 		if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) {
3036 			res = TEE_ERROR_OVERFLOW;
3037 			goto out;
3038 		}
3039 
3040 		pub = crypto_bignum_allocate(alloc_size);
3041 		ss = crypto_bignum_allocate(alloc_size);
3042 		if (pub && ss) {
3043 			crypto_bignum_bin2bn(params[0].content.ref.buffer,
3044 					     bin_size, pub);
3045 			res = crypto_acipher_dh_shared_secret(ko->attr,
3046 							      pub, ss);
3047 			if (res == TEE_SUCCESS) {
3048 				sk->key_size = crypto_bignum_num_bytes(ss);
3049 				crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1));
3050 				so->info.handleFlags |=
3051 						TEE_HANDLE_FLAG_INITIALIZED;
3052 				set_attribute(so, type_props,
3053 					      TEE_ATTR_SECRET_VALUE);
3054 			}
3055 		} else {
3056 			res = TEE_ERROR_OUT_OF_MEMORY;
3057 		}
3058 		crypto_bignum_free(pub);
3059 		crypto_bignum_free(ss);
3060 	} else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) {
3061 		struct ecc_public_key key_public;
3062 		uint8_t *pt_secret;
3063 		unsigned long pt_secret_len;
3064 		uint32_t key_type = TEE_TYPE_ECDH_PUBLIC_KEY;
3065 
3066 		if (param_count != 2 ||
3067 		    params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X ||
3068 		    params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) {
3069 			res = TEE_ERROR_BAD_PARAMETERS;
3070 			goto out;
3071 		}
3072 
3073 		switch (cs->algo) {
3074 		case TEE_ALG_ECDH_P192:
3075 			alloc_size = 192;
3076 			break;
3077 		case TEE_ALG_ECDH_P224:
3078 			alloc_size = 224;
3079 			break;
3080 		case TEE_ALG_ECDH_P256:
3081 			alloc_size = 256;
3082 			break;
3083 		case TEE_ALG_ECDH_P384:
3084 			alloc_size = 384;
3085 			break;
3086 		case TEE_ALG_ECDH_P521:
3087 			alloc_size = 521;
3088 			break;
3089 		default:
3090 			res = TEE_ERROR_NOT_IMPLEMENTED;
3091 			goto out;
3092 		}
3093 
3094 		/* Create the public key */
3095 		res = crypto_acipher_alloc_ecc_public_key(&key_public, key_type,
3096 							  alloc_size);
3097 		if (res != TEE_SUCCESS)
3098 			goto out;
3099 		key_public.curve = ((struct ecc_keypair *)ko->attr)->curve;
3100 		crypto_bignum_bin2bn(params[0].content.ref.buffer,
3101 				     params[0].content.ref.length,
3102 				     key_public.x);
3103 		crypto_bignum_bin2bn(params[1].content.ref.buffer,
3104 				     params[1].content.ref.length,
3105 				     key_public.y);
3106 
3107 		pt_secret = (uint8_t *)(sk + 1);
3108 		pt_secret_len = sk->alloc_size;
3109 		res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public,
3110 						       pt_secret,
3111 						       &pt_secret_len);
3112 
3113 		if (res == TEE_SUCCESS) {
3114 			sk->key_size = pt_secret_len;
3115 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3116 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3117 		}
3118 
3119 		/* free the public key */
3120 		crypto_acipher_free_ecc_public_key(&key_public);
3121 	}
3122 #if defined(CFG_CRYPTO_HKDF)
3123 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) {
3124 		void *salt, *info;
3125 		size_t salt_len, info_len, okm_len;
3126 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3127 		struct tee_cryp_obj_secret *ik = ko->attr;
3128 		const uint8_t *ikm = (const uint8_t *)(ik + 1);
3129 
3130 		res = get_hkdf_params(params, param_count, &salt, &salt_len,
3131 				      &info, &info_len, &okm_len);
3132 		if (res != TEE_SUCCESS)
3133 			goto out;
3134 
3135 		/* Requested size must fit into the output object's buffer */
3136 		if (okm_len > ik->alloc_size) {
3137 			res = TEE_ERROR_BAD_PARAMETERS;
3138 			goto out;
3139 		}
3140 
3141 		res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len,
3142 				    info, info_len, (uint8_t *)(sk + 1),
3143 				    okm_len);
3144 		if (res == TEE_SUCCESS) {
3145 			sk->key_size = okm_len;
3146 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3147 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3148 		}
3149 	}
3150 #endif
3151 #if defined(CFG_CRYPTO_CONCAT_KDF)
3152 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) {
3153 		void *info;
3154 		size_t info_len, derived_key_len;
3155 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3156 		struct tee_cryp_obj_secret *ss = ko->attr;
3157 		const uint8_t *shared_secret = (const uint8_t *)(ss + 1);
3158 
3159 		res = get_concat_kdf_params(params, param_count, &info,
3160 					    &info_len, &derived_key_len);
3161 		if (res != TEE_SUCCESS)
3162 			goto out;
3163 
3164 		/* Requested size must fit into the output object's buffer */
3165 		if (derived_key_len > ss->alloc_size) {
3166 			res = TEE_ERROR_BAD_PARAMETERS;
3167 			goto out;
3168 		}
3169 
3170 		res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size,
3171 					  info, info_len, (uint8_t *)(sk + 1),
3172 					  derived_key_len);
3173 		if (res == TEE_SUCCESS) {
3174 			sk->key_size = derived_key_len;
3175 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3176 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3177 		}
3178 	}
3179 #endif
3180 #if defined(CFG_CRYPTO_PBKDF2)
3181 	else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) {
3182 		void *salt;
3183 		size_t salt_len, iteration_count, derived_key_len;
3184 		uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo);
3185 		struct tee_cryp_obj_secret *ss = ko->attr;
3186 		const uint8_t *password = (const uint8_t *)(ss + 1);
3187 
3188 		res = get_pbkdf2_params(params, param_count, &salt, &salt_len,
3189 					&derived_key_len, &iteration_count);
3190 		if (res != TEE_SUCCESS)
3191 			goto out;
3192 
3193 		/* Requested size must fit into the output object's buffer */
3194 		if (derived_key_len > ss->alloc_size) {
3195 			res = TEE_ERROR_BAD_PARAMETERS;
3196 			goto out;
3197 		}
3198 
3199 		res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt,
3200 				      salt_len, iteration_count,
3201 				      (uint8_t *)(sk + 1), derived_key_len);
3202 		if (res == TEE_SUCCESS) {
3203 			sk->key_size = derived_key_len;
3204 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3205 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3206 		}
3207 	}
3208 #endif
3209 #if defined(CFG_CRYPTO_SM2_KEP)
3210 	else if (cs->algo == TEE_ALG_SM2_KEP) {
3211 		struct ecc_public_key peer_eph_key = { };
3212 		struct ecc_public_key peer_key = { };
3213 		struct sm2_kep_parms kep_parms = {
3214 			.out = (uint8_t *)(sk + 1),
3215 			.out_len = so->info.maxKeySize,
3216 		};
3217 		struct tee_obj *ko2 = NULL;
3218 
3219 		res = tee_obj_get(utc, cs->key2, &ko2);
3220 		if (res != TEE_SUCCESS)
3221 			goto out;
3222 
3223 		res = get_sm2_kep_params(params, param_count, &peer_key,
3224 					 &peer_eph_key, &kep_parms);
3225 		if (res != TEE_SUCCESS)
3226 			goto out;
3227 
3228 		/*
3229 		 * key1 is our private keypair, key2 is our ephemeral public key
3230 		 */
3231 		res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */
3232 						    ko2->attr, /* key2 */
3233 						    &peer_key, &peer_eph_key,
3234 						    &kep_parms);
3235 
3236 		if (res == TEE_SUCCESS) {
3237 			sk->key_size = kep_parms.out_len;
3238 			so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED;
3239 			set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE);
3240 		}
3241 		crypto_acipher_free_ecc_public_key(&peer_key);
3242 		crypto_acipher_free_ecc_public_key(&peer_eph_key);
3243 	}
3244 #endif
3245 	else
3246 		res = TEE_ERROR_NOT_SUPPORTED;
3247 
3248 out:
3249 	free_wipe(params);
3250 	return res;
3251 }
3252 
3253 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen)
3254 {
3255 	struct ts_session *sess = ts_get_current_session();
3256 	TEE_Result res = TEE_SUCCESS;
3257 
3258 	buf = memtag_strip_tag(buf);
3259 
3260 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3261 				     TEE_MEMORY_ACCESS_WRITE,
3262 				     (uaddr_t)buf, blen);
3263 	if (res != TEE_SUCCESS)
3264 		return res;
3265 
3266 	res = crypto_rng_read(buf, blen);
3267 	if (res != TEE_SUCCESS)
3268 		return res;
3269 
3270 	return res;
3271 }
3272 
3273 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce,
3274 				size_t nonce_len, size_t tag_len,
3275 				size_t aad_len, size_t payload_len)
3276 {
3277 	struct ts_session *sess = ts_get_current_session();
3278 	struct tee_cryp_obj_secret *key = NULL;
3279 	struct tee_cryp_state *cs = NULL;
3280 	TEE_Result res = TEE_SUCCESS;
3281 	struct tee_obj *o = NULL;
3282 
3283 	nonce = memtag_strip_tag_const(nonce);
3284 
3285 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3286 				     TEE_MEMORY_ACCESS_READ |
3287 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3288 				     (uaddr_t)nonce, nonce_len);
3289 	if (res != TEE_SUCCESS)
3290 		return res;
3291 
3292 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3293 	if (res != TEE_SUCCESS)
3294 		return res;
3295 
3296 	res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o);
3297 	if (res != TEE_SUCCESS)
3298 		return res;
3299 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0)
3300 		return TEE_ERROR_BAD_PARAMETERS;
3301 
3302 	key = o->attr;
3303 	res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1),
3304 				  key->key_size, nonce, nonce_len, tag_len,
3305 				  aad_len, payload_len);
3306 	if (res != TEE_SUCCESS)
3307 		return res;
3308 
3309 	cs->ctx_finalize = crypto_authenc_final;
3310 	cs->state = CRYP_STATE_INITIALIZED;
3311 
3312 	return TEE_SUCCESS;
3313 }
3314 
3315 TEE_Result syscall_authenc_update_aad(unsigned long state,
3316 				      const void *aad_data, size_t aad_data_len)
3317 {
3318 	struct ts_session *sess = ts_get_current_session();
3319 	TEE_Result res = TEE_SUCCESS;
3320 	struct tee_cryp_state *cs = NULL;
3321 
3322 	aad_data = memtag_strip_tag_const(aad_data);
3323 
3324 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3325 				     TEE_MEMORY_ACCESS_READ |
3326 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3327 				     (uaddr_t)aad_data, aad_data_len);
3328 	if (res != TEE_SUCCESS)
3329 		return res;
3330 
3331 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3332 	if (res != TEE_SUCCESS)
3333 		return res;
3334 
3335 	if (cs->state != CRYP_STATE_INITIALIZED)
3336 		return TEE_ERROR_BAD_STATE;
3337 
3338 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3339 		return TEE_ERROR_BAD_STATE;
3340 
3341 	res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data,
3342 					aad_data_len);
3343 	if (res != TEE_SUCCESS)
3344 		return res;
3345 
3346 	return TEE_SUCCESS;
3347 }
3348 
3349 TEE_Result syscall_authenc_update_payload(unsigned long state,
3350 					  const void *src_data,
3351 					  size_t src_len, void *dst_data,
3352 					  uint64_t *dst_len)
3353 {
3354 	struct ts_session *sess = ts_get_current_session();
3355 	struct tee_cryp_state *cs = NULL;
3356 	TEE_Result res = TEE_SUCCESS;
3357 	size_t dlen = 0;
3358 
3359 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3360 	if (res != TEE_SUCCESS)
3361 		return res;
3362 
3363 	if (cs->state != CRYP_STATE_INITIALIZED)
3364 		return TEE_ERROR_BAD_STATE;
3365 
3366 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3367 		return TEE_ERROR_BAD_STATE;
3368 
3369 	src_data = memtag_strip_tag_const(src_data);
3370 	dst_data = memtag_strip_tag(dst_data);
3371 
3372 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3373 				     TEE_MEMORY_ACCESS_READ |
3374 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3375 				     (uaddr_t)src_data, src_len);
3376 	if (res != TEE_SUCCESS)
3377 		return res;
3378 
3379 	res = get_user_u64_as_size_t(&dlen, dst_len);
3380 	if (res != TEE_SUCCESS)
3381 		return res;
3382 
3383 	res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx,
3384 				     TEE_MEMORY_ACCESS_READ |
3385 				     TEE_MEMORY_ACCESS_WRITE |
3386 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3387 				     (uaddr_t)dst_data, dlen);
3388 	if (res != TEE_SUCCESS)
3389 		return res;
3390 
3391 	if (dlen < src_len) {
3392 		res = TEE_ERROR_SHORT_BUFFER;
3393 		goto out;
3394 	}
3395 
3396 	res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data,
3397 					    src_len, dst_data, &dlen);
3398 out:
3399 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3400 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3401 
3402 		if (res2 != TEE_SUCCESS)
3403 			res = res2;
3404 	}
3405 
3406 	return res;
3407 }
3408 
3409 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data,
3410 				     size_t src_len, void *dst_data,
3411 				     uint64_t *dst_len, void *tag,
3412 				     uint64_t *tag_len)
3413 {
3414 	struct ts_session *sess = ts_get_current_session();
3415 	struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3416 	struct tee_cryp_state *cs = NULL;
3417 	TEE_Result res = TEE_SUCCESS;
3418 	size_t dlen = 0;
3419 	size_t tlen = 0;
3420 
3421 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3422 	if (res != TEE_SUCCESS)
3423 		return res;
3424 
3425 	if (cs->state != CRYP_STATE_INITIALIZED)
3426 		return TEE_ERROR_BAD_STATE;
3427 
3428 	if (cs->mode != TEE_MODE_ENCRYPT)
3429 		return TEE_ERROR_BAD_PARAMETERS;
3430 
3431 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3432 		return TEE_ERROR_BAD_STATE;
3433 
3434 	src_data = memtag_strip_tag_const(src_data);
3435 	dst_data = memtag_strip_tag(dst_data);
3436 	tag = memtag_strip_tag(tag);
3437 
3438 	res = vm_check_access_rights(uctx,
3439 				     TEE_MEMORY_ACCESS_READ |
3440 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3441 				     (uaddr_t)src_data, src_len);
3442 	if (res != TEE_SUCCESS)
3443 		return res;
3444 
3445 	if (!dst_len) {
3446 		dlen = 0;
3447 	} else {
3448 		res = get_user_u64_as_size_t(&dlen, dst_len);
3449 		if (res != TEE_SUCCESS)
3450 			return res;
3451 
3452 		res = vm_check_access_rights(uctx,
3453 					     TEE_MEMORY_ACCESS_READ |
3454 					     TEE_MEMORY_ACCESS_WRITE |
3455 					     TEE_MEMORY_ACCESS_ANY_OWNER,
3456 					     (uaddr_t)dst_data, dlen);
3457 		if (res != TEE_SUCCESS)
3458 			return res;
3459 	}
3460 
3461 	if (dlen < src_len) {
3462 		res = TEE_ERROR_SHORT_BUFFER;
3463 		goto out;
3464 	}
3465 
3466 	res = get_user_u64_as_size_t(&tlen, tag_len);
3467 	if (res != TEE_SUCCESS)
3468 		return res;
3469 
3470 	res = vm_check_access_rights(uctx,
3471 				     TEE_MEMORY_ACCESS_READ |
3472 				     TEE_MEMORY_ACCESS_WRITE |
3473 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3474 				     (uaddr_t)tag, tlen);
3475 	if (res != TEE_SUCCESS)
3476 		return res;
3477 
3478 	res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data,
3479 				       &dlen, tag, &tlen);
3480 
3481 out:
3482 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3483 		TEE_Result res2 = TEE_SUCCESS;
3484 
3485 		if (dst_len != NULL) {
3486 			res2 = put_user_u64(dst_len, dlen);
3487 			if (res2 != TEE_SUCCESS)
3488 				return res2;
3489 		}
3490 
3491 		res2 = put_user_u64(tag_len, tlen);
3492 		if (res2 != TEE_SUCCESS)
3493 			return res2;
3494 	}
3495 
3496 	return res;
3497 }
3498 
3499 TEE_Result syscall_authenc_dec_final(unsigned long state,
3500 			const void *src_data, size_t src_len, void *dst_data,
3501 			uint64_t *dst_len, const void *tag, size_t tag_len)
3502 {
3503 	struct ts_session *sess = ts_get_current_session();
3504 	struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx;
3505 	struct tee_cryp_state *cs = NULL;
3506 	TEE_Result res = TEE_SUCCESS;
3507 	size_t dlen = 0;
3508 
3509 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3510 	if (res != TEE_SUCCESS)
3511 		return res;
3512 
3513 	if (cs->state != CRYP_STATE_INITIALIZED)
3514 		return TEE_ERROR_BAD_STATE;
3515 
3516 	if (cs->mode != TEE_MODE_DECRYPT)
3517 		return TEE_ERROR_BAD_PARAMETERS;
3518 
3519 	if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE)
3520 		return TEE_ERROR_BAD_STATE;
3521 
3522 	src_data = memtag_strip_tag_const(src_data);
3523 	dst_data = memtag_strip_tag(dst_data);
3524 	tag = memtag_strip_tag_const(tag);
3525 
3526 	res = vm_check_access_rights(uctx,
3527 				     TEE_MEMORY_ACCESS_READ |
3528 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3529 				     (uaddr_t)src_data, src_len);
3530 	if (res != TEE_SUCCESS)
3531 		return res;
3532 
3533 	if (!dst_len) {
3534 		dlen = 0;
3535 	} else {
3536 		res = get_user_u64_as_size_t(&dlen, dst_len);
3537 		if (res != TEE_SUCCESS)
3538 			return res;
3539 
3540 		res = vm_check_access_rights(uctx,
3541 					     TEE_MEMORY_ACCESS_READ |
3542 					     TEE_MEMORY_ACCESS_WRITE |
3543 					     TEE_MEMORY_ACCESS_ANY_OWNER,
3544 					     (uaddr_t)dst_data, dlen);
3545 		if (res != TEE_SUCCESS)
3546 			return res;
3547 	}
3548 
3549 	if (dlen < src_len) {
3550 		res = TEE_ERROR_SHORT_BUFFER;
3551 		goto out;
3552 	}
3553 
3554 	res = vm_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ,
3555 				     (uaddr_t)tag, tag_len);
3556 	if (res != TEE_SUCCESS)
3557 		return res;
3558 
3559 	res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data,
3560 				       &dlen, tag, tag_len);
3561 
3562 out:
3563 	if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) &&
3564 	    dst_len != NULL) {
3565 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3566 
3567 		if (res2 != TEE_SUCCESS)
3568 			return res2;
3569 	}
3570 
3571 	return res;
3572 }
3573 
3574 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params,
3575 			      size_t default_len)
3576 {
3577 	size_t n;
3578 
3579 	assert(default_len < INT_MAX);
3580 
3581 	for (n = 0; n < num_params; n++) {
3582 		if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) {
3583 			if (params[n].content.value.a < INT_MAX)
3584 				return params[n].content.value.a;
3585 			break;
3586 		}
3587 	}
3588 	/*
3589 	 * If salt length isn't provided use the default value which is
3590 	 * the length of the digest.
3591 	 */
3592 	return default_len;
3593 }
3594 
3595 TEE_Result syscall_asymm_operate(unsigned long state,
3596 			const struct utee_attribute *usr_params,
3597 			size_t num_params, const void *src_data, size_t src_len,
3598 			void *dst_data, uint64_t *dst_len)
3599 {
3600 	struct ts_session *sess = ts_get_current_session();
3601 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
3602 	TEE_Result res = TEE_SUCCESS;
3603 	struct tee_cryp_state *cs = NULL;
3604 	size_t dlen = 0;
3605 	struct tee_obj *o = NULL;
3606 	void *label = NULL;
3607 	size_t label_len = 0;
3608 	size_t n = 0;
3609 	int salt_len = 0;
3610 	TEE_Attribute *params = NULL;
3611 	size_t alloc_size = 0;
3612 
3613 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3614 	if (res != TEE_SUCCESS)
3615 		return res;
3616 
3617 	src_data = memtag_strip_tag_const(src_data);
3618 	dst_data = memtag_strip_tag(dst_data);
3619 
3620 	res = vm_check_access_rights(&utc->uctx,
3621 				     TEE_MEMORY_ACCESS_READ |
3622 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3623 				     (uaddr_t)src_data, src_len);
3624 	if (res != TEE_SUCCESS)
3625 		return res;
3626 
3627 	res = get_user_u64_as_size_t(&dlen, dst_len);
3628 	if (res != TEE_SUCCESS)
3629 		return res;
3630 
3631 	res = vm_check_access_rights(&utc->uctx,
3632 				     TEE_MEMORY_ACCESS_READ |
3633 				     TEE_MEMORY_ACCESS_WRITE |
3634 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3635 				     (uaddr_t)dst_data, dlen);
3636 	if (res != TEE_SUCCESS)
3637 		return res;
3638 
3639 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3640 		return TEE_ERROR_OVERFLOW;
3641 
3642 	params = malloc(alloc_size);
3643 	if (!params)
3644 		return TEE_ERROR_OUT_OF_MEMORY;
3645 	res = copy_in_attrs(utc, usr_params, num_params, params);
3646 	if (res != TEE_SUCCESS)
3647 		goto out;
3648 
3649 	res = tee_obj_get(utc, cs->key1, &o);
3650 	if (res != TEE_SUCCESS)
3651 		goto out;
3652 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3653 		res = TEE_ERROR_GENERIC;
3654 		goto out;
3655 	}
3656 
3657 	switch (cs->algo) {
3658 	case TEE_ALG_RSA_NOPAD:
3659 		if (cs->mode == TEE_MODE_ENCRYPT) {
3660 			res = crypto_acipher_rsanopad_encrypt(o->attr, src_data,
3661 							      src_len, dst_data,
3662 							      &dlen);
3663 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3664 			res = crypto_acipher_rsanopad_decrypt(o->attr, src_data,
3665 							      src_len, dst_data,
3666 							      &dlen);
3667 		} else {
3668 			/*
3669 			 * We will panic because "the mode is not compatible
3670 			 * with the function"
3671 			 */
3672 			res = TEE_ERROR_GENERIC;
3673 		}
3674 		break;
3675 
3676 	case TEE_ALG_SM2_PKE:
3677 		if (cs->mode == TEE_MODE_ENCRYPT) {
3678 			res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data,
3679 							     src_len, dst_data,
3680 							     &dlen);
3681 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3682 			res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data,
3683 							     src_len, dst_data,
3684 							     &dlen);
3685 		} else {
3686 			res = TEE_ERROR_GENERIC;
3687 		}
3688 		break;
3689 
3690 	case TEE_ALG_RSAES_PKCS1_V1_5:
3691 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1:
3692 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224:
3693 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256:
3694 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384:
3695 	case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512:
3696 		for (n = 0; n < num_params; n++) {
3697 			if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) {
3698 				label = params[n].content.ref.buffer;
3699 				label_len = params[n].content.ref.length;
3700 				break;
3701 			}
3702 		}
3703 
3704 		if (cs->mode == TEE_MODE_ENCRYPT) {
3705 			res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr,
3706 							   label, label_len,
3707 							   src_data, src_len,
3708 							   dst_data, &dlen);
3709 		} else if (cs->mode == TEE_MODE_DECRYPT) {
3710 			res = crypto_acipher_rsaes_decrypt(
3711 					cs->algo, o->attr, label, label_len,
3712 					src_data, src_len, dst_data, &dlen);
3713 		} else {
3714 			res = TEE_ERROR_BAD_PARAMETERS;
3715 		}
3716 		break;
3717 
3718 #if defined(CFG_CRYPTO_RSASSA_NA1)
3719 	case TEE_ALG_RSASSA_PKCS1_V1_5:
3720 #endif
3721 	case TEE_ALG_RSASSA_PKCS1_V1_5_MD5:
3722 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1:
3723 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224:
3724 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256:
3725 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384:
3726 	case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512:
3727 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1:
3728 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224:
3729 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256:
3730 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384:
3731 	case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512:
3732 		if (cs->mode != TEE_MODE_SIGN) {
3733 			res = TEE_ERROR_BAD_PARAMETERS;
3734 			break;
3735 		}
3736 		salt_len = pkcs1_get_salt_len(params, num_params, src_len);
3737 		res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len,
3738 						 src_data, src_len, dst_data,
3739 						 &dlen);
3740 		break;
3741 
3742 	case TEE_ALG_DSA_SHA1:
3743 	case TEE_ALG_DSA_SHA224:
3744 	case TEE_ALG_DSA_SHA256:
3745 		res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data,
3746 					      src_len, dst_data, &dlen);
3747 		break;
3748 	case TEE_ALG_ECDSA_P192:
3749 	case TEE_ALG_ECDSA_P224:
3750 	case TEE_ALG_ECDSA_P256:
3751 	case TEE_ALG_ECDSA_P384:
3752 	case TEE_ALG_ECDSA_P521:
3753 	case TEE_ALG_SM2_DSA_SM3:
3754 		res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data,
3755 					      src_len, dst_data, &dlen);
3756 		break;
3757 	default:
3758 		res = TEE_ERROR_BAD_PARAMETERS;
3759 		break;
3760 	}
3761 
3762 out:
3763 	free_wipe(params);
3764 
3765 	if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) {
3766 		TEE_Result res2 = put_user_u64(dst_len, dlen);
3767 
3768 		if (res2 != TEE_SUCCESS)
3769 			return res2;
3770 	}
3771 
3772 	return res;
3773 }
3774 
3775 TEE_Result syscall_asymm_verify(unsigned long state,
3776 			const struct utee_attribute *usr_params,
3777 			size_t num_params, const void *data, size_t data_len,
3778 			const void *sig, size_t sig_len)
3779 {
3780 	struct ts_session *sess = ts_get_current_session();
3781 	struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx);
3782 	struct tee_cryp_state *cs = NULL;
3783 	TEE_Result res = TEE_SUCCESS;
3784 	TEE_Attribute *params = NULL;
3785 	struct tee_obj *o = NULL;
3786 	size_t hash_size = 0;
3787 	uint32_t hash_algo = 0;
3788 	int salt_len = 0;
3789 	size_t alloc_size = 0;
3790 
3791 	res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs);
3792 	if (res != TEE_SUCCESS)
3793 		return res;
3794 
3795 	if (cs->mode != TEE_MODE_VERIFY)
3796 		return TEE_ERROR_BAD_PARAMETERS;
3797 
3798 	data = memtag_strip_tag_const(data);
3799 	sig = memtag_strip_tag_const(sig);
3800 
3801 	res = vm_check_access_rights(&utc->uctx,
3802 				     TEE_MEMORY_ACCESS_READ |
3803 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3804 				     (uaddr_t)data, data_len);
3805 	if (res != TEE_SUCCESS)
3806 		return res;
3807 
3808 	res = vm_check_access_rights(&utc->uctx,
3809 				     TEE_MEMORY_ACCESS_READ |
3810 				     TEE_MEMORY_ACCESS_ANY_OWNER,
3811 				     (uaddr_t)sig, sig_len);
3812 	if (res != TEE_SUCCESS)
3813 		return res;
3814 
3815 	if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size))
3816 		return TEE_ERROR_OVERFLOW;
3817 
3818 	params = malloc(alloc_size);
3819 	if (!params)
3820 		return TEE_ERROR_OUT_OF_MEMORY;
3821 	res = copy_in_attrs(utc, usr_params, num_params, params);
3822 	if (res != TEE_SUCCESS)
3823 		goto out;
3824 
3825 	res = tee_obj_get(utc, cs->key1, &o);
3826 	if (res != TEE_SUCCESS)
3827 		goto out;
3828 	if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) {
3829 		res = TEE_ERROR_BAD_PARAMETERS;
3830 		goto out;
3831 	}
3832 
3833 	switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) {
3834 	case TEE_MAIN_ALGO_RSA:
3835 		if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) {
3836 			hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3837 			res = tee_alg_get_digest_size(hash_algo, &hash_size);
3838 			if (res != TEE_SUCCESS)
3839 				break;
3840 			if (data_len != hash_size) {
3841 				res = TEE_ERROR_BAD_PARAMETERS;
3842 				break;
3843 			}
3844 			salt_len = pkcs1_get_salt_len(params, num_params,
3845 						      hash_size);
3846 		}
3847 		res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len,
3848 						   data, data_len, sig,
3849 						   sig_len);
3850 		break;
3851 
3852 	case TEE_MAIN_ALGO_DSA:
3853 		hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo);
3854 		res = tee_alg_get_digest_size(hash_algo, &hash_size);
3855 		if (res != TEE_SUCCESS)
3856 			break;
3857 
3858 		if (data_len != hash_size) {
3859 			struct dsa_public_key *key = o->attr;
3860 
3861 			/*
3862 			 * Depending on the DSA algorithm (NIST), the
3863 			 * digital signature output size may be truncated
3864 			 * to the size of a key pair (Q prime size). Q
3865 			 * prime size must be less or equal than the hash
3866 			 * output length of the hash algorithm involved.
3867 			 *
3868 			 * We're checking here in order to be able to
3869 			 * return this particular error code, which will
3870 			 * cause TEE_AsymmetricVerifyDigest() to panic as
3871 			 * required by GP. crypto_acipher_dsa_verify() is
3872 			 * implemented in the glue layer of the crypto
3873 			 * library and it might be a bit harder to catch
3874 			 * this particular case there or lead to duplicated
3875 			 * code in different crypto glue layers.
3876 			 *
3877 			 * The GP spec says that we SHOULD panic if
3878 			 * data_len != hash_size, but that would break a
3879 			 * few of the DSA tests in xtest where the
3880 			 * hash_size is larger than possible data_len. So
3881 			 * the compromise is in case data_len != hash_size
3882 			 * check that it's not smaller than what makes
3883 			 * sense.
3884 			 */
3885 			if (data_len != crypto_bignum_num_bytes(key->q)) {
3886 				res = TEE_ERROR_BAD_PARAMETERS;
3887 				break;
3888 			}
3889 		}
3890 		res = crypto_acipher_dsa_verify(cs->algo, o->attr, data,
3891 						data_len, sig, sig_len);
3892 		break;
3893 
3894 	case TEE_MAIN_ALGO_ECDSA:
3895 	case TEE_MAIN_ALGO_SM2_DSA_SM3:
3896 		res = crypto_acipher_ecc_verify(cs->algo, o->attr, data,
3897 						data_len, sig, sig_len);
3898 		break;
3899 
3900 	default:
3901 		res = TEE_ERROR_NOT_SUPPORTED;
3902 	}
3903 
3904 out:
3905 	free_wipe(params);
3906 	return res;
3907 }
3908