1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * Copyright (c) 2020, 2022 Linaro Limited 5 * Copyright (c) 2022, Technology Innovation Institute (TII) 6 */ 7 8 #include <assert.h> 9 #include <bitstring.h> 10 #include <compiler.h> 11 #include <config.h> 12 #include <crypto/crypto.h> 13 #include <kernel/tee_ta_manager.h> 14 #include <kernel/user_access.h> 15 #include <memtag.h> 16 #include <mm/vm.h> 17 #include <stdlib_ext.h> 18 #include <string_ext.h> 19 #include <string.h> 20 #include <sys/queue.h> 21 #include <tee_api_defines_extensions.h> 22 #include <tee_api_types.h> 23 #include <tee/tee_cryp_utl.h> 24 #include <tee/tee_obj.h> 25 #include <tee/tee_svc_cryp.h> 26 #include <tee/tee_svc.h> 27 #include <trace.h> 28 #include <utee_defines.h> 29 #include <util.h> 30 #if defined(CFG_CRYPTO_HKDF) 31 #include <tee/tee_cryp_hkdf.h> 32 #endif 33 #if defined(CFG_CRYPTO_CONCAT_KDF) 34 #include <tee/tee_cryp_concat_kdf.h> 35 #endif 36 #if defined(CFG_CRYPTO_PBKDF2) 37 #include <tee/tee_cryp_pbkdf2.h> 38 #endif 39 40 enum cryp_state { 41 CRYP_STATE_INITIALIZED = 0, 42 CRYP_STATE_UNINITIALIZED 43 }; 44 45 typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx); 46 struct tee_cryp_state { 47 TAILQ_ENTRY(tee_cryp_state) link; 48 uint32_t algo; 49 uint32_t mode; 50 vaddr_t key1; 51 vaddr_t key2; 52 void *ctx; 53 tee_cryp_ctx_finalize_func_t ctx_finalize; 54 enum cryp_state state; 55 }; 56 57 struct tee_cryp_obj_secret { 58 uint32_t key_size; 59 uint32_t alloc_size; 60 61 /* 62 * Pseudo code visualize layout of structure 63 * Next follows data, such as: 64 * uint8_t data[alloc_size] 65 * key_size must never exceed alloc_size 66 */ 67 }; 68 69 #define TEE_TYPE_ATTR_OPTIONAL BIT(0) 70 #define TEE_TYPE_ATTR_REQUIRED BIT(1) 71 #define TEE_TYPE_ATTR_OPTIONAL_GROUP BIT(2) 72 #define TEE_TYPE_ATTR_SIZE_INDICATOR BIT(3) 73 #define TEE_TYPE_ATTR_GEN_KEY_OPT BIT(4) 74 #define TEE_TYPE_ATTR_GEN_KEY_REQ BIT(5) 75 #define TEE_TYPE_ATTR_BIGNUM_MAXBITS BIT(6) 76 77 /* Handle storing of generic secret keys of varying lengths */ 78 #define ATTR_OPS_INDEX_SECRET 0 79 /* Convert to/from big-endian byte array and provider-specific bignum */ 80 #define ATTR_OPS_INDEX_BIGNUM 1 81 /* Convert to/from value attribute depending on direction */ 82 #define ATTR_OPS_INDEX_VALUE 2 83 /* Convert to/from curve25519 attribute depending on direction */ 84 #define ATTR_OPS_INDEX_25519 3 85 86 /* Curve25519 key bytes size is always 32 bytes*/ 87 #define KEY_SIZE_BYTES_25519 UL(32) 88 /* TEE Internal Core API v1.3.1, Table 6-8 */ 89 #define TEE_ED25519_CTX_MAX_LENGTH 255 90 91 struct tee_cryp_obj_type_attrs { 92 uint32_t attr_id; 93 uint16_t flags; 94 uint16_t ops_index; 95 uint16_t raw_offs; 96 uint16_t raw_size; 97 }; 98 99 #define RAW_DATA(_x, _y) \ 100 .raw_offs = offsetof(_x, _y), .raw_size = MEMBER_SIZE(_x, _y) 101 102 static const struct tee_cryp_obj_type_attrs 103 tee_cryp_obj_secret_value_attrs[] = { 104 { 105 .attr_id = TEE_ATTR_SECRET_VALUE, 106 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 107 .ops_index = ATTR_OPS_INDEX_SECRET, 108 .raw_offs = 0, 109 .raw_size = 0 110 }, 111 }; 112 113 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = { 114 { 115 .attr_id = TEE_ATTR_RSA_MODULUS, 116 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 117 .ops_index = ATTR_OPS_INDEX_BIGNUM, 118 RAW_DATA(struct rsa_public_key, n) 119 }, 120 121 { 122 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 123 .flags = TEE_TYPE_ATTR_REQUIRED, 124 .ops_index = ATTR_OPS_INDEX_BIGNUM, 125 RAW_DATA(struct rsa_public_key, e) 126 }, 127 }; 128 129 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = { 130 { 131 .attr_id = TEE_ATTR_RSA_MODULUS, 132 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 133 .ops_index = ATTR_OPS_INDEX_BIGNUM, 134 RAW_DATA(struct rsa_keypair, n) 135 }, 136 137 { 138 .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, 139 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_OPT, 140 .ops_index = ATTR_OPS_INDEX_BIGNUM, 141 RAW_DATA(struct rsa_keypair, e) 142 }, 143 144 { 145 .attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT, 146 .flags = TEE_TYPE_ATTR_REQUIRED, 147 .ops_index = ATTR_OPS_INDEX_BIGNUM, 148 RAW_DATA(struct rsa_keypair, d) 149 }, 150 151 { 152 .attr_id = TEE_ATTR_RSA_PRIME1, 153 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 154 .ops_index = ATTR_OPS_INDEX_BIGNUM, 155 RAW_DATA(struct rsa_keypair, p) 156 }, 157 158 { 159 .attr_id = TEE_ATTR_RSA_PRIME2, 160 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 161 .ops_index = ATTR_OPS_INDEX_BIGNUM, 162 RAW_DATA(struct rsa_keypair, q) 163 }, 164 165 { 166 .attr_id = TEE_ATTR_RSA_EXPONENT1, 167 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 168 .ops_index = ATTR_OPS_INDEX_BIGNUM, 169 RAW_DATA(struct rsa_keypair, dp) 170 }, 171 172 { 173 .attr_id = TEE_ATTR_RSA_EXPONENT2, 174 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 175 .ops_index = ATTR_OPS_INDEX_BIGNUM, 176 RAW_DATA(struct rsa_keypair, dq) 177 }, 178 179 { 180 .attr_id = TEE_ATTR_RSA_COEFFICIENT, 181 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, 182 .ops_index = ATTR_OPS_INDEX_BIGNUM, 183 RAW_DATA(struct rsa_keypair, qp) 184 }, 185 }; 186 187 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = { 188 { 189 .attr_id = TEE_ATTR_DSA_PRIME, 190 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS | 191 TEE_TYPE_ATTR_SIZE_INDICATOR, 192 .ops_index = ATTR_OPS_INDEX_BIGNUM, 193 RAW_DATA(struct dsa_public_key, p) 194 }, 195 196 { 197 .attr_id = TEE_ATTR_DSA_SUBPRIME, 198 .flags = TEE_TYPE_ATTR_REQUIRED, 199 .ops_index = ATTR_OPS_INDEX_BIGNUM, 200 RAW_DATA(struct dsa_public_key, q) 201 }, 202 203 { 204 .attr_id = TEE_ATTR_DSA_BASE, 205 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 206 .ops_index = ATTR_OPS_INDEX_BIGNUM, 207 RAW_DATA(struct dsa_public_key, g) 208 }, 209 210 { 211 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 212 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 213 .ops_index = ATTR_OPS_INDEX_BIGNUM, 214 RAW_DATA(struct dsa_public_key, y) 215 }, 216 }; 217 218 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = { 219 { 220 .attr_id = TEE_ATTR_DSA_PRIME, 221 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 222 TEE_TYPE_ATTR_BIGNUM_MAXBITS | TEE_TYPE_ATTR_SIZE_INDICATOR, 223 .ops_index = ATTR_OPS_INDEX_BIGNUM, 224 RAW_DATA(struct dsa_keypair, p) 225 }, 226 227 { 228 .attr_id = TEE_ATTR_DSA_SUBPRIME, 229 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, 230 .ops_index = ATTR_OPS_INDEX_BIGNUM, 231 RAW_DATA(struct dsa_keypair, q) 232 }, 233 234 { 235 .attr_id = TEE_ATTR_DSA_BASE, 236 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ | 237 TEE_TYPE_ATTR_BIGNUM_MAXBITS, 238 .ops_index = ATTR_OPS_INDEX_BIGNUM, 239 RAW_DATA(struct dsa_keypair, g) 240 }, 241 242 { 243 .attr_id = TEE_ATTR_DSA_PRIVATE_VALUE, 244 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 245 .ops_index = ATTR_OPS_INDEX_BIGNUM, 246 RAW_DATA(struct dsa_keypair, x) 247 }, 248 249 { 250 .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, 251 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_BIGNUM_MAXBITS, 252 .ops_index = ATTR_OPS_INDEX_BIGNUM, 253 RAW_DATA(struct dsa_keypair, y) 254 }, 255 }; 256 257 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = { 258 { 259 .attr_id = TEE_ATTR_DH_PRIME, 260 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 261 TEE_TYPE_ATTR_GEN_KEY_REQ, 262 .ops_index = ATTR_OPS_INDEX_BIGNUM, 263 RAW_DATA(struct dh_keypair, p) 264 }, 265 266 { 267 .attr_id = TEE_ATTR_DH_BASE, 268 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, 269 .ops_index = ATTR_OPS_INDEX_BIGNUM, 270 RAW_DATA(struct dh_keypair, g) 271 }, 272 273 { 274 .attr_id = TEE_ATTR_DH_PUBLIC_VALUE, 275 .flags = TEE_TYPE_ATTR_REQUIRED, 276 .ops_index = ATTR_OPS_INDEX_BIGNUM, 277 RAW_DATA(struct dh_keypair, y) 278 }, 279 280 { 281 .attr_id = TEE_ATTR_DH_PRIVATE_VALUE, 282 .flags = TEE_TYPE_ATTR_REQUIRED, 283 .ops_index = ATTR_OPS_INDEX_BIGNUM, 284 RAW_DATA(struct dh_keypair, x) 285 }, 286 287 { 288 .attr_id = TEE_ATTR_DH_SUBPRIME, 289 .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP | TEE_TYPE_ATTR_GEN_KEY_OPT, 290 .ops_index = ATTR_OPS_INDEX_BIGNUM, 291 RAW_DATA(struct dh_keypair, q) 292 }, 293 294 { 295 .attr_id = TEE_ATTR_DH_X_BITS, 296 .flags = TEE_TYPE_ATTR_GEN_KEY_OPT, 297 .ops_index = ATTR_OPS_INDEX_VALUE, 298 RAW_DATA(struct dh_keypair, xbits) 299 }, 300 }; 301 302 #if defined(CFG_CRYPTO_HKDF) 303 static const struct tee_cryp_obj_type_attrs 304 tee_cryp_obj_hkdf_ikm_attrs[] = { 305 { 306 .attr_id = TEE_ATTR_HKDF_IKM, 307 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 308 .ops_index = ATTR_OPS_INDEX_SECRET, 309 .raw_offs = 0, 310 .raw_size = 0 311 }, 312 }; 313 #endif 314 315 #if defined(CFG_CRYPTO_CONCAT_KDF) 316 static const struct tee_cryp_obj_type_attrs 317 tee_cryp_obj_concat_kdf_z_attrs[] = { 318 { 319 .attr_id = TEE_ATTR_CONCAT_KDF_Z, 320 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 321 .ops_index = ATTR_OPS_INDEX_SECRET, 322 .raw_offs = 0, 323 .raw_size = 0 324 }, 325 }; 326 #endif 327 328 #if defined(CFG_CRYPTO_PBKDF2) 329 static const struct tee_cryp_obj_type_attrs 330 tee_cryp_obj_pbkdf2_passwd_attrs[] = { 331 { 332 .attr_id = TEE_ATTR_PBKDF2_PASSWORD, 333 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 334 .ops_index = ATTR_OPS_INDEX_SECRET, 335 .raw_offs = 0, 336 .raw_size = 0 337 }, 338 }; 339 #endif 340 341 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_pub_key_attrs[] = { 342 { 343 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 344 .flags = TEE_TYPE_ATTR_REQUIRED, 345 .ops_index = ATTR_OPS_INDEX_BIGNUM, 346 RAW_DATA(struct ecc_public_key, x) 347 }, 348 349 { 350 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 351 .flags = TEE_TYPE_ATTR_REQUIRED, 352 .ops_index = ATTR_OPS_INDEX_BIGNUM, 353 RAW_DATA(struct ecc_public_key, y) 354 }, 355 356 { 357 .attr_id = TEE_ATTR_ECC_CURVE, 358 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, 359 .ops_index = ATTR_OPS_INDEX_VALUE, 360 RAW_DATA(struct ecc_public_key, curve) 361 }, 362 }; 363 364 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_ecc_keypair_attrs[] = { 365 { 366 .attr_id = TEE_ATTR_ECC_PRIVATE_VALUE, 367 .flags = TEE_TYPE_ATTR_REQUIRED, 368 .ops_index = ATTR_OPS_INDEX_BIGNUM, 369 RAW_DATA(struct ecc_keypair, d) 370 }, 371 372 { 373 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 374 .flags = TEE_TYPE_ATTR_REQUIRED, 375 .ops_index = ATTR_OPS_INDEX_BIGNUM, 376 RAW_DATA(struct ecc_keypair, x) 377 }, 378 379 { 380 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 381 .flags = TEE_TYPE_ATTR_REQUIRED, 382 .ops_index = ATTR_OPS_INDEX_BIGNUM, 383 RAW_DATA(struct ecc_keypair, y) 384 }, 385 386 { 387 .attr_id = TEE_ATTR_ECC_CURVE, 388 .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | 389 TEE_TYPE_ATTR_GEN_KEY_REQ, 390 .ops_index = ATTR_OPS_INDEX_VALUE, 391 RAW_DATA(struct ecc_keypair, curve) 392 }, 393 }; 394 395 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_sm2_pub_key_attrs[] = { 396 { 397 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 398 .flags = TEE_TYPE_ATTR_REQUIRED, 399 .ops_index = ATTR_OPS_INDEX_BIGNUM, 400 RAW_DATA(struct ecc_public_key, x) 401 }, 402 403 { 404 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 405 .flags = TEE_TYPE_ATTR_REQUIRED, 406 .ops_index = ATTR_OPS_INDEX_BIGNUM, 407 RAW_DATA(struct ecc_public_key, y) 408 }, 409 }; 410 411 static const struct tee_cryp_obj_type_attrs tee_cryp_obj_sm2_keypair_attrs[] = { 412 { 413 .attr_id = TEE_ATTR_ECC_PRIVATE_VALUE, 414 .flags = TEE_TYPE_ATTR_REQUIRED, 415 .ops_index = ATTR_OPS_INDEX_BIGNUM, 416 RAW_DATA(struct ecc_keypair, d) 417 }, 418 419 { 420 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_X, 421 .flags = TEE_TYPE_ATTR_REQUIRED, 422 .ops_index = ATTR_OPS_INDEX_BIGNUM, 423 RAW_DATA(struct ecc_keypair, x) 424 }, 425 426 { 427 .attr_id = TEE_ATTR_ECC_PUBLIC_VALUE_Y, 428 .flags = TEE_TYPE_ATTR_REQUIRED, 429 .ops_index = ATTR_OPS_INDEX_BIGNUM, 430 RAW_DATA(struct ecc_keypair, y) 431 }, 432 }; 433 434 static 435 const struct tee_cryp_obj_type_attrs tee_cryp_obj_x25519_keypair_attrs[] = { 436 { 437 .attr_id = TEE_ATTR_X25519_PRIVATE_VALUE, 438 .flags = TEE_TYPE_ATTR_REQUIRED, 439 .ops_index = ATTR_OPS_INDEX_25519, 440 RAW_DATA(struct x25519_keypair, priv) 441 }, 442 443 { 444 .attr_id = TEE_ATTR_X25519_PUBLIC_VALUE, 445 .flags = TEE_TYPE_ATTR_REQUIRED, 446 .ops_index = ATTR_OPS_INDEX_25519, 447 RAW_DATA(struct x25519_keypair, pub) 448 }, 449 }; 450 451 static 452 const struct tee_cryp_obj_type_attrs tee_cryp_obj_ed25519_pub_key_attrs[] = { 453 { 454 .attr_id = TEE_ATTR_ED25519_PUBLIC_VALUE, 455 .flags = TEE_TYPE_ATTR_REQUIRED, 456 .ops_index = ATTR_OPS_INDEX_25519, 457 RAW_DATA(struct ed25519_keypair, pub) 458 }, 459 }; 460 461 static 462 const struct tee_cryp_obj_type_attrs tee_cryp_obj_ed25519_keypair_attrs[] = { 463 { 464 .attr_id = TEE_ATTR_ED25519_PRIVATE_VALUE, 465 .flags = TEE_TYPE_ATTR_REQUIRED, 466 .ops_index = ATTR_OPS_INDEX_25519, 467 RAW_DATA(struct ed25519_keypair, priv) 468 }, 469 470 { 471 .attr_id = TEE_ATTR_ED25519_PUBLIC_VALUE, 472 .flags = TEE_TYPE_ATTR_REQUIRED, 473 .ops_index = ATTR_OPS_INDEX_25519, 474 RAW_DATA(struct ed25519_keypair, pub) 475 }, 476 }; 477 478 struct tee_cryp_obj_type_props { 479 TEE_ObjectType obj_type; 480 uint16_t min_size; /* may not be smaller than this */ 481 uint16_t max_size; /* may not be larger than this */ 482 uint16_t alloc_size; /* this many bytes are allocated to hold data */ 483 uint8_t quanta; /* may only be an multiple of this */ 484 485 uint8_t num_type_attrs; 486 const struct tee_cryp_obj_type_attrs *type_attrs; 487 }; 488 489 #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \ 490 { (obj_type), (min_size), (max_size), (alloc_size), (quanta), \ 491 ARRAY_SIZE(type_attrs), (type_attrs) } 492 493 static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = { 494 PROP(TEE_TYPE_AES, 64, 128, 256, /* valid sizes 128, 192, 256 */ 495 256 / 8 + sizeof(struct tee_cryp_obj_secret), 496 tee_cryp_obj_secret_value_attrs), 497 PROP(TEE_TYPE_DES, 64, 64, 64, 498 /* Valid size 64 with parity */ 499 64 / 8 + sizeof(struct tee_cryp_obj_secret), 500 tee_cryp_obj_secret_value_attrs), 501 PROP(TEE_TYPE_DES3, 64, 128, 192, 502 /* Valid sizes 128, 192 with parity */ 503 192 / 8 + sizeof(struct tee_cryp_obj_secret), 504 tee_cryp_obj_secret_value_attrs), 505 PROP(TEE_TYPE_SM4, 128, 128, 128, 506 128 / 8 + sizeof(struct tee_cryp_obj_secret), 507 tee_cryp_obj_secret_value_attrs), 508 PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512, 509 512 / 8 + sizeof(struct tee_cryp_obj_secret), 510 tee_cryp_obj_secret_value_attrs), 511 PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512, 512 512 / 8 + sizeof(struct tee_cryp_obj_secret), 513 tee_cryp_obj_secret_value_attrs), 514 PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512, 515 512 / 8 + sizeof(struct tee_cryp_obj_secret), 516 tee_cryp_obj_secret_value_attrs), 517 PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024, 518 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 519 tee_cryp_obj_secret_value_attrs), 520 PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024, 521 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 522 tee_cryp_obj_secret_value_attrs), 523 PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024, 524 1024 / 8 + sizeof(struct tee_cryp_obj_secret), 525 tee_cryp_obj_secret_value_attrs), 526 PROP(TEE_TYPE_HMAC_SM3, 8, 80, 1024, 527 512 / 8 + sizeof(struct tee_cryp_obj_secret), 528 tee_cryp_obj_secret_value_attrs), 529 PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096, 530 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 531 tee_cryp_obj_secret_value_attrs), 532 #if defined(CFG_CRYPTO_HKDF) 533 PROP(TEE_TYPE_HKDF_IKM, 8, 0, 4096, 534 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 535 tee_cryp_obj_hkdf_ikm_attrs), 536 #endif 537 #if defined(CFG_CRYPTO_CONCAT_KDF) 538 PROP(TEE_TYPE_CONCAT_KDF_Z, 8, 0, 4096, 539 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 540 tee_cryp_obj_concat_kdf_z_attrs), 541 #endif 542 #if defined(CFG_CRYPTO_PBKDF2) 543 PROP(TEE_TYPE_PBKDF2_PASSWORD, 8, 0, 4096, 544 4096 / 8 + sizeof(struct tee_cryp_obj_secret), 545 tee_cryp_obj_pbkdf2_passwd_attrs), 546 #endif 547 PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 548 sizeof(struct rsa_public_key), 549 tee_cryp_obj_rsa_pub_key_attrs), 550 551 PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, CFG_CORE_BIGNUM_MAX_BITS, 552 sizeof(struct rsa_keypair), 553 tee_cryp_obj_rsa_keypair_attrs), 554 555 PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 3072, 556 sizeof(struct dsa_public_key), 557 tee_cryp_obj_dsa_pub_key_attrs), 558 559 PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 3072, 560 sizeof(struct dsa_keypair), 561 tee_cryp_obj_dsa_keypair_attrs), 562 563 PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048, 564 sizeof(struct dh_keypair), 565 tee_cryp_obj_dh_keypair_attrs), 566 567 PROP(TEE_TYPE_ECDSA_PUBLIC_KEY, 1, 192, 521, 568 sizeof(struct ecc_public_key), 569 tee_cryp_obj_ecc_pub_key_attrs), 570 571 PROP(TEE_TYPE_ECDSA_KEYPAIR, 1, 192, 521, 572 sizeof(struct ecc_keypair), 573 tee_cryp_obj_ecc_keypair_attrs), 574 575 PROP(TEE_TYPE_ECDH_PUBLIC_KEY, 1, 192, 521, 576 sizeof(struct ecc_public_key), 577 tee_cryp_obj_ecc_pub_key_attrs), 578 579 PROP(TEE_TYPE_ECDH_KEYPAIR, 1, 192, 521, 580 sizeof(struct ecc_keypair), 581 tee_cryp_obj_ecc_keypair_attrs), 582 583 PROP(TEE_TYPE_SM2_DSA_PUBLIC_KEY, 1, 256, 256, 584 sizeof(struct ecc_public_key), 585 tee_cryp_obj_sm2_pub_key_attrs), 586 587 PROP(TEE_TYPE_SM2_DSA_KEYPAIR, 1, 256, 256, 588 sizeof(struct ecc_keypair), 589 tee_cryp_obj_sm2_keypair_attrs), 590 591 PROP(TEE_TYPE_SM2_PKE_PUBLIC_KEY, 1, 256, 256, 592 sizeof(struct ecc_public_key), 593 tee_cryp_obj_sm2_pub_key_attrs), 594 595 PROP(TEE_TYPE_SM2_PKE_KEYPAIR, 1, 256, 256, 596 sizeof(struct ecc_keypair), 597 tee_cryp_obj_sm2_keypair_attrs), 598 599 PROP(TEE_TYPE_SM2_KEP_PUBLIC_KEY, 1, 256, 256, 600 sizeof(struct ecc_public_key), 601 tee_cryp_obj_sm2_pub_key_attrs), 602 603 PROP(TEE_TYPE_SM2_KEP_KEYPAIR, 1, 256, 256, 604 sizeof(struct ecc_keypair), 605 tee_cryp_obj_sm2_keypair_attrs), 606 607 PROP(TEE_TYPE_X25519_KEYPAIR, 1, 256, 256, 608 sizeof(struct x25519_keypair), 609 tee_cryp_obj_x25519_keypair_attrs), 610 611 PROP(TEE_TYPE_ED25519_PUBLIC_KEY, 1, 256, 256, 612 sizeof(struct ed25519_keypair), 613 tee_cryp_obj_ed25519_pub_key_attrs), 614 615 PROP(TEE_TYPE_ED25519_KEYPAIR, 1, 256, 256, 616 sizeof(struct ed25519_keypair), 617 tee_cryp_obj_ed25519_keypair_attrs), 618 }; 619 620 struct attr_ops { 621 TEE_Result (*from_user)(void *attr, const void *buffer, size_t size); 622 TEE_Result (*to_user)(void *attr, struct ts_session *sess, 623 void *buffer, uint64_t *size); 624 TEE_Result (*to_binary)(void *attr, void *data, size_t data_len, 625 size_t *offs); 626 bool (*from_binary)(void *attr, const void *data, size_t data_len, 627 size_t *offs); 628 TEE_Result (*from_obj)(void *attr, void *src_attr); 629 void (*free)(void *attr); 630 void (*clear)(void *attr); 631 }; 632 633 static TEE_Result op_u32_to_binary_helper(uint32_t v, uint8_t *data, 634 size_t data_len, size_t *offs) 635 { 636 uint32_t field; 637 size_t next_offs; 638 639 if (ADD_OVERFLOW(*offs, sizeof(field), &next_offs)) 640 return TEE_ERROR_OVERFLOW; 641 642 if (data && next_offs <= data_len) { 643 field = TEE_U32_TO_BIG_ENDIAN(v); 644 memcpy(data + *offs, &field, sizeof(field)); 645 } 646 (*offs) = next_offs; 647 648 return TEE_SUCCESS; 649 } 650 651 static bool op_u32_from_binary_helper(uint32_t *v, const uint8_t *data, 652 size_t data_len, size_t *offs) 653 { 654 uint32_t field; 655 656 if (!data || (*offs + sizeof(field)) > data_len) 657 return false; 658 659 memcpy(&field, data + *offs, sizeof(field)); 660 *v = TEE_U32_FROM_BIG_ENDIAN(field); 661 (*offs) += sizeof(field); 662 return true; 663 } 664 665 static TEE_Result op_attr_secret_value_from_user(void *attr, const void *buffer, 666 size_t size) 667 { 668 struct tee_cryp_obj_secret *key = attr; 669 670 /* Data size has to fit in allocated buffer */ 671 if (size > key->alloc_size) 672 return TEE_ERROR_SECURITY; 673 memcpy(key + 1, buffer, size); 674 key->key_size = size; 675 return TEE_SUCCESS; 676 } 677 678 static TEE_Result op_attr_secret_value_to_user(void *attr, 679 struct ts_session *sess __unused, 680 void *buffer, uint64_t *size) 681 { 682 TEE_Result res; 683 struct tee_cryp_obj_secret *key = attr; 684 uint64_t s; 685 uint64_t key_size; 686 687 res = copy_from_user(&s, size, sizeof(s)); 688 if (res != TEE_SUCCESS) 689 return res; 690 691 key_size = key->key_size; 692 res = copy_to_user(size, &key_size, sizeof(key_size)); 693 if (res != TEE_SUCCESS) 694 return res; 695 696 if (s < key->key_size || !buffer) 697 return TEE_ERROR_SHORT_BUFFER; 698 699 return copy_to_user(buffer, key + 1, key->key_size); 700 } 701 702 static TEE_Result op_attr_secret_value_to_binary(void *attr, void *data, 703 size_t data_len, size_t *offs) 704 { 705 TEE_Result res; 706 struct tee_cryp_obj_secret *key = attr; 707 size_t next_offs; 708 709 res = op_u32_to_binary_helper(key->key_size, data, data_len, offs); 710 if (res != TEE_SUCCESS) 711 return res; 712 713 if (ADD_OVERFLOW(*offs, key->key_size, &next_offs)) 714 return TEE_ERROR_OVERFLOW; 715 716 if (data && next_offs <= data_len) 717 memcpy((uint8_t *)data + *offs, key + 1, key->key_size); 718 (*offs) = next_offs; 719 720 return TEE_SUCCESS; 721 } 722 723 static bool op_attr_secret_value_from_binary(void *attr, const void *data, 724 size_t data_len, size_t *offs) 725 { 726 struct tee_cryp_obj_secret *key = attr; 727 uint32_t s; 728 729 if (!op_u32_from_binary_helper(&s, data, data_len, offs)) 730 return false; 731 732 if ((*offs + s) > data_len) 733 return false; 734 735 /* Data size has to fit in allocated buffer */ 736 if (s > key->alloc_size) 737 return false; 738 key->key_size = s; 739 memcpy(key + 1, (const uint8_t *)data + *offs, s); 740 (*offs) += s; 741 return true; 742 } 743 744 745 static TEE_Result op_attr_secret_value_from_obj(void *attr, void *src_attr) 746 { 747 struct tee_cryp_obj_secret *key = attr; 748 struct tee_cryp_obj_secret *src_key = src_attr; 749 750 if (src_key->key_size > key->alloc_size) 751 return TEE_ERROR_BAD_STATE; 752 memcpy(key + 1, src_key + 1, src_key->key_size); 753 key->key_size = src_key->key_size; 754 return TEE_SUCCESS; 755 } 756 757 static void op_attr_secret_value_clear(void *attr) 758 { 759 struct tee_cryp_obj_secret *key = attr; 760 761 key->key_size = 0; 762 memzero_explicit(key + 1, key->alloc_size); 763 } 764 765 static TEE_Result op_attr_bignum_from_user(void *attr, const void *buffer, 766 size_t size) 767 { 768 struct bignum **bn = attr; 769 770 return crypto_bignum_bin2bn(buffer, size, *bn); 771 } 772 773 static TEE_Result op_attr_bignum_to_user(void *attr, 774 struct ts_session *sess, 775 void *buffer, uint64_t *size) 776 { 777 TEE_Result res = TEE_SUCCESS; 778 struct bignum **bn = attr; 779 uint64_t req_size = 0; 780 uint64_t s = 0; 781 782 res = copy_from_user(&s, size, sizeof(s)); 783 if (res != TEE_SUCCESS) 784 return res; 785 786 req_size = crypto_bignum_num_bytes(*bn); 787 res = copy_to_user(size, &req_size, sizeof(req_size)); 788 if (res != TEE_SUCCESS) 789 return res; 790 if (!req_size) 791 return TEE_SUCCESS; 792 if (s < req_size || !buffer) 793 return TEE_ERROR_SHORT_BUFFER; 794 795 buffer = memtag_strip_tag(buffer); 796 797 /* Check we can access data using supplied user mode pointer */ 798 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 799 TEE_MEMORY_ACCESS_READ | 800 TEE_MEMORY_ACCESS_WRITE | 801 TEE_MEMORY_ACCESS_ANY_OWNER, 802 (uaddr_t)buffer, req_size); 803 if (res != TEE_SUCCESS) 804 return res; 805 /* 806 * Write the bignum (wich raw data points to) into an array of 807 * bytes (stored in buffer) 808 */ 809 crypto_bignum_bn2bin(*bn, buffer); 810 return TEE_SUCCESS; 811 } 812 813 static TEE_Result op_attr_bignum_to_binary(void *attr, void *data, 814 size_t data_len, size_t *offs) 815 { 816 TEE_Result res; 817 struct bignum **bn = attr; 818 uint32_t n = crypto_bignum_num_bytes(*bn); 819 size_t next_offs; 820 821 res = op_u32_to_binary_helper(n, data, data_len, offs); 822 if (res != TEE_SUCCESS) 823 return res; 824 825 if (ADD_OVERFLOW(*offs, n, &next_offs)) 826 return TEE_ERROR_OVERFLOW; 827 828 if (data && next_offs <= data_len) 829 crypto_bignum_bn2bin(*bn, (uint8_t *)data + *offs); 830 (*offs) = next_offs; 831 832 return TEE_SUCCESS; 833 } 834 835 static bool op_attr_bignum_from_binary(void *attr, const void *data, 836 size_t data_len, size_t *offs) 837 { 838 struct bignum **bn = attr; 839 uint32_t n; 840 841 if (!op_u32_from_binary_helper(&n, data, data_len, offs)) 842 return false; 843 844 if ((*offs + n) > data_len) 845 return false; 846 if (crypto_bignum_bin2bn((const uint8_t *)data + *offs, n, *bn)) 847 return false; 848 (*offs) += n; 849 return true; 850 } 851 852 static TEE_Result op_attr_bignum_from_obj(void *attr, void *src_attr) 853 { 854 struct bignum **bn = attr; 855 struct bignum **src_bn = src_attr; 856 857 crypto_bignum_copy(*bn, *src_bn); 858 return TEE_SUCCESS; 859 } 860 861 static void op_attr_bignum_clear(void *attr) 862 { 863 struct bignum **bn = attr; 864 865 crypto_bignum_clear(*bn); 866 } 867 868 static void op_attr_bignum_free(void *attr) 869 { 870 struct bignum **bn = attr; 871 872 crypto_bignum_free(*bn); 873 *bn = NULL; 874 } 875 876 static TEE_Result op_attr_value_from_user(void *attr, const void *buffer, 877 size_t size) 878 { 879 uint32_t *v = attr; 880 881 if (size != sizeof(uint32_t) * 2) 882 return TEE_ERROR_GENERIC; /* "can't happen */ 883 884 /* Note that only the first value is copied */ 885 memcpy(v, buffer, sizeof(uint32_t)); 886 return TEE_SUCCESS; 887 } 888 889 static TEE_Result op_attr_value_to_user(void *attr, 890 struct ts_session *sess __unused, 891 void *buffer, uint64_t *size) 892 { 893 TEE_Result res; 894 uint32_t *v = attr; 895 uint64_t s; 896 uint32_t value[2] = { *v }; 897 uint64_t req_size = sizeof(value); 898 899 res = copy_from_user(&s, size, sizeof(s)); 900 if (res != TEE_SUCCESS) 901 return res; 902 903 if (s < req_size || !buffer) 904 return TEE_ERROR_SHORT_BUFFER; 905 906 return copy_to_user(buffer, value, req_size); 907 } 908 909 static TEE_Result op_attr_value_to_binary(void *attr, void *data, 910 size_t data_len, size_t *offs) 911 { 912 uint32_t *v = attr; 913 914 return op_u32_to_binary_helper(*v, data, data_len, offs); 915 } 916 917 static bool op_attr_value_from_binary(void *attr, const void *data, 918 size_t data_len, size_t *offs) 919 { 920 uint32_t *v = attr; 921 922 return op_u32_from_binary_helper(v, data, data_len, offs); 923 } 924 925 static TEE_Result op_attr_value_from_obj(void *attr, void *src_attr) 926 { 927 uint32_t *v = attr; 928 uint32_t *src_v = src_attr; 929 930 *v = *src_v; 931 return TEE_SUCCESS; 932 } 933 934 static void op_attr_value_clear(void *attr) 935 { 936 uint32_t *v = attr; 937 938 *v = 0; 939 } 940 941 static TEE_Result op_attr_25519_from_user(void *attr, const void *buffer, 942 size_t size) 943 { 944 uint8_t **key = attr; 945 946 if (size != KEY_SIZE_BYTES_25519 || !*key) 947 return TEE_ERROR_SECURITY; 948 949 memcpy(*key, buffer, size); 950 951 return TEE_SUCCESS; 952 } 953 954 static TEE_Result op_attr_25519_to_user(void *attr, 955 struct ts_session *sess __unused, 956 void *buffer, uint64_t *size) 957 { 958 TEE_Result res = TEE_ERROR_GENERIC; 959 uint8_t **key = attr; 960 uint64_t s = 0; 961 uint64_t key_size = (uint64_t)KEY_SIZE_BYTES_25519; 962 963 res = copy_from_user(&s, size, sizeof(s)); 964 if (res != TEE_SUCCESS) 965 return res; 966 967 res = copy_to_user(size, &key_size, sizeof(key_size)); 968 if (res != TEE_SUCCESS) 969 return res; 970 971 if (s < key_size || !buffer) 972 return TEE_ERROR_SHORT_BUFFER; 973 974 return copy_to_user(buffer, *key, key_size); 975 } 976 977 static TEE_Result op_attr_25519_to_binary(void *attr, void *data, 978 size_t data_len, size_t *offs) 979 { 980 TEE_Result res = TEE_ERROR_GENERIC; 981 uint8_t **key = attr; 982 size_t next_offs = 0; 983 uint64_t key_size = (uint64_t)KEY_SIZE_BYTES_25519; 984 985 res = op_u32_to_binary_helper(key_size, data, data_len, offs); 986 if (res != TEE_SUCCESS) 987 return res; 988 989 if (ADD_OVERFLOW(*offs, key_size, &next_offs)) 990 return TEE_ERROR_OVERFLOW; 991 992 if (data && next_offs <= data_len) 993 memcpy((uint8_t *)data + *offs, *key, key_size); 994 *offs = next_offs; 995 996 return TEE_SUCCESS; 997 } 998 999 static bool op_attr_25519_from_binary(void *attr, const void *data, 1000 size_t data_len, size_t *offs) 1001 { 1002 uint8_t **key = attr; 1003 uint32_t s = 0; 1004 1005 if (!op_u32_from_binary_helper(&s, data, data_len, offs)) 1006 return false; 1007 1008 if (*offs + s > data_len) 1009 return false; 1010 1011 if (s > (uint32_t)KEY_SIZE_BYTES_25519) 1012 return false; 1013 1014 memcpy(*key, (const uint8_t *)data + *offs, s); 1015 *offs += s; 1016 return true; 1017 } 1018 1019 static TEE_Result op_attr_25519_from_obj(void *attr, void *src_attr) 1020 { 1021 uint8_t **key = attr; 1022 uint8_t **src_key = src_attr; 1023 1024 if (!*key || !*src_key) 1025 return TEE_ERROR_SECURITY; 1026 1027 memcpy(*key, *src_key, KEY_SIZE_BYTES_25519); 1028 1029 return TEE_SUCCESS; 1030 } 1031 1032 static void op_attr_25519_clear(void *attr) 1033 { 1034 uint8_t **key = attr; 1035 1036 assert(*key); 1037 1038 memzero_explicit(*key, KEY_SIZE_BYTES_25519); 1039 } 1040 1041 static void op_attr_25519_free(void *attr) 1042 { 1043 uint8_t **key = attr; 1044 1045 op_attr_25519_clear(attr); 1046 free(*key); 1047 } 1048 1049 static const struct attr_ops attr_ops[] = { 1050 [ATTR_OPS_INDEX_SECRET] = { 1051 .from_user = op_attr_secret_value_from_user, 1052 .to_user = op_attr_secret_value_to_user, 1053 .to_binary = op_attr_secret_value_to_binary, 1054 .from_binary = op_attr_secret_value_from_binary, 1055 .from_obj = op_attr_secret_value_from_obj, 1056 .free = op_attr_secret_value_clear, /* not a typo */ 1057 .clear = op_attr_secret_value_clear, 1058 }, 1059 [ATTR_OPS_INDEX_BIGNUM] = { 1060 .from_user = op_attr_bignum_from_user, 1061 .to_user = op_attr_bignum_to_user, 1062 .to_binary = op_attr_bignum_to_binary, 1063 .from_binary = op_attr_bignum_from_binary, 1064 .from_obj = op_attr_bignum_from_obj, 1065 .free = op_attr_bignum_free, 1066 .clear = op_attr_bignum_clear, 1067 }, 1068 [ATTR_OPS_INDEX_VALUE] = { 1069 .from_user = op_attr_value_from_user, 1070 .to_user = op_attr_value_to_user, 1071 .to_binary = op_attr_value_to_binary, 1072 .from_binary = op_attr_value_from_binary, 1073 .from_obj = op_attr_value_from_obj, 1074 .free = op_attr_value_clear, /* not a typo */ 1075 .clear = op_attr_value_clear, 1076 }, 1077 [ATTR_OPS_INDEX_25519] = { 1078 .from_user = op_attr_25519_from_user, 1079 .to_user = op_attr_25519_to_user, 1080 .to_binary = op_attr_25519_to_binary, 1081 .from_binary = op_attr_25519_from_binary, 1082 .from_obj = op_attr_25519_from_obj, 1083 .free = op_attr_25519_free, 1084 .clear = op_attr_25519_clear, 1085 }, 1086 }; 1087 1088 static TEE_Result get_user_u64_as_size_t(size_t *dst, uint64_t *src) 1089 { 1090 uint64_t d = 0; 1091 TEE_Result res = copy_from_user(&d, src, sizeof(d)); 1092 1093 /* 1094 * On 32-bit systems a size_t can't hold a uint64_t so we need to 1095 * check that the value isn't too large. 1096 */ 1097 if (!res && ADD_OVERFLOW(0, d, dst)) 1098 return TEE_ERROR_OVERFLOW; 1099 1100 return res; 1101 } 1102 1103 static TEE_Result put_user_u64(uint64_t *dst, size_t value) 1104 { 1105 uint64_t v = value; 1106 1107 return copy_to_user(dst, &v, sizeof(v)); 1108 } 1109 1110 TEE_Result syscall_cryp_obj_get_info(unsigned long obj, 1111 struct utee_object_info *info) 1112 { 1113 struct ts_session *sess = ts_get_current_session(); 1114 struct utee_object_info o_info = { }; 1115 TEE_Result res = TEE_SUCCESS; 1116 struct tee_obj *o = NULL; 1117 1118 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1119 uref_to_vaddr(obj), &o); 1120 if (res != TEE_SUCCESS) 1121 goto exit; 1122 1123 o_info.obj_type = o->info.objectType; 1124 o_info.obj_size = o->info.objectSize; 1125 o_info.max_obj_size = o->info.maxObjectSize; 1126 o_info.obj_usage = o->info.objectUsage; 1127 o_info.data_size = o->info.dataSize; 1128 o_info.data_pos = o->info.dataPosition; 1129 o_info.handle_flags = o->info.handleFlags; 1130 res = copy_to_user_private(info, &o_info, sizeof(o_info)); 1131 1132 exit: 1133 return res; 1134 } 1135 1136 TEE_Result syscall_cryp_obj_restrict_usage(unsigned long obj, 1137 unsigned long usage) 1138 { 1139 struct ts_session *sess = ts_get_current_session(); 1140 TEE_Result res = TEE_SUCCESS; 1141 struct tee_obj *o = NULL; 1142 1143 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1144 if (res != TEE_SUCCESS) 1145 goto exit; 1146 1147 o->info.objectUsage &= usage; 1148 1149 exit: 1150 return res; 1151 } 1152 1153 static int tee_svc_cryp_obj_find_type_attr_idx( 1154 uint32_t attr_id, 1155 const struct tee_cryp_obj_type_props *type_props) 1156 { 1157 size_t n; 1158 1159 for (n = 0; n < type_props->num_type_attrs; n++) { 1160 if (attr_id == type_props->type_attrs[n].attr_id) 1161 return n; 1162 } 1163 return -1; 1164 } 1165 1166 static const struct tee_cryp_obj_type_props *tee_svc_find_type_props( 1167 TEE_ObjectType obj_type) 1168 { 1169 size_t n; 1170 1171 for (n = 0; n < ARRAY_SIZE(tee_cryp_obj_props); n++) { 1172 if (tee_cryp_obj_props[n].obj_type == obj_type) 1173 return tee_cryp_obj_props + n; 1174 } 1175 1176 return NULL; 1177 } 1178 1179 /* Set an attribute on an object */ 1180 static void set_attribute(struct tee_obj *o, 1181 const struct tee_cryp_obj_type_props *props, 1182 uint32_t attr) 1183 { 1184 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 1185 1186 if (idx < 0) 1187 return; 1188 o->have_attrs |= BIT(idx); 1189 } 1190 1191 /* Get an attribute on an object */ 1192 static uint32_t get_attribute(const struct tee_obj *o, 1193 const struct tee_cryp_obj_type_props *props, 1194 uint32_t attr) 1195 { 1196 int idx = tee_svc_cryp_obj_find_type_attr_idx(attr, props); 1197 1198 if (idx < 0) 1199 return 0; 1200 return o->have_attrs & BIT(idx); 1201 } 1202 1203 TEE_Result syscall_cryp_obj_get_attr(unsigned long obj, unsigned long attr_id, 1204 void *buffer, uint64_t *size) 1205 { 1206 struct ts_session *sess = ts_get_current_session(); 1207 TEE_Result res = TEE_SUCCESS; 1208 struct tee_obj *o = NULL; 1209 const struct tee_cryp_obj_type_props *type_props = NULL; 1210 int idx = 0; 1211 const struct attr_ops *ops = NULL; 1212 void *attr = NULL; 1213 1214 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1215 if (res != TEE_SUCCESS) 1216 return TEE_ERROR_ITEM_NOT_FOUND; 1217 1218 /* Check that the object is initialized */ 1219 if (!(o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED)) 1220 return TEE_ERROR_BAD_PARAMETERS; 1221 1222 /* Check that getting the attribute is allowed */ 1223 if (!(attr_id & TEE_ATTR_FLAG_PUBLIC) && 1224 !(o->info.objectUsage & TEE_USAGE_EXTRACTABLE)) 1225 return TEE_ERROR_BAD_PARAMETERS; 1226 1227 type_props = tee_svc_find_type_props(o->info.objectType); 1228 if (!type_props) { 1229 /* Unknown object type, "can't happen" */ 1230 return TEE_ERROR_BAD_STATE; 1231 } 1232 1233 idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props); 1234 if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0)) 1235 return TEE_ERROR_ITEM_NOT_FOUND; 1236 1237 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1238 attr = (uint8_t *)o->attr + type_props->type_attrs[idx].raw_offs; 1239 return ops->to_user(attr, sess, buffer, size); 1240 } 1241 1242 void tee_obj_attr_free(struct tee_obj *o) 1243 { 1244 const struct tee_cryp_obj_type_props *tp; 1245 size_t n; 1246 1247 if (!o->attr) 1248 return; 1249 tp = tee_svc_find_type_props(o->info.objectType); 1250 if (!tp) 1251 return; 1252 1253 for (n = 0; n < tp->num_type_attrs; n++) { 1254 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1255 1256 attr_ops[ta->ops_index].free((uint8_t *)o->attr + ta->raw_offs); 1257 } 1258 } 1259 1260 void tee_obj_attr_clear(struct tee_obj *o) 1261 { 1262 const struct tee_cryp_obj_type_props *tp; 1263 size_t n; 1264 1265 if (!o->attr) 1266 return; 1267 tp = tee_svc_find_type_props(o->info.objectType); 1268 if (!tp) 1269 return; 1270 1271 for (n = 0; n < tp->num_type_attrs; n++) { 1272 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1273 1274 attr_ops[ta->ops_index].clear((uint8_t *)o->attr + 1275 ta->raw_offs); 1276 } 1277 } 1278 1279 TEE_Result tee_obj_attr_to_binary(struct tee_obj *o, void *data, 1280 size_t *data_len) 1281 { 1282 const struct tee_cryp_obj_type_props *tp; 1283 size_t n; 1284 size_t offs = 0; 1285 size_t len = data ? *data_len : 0; 1286 TEE_Result res; 1287 1288 if (o->info.objectType == TEE_TYPE_DATA) { 1289 *data_len = 0; 1290 return TEE_SUCCESS; /* pure data object */ 1291 } 1292 if (!o->attr) 1293 return TEE_ERROR_BAD_STATE; 1294 tp = tee_svc_find_type_props(o->info.objectType); 1295 if (!tp) 1296 return TEE_ERROR_BAD_STATE; 1297 1298 for (n = 0; n < tp->num_type_attrs; n++) { 1299 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1300 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1301 1302 res = attr_ops[ta->ops_index].to_binary(attr, data, len, &offs); 1303 if (res != TEE_SUCCESS) 1304 return res; 1305 } 1306 1307 *data_len = offs; 1308 if (data && offs > len) 1309 return TEE_ERROR_SHORT_BUFFER; 1310 return TEE_SUCCESS; 1311 } 1312 1313 TEE_Result tee_obj_attr_from_binary(struct tee_obj *o, const void *data, 1314 size_t data_len) 1315 { 1316 const struct tee_cryp_obj_type_props *tp; 1317 size_t n; 1318 size_t offs = 0; 1319 1320 if (o->info.objectType == TEE_TYPE_DATA) 1321 return TEE_SUCCESS; /* pure data object */ 1322 if (!o->attr) 1323 return TEE_ERROR_BAD_STATE; 1324 tp = tee_svc_find_type_props(o->info.objectType); 1325 if (!tp) 1326 return TEE_ERROR_BAD_STATE; 1327 1328 for (n = 0; n < tp->num_type_attrs; n++) { 1329 const struct tee_cryp_obj_type_attrs *ta = tp->type_attrs + n; 1330 void *attr = (uint8_t *)o->attr + ta->raw_offs; 1331 1332 if (!attr_ops[ta->ops_index].from_binary(attr, data, data_len, 1333 &offs)) 1334 return TEE_ERROR_CORRUPT_OBJECT; 1335 } 1336 return TEE_SUCCESS; 1337 } 1338 1339 TEE_Result tee_obj_attr_copy_from(struct tee_obj *o, const struct tee_obj *src) 1340 { 1341 TEE_Result res; 1342 const struct tee_cryp_obj_type_props *tp; 1343 const struct tee_cryp_obj_type_attrs *ta; 1344 size_t n; 1345 uint32_t have_attrs = 0; 1346 void *attr; 1347 void *src_attr; 1348 1349 if (o->info.objectType == TEE_TYPE_DATA) 1350 return TEE_SUCCESS; /* pure data object */ 1351 if (!o->attr) 1352 return TEE_ERROR_BAD_STATE; 1353 tp = tee_svc_find_type_props(o->info.objectType); 1354 if (!tp) 1355 return TEE_ERROR_BAD_STATE; 1356 1357 if (o->info.objectType == src->info.objectType) { 1358 have_attrs = src->have_attrs; 1359 for (n = 0; n < tp->num_type_attrs; n++) { 1360 ta = tp->type_attrs + n; 1361 attr = (uint8_t *)o->attr + ta->raw_offs; 1362 src_attr = (uint8_t *)src->attr + ta->raw_offs; 1363 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1364 if (res != TEE_SUCCESS) 1365 return res; 1366 } 1367 } else { 1368 const struct tee_cryp_obj_type_props *tp_src; 1369 int idx; 1370 1371 if (o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY) { 1372 if (src->info.objectType != TEE_TYPE_RSA_KEYPAIR) 1373 return TEE_ERROR_BAD_PARAMETERS; 1374 } else if (o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY) { 1375 if (src->info.objectType != TEE_TYPE_DSA_KEYPAIR) 1376 return TEE_ERROR_BAD_PARAMETERS; 1377 } else if (o->info.objectType == TEE_TYPE_ECDSA_PUBLIC_KEY) { 1378 if (src->info.objectType != TEE_TYPE_ECDSA_KEYPAIR) 1379 return TEE_ERROR_BAD_PARAMETERS; 1380 } else if (o->info.objectType == TEE_TYPE_ECDH_PUBLIC_KEY) { 1381 if (src->info.objectType != TEE_TYPE_ECDH_KEYPAIR) 1382 return TEE_ERROR_BAD_PARAMETERS; 1383 } else if (o->info.objectType == TEE_TYPE_SM2_DSA_PUBLIC_KEY) { 1384 if (src->info.objectType != TEE_TYPE_SM2_DSA_KEYPAIR) 1385 return TEE_ERROR_BAD_PARAMETERS; 1386 } else if (o->info.objectType == TEE_TYPE_SM2_PKE_PUBLIC_KEY) { 1387 if (src->info.objectType != TEE_TYPE_SM2_PKE_KEYPAIR) 1388 return TEE_ERROR_BAD_PARAMETERS; 1389 } else if (o->info.objectType == TEE_TYPE_SM2_KEP_PUBLIC_KEY) { 1390 if (src->info.objectType != TEE_TYPE_SM2_KEP_KEYPAIR) 1391 return TEE_ERROR_BAD_PARAMETERS; 1392 } else if (o->info.objectType == TEE_TYPE_ED25519_PUBLIC_KEY) { 1393 if (src->info.objectType != TEE_TYPE_ED25519_KEYPAIR) 1394 return TEE_ERROR_BAD_PARAMETERS; 1395 } else if (o->info.objectType == TEE_TYPE_X25519_PUBLIC_KEY) { 1396 if (src->info.objectType != TEE_TYPE_X25519_KEYPAIR) 1397 return TEE_ERROR_BAD_PARAMETERS; 1398 } else { 1399 return TEE_ERROR_BAD_PARAMETERS; 1400 } 1401 1402 tp_src = tee_svc_find_type_props(src->info.objectType); 1403 if (!tp_src) 1404 return TEE_ERROR_BAD_STATE; 1405 1406 have_attrs = BIT32(tp->num_type_attrs) - 1; 1407 for (n = 0; n < tp->num_type_attrs; n++) { 1408 ta = tp->type_attrs + n; 1409 1410 idx = tee_svc_cryp_obj_find_type_attr_idx(ta->attr_id, 1411 tp_src); 1412 if (idx < 0) 1413 return TEE_ERROR_BAD_STATE; 1414 1415 attr = (uint8_t *)o->attr + ta->raw_offs; 1416 src_attr = (uint8_t *)src->attr + 1417 tp_src->type_attrs[idx].raw_offs; 1418 res = attr_ops[ta->ops_index].from_obj(attr, src_attr); 1419 if (res != TEE_SUCCESS) 1420 return res; 1421 } 1422 } 1423 1424 o->have_attrs = have_attrs; 1425 return TEE_SUCCESS; 1426 } 1427 1428 static bool is_gp_legacy_des_key_size(TEE_ObjectType type, size_t sz) 1429 { 1430 return IS_ENABLED(CFG_COMPAT_GP10_DES) && 1431 ((type == TEE_TYPE_DES && sz == 56) || 1432 (type == TEE_TYPE_DES3 && (sz == 112 || sz == 168))); 1433 } 1434 1435 static TEE_Result check_key_size(const struct tee_cryp_obj_type_props *props, 1436 size_t key_size) 1437 { 1438 size_t sz = key_size; 1439 1440 /* 1441 * In GP Internal API Specification 1.0 the partity bits aren't 1442 * counted when telling the size of the key in bits so add them 1443 * here if missing. 1444 */ 1445 if (is_gp_legacy_des_key_size(props->obj_type, sz)) 1446 sz += sz / 7; 1447 1448 if (sz % props->quanta != 0) 1449 return TEE_ERROR_NOT_SUPPORTED; 1450 if (sz < props->min_size) 1451 return TEE_ERROR_NOT_SUPPORTED; 1452 if (sz > props->max_size) 1453 return TEE_ERROR_NOT_SUPPORTED; 1454 1455 return TEE_SUCCESS; 1456 } 1457 1458 TEE_Result tee_obj_set_type(struct tee_obj *o, uint32_t obj_type, 1459 size_t max_key_size) 1460 { 1461 TEE_Result res = TEE_SUCCESS; 1462 const struct tee_cryp_obj_type_props *type_props; 1463 1464 /* Can only set type for newly allocated objs */ 1465 if (o->attr) 1466 return TEE_ERROR_BAD_STATE; 1467 1468 /* 1469 * Verify that maxObjectSize is supported and find out how 1470 * much should be allocated. 1471 */ 1472 1473 if (obj_type == TEE_TYPE_DATA) { 1474 if (max_key_size) 1475 return TEE_ERROR_NOT_SUPPORTED; 1476 } else { 1477 /* Find description of object */ 1478 type_props = tee_svc_find_type_props(obj_type); 1479 if (!type_props) 1480 return TEE_ERROR_NOT_SUPPORTED; 1481 1482 /* Check that max_key_size follows restrictions */ 1483 res = check_key_size(type_props, max_key_size); 1484 if (res) 1485 return res; 1486 1487 o->attr = calloc(1, type_props->alloc_size); 1488 if (!o->attr) 1489 return TEE_ERROR_OUT_OF_MEMORY; 1490 } 1491 1492 /* If we have a key structure, pre-allocate the bignums inside */ 1493 switch (obj_type) { 1494 case TEE_TYPE_RSA_PUBLIC_KEY: 1495 res = crypto_acipher_alloc_rsa_public_key(o->attr, 1496 max_key_size); 1497 break; 1498 case TEE_TYPE_RSA_KEYPAIR: 1499 res = crypto_acipher_alloc_rsa_keypair(o->attr, max_key_size); 1500 break; 1501 case TEE_TYPE_DSA_PUBLIC_KEY: 1502 res = crypto_acipher_alloc_dsa_public_key(o->attr, 1503 max_key_size); 1504 break; 1505 case TEE_TYPE_DSA_KEYPAIR: 1506 res = crypto_acipher_alloc_dsa_keypair(o->attr, max_key_size); 1507 break; 1508 case TEE_TYPE_DH_KEYPAIR: 1509 res = crypto_acipher_alloc_dh_keypair(o->attr, max_key_size); 1510 break; 1511 case TEE_TYPE_ECDSA_PUBLIC_KEY: 1512 case TEE_TYPE_ECDH_PUBLIC_KEY: 1513 case TEE_TYPE_SM2_DSA_PUBLIC_KEY: 1514 case TEE_TYPE_SM2_PKE_PUBLIC_KEY: 1515 case TEE_TYPE_SM2_KEP_PUBLIC_KEY: 1516 res = crypto_acipher_alloc_ecc_public_key(o->attr, obj_type, 1517 max_key_size); 1518 break; 1519 case TEE_TYPE_ECDSA_KEYPAIR: 1520 case TEE_TYPE_ECDH_KEYPAIR: 1521 case TEE_TYPE_SM2_DSA_KEYPAIR: 1522 case TEE_TYPE_SM2_PKE_KEYPAIR: 1523 case TEE_TYPE_SM2_KEP_KEYPAIR: 1524 res = crypto_acipher_alloc_ecc_keypair(o->attr, obj_type, 1525 max_key_size); 1526 break; 1527 case TEE_TYPE_X25519_KEYPAIR: 1528 res = crypto_acipher_alloc_x25519_keypair(o->attr, 1529 max_key_size); 1530 break; 1531 case TEE_TYPE_ED25519_KEYPAIR: 1532 case TEE_TYPE_ED25519_PUBLIC_KEY: 1533 res = crypto_acipher_alloc_ed25519_keypair(o->attr, 1534 max_key_size); 1535 break; 1536 default: 1537 if (obj_type != TEE_TYPE_DATA) { 1538 struct tee_cryp_obj_secret *key = o->attr; 1539 1540 key->alloc_size = type_props->alloc_size - 1541 sizeof(*key); 1542 } 1543 break; 1544 } 1545 1546 if (res != TEE_SUCCESS) 1547 return res; 1548 1549 o->info.objectType = obj_type; 1550 o->info.maxObjectSize = max_key_size; 1551 o->info.objectUsage = TEE_USAGE_DEFAULT; 1552 1553 return TEE_SUCCESS; 1554 } 1555 1556 TEE_Result syscall_cryp_obj_alloc(unsigned long obj_type, 1557 unsigned long max_key_size, uint32_t *obj) 1558 { 1559 struct ts_session *sess = ts_get_current_session(); 1560 TEE_Result res = TEE_SUCCESS; 1561 struct tee_obj *o = NULL; 1562 1563 1564 o = tee_obj_alloc(); 1565 if (!o) 1566 return TEE_ERROR_OUT_OF_MEMORY; 1567 1568 res = tee_obj_set_type(o, obj_type, max_key_size); 1569 if (res != TEE_SUCCESS) { 1570 tee_obj_free(o); 1571 return res; 1572 } 1573 1574 tee_obj_add(to_user_ta_ctx(sess->ctx), o); 1575 1576 res = copy_kaddr_to_uref(obj, o); 1577 if (res != TEE_SUCCESS) 1578 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1579 return res; 1580 } 1581 1582 TEE_Result syscall_cryp_obj_close(unsigned long obj) 1583 { 1584 struct ts_session *sess = ts_get_current_session(); 1585 TEE_Result res = TEE_SUCCESS; 1586 struct tee_obj *o = NULL; 1587 1588 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1589 if (res != TEE_SUCCESS) 1590 return res; 1591 1592 /* 1593 * If it's busy it's used by an operation, a client should never have 1594 * this handle. 1595 */ 1596 if (o->busy) 1597 return TEE_ERROR_ITEM_NOT_FOUND; 1598 1599 tee_obj_close(to_user_ta_ctx(sess->ctx), o); 1600 return TEE_SUCCESS; 1601 } 1602 1603 TEE_Result syscall_cryp_obj_reset(unsigned long obj) 1604 { 1605 struct ts_session *sess = ts_get_current_session(); 1606 TEE_Result res = TEE_SUCCESS; 1607 struct tee_obj *o = NULL; 1608 1609 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1610 if (res != TEE_SUCCESS) 1611 return res; 1612 1613 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) { 1614 tee_obj_attr_clear(o); 1615 o->info.objectSize = 0; 1616 o->info.objectUsage = TEE_USAGE_DEFAULT; 1617 } else { 1618 return TEE_ERROR_BAD_PARAMETERS; 1619 } 1620 1621 /* the object is no more initialized */ 1622 o->info.handleFlags &= ~TEE_HANDLE_FLAG_INITIALIZED; 1623 1624 return TEE_SUCCESS; 1625 } 1626 1627 static TEE_Result copy_in_attrs(struct user_ta_ctx *utc, 1628 const struct utee_attribute *usr_attrs, 1629 uint32_t attr_count, TEE_Attribute *attrs) 1630 { 1631 TEE_Result res = TEE_SUCCESS; 1632 size_t size = 0; 1633 uint32_t n = 0; 1634 1635 if (MUL_OVERFLOW(sizeof(struct utee_attribute), attr_count, &size)) 1636 return TEE_ERROR_OVERFLOW; 1637 1638 usr_attrs = memtag_strip_tag_const(usr_attrs); 1639 1640 res = vm_check_access_rights(&utc->uctx, 1641 TEE_MEMORY_ACCESS_READ | 1642 TEE_MEMORY_ACCESS_ANY_OWNER, 1643 (uaddr_t)usr_attrs, size); 1644 if (res != TEE_SUCCESS) 1645 return res; 1646 1647 for (n = 0; n < attr_count; n++) { 1648 attrs[n].attributeID = usr_attrs[n].attribute_id; 1649 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) { 1650 attrs[n].content.value.a = usr_attrs[n].a; 1651 attrs[n].content.value.b = usr_attrs[n].b; 1652 } else { 1653 uintptr_t buf = usr_attrs[n].a; 1654 size_t len = usr_attrs[n].b; 1655 uint32_t flags = TEE_MEMORY_ACCESS_READ | 1656 TEE_MEMORY_ACCESS_ANY_OWNER; 1657 1658 buf = memtag_strip_tag_vaddr((void *)buf); 1659 1660 res = vm_check_access_rights(&utc->uctx, flags, buf, 1661 len); 1662 if (res != TEE_SUCCESS) 1663 return res; 1664 attrs[n].content.ref.buffer = (void *)buf; 1665 attrs[n].content.ref.length = len; 1666 } 1667 } 1668 1669 return TEE_SUCCESS; 1670 } 1671 1672 enum attr_usage { 1673 ATTR_USAGE_POPULATE, 1674 ATTR_USAGE_GENERATE_KEY 1675 }; 1676 1677 static TEE_Result tee_svc_cryp_check_attr(enum attr_usage usage, 1678 const struct tee_cryp_obj_type_props 1679 *type_props, 1680 const TEE_Attribute *attrs, 1681 uint32_t attr_count) 1682 { 1683 uint32_t required_flag = 0; 1684 uint32_t opt_flag = 0; 1685 bool all_opt_needed = false; 1686 uint32_t req_attrs = 0; 1687 uint32_t opt_grp_attrs = 0; 1688 uint32_t attrs_found = 0; 1689 size_t n = 0; 1690 uint32_t bit = 0; 1691 uint32_t flags = 0; 1692 int idx = 0; 1693 1694 if (usage == ATTR_USAGE_POPULATE) { 1695 required_flag = TEE_TYPE_ATTR_REQUIRED; 1696 opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP; 1697 all_opt_needed = true; 1698 } else { 1699 required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ; 1700 opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT; 1701 all_opt_needed = false; 1702 } 1703 1704 /* 1705 * First find out which attributes are required and which belong to 1706 * the optional group 1707 */ 1708 for (n = 0; n < type_props->num_type_attrs; n++) { 1709 bit = 1 << n; 1710 flags = type_props->type_attrs[n].flags; 1711 1712 if (flags & required_flag) 1713 req_attrs |= bit; 1714 else if (flags & opt_flag) 1715 opt_grp_attrs |= bit; 1716 } 1717 1718 /* 1719 * Verify that all required attributes are in place and 1720 * that the same attribute isn't repeated. 1721 */ 1722 for (n = 0; n < attr_count; n++) { 1723 idx = tee_svc_cryp_obj_find_type_attr_idx( 1724 attrs[n].attributeID, 1725 type_props); 1726 1727 /* attribute not defined in current object type */ 1728 if (idx < 0) 1729 return TEE_ERROR_ITEM_NOT_FOUND; 1730 1731 bit = 1 << idx; 1732 1733 /* attribute not repeated */ 1734 if ((attrs_found & bit) != 0) 1735 return TEE_ERROR_ITEM_NOT_FOUND; 1736 1737 /* 1738 * Attribute not defined in current object type for this 1739 * usage. 1740 */ 1741 if (!(bit & (req_attrs | opt_grp_attrs))) 1742 return TEE_ERROR_ITEM_NOT_FOUND; 1743 1744 attrs_found |= bit; 1745 } 1746 /* Required attribute missing */ 1747 if ((attrs_found & req_attrs) != req_attrs) 1748 return TEE_ERROR_ITEM_NOT_FOUND; 1749 1750 /* 1751 * If the flag says that "if one of the optional attributes are included 1752 * all of them has to be included" this must be checked. 1753 */ 1754 if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 && 1755 (attrs_found & opt_grp_attrs) != opt_grp_attrs) 1756 return TEE_ERROR_ITEM_NOT_FOUND; 1757 1758 return TEE_SUCCESS; 1759 } 1760 1761 static TEE_Result get_ec_key_size(uint32_t curve, size_t *key_size) 1762 { 1763 switch (curve) { 1764 case TEE_ECC_CURVE_NIST_P192: 1765 *key_size = 192; 1766 break; 1767 case TEE_ECC_CURVE_NIST_P224: 1768 *key_size = 224; 1769 break; 1770 case TEE_ECC_CURVE_NIST_P256: 1771 *key_size = 256; 1772 break; 1773 case TEE_ECC_CURVE_NIST_P384: 1774 *key_size = 384; 1775 break; 1776 case TEE_ECC_CURVE_NIST_P521: 1777 *key_size = 521; 1778 break; 1779 case TEE_ECC_CURVE_SM2: 1780 case TEE_ECC_CURVE_25519: 1781 *key_size = 256; 1782 break; 1783 default: 1784 return TEE_ERROR_NOT_SUPPORTED; 1785 } 1786 1787 return TEE_SUCCESS; 1788 } 1789 1790 static size_t get_used_bits(const TEE_Attribute *a) 1791 { 1792 int nbits = a->content.ref.length * 8; 1793 int v = 0; 1794 1795 bit_ffs(a->content.ref.buffer, nbits, &v); 1796 return nbits - v; 1797 } 1798 1799 static TEE_Result tee_svc_cryp_obj_populate_type( 1800 struct tee_obj *o, 1801 const struct tee_cryp_obj_type_props *type_props, 1802 const TEE_Attribute *attrs, 1803 uint32_t attr_count) 1804 { 1805 TEE_Result res = TEE_SUCCESS; 1806 uint32_t have_attrs = 0; 1807 size_t obj_size = 0; 1808 size_t n = 0; 1809 int idx = 0; 1810 const struct attr_ops *ops = NULL; 1811 void *attr = NULL; 1812 1813 for (n = 0; n < attr_count; n++) { 1814 idx = tee_svc_cryp_obj_find_type_attr_idx( 1815 attrs[n].attributeID, 1816 type_props); 1817 /* attribute not defined in current object type */ 1818 if (idx < 0) 1819 return TEE_ERROR_ITEM_NOT_FOUND; 1820 1821 have_attrs |= BIT32(idx); 1822 ops = attr_ops + type_props->type_attrs[idx].ops_index; 1823 attr = (uint8_t *)o->attr + 1824 type_props->type_attrs[idx].raw_offs; 1825 if (attrs[n].attributeID & TEE_ATTR_FLAG_VALUE) 1826 res = ops->from_user(attr, &attrs[n].content.value, 1827 sizeof(attrs[n].content.value)); 1828 else 1829 res = ops->from_user(attr, attrs[n].content.ref.buffer, 1830 attrs[n].content.ref.length); 1831 if (res != TEE_SUCCESS) 1832 return res; 1833 1834 /* 1835 * The attribute that gives the size of the object is 1836 * flagged with TEE_TYPE_ATTR_SIZE_INDICATOR. 1837 */ 1838 if (type_props->type_attrs[idx].flags & 1839 TEE_TYPE_ATTR_SIZE_INDICATOR) { 1840 /* There should be only one */ 1841 if (obj_size) 1842 return TEE_ERROR_BAD_STATE; 1843 1844 /* 1845 * For ECDSA/ECDH we need to translate curve into 1846 * object size 1847 */ 1848 if (attrs[n].attributeID == TEE_ATTR_ECC_CURVE) { 1849 res = get_ec_key_size(attrs[n].content.value.a, 1850 &obj_size); 1851 if (res != TEE_SUCCESS) 1852 return res; 1853 } else { 1854 TEE_ObjectType obj_type = o->info.objectType; 1855 size_t sz = o->info.maxObjectSize; 1856 1857 obj_size = attrs[n].content.ref.length * 8; 1858 /* Drop the parity bits for legacy objects */ 1859 if (is_gp_legacy_des_key_size(obj_type, sz)) 1860 obj_size -= obj_size / 8; 1861 } 1862 if (obj_size > o->info.maxObjectSize) 1863 return TEE_ERROR_BAD_STATE; 1864 res = check_key_size(type_props, obj_size); 1865 if (res != TEE_SUCCESS) 1866 return TEE_ERROR_BAD_PARAMETERS; 1867 } 1868 1869 /* 1870 * Bignum attributes limited by the number of bits in 1871 * o->info.objectSize are flagged with 1872 * TEE_TYPE_ATTR_BIGNUM_MAXBITS. 1873 */ 1874 if (type_props->type_attrs[idx].flags & 1875 TEE_TYPE_ATTR_BIGNUM_MAXBITS) { 1876 if (get_used_bits(attrs + n) > o->info.maxObjectSize) 1877 return TEE_ERROR_BAD_STATE; 1878 } 1879 } 1880 1881 o->have_attrs = have_attrs; 1882 o->info.objectSize = obj_size; 1883 /* 1884 * In GP Internal API Specification 1.0 the partity bits aren't 1885 * counted when telling the size of the key in bits so remove the 1886 * parity bits here. 1887 */ 1888 if (is_gp_legacy_des_key_size(o->info.objectType, 1889 o->info.maxObjectSize)) 1890 o->info.objectSize -= o->info.objectSize / 8; 1891 1892 return TEE_SUCCESS; 1893 } 1894 1895 TEE_Result syscall_cryp_obj_populate(unsigned long obj, 1896 struct utee_attribute *usr_attrs, 1897 unsigned long attr_count) 1898 { 1899 struct ts_session *sess = ts_get_current_session(); 1900 TEE_Result res = TEE_SUCCESS; 1901 struct tee_obj *o = NULL; 1902 const struct tee_cryp_obj_type_props *type_props = NULL; 1903 TEE_Attribute *attrs = NULL; 1904 size_t alloc_size = 0; 1905 1906 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 1907 if (res != TEE_SUCCESS) 1908 return res; 1909 1910 /* Must be a transient object */ 1911 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1912 return TEE_ERROR_BAD_PARAMETERS; 1913 1914 /* Must not be initialized already */ 1915 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1916 return TEE_ERROR_BAD_PARAMETERS; 1917 1918 type_props = tee_svc_find_type_props(o->info.objectType); 1919 if (!type_props) 1920 return TEE_ERROR_NOT_IMPLEMENTED; 1921 1922 if (MUL_OVERFLOW(sizeof(TEE_Attribute), attr_count, &alloc_size)) 1923 return TEE_ERROR_OVERFLOW; 1924 1925 attrs = malloc(alloc_size); 1926 if (!attrs) 1927 return TEE_ERROR_OUT_OF_MEMORY; 1928 1929 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_attrs, attr_count, 1930 attrs); 1931 if (res != TEE_SUCCESS) 1932 goto out; 1933 1934 res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props, 1935 attrs, attr_count); 1936 if (res != TEE_SUCCESS) 1937 goto out; 1938 1939 res = tee_svc_cryp_obj_populate_type(o, type_props, attrs, attr_count); 1940 if (res == TEE_SUCCESS) 1941 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1942 1943 out: 1944 free_wipe(attrs); 1945 return res; 1946 } 1947 1948 TEE_Result syscall_cryp_obj_copy(unsigned long dst, unsigned long src) 1949 { 1950 struct ts_session *sess = ts_get_current_session(); 1951 TEE_Result res = TEE_SUCCESS; 1952 struct tee_obj *dst_o = NULL; 1953 struct tee_obj *src_o = NULL; 1954 1955 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1956 uref_to_vaddr(dst), &dst_o); 1957 if (res != TEE_SUCCESS) 1958 return res; 1959 1960 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 1961 uref_to_vaddr(src), &src_o); 1962 if (res != TEE_SUCCESS) 1963 return res; 1964 1965 if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 1966 return TEE_ERROR_BAD_PARAMETERS; 1967 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 1968 return TEE_ERROR_BAD_PARAMETERS; 1969 if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 1970 return TEE_ERROR_BAD_PARAMETERS; 1971 1972 res = tee_obj_attr_copy_from(dst_o, src_o); 1973 if (res != TEE_SUCCESS) 1974 return res; 1975 1976 dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 1977 dst_o->info.objectSize = src_o->info.objectSize; 1978 dst_o->info.objectUsage = src_o->info.objectUsage; 1979 return TEE_SUCCESS; 1980 } 1981 1982 static TEE_Result check_pub_rsa_key(struct bignum *e) 1983 { 1984 size_t n = crypto_bignum_num_bytes(e); 1985 uint8_t bin_key[256 / 8] = { 0 }; 1986 1987 /* 1988 * NIST SP800-56B requires public RSA key to be an odd integer in 1989 * the range 65537 <= e < 2^256. 1990 */ 1991 1992 if (n > sizeof(bin_key) || n < 3) 1993 return TEE_ERROR_BAD_PARAMETERS; 1994 1995 crypto_bignum_bn2bin(e, bin_key); 1996 1997 if (!(bin_key[n - 1] & 1)) /* key must be odd */ 1998 return TEE_ERROR_BAD_PARAMETERS; 1999 2000 if (n == 3) { 2001 uint32_t key = 0; 2002 2003 for (n = 0; n < 3; n++) { 2004 key <<= 8; 2005 key |= bin_key[n]; 2006 } 2007 2008 if (key < 65537) 2009 return TEE_ERROR_BAD_PARAMETERS; 2010 } 2011 2012 /* key is larger than 65537 */ 2013 return TEE_SUCCESS; 2014 } 2015 2016 static TEE_Result tee_svc_obj_generate_key_rsa( 2017 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2018 uint32_t key_size, 2019 const TEE_Attribute *params, uint32_t param_count) 2020 { 2021 TEE_Result res = TEE_SUCCESS; 2022 struct rsa_keypair *key = o->attr; 2023 uint32_t e = TEE_U32_TO_BIG_ENDIAN(65537); 2024 2025 /* Copy the present attributes into the obj before starting */ 2026 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2027 param_count); 2028 if (res != TEE_SUCCESS) 2029 return res; 2030 if (get_attribute(o, type_props, TEE_ATTR_RSA_PUBLIC_EXPONENT)) { 2031 res = check_pub_rsa_key(key->e); 2032 if (res) 2033 return res; 2034 } else { 2035 crypto_bignum_bin2bn((const uint8_t *)&e, sizeof(e), key->e); 2036 } 2037 res = crypto_acipher_gen_rsa_key(key, key_size); 2038 if (res != TEE_SUCCESS) 2039 return res; 2040 2041 /* Set bits for all known attributes for this object type */ 2042 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 2043 2044 return TEE_SUCCESS; 2045 } 2046 2047 static TEE_Result tee_svc_obj_generate_key_dsa( 2048 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2049 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 2050 { 2051 TEE_Result res; 2052 2053 /* Copy the present attributes into the obj before starting */ 2054 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2055 param_count); 2056 if (res != TEE_SUCCESS) 2057 return res; 2058 2059 res = crypto_acipher_gen_dsa_key(o->attr, key_size); 2060 if (res != TEE_SUCCESS) 2061 return res; 2062 2063 /* Set bits for all known attributes for this object type */ 2064 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 2065 2066 return TEE_SUCCESS; 2067 } 2068 2069 static TEE_Result tee_svc_obj_generate_key_dh( 2070 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2071 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 2072 { 2073 TEE_Result res; 2074 struct dh_keypair *tee_dh_key; 2075 struct bignum *dh_q = NULL; 2076 uint32_t dh_xbits = 0; 2077 2078 /* Copy the present attributes into the obj before starting */ 2079 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2080 param_count); 2081 if (res != TEE_SUCCESS) 2082 return res; 2083 2084 tee_dh_key = (struct dh_keypair *)o->attr; 2085 2086 if (get_attribute(o, type_props, TEE_ATTR_DH_SUBPRIME)) 2087 dh_q = tee_dh_key->q; 2088 if (get_attribute(o, type_props, TEE_ATTR_DH_X_BITS)) 2089 dh_xbits = tee_dh_key->xbits; 2090 res = crypto_acipher_gen_dh_key(tee_dh_key, dh_q, dh_xbits, key_size); 2091 if (res != TEE_SUCCESS) 2092 return res; 2093 2094 /* Set bits for the generated public and private key */ 2095 set_attribute(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE); 2096 set_attribute(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE); 2097 set_attribute(o, type_props, TEE_ATTR_DH_X_BITS); 2098 return TEE_SUCCESS; 2099 } 2100 2101 static TEE_Result tee_svc_obj_generate_key_ecc( 2102 struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, 2103 uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) 2104 { 2105 TEE_Result res; 2106 struct ecc_keypair *tee_ecc_key; 2107 2108 /* Copy the present attributes into the obj before starting */ 2109 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2110 param_count); 2111 if (res != TEE_SUCCESS) 2112 return res; 2113 2114 tee_ecc_key = (struct ecc_keypair *)o->attr; 2115 2116 res = crypto_acipher_gen_ecc_key(tee_ecc_key, key_size); 2117 if (res != TEE_SUCCESS) 2118 return res; 2119 2120 /* Set bits for the generated public and private key */ 2121 set_attribute(o, type_props, TEE_ATTR_ECC_PRIVATE_VALUE); 2122 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_X); 2123 set_attribute(o, type_props, TEE_ATTR_ECC_PUBLIC_VALUE_Y); 2124 set_attribute(o, type_props, TEE_ATTR_ECC_CURVE); 2125 return TEE_SUCCESS; 2126 } 2127 2128 static TEE_Result 2129 tee_svc_obj_generate_key_x25519(struct tee_obj *o, 2130 const struct tee_cryp_obj_type_props 2131 *type_props, 2132 uint32_t key_size, 2133 const TEE_Attribute *params, 2134 uint32_t param_count) 2135 { 2136 TEE_Result res = TEE_ERROR_GENERIC; 2137 struct x25519_keypair *tee_x25519_key = NULL; 2138 2139 /* Copy the present attributes into the obj before starting */ 2140 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2141 param_count); 2142 if (res != TEE_SUCCESS) 2143 return res; 2144 2145 tee_x25519_key = (struct x25519_keypair *)o->attr; 2146 2147 res = crypto_acipher_gen_x25519_key(tee_x25519_key, key_size); 2148 if (res != TEE_SUCCESS) 2149 return res; 2150 2151 /* Set bits for the generated public and private key */ 2152 set_attribute(o, type_props, TEE_ATTR_X25519_PRIVATE_VALUE); 2153 set_attribute(o, type_props, TEE_ATTR_X25519_PUBLIC_VALUE); 2154 return TEE_SUCCESS; 2155 } 2156 2157 static TEE_Result 2158 tee_svc_obj_generate_key_ed25519(struct tee_obj *o, 2159 const struct tee_cryp_obj_type_props 2160 *type_props, 2161 uint32_t key_size, 2162 const TEE_Attribute *params, 2163 uint32_t param_count) 2164 { 2165 TEE_Result res = TEE_ERROR_GENERIC; 2166 struct ed25519_keypair *key = NULL; 2167 2168 /* Copy the present attributes into the obj before starting */ 2169 res = tee_svc_cryp_obj_populate_type(o, type_props, params, 2170 param_count); 2171 if (res != TEE_SUCCESS) 2172 return res; 2173 2174 key = o->attr; 2175 2176 res = crypto_acipher_gen_ed25519_key(key, key_size); 2177 if (res != TEE_SUCCESS) 2178 return res; 2179 2180 /* Set bits for the generated public and private key */ 2181 set_attribute(o, type_props, TEE_ATTR_ED25519_PRIVATE_VALUE); 2182 set_attribute(o, type_props, TEE_ATTR_ED25519_PUBLIC_VALUE); 2183 return TEE_SUCCESS; 2184 } 2185 2186 static TEE_Result 2187 tee_svc_obj_ed25519_parse_params(const TEE_Attribute *params, size_t num_params, 2188 bool *ph_flag, const uint8_t **ctx, 2189 size_t *ctx_len) 2190 { 2191 size_t n = 0; 2192 2193 *ctx = NULL; 2194 2195 for (n = 0; n < num_params; n++) { 2196 switch (params[n].attributeID) { 2197 case TEE_ATTR_EDDSA_PREHASH: 2198 *ph_flag = true; 2199 break; 2200 2201 case TEE_ATTR_EDDSA_CTX: 2202 /* several provided contexts are treated as error */ 2203 if (*ctx) 2204 return TEE_ERROR_BAD_PARAMETERS; 2205 2206 *ctx_len = params[n].content.ref.length; 2207 if (*ctx_len > TEE_ED25519_CTX_MAX_LENGTH) 2208 return TEE_ERROR_BAD_PARAMETERS; 2209 2210 if (!*ctx_len) 2211 break; 2212 2213 *ctx = params[n].content.ref.buffer; 2214 if (!*ctx) 2215 return TEE_ERROR_BAD_PARAMETERS; 2216 break; 2217 2218 default: 2219 return TEE_ERROR_BAD_PARAMETERS; 2220 } 2221 } 2222 2223 return TEE_SUCCESS; 2224 } 2225 2226 static TEE_Result 2227 tee_svc_obj_ed25519_sign(struct ed25519_keypair *key, 2228 const uint8_t *msg, size_t msg_len, 2229 uint8_t *sig, size_t *sig_len, 2230 const TEE_Attribute *params, size_t num_params) 2231 { 2232 TEE_Result err = TEE_ERROR_GENERIC; 2233 size_t ctx_len = 0; 2234 const uint8_t *ctx = NULL; 2235 bool ph_flag = false; 2236 2237 err = tee_svc_obj_ed25519_parse_params(params, num_params, &ph_flag, 2238 &ctx, &ctx_len); 2239 if (err != TEE_SUCCESS) 2240 return err; 2241 2242 if (ph_flag || ctx) { 2243 return crypto_acipher_ed25519ctx_sign(key, msg, msg_len, sig, 2244 sig_len, ph_flag, 2245 ctx, ctx_len); 2246 } 2247 2248 return crypto_acipher_ed25519_sign(key, msg, msg_len, sig, sig_len); 2249 } 2250 2251 static TEE_Result 2252 tee_svc_obj_ed25519_verify(struct ed25519_keypair *key, 2253 const uint8_t *msg, size_t msg_len, 2254 const uint8_t *sig, size_t sig_len, 2255 const TEE_Attribute *params, size_t num_params) 2256 { 2257 TEE_Result err = TEE_ERROR_GENERIC; 2258 size_t ctx_len = 0; 2259 const uint8_t *ctx = NULL; 2260 bool ph_flag = false; 2261 2262 err = tee_svc_obj_ed25519_parse_params(params, num_params, &ph_flag, 2263 &ctx, &ctx_len); 2264 if (err) 2265 return err; 2266 2267 if (ph_flag || ctx) { 2268 return crypto_acipher_ed25519ctx_verify(key, msg, msg_len, sig, 2269 sig_len, ph_flag, 2270 ctx, ctx_len); 2271 } 2272 2273 return crypto_acipher_ed25519_verify(key, msg, msg_len, sig, sig_len); 2274 } 2275 2276 TEE_Result syscall_obj_generate_key(unsigned long obj, unsigned long key_size, 2277 const struct utee_attribute *usr_params, 2278 unsigned long param_count) 2279 { 2280 struct ts_session *sess = ts_get_current_session(); 2281 TEE_Result res = TEE_SUCCESS; 2282 const struct tee_cryp_obj_type_props *type_props = NULL; 2283 struct tee_obj *o = NULL; 2284 struct tee_cryp_obj_secret *key = NULL; 2285 size_t byte_size = 0; 2286 TEE_Attribute *params = NULL; 2287 size_t alloc_size = 0; 2288 2289 res = tee_obj_get(to_user_ta_ctx(sess->ctx), uref_to_vaddr(obj), &o); 2290 if (res != TEE_SUCCESS) 2291 return res; 2292 2293 /* Must be a transient object */ 2294 if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) 2295 return TEE_ERROR_BAD_STATE; 2296 2297 /* Must not be initialized already */ 2298 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) 2299 return TEE_ERROR_BAD_STATE; 2300 2301 /* Find description of object */ 2302 type_props = tee_svc_find_type_props(o->info.objectType); 2303 if (!type_props) 2304 return TEE_ERROR_NOT_SUPPORTED; 2305 2306 /* Check that key_size follows restrictions */ 2307 res = check_key_size(type_props, key_size); 2308 if (res) 2309 return res; 2310 2311 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 2312 return TEE_ERROR_OVERFLOW; 2313 2314 params = malloc(alloc_size); 2315 if (!params) 2316 return TEE_ERROR_OUT_OF_MEMORY; 2317 res = copy_in_attrs(to_user_ta_ctx(sess->ctx), usr_params, param_count, 2318 params); 2319 if (res != TEE_SUCCESS) 2320 goto out; 2321 2322 res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props, 2323 params, param_count); 2324 if (res != TEE_SUCCESS) 2325 goto out; 2326 2327 switch (o->info.objectType) { 2328 case TEE_TYPE_AES: 2329 case TEE_TYPE_DES: 2330 case TEE_TYPE_DES3: 2331 case TEE_TYPE_SM4: 2332 case TEE_TYPE_HMAC_MD5: 2333 case TEE_TYPE_HMAC_SHA1: 2334 case TEE_TYPE_HMAC_SHA224: 2335 case TEE_TYPE_HMAC_SHA256: 2336 case TEE_TYPE_HMAC_SHA384: 2337 case TEE_TYPE_HMAC_SHA512: 2338 case TEE_TYPE_HMAC_SM3: 2339 case TEE_TYPE_GENERIC_SECRET: 2340 byte_size = key_size / 8; 2341 2342 /* 2343 * In GP Internal API Specification 1.0 the partity bits 2344 * aren't counted when telling the size of the key in bits. 2345 */ 2346 if (is_gp_legacy_des_key_size(o->info.objectType, key_size)) 2347 byte_size = (key_size + key_size / 7) / 8; 2348 2349 key = (struct tee_cryp_obj_secret *)o->attr; 2350 if (byte_size > key->alloc_size) { 2351 res = TEE_ERROR_EXCESS_DATA; 2352 goto out; 2353 } 2354 2355 res = crypto_rng_read((void *)(key + 1), byte_size); 2356 if (res != TEE_SUCCESS) 2357 goto out; 2358 2359 key->key_size = byte_size; 2360 2361 /* Set bits for all known attributes for this object type */ 2362 o->have_attrs = (1 << type_props->num_type_attrs) - 1; 2363 2364 break; 2365 2366 case TEE_TYPE_RSA_KEYPAIR: 2367 res = tee_svc_obj_generate_key_rsa(o, type_props, key_size, 2368 params, param_count); 2369 if (res != TEE_SUCCESS) 2370 goto out; 2371 break; 2372 2373 case TEE_TYPE_DSA_KEYPAIR: 2374 res = tee_svc_obj_generate_key_dsa(o, type_props, key_size, 2375 params, param_count); 2376 if (res != TEE_SUCCESS) 2377 goto out; 2378 break; 2379 2380 case TEE_TYPE_DH_KEYPAIR: 2381 res = tee_svc_obj_generate_key_dh(o, type_props, key_size, 2382 params, param_count); 2383 if (res != TEE_SUCCESS) 2384 goto out; 2385 break; 2386 2387 case TEE_TYPE_ECDSA_KEYPAIR: 2388 case TEE_TYPE_ECDH_KEYPAIR: 2389 case TEE_TYPE_SM2_DSA_KEYPAIR: 2390 case TEE_TYPE_SM2_KEP_KEYPAIR: 2391 case TEE_TYPE_SM2_PKE_KEYPAIR: 2392 res = tee_svc_obj_generate_key_ecc(o, type_props, key_size, 2393 params, param_count); 2394 if (res != TEE_SUCCESS) 2395 goto out; 2396 break; 2397 2398 case TEE_TYPE_X25519_KEYPAIR: 2399 res = tee_svc_obj_generate_key_x25519(o, type_props, key_size, 2400 params, param_count); 2401 if (res != TEE_SUCCESS) 2402 goto out; 2403 break; 2404 2405 case TEE_TYPE_ED25519_KEYPAIR: 2406 res = tee_svc_obj_generate_key_ed25519(o, type_props, key_size, 2407 params, param_count); 2408 if (res != TEE_SUCCESS) 2409 goto out; 2410 break; 2411 2412 default: 2413 res = TEE_ERROR_BAD_FORMAT; 2414 } 2415 2416 out: 2417 free_wipe(params); 2418 if (res == TEE_SUCCESS) { 2419 o->info.objectSize = key_size; 2420 o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 2421 } 2422 return res; 2423 } 2424 2425 static TEE_Result tee_svc_cryp_get_state(struct ts_session *sess, 2426 vaddr_t state_id, 2427 struct tee_cryp_state **state) 2428 { 2429 struct tee_cryp_state *s; 2430 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2431 2432 TAILQ_FOREACH(s, &utc->cryp_states, link) { 2433 if (state_id == (vaddr_t)s) { 2434 *state = s; 2435 return TEE_SUCCESS; 2436 } 2437 } 2438 return TEE_ERROR_BAD_PARAMETERS; 2439 } 2440 2441 static void cryp_state_free(struct user_ta_ctx *utc, struct tee_cryp_state *cs) 2442 { 2443 struct tee_obj *o; 2444 2445 if (tee_obj_get(utc, cs->key1, &o) == TEE_SUCCESS) 2446 tee_obj_close(utc, o); 2447 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) 2448 tee_obj_close(utc, o); 2449 2450 TAILQ_REMOVE(&utc->cryp_states, cs, link); 2451 if (cs->ctx_finalize != NULL) 2452 cs->ctx_finalize(cs->ctx); 2453 2454 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2455 case TEE_OPERATION_CIPHER: 2456 crypto_cipher_free_ctx(cs->ctx); 2457 break; 2458 case TEE_OPERATION_AE: 2459 crypto_authenc_free_ctx(cs->ctx); 2460 break; 2461 case TEE_OPERATION_DIGEST: 2462 crypto_hash_free_ctx(cs->ctx); 2463 break; 2464 case TEE_OPERATION_MAC: 2465 crypto_mac_free_ctx(cs->ctx); 2466 break; 2467 default: 2468 assert(!cs->ctx); 2469 } 2470 2471 free(cs); 2472 } 2473 2474 static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o, 2475 uint32_t algo, 2476 TEE_OperationMode mode) 2477 { 2478 uint32_t req_key_type; 2479 uint32_t req_key_type2 = 0; 2480 2481 switch (TEE_ALG_GET_MAIN_ALG(algo)) { 2482 case TEE_MAIN_ALGO_MD5: 2483 req_key_type = TEE_TYPE_HMAC_MD5; 2484 break; 2485 case TEE_MAIN_ALGO_SHA1: 2486 req_key_type = TEE_TYPE_HMAC_SHA1; 2487 break; 2488 case TEE_MAIN_ALGO_SHA224: 2489 req_key_type = TEE_TYPE_HMAC_SHA224; 2490 break; 2491 case TEE_MAIN_ALGO_SHA256: 2492 req_key_type = TEE_TYPE_HMAC_SHA256; 2493 break; 2494 case TEE_MAIN_ALGO_SHA384: 2495 req_key_type = TEE_TYPE_HMAC_SHA384; 2496 break; 2497 case TEE_MAIN_ALGO_SHA512: 2498 req_key_type = TEE_TYPE_HMAC_SHA512; 2499 break; 2500 case TEE_MAIN_ALGO_SM3: 2501 req_key_type = TEE_TYPE_HMAC_SM3; 2502 break; 2503 case TEE_MAIN_ALGO_AES: 2504 req_key_type = TEE_TYPE_AES; 2505 break; 2506 case TEE_MAIN_ALGO_DES: 2507 req_key_type = TEE_TYPE_DES; 2508 break; 2509 case TEE_MAIN_ALGO_DES3: 2510 req_key_type = TEE_TYPE_DES3; 2511 break; 2512 case TEE_MAIN_ALGO_SM4: 2513 req_key_type = TEE_TYPE_SM4; 2514 break; 2515 case TEE_MAIN_ALGO_RSA: 2516 req_key_type = TEE_TYPE_RSA_KEYPAIR; 2517 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2518 req_key_type2 = TEE_TYPE_RSA_PUBLIC_KEY; 2519 break; 2520 case TEE_MAIN_ALGO_DSA: 2521 req_key_type = TEE_TYPE_DSA_KEYPAIR; 2522 if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) 2523 req_key_type2 = TEE_TYPE_DSA_PUBLIC_KEY; 2524 break; 2525 case TEE_MAIN_ALGO_DH: 2526 req_key_type = TEE_TYPE_DH_KEYPAIR; 2527 break; 2528 case TEE_MAIN_ALGO_ECDSA: 2529 req_key_type = TEE_TYPE_ECDSA_KEYPAIR; 2530 if (mode == TEE_MODE_VERIFY) 2531 req_key_type2 = TEE_TYPE_ECDSA_PUBLIC_KEY; 2532 break; 2533 case TEE_MAIN_ALGO_ECDH: 2534 req_key_type = TEE_TYPE_ECDH_KEYPAIR; 2535 break; 2536 case TEE_MAIN_ALGO_ED25519: 2537 req_key_type = TEE_TYPE_ED25519_KEYPAIR; 2538 if (mode == TEE_MODE_VERIFY) 2539 req_key_type2 = TEE_TYPE_ED25519_PUBLIC_KEY; 2540 break; 2541 case TEE_MAIN_ALGO_SM2_PKE: 2542 if (mode == TEE_MODE_ENCRYPT) 2543 req_key_type = TEE_TYPE_SM2_PKE_PUBLIC_KEY; 2544 else 2545 req_key_type = TEE_TYPE_SM2_PKE_KEYPAIR; 2546 break; 2547 case TEE_MAIN_ALGO_SM2_DSA_SM3: 2548 if (mode == TEE_MODE_VERIFY) 2549 req_key_type = TEE_TYPE_SM2_DSA_PUBLIC_KEY; 2550 else 2551 req_key_type = TEE_TYPE_SM2_DSA_KEYPAIR; 2552 break; 2553 #if defined(CFG_CRYPTO_SM2_KEP) 2554 case TEE_MAIN_ALGO_SM2_KEP: 2555 req_key_type = TEE_TYPE_SM2_KEP_KEYPAIR; 2556 req_key_type2 = TEE_TYPE_SM2_KEP_PUBLIC_KEY; 2557 break; 2558 #endif 2559 #if defined(CFG_CRYPTO_HKDF) 2560 case TEE_MAIN_ALGO_HKDF: 2561 req_key_type = TEE_TYPE_HKDF_IKM; 2562 break; 2563 #endif 2564 #if defined(CFG_CRYPTO_CONCAT_KDF) 2565 case TEE_MAIN_ALGO_CONCAT_KDF: 2566 req_key_type = TEE_TYPE_CONCAT_KDF_Z; 2567 break; 2568 #endif 2569 #if defined(CFG_CRYPTO_PBKDF2) 2570 case TEE_MAIN_ALGO_PBKDF2: 2571 req_key_type = TEE_TYPE_PBKDF2_PASSWORD; 2572 break; 2573 #endif 2574 case TEE_MAIN_ALGO_X25519: 2575 req_key_type = TEE_TYPE_X25519_KEYPAIR; 2576 break; 2577 default: 2578 return TEE_ERROR_BAD_PARAMETERS; 2579 } 2580 2581 if (req_key_type != o->info.objectType && 2582 req_key_type2 != o->info.objectType) 2583 return TEE_ERROR_BAD_PARAMETERS; 2584 return TEE_SUCCESS; 2585 } 2586 2587 TEE_Result syscall_cryp_state_alloc(unsigned long algo, unsigned long mode, 2588 unsigned long key1, unsigned long key2, 2589 uint32_t *state) 2590 { 2591 struct ts_session *sess = ts_get_current_session(); 2592 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2593 TEE_Result res = TEE_SUCCESS; 2594 struct tee_cryp_state *cs = NULL; 2595 struct tee_obj *o1 = NULL; 2596 struct tee_obj *o2 = NULL; 2597 2598 if (key1 != 0) { 2599 res = tee_obj_get(utc, uref_to_vaddr(key1), &o1); 2600 if (res != TEE_SUCCESS) 2601 return res; 2602 if (o1->busy) 2603 return TEE_ERROR_BAD_PARAMETERS; 2604 res = tee_svc_cryp_check_key_type(o1, algo, mode); 2605 if (res != TEE_SUCCESS) 2606 return res; 2607 } 2608 if (key2 != 0) { 2609 res = tee_obj_get(utc, uref_to_vaddr(key2), &o2); 2610 if (res != TEE_SUCCESS) 2611 return res; 2612 if (o2->busy) 2613 return TEE_ERROR_BAD_PARAMETERS; 2614 res = tee_svc_cryp_check_key_type(o2, algo, mode); 2615 if (res != TEE_SUCCESS) 2616 return res; 2617 } 2618 2619 cs = calloc(1, sizeof(struct tee_cryp_state)); 2620 if (!cs) 2621 return TEE_ERROR_OUT_OF_MEMORY; 2622 TAILQ_INSERT_TAIL(&utc->cryp_states, cs, link); 2623 cs->algo = algo; 2624 cs->mode = mode; 2625 cs->state = CRYP_STATE_UNINITIALIZED; 2626 2627 switch (TEE_ALG_GET_CLASS(algo)) { 2628 case TEE_OPERATION_CIPHER: 2629 if ((TEE_ALG_GET_CHAIN_MODE(algo) == TEE_CHAIN_MODE_XTS && 2630 (key1 == 0 || key2 == 0)) || 2631 (TEE_ALG_GET_CHAIN_MODE(algo) != TEE_CHAIN_MODE_XTS && 2632 (key1 == 0 || key2 != 0))) { 2633 res = TEE_ERROR_BAD_PARAMETERS; 2634 } else { 2635 res = crypto_cipher_alloc_ctx(&cs->ctx, algo); 2636 if (res != TEE_SUCCESS) 2637 break; 2638 } 2639 break; 2640 case TEE_OPERATION_AE: 2641 if (key1 == 0 || key2 != 0) { 2642 res = TEE_ERROR_BAD_PARAMETERS; 2643 } else { 2644 res = crypto_authenc_alloc_ctx(&cs->ctx, algo); 2645 if (res != TEE_SUCCESS) 2646 break; 2647 } 2648 break; 2649 case TEE_OPERATION_MAC: 2650 if (key1 == 0 || key2 != 0) { 2651 res = TEE_ERROR_BAD_PARAMETERS; 2652 } else { 2653 res = crypto_mac_alloc_ctx(&cs->ctx, algo); 2654 if (res != TEE_SUCCESS) 2655 break; 2656 } 2657 break; 2658 case TEE_OPERATION_DIGEST: 2659 if (key1 != 0 || key2 != 0) { 2660 res = TEE_ERROR_BAD_PARAMETERS; 2661 } else { 2662 res = crypto_hash_alloc_ctx(&cs->ctx, algo); 2663 if (res != TEE_SUCCESS) 2664 break; 2665 } 2666 break; 2667 case TEE_OPERATION_ASYMMETRIC_CIPHER: 2668 case TEE_OPERATION_ASYMMETRIC_SIGNATURE: 2669 if (algo == TEE_ALG_RSASSA_PKCS1_V1_5 && 2670 !IS_ENABLED(CFG_CRYPTO_RSASSA_NA1)) { 2671 res = TEE_ERROR_NOT_SUPPORTED; 2672 break; 2673 } 2674 if (key1 == 0 || key2 != 0) 2675 res = TEE_ERROR_BAD_PARAMETERS; 2676 break; 2677 case TEE_OPERATION_KEY_DERIVATION: 2678 if (algo == TEE_ALG_SM2_KEP) { 2679 if (key1 == 0 || key2 == 0) 2680 res = TEE_ERROR_BAD_PARAMETERS; 2681 } else { 2682 if (key1 == 0 || key2 != 0) 2683 res = TEE_ERROR_BAD_PARAMETERS; 2684 } 2685 break; 2686 default: 2687 res = TEE_ERROR_NOT_SUPPORTED; 2688 break; 2689 } 2690 if (res != TEE_SUCCESS) 2691 goto out; 2692 2693 res = copy_kaddr_to_uref(state, cs); 2694 if (res != TEE_SUCCESS) 2695 goto out; 2696 2697 /* Register keys */ 2698 if (o1 != NULL) { 2699 o1->busy = true; 2700 cs->key1 = (vaddr_t)o1; 2701 } 2702 if (o2 != NULL) { 2703 o2->busy = true; 2704 cs->key2 = (vaddr_t)o2; 2705 } 2706 2707 out: 2708 if (res != TEE_SUCCESS) 2709 cryp_state_free(utc, cs); 2710 return res; 2711 } 2712 2713 TEE_Result syscall_cryp_state_copy(unsigned long dst, unsigned long src) 2714 { 2715 struct ts_session *sess = ts_get_current_session(); 2716 TEE_Result res = TEE_SUCCESS; 2717 struct tee_cryp_state *cs_dst = NULL; 2718 struct tee_cryp_state *cs_src = NULL; 2719 2720 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(dst), &cs_dst); 2721 if (res != TEE_SUCCESS) 2722 return res; 2723 2724 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(src), &cs_src); 2725 if (res != TEE_SUCCESS) 2726 return res; 2727 if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode) 2728 return TEE_ERROR_BAD_PARAMETERS; 2729 2730 switch (TEE_ALG_GET_CLASS(cs_src->algo)) { 2731 case TEE_OPERATION_CIPHER: 2732 crypto_cipher_copy_state(cs_dst->ctx, cs_src->ctx); 2733 break; 2734 case TEE_OPERATION_AE: 2735 crypto_authenc_copy_state(cs_dst->ctx, cs_src->ctx); 2736 break; 2737 case TEE_OPERATION_DIGEST: 2738 crypto_hash_copy_state(cs_dst->ctx, cs_src->ctx); 2739 break; 2740 case TEE_OPERATION_MAC: 2741 crypto_mac_copy_state(cs_dst->ctx, cs_src->ctx); 2742 break; 2743 default: 2744 return TEE_ERROR_BAD_STATE; 2745 } 2746 2747 cs_dst->state = cs_src->state; 2748 cs_dst->ctx_finalize = cs_src->ctx_finalize; 2749 2750 return TEE_SUCCESS; 2751 } 2752 2753 void tee_svc_cryp_free_states(struct user_ta_ctx *utc) 2754 { 2755 struct tee_cryp_state_head *states = &utc->cryp_states; 2756 2757 while (!TAILQ_EMPTY(states)) 2758 cryp_state_free(utc, TAILQ_FIRST(states)); 2759 } 2760 2761 TEE_Result syscall_cryp_state_free(unsigned long state) 2762 { 2763 struct ts_session *sess = ts_get_current_session(); 2764 TEE_Result res = TEE_SUCCESS; 2765 struct tee_cryp_state *cs = NULL; 2766 2767 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2768 if (res != TEE_SUCCESS) 2769 return res; 2770 cryp_state_free(to_user_ta_ctx(sess->ctx), cs); 2771 return TEE_SUCCESS; 2772 } 2773 2774 TEE_Result syscall_hash_init(unsigned long state, 2775 const void *iv __maybe_unused, 2776 size_t iv_len __maybe_unused) 2777 { 2778 struct ts_session *sess = ts_get_current_session(); 2779 TEE_Result res = TEE_SUCCESS; 2780 struct tee_cryp_state *cs = NULL; 2781 2782 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2783 if (res != TEE_SUCCESS) 2784 return res; 2785 2786 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2787 case TEE_OPERATION_DIGEST: 2788 res = crypto_hash_init(cs->ctx); 2789 if (res != TEE_SUCCESS) 2790 return res; 2791 break; 2792 case TEE_OPERATION_MAC: 2793 { 2794 struct tee_obj *o; 2795 struct tee_cryp_obj_secret *key; 2796 2797 res = tee_obj_get(to_user_ta_ctx(sess->ctx), 2798 cs->key1, &o); 2799 if (res != TEE_SUCCESS) 2800 return res; 2801 if ((o->info.handleFlags & 2802 TEE_HANDLE_FLAG_INITIALIZED) == 0) 2803 return TEE_ERROR_BAD_PARAMETERS; 2804 2805 key = (struct tee_cryp_obj_secret *)o->attr; 2806 res = crypto_mac_init(cs->ctx, (void *)(key + 1), 2807 key->key_size); 2808 if (res != TEE_SUCCESS) 2809 return res; 2810 break; 2811 } 2812 default: 2813 return TEE_ERROR_BAD_PARAMETERS; 2814 } 2815 2816 cs->state = CRYP_STATE_INITIALIZED; 2817 2818 return TEE_SUCCESS; 2819 } 2820 2821 TEE_Result syscall_hash_update(unsigned long state, const void *chunk, 2822 size_t chunk_size) 2823 { 2824 struct ts_session *sess = ts_get_current_session(); 2825 struct tee_cryp_state *cs = NULL; 2826 TEE_Result res = TEE_SUCCESS; 2827 2828 /* No data, but size provided isn't valid parameters. */ 2829 if (!chunk && chunk_size) 2830 return TEE_ERROR_BAD_PARAMETERS; 2831 2832 /* Zero length hash is valid, but nothing we need to do. */ 2833 if (!chunk_size) 2834 return TEE_SUCCESS; 2835 2836 chunk = memtag_strip_tag_const(chunk); 2837 2838 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2839 TEE_MEMORY_ACCESS_READ | 2840 TEE_MEMORY_ACCESS_ANY_OWNER, 2841 (uaddr_t)chunk, chunk_size); 2842 if (res != TEE_SUCCESS) 2843 return res; 2844 2845 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2846 if (res != TEE_SUCCESS) 2847 return res; 2848 2849 if (cs->state != CRYP_STATE_INITIALIZED) 2850 return TEE_ERROR_BAD_STATE; 2851 2852 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2853 case TEE_OPERATION_DIGEST: 2854 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2855 if (res != TEE_SUCCESS) 2856 return res; 2857 break; 2858 case TEE_OPERATION_MAC: 2859 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2860 if (res != TEE_SUCCESS) 2861 return res; 2862 break; 2863 default: 2864 return TEE_ERROR_BAD_PARAMETERS; 2865 } 2866 2867 return TEE_SUCCESS; 2868 } 2869 2870 TEE_Result syscall_hash_final(unsigned long state, const void *chunk, 2871 size_t chunk_size, void *hash, uint64_t *hash_len) 2872 { 2873 struct ts_session *sess = ts_get_current_session(); 2874 struct tee_cryp_state *cs = NULL; 2875 TEE_Result res2 = TEE_SUCCESS; 2876 TEE_Result res = TEE_SUCCESS; 2877 size_t hash_size = 0; 2878 size_t hlen = 0; 2879 2880 /* No data, but size provided isn't valid parameters. */ 2881 if (!chunk && chunk_size) 2882 return TEE_ERROR_BAD_PARAMETERS; 2883 2884 chunk = memtag_strip_tag_const(chunk); 2885 hash = memtag_strip_tag(hash); 2886 2887 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2888 TEE_MEMORY_ACCESS_READ | 2889 TEE_MEMORY_ACCESS_ANY_OWNER, 2890 (uaddr_t)chunk, chunk_size); 2891 if (res != TEE_SUCCESS) 2892 return res; 2893 2894 res = get_user_u64_as_size_t(&hlen, hash_len); 2895 if (res != TEE_SUCCESS) 2896 return res; 2897 2898 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 2899 TEE_MEMORY_ACCESS_READ | 2900 TEE_MEMORY_ACCESS_WRITE | 2901 TEE_MEMORY_ACCESS_ANY_OWNER, 2902 (uaddr_t)hash, hlen); 2903 if (res != TEE_SUCCESS) 2904 return res; 2905 2906 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2907 if (res != TEE_SUCCESS) 2908 return res; 2909 2910 if (cs->state != CRYP_STATE_INITIALIZED) 2911 return TEE_ERROR_BAD_STATE; 2912 2913 switch (TEE_ALG_GET_CLASS(cs->algo)) { 2914 case TEE_OPERATION_DIGEST: 2915 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2916 if (res != TEE_SUCCESS) 2917 return res; 2918 if (hlen < hash_size) { 2919 res = TEE_ERROR_SHORT_BUFFER; 2920 goto out; 2921 } 2922 2923 if (chunk_size) { 2924 res = crypto_hash_update(cs->ctx, chunk, chunk_size); 2925 if (res != TEE_SUCCESS) 2926 return res; 2927 } 2928 2929 res = crypto_hash_final(cs->ctx, hash, hash_size); 2930 if (res != TEE_SUCCESS) 2931 return res; 2932 break; 2933 2934 case TEE_OPERATION_MAC: 2935 res = tee_alg_get_digest_size(cs->algo, &hash_size); 2936 if (res != TEE_SUCCESS) 2937 return res; 2938 if (hlen < hash_size) { 2939 res = TEE_ERROR_SHORT_BUFFER; 2940 goto out; 2941 } 2942 2943 if (chunk_size) { 2944 res = crypto_mac_update(cs->ctx, chunk, chunk_size); 2945 if (res != TEE_SUCCESS) 2946 return res; 2947 } 2948 2949 res = crypto_mac_final(cs->ctx, hash, hash_size); 2950 if (res != TEE_SUCCESS) 2951 return res; 2952 break; 2953 2954 default: 2955 return TEE_ERROR_BAD_PARAMETERS; 2956 } 2957 out: 2958 res2 = put_user_u64(hash_len, hash_size); 2959 if (res2 != TEE_SUCCESS) 2960 return res2; 2961 return res; 2962 } 2963 2964 TEE_Result syscall_cipher_init(unsigned long state, const void *iv, 2965 size_t iv_len) 2966 { 2967 struct ts_session *sess = ts_get_current_session(); 2968 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 2969 struct tee_cryp_obj_secret *key1 = NULL; 2970 struct tee_cryp_state *cs = NULL; 2971 TEE_Result res = TEE_SUCCESS; 2972 struct tee_obj *o = NULL; 2973 2974 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 2975 if (res != TEE_SUCCESS) 2976 return res; 2977 2978 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_CIPHER) 2979 return TEE_ERROR_BAD_STATE; 2980 2981 iv = memtag_strip_tag_const(iv); 2982 2983 res = vm_check_access_rights(&utc->uctx, 2984 TEE_MEMORY_ACCESS_READ | 2985 TEE_MEMORY_ACCESS_ANY_OWNER, 2986 (uaddr_t)iv, iv_len); 2987 if (res != TEE_SUCCESS) 2988 return res; 2989 2990 res = tee_obj_get(utc, cs->key1, &o); 2991 if (res != TEE_SUCCESS) 2992 return res; 2993 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 2994 return TEE_ERROR_BAD_PARAMETERS; 2995 2996 key1 = o->attr; 2997 2998 if (tee_obj_get(utc, cs->key2, &o) == TEE_SUCCESS) { 2999 struct tee_cryp_obj_secret *key2 = o->attr; 3000 3001 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 3002 return TEE_ERROR_BAD_PARAMETERS; 3003 3004 res = crypto_cipher_init(cs->ctx, cs->mode, 3005 (uint8_t *)(key1 + 1), key1->key_size, 3006 (uint8_t *)(key2 + 1), key2->key_size, 3007 iv, iv_len); 3008 } else { 3009 res = crypto_cipher_init(cs->ctx, cs->mode, 3010 (uint8_t *)(key1 + 1), key1->key_size, 3011 NULL, 0, iv, iv_len); 3012 } 3013 if (res != TEE_SUCCESS) 3014 return res; 3015 3016 cs->ctx_finalize = crypto_cipher_final; 3017 cs->state = CRYP_STATE_INITIALIZED; 3018 3019 return TEE_SUCCESS; 3020 } 3021 3022 static TEE_Result tee_svc_cipher_update_helper(unsigned long state, 3023 bool last_block, const void *src, size_t src_len, 3024 void *dst, uint64_t *dst_len) 3025 { 3026 struct ts_session *sess = ts_get_current_session(); 3027 struct tee_cryp_state *cs = NULL; 3028 TEE_Result res = TEE_SUCCESS; 3029 size_t dlen = 0; 3030 3031 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3032 if (res != TEE_SUCCESS) 3033 return res; 3034 3035 if (cs->state != CRYP_STATE_INITIALIZED) 3036 return TEE_ERROR_BAD_STATE; 3037 3038 src = memtag_strip_tag_const(src); 3039 dst = memtag_strip_tag(dst); 3040 3041 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3042 TEE_MEMORY_ACCESS_READ | 3043 TEE_MEMORY_ACCESS_ANY_OWNER, 3044 (uaddr_t)src, src_len); 3045 if (res != TEE_SUCCESS) 3046 return res; 3047 3048 if (!dst_len) { 3049 dlen = 0; 3050 } else { 3051 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3052 uint32_t flags = TEE_MEMORY_ACCESS_READ | 3053 TEE_MEMORY_ACCESS_WRITE | 3054 TEE_MEMORY_ACCESS_ANY_OWNER; 3055 3056 res = get_user_u64_as_size_t(&dlen, dst_len); 3057 if (res != TEE_SUCCESS) 3058 return res; 3059 3060 res = vm_check_access_rights(uctx, flags, (uaddr_t)dst, dlen); 3061 if (res != TEE_SUCCESS) 3062 return res; 3063 } 3064 3065 if (dlen < src_len) { 3066 res = TEE_ERROR_SHORT_BUFFER; 3067 goto out; 3068 } 3069 3070 if (src_len > 0) { 3071 /* Permit src_len == 0 to finalize the operation */ 3072 res = tee_do_cipher_update(cs->ctx, cs->algo, cs->mode, 3073 last_block, src, src_len, dst); 3074 } 3075 3076 if (last_block && cs->ctx_finalize != NULL) { 3077 cs->ctx_finalize(cs->ctx); 3078 cs->ctx_finalize = NULL; 3079 } 3080 3081 out: 3082 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 3083 dst_len != NULL) { 3084 TEE_Result res2; 3085 3086 res2 = put_user_u64(dst_len, src_len); 3087 if (res2 != TEE_SUCCESS) 3088 res = res2; 3089 } 3090 3091 return res; 3092 } 3093 3094 TEE_Result syscall_cipher_update(unsigned long state, const void *src, 3095 size_t src_len, void *dst, uint64_t *dst_len) 3096 { 3097 return tee_svc_cipher_update_helper(state, false /* last_block */, 3098 src, src_len, dst, dst_len); 3099 } 3100 3101 TEE_Result syscall_cipher_final(unsigned long state, const void *src, 3102 size_t src_len, void *dst, uint64_t *dst_len) 3103 { 3104 return tee_svc_cipher_update_helper(state, true /* last_block */, 3105 src, src_len, dst, dst_len); 3106 } 3107 3108 #if defined(CFG_CRYPTO_HKDF) 3109 static TEE_Result get_hkdf_params(const TEE_Attribute *params, 3110 uint32_t param_count, 3111 void **salt, size_t *salt_len, void **info, 3112 size_t *info_len, size_t *okm_len) 3113 { 3114 size_t n; 3115 enum { SALT = 0x1, LENGTH = 0x2, INFO = 0x4 }; 3116 uint8_t found = 0; 3117 3118 *salt = *info = NULL; 3119 *salt_len = *info_len = *okm_len = 0; 3120 3121 for (n = 0; n < param_count; n++) { 3122 switch (params[n].attributeID) { 3123 case TEE_ATTR_HKDF_SALT: 3124 if (!(found & SALT)) { 3125 *salt = params[n].content.ref.buffer; 3126 *salt_len = params[n].content.ref.length; 3127 found |= SALT; 3128 } 3129 break; 3130 case TEE_ATTR_HKDF_OKM_LENGTH: 3131 if (!(found & LENGTH)) { 3132 *okm_len = params[n].content.value.a; 3133 found |= LENGTH; 3134 } 3135 break; 3136 case TEE_ATTR_HKDF_INFO: 3137 if (!(found & INFO)) { 3138 *info = params[n].content.ref.buffer; 3139 *info_len = params[n].content.ref.length; 3140 found |= INFO; 3141 } 3142 break; 3143 default: 3144 /* Unexpected attribute */ 3145 return TEE_ERROR_BAD_PARAMETERS; 3146 } 3147 3148 } 3149 3150 if (!(found & LENGTH)) 3151 return TEE_ERROR_BAD_PARAMETERS; 3152 3153 return TEE_SUCCESS; 3154 } 3155 #endif 3156 3157 #if defined(CFG_CRYPTO_CONCAT_KDF) 3158 static TEE_Result get_concat_kdf_params(const TEE_Attribute *params, 3159 uint32_t param_count, 3160 void **other_info, 3161 size_t *other_info_len, 3162 size_t *derived_key_len) 3163 { 3164 size_t n; 3165 enum { LENGTH = 0x1, INFO = 0x2 }; 3166 uint8_t found = 0; 3167 3168 *other_info = NULL; 3169 *other_info_len = *derived_key_len = 0; 3170 3171 for (n = 0; n < param_count; n++) { 3172 switch (params[n].attributeID) { 3173 case TEE_ATTR_CONCAT_KDF_OTHER_INFO: 3174 if (!(found & INFO)) { 3175 *other_info = params[n].content.ref.buffer; 3176 *other_info_len = params[n].content.ref.length; 3177 found |= INFO; 3178 } 3179 break; 3180 case TEE_ATTR_CONCAT_KDF_DKM_LENGTH: 3181 if (!(found & LENGTH)) { 3182 *derived_key_len = params[n].content.value.a; 3183 found |= LENGTH; 3184 } 3185 break; 3186 default: 3187 /* Unexpected attribute */ 3188 return TEE_ERROR_BAD_PARAMETERS; 3189 } 3190 } 3191 3192 if (!(found & LENGTH)) 3193 return TEE_ERROR_BAD_PARAMETERS; 3194 3195 return TEE_SUCCESS; 3196 } 3197 #endif 3198 3199 #if defined(CFG_CRYPTO_PBKDF2) 3200 static TEE_Result get_pbkdf2_params(const TEE_Attribute *params, 3201 uint32_t param_count, void **salt, 3202 size_t *salt_len, size_t *derived_key_len, 3203 size_t *iteration_count) 3204 { 3205 size_t n; 3206 enum { SALT = 0x1, LENGTH = 0x2, COUNT = 0x4 }; 3207 uint8_t found = 0; 3208 3209 *salt = NULL; 3210 *salt_len = *derived_key_len = *iteration_count = 0; 3211 3212 for (n = 0; n < param_count; n++) { 3213 switch (params[n].attributeID) { 3214 case TEE_ATTR_PBKDF2_SALT: 3215 if (!(found & SALT)) { 3216 *salt = params[n].content.ref.buffer; 3217 *salt_len = params[n].content.ref.length; 3218 found |= SALT; 3219 } 3220 break; 3221 case TEE_ATTR_PBKDF2_DKM_LENGTH: 3222 if (!(found & LENGTH)) { 3223 *derived_key_len = params[n].content.value.a; 3224 found |= LENGTH; 3225 } 3226 break; 3227 case TEE_ATTR_PBKDF2_ITERATION_COUNT: 3228 if (!(found & COUNT)) { 3229 *iteration_count = params[n].content.value.a; 3230 found |= COUNT; 3231 } 3232 break; 3233 default: 3234 /* Unexpected attribute */ 3235 return TEE_ERROR_BAD_PARAMETERS; 3236 } 3237 } 3238 3239 if ((found & (LENGTH|COUNT)) != (LENGTH|COUNT)) 3240 return TEE_ERROR_BAD_PARAMETERS; 3241 3242 return TEE_SUCCESS; 3243 } 3244 #endif 3245 3246 #if defined(CFG_CRYPTO_SM2_KEP) 3247 static TEE_Result get_sm2_kep_params(const TEE_Attribute *params, 3248 uint32_t param_count, 3249 struct ecc_public_key *peer_key, 3250 struct ecc_public_key *peer_eph_key, 3251 struct sm2_kep_parms *kep_parms) 3252 { 3253 TEE_Result res = TEE_ERROR_GENERIC; 3254 size_t n; 3255 enum { 3256 IS_INITIATOR, 3257 PEER_KEY_X, 3258 PEER_KEY_Y, 3259 PEER_EPH_KEY_X, 3260 PEER_EPH_KEY_Y, 3261 INITIATOR_ID, 3262 RESPONDER_ID, 3263 }; 3264 uint8_t mandatory = BIT(IS_INITIATOR) | BIT(PEER_KEY_X) | 3265 BIT(PEER_KEY_Y) | BIT(PEER_EPH_KEY_X) | BIT(PEER_EPH_KEY_Y) | 3266 BIT(INITIATOR_ID) | BIT(RESPONDER_ID); 3267 uint8_t found = 0; 3268 3269 res = crypto_acipher_alloc_ecc_public_key(peer_key, 3270 TEE_TYPE_SM2_KEP_PUBLIC_KEY, 3271 256); 3272 if (res) 3273 return res; 3274 3275 res = crypto_acipher_alloc_ecc_public_key(peer_eph_key, 3276 TEE_TYPE_SM2_KEP_PUBLIC_KEY, 3277 256); 3278 if (res) 3279 goto out_p; 3280 3281 peer_key->curve = TEE_ECC_CURVE_SM2; 3282 peer_eph_key->curve = TEE_ECC_CURVE_SM2; 3283 3284 for (n = 0; n < param_count; n++) { 3285 const TEE_Attribute *p = ¶ms[n]; 3286 3287 switch (p->attributeID) { 3288 case TEE_ATTR_SM2_KEP_USER: 3289 kep_parms->is_initiator = !p->content.value.a; 3290 found |= BIT(IS_INITIATOR); 3291 break; 3292 case TEE_ATTR_ECC_PUBLIC_VALUE_X: 3293 crypto_bignum_bin2bn(p->content.ref.buffer, 3294 p->content.ref.length, 3295 peer_key->x); 3296 found |= BIT(PEER_KEY_X); 3297 break; 3298 case TEE_ATTR_ECC_PUBLIC_VALUE_Y: 3299 crypto_bignum_bin2bn(p->content.ref.buffer, 3300 p->content.ref.length, 3301 peer_key->y); 3302 found |= BIT(PEER_KEY_Y); 3303 break; 3304 case __OPTEE_SM2_KEP_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X: 3305 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X: 3306 crypto_bignum_bin2bn(p->content.ref.buffer, 3307 p->content.ref.length, 3308 peer_eph_key->x); 3309 found |= BIT(PEER_EPH_KEY_X); 3310 break; 3311 case __OPTEE_SM2_KEP_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y: 3312 case TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y: 3313 crypto_bignum_bin2bn(p->content.ref.buffer, 3314 p->content.ref.length, 3315 peer_eph_key->y); 3316 found |= BIT(PEER_EPH_KEY_Y); 3317 break; 3318 case TEE_ATTR_SM2_ID_INITIATOR: 3319 kep_parms->initiator_id = p->content.ref.buffer; 3320 kep_parms->initiator_id_len = p->content.ref.length; 3321 found |= BIT(INITIATOR_ID); 3322 break; 3323 case TEE_ATTR_SM2_ID_RESPONDER: 3324 kep_parms->responder_id = p->content.ref.buffer; 3325 kep_parms->responder_id_len = p->content.ref.length; 3326 found |= BIT(RESPONDER_ID); 3327 break; 3328 case TEE_ATTR_SM2_KEP_CONFIRMATION_IN: 3329 kep_parms->conf_in = p->content.ref.buffer; 3330 kep_parms->conf_in_len = p->content.ref.length; 3331 break; 3332 case TEE_ATTR_SM2_KEP_CONFIRMATION_OUT: 3333 kep_parms->conf_out = p->content.ref.buffer; 3334 kep_parms->conf_out_len = p->content.ref.length; 3335 break; 3336 default: 3337 /* Unexpected attribute */ 3338 res = TEE_ERROR_BAD_PARAMETERS; 3339 goto out; 3340 } 3341 } 3342 3343 if ((found & mandatory) != mandatory) { 3344 res = TEE_ERROR_BAD_PARAMETERS; 3345 goto out; 3346 } 3347 3348 return TEE_SUCCESS; 3349 out: 3350 crypto_acipher_free_ecc_public_key(peer_eph_key); 3351 out_p: 3352 crypto_acipher_free_ecc_public_key(peer_key); 3353 return res; 3354 } 3355 #endif 3356 3357 TEE_Result syscall_cryp_derive_key(unsigned long state, 3358 const struct utee_attribute *usr_params, 3359 unsigned long param_count, unsigned long derived_key) 3360 { 3361 struct ts_session *sess = ts_get_current_session(); 3362 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 3363 TEE_Result res = TEE_ERROR_NOT_SUPPORTED; 3364 struct tee_obj *ko = NULL; 3365 struct tee_obj *so = NULL; 3366 struct tee_cryp_state *cs = NULL; 3367 struct tee_cryp_obj_secret *sk = NULL; 3368 const struct tee_cryp_obj_type_props *type_props = NULL; 3369 TEE_Attribute *params = NULL; 3370 size_t alloc_size = 0; 3371 3372 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3373 if (res != TEE_SUCCESS) 3374 return res; 3375 3376 if (MUL_OVERFLOW(sizeof(TEE_Attribute), param_count, &alloc_size)) 3377 return TEE_ERROR_OVERFLOW; 3378 3379 params = malloc(alloc_size); 3380 if (!params) 3381 return TEE_ERROR_OUT_OF_MEMORY; 3382 res = copy_in_attrs(utc, usr_params, param_count, params); 3383 if (res != TEE_SUCCESS) 3384 goto out; 3385 3386 /* Get key set in operation */ 3387 res = tee_obj_get(utc, cs->key1, &ko); 3388 if (res != TEE_SUCCESS) 3389 goto out; 3390 3391 res = tee_obj_get(utc, uref_to_vaddr(derived_key), &so); 3392 if (res != TEE_SUCCESS) 3393 goto out; 3394 3395 /* Find information needed about the object to initialize */ 3396 sk = so->attr; 3397 3398 /* Find description of object */ 3399 type_props = tee_svc_find_type_props(so->info.objectType); 3400 if (!type_props) { 3401 res = TEE_ERROR_NOT_SUPPORTED; 3402 goto out; 3403 } 3404 3405 if (cs->algo == TEE_ALG_DH_DERIVE_SHARED_SECRET) { 3406 struct bignum *pub = NULL; 3407 struct bignum *ss = NULL; 3408 size_t bin_size = 0; 3409 3410 if (param_count != 1 || 3411 params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE) { 3412 res = TEE_ERROR_BAD_PARAMETERS; 3413 goto out; 3414 } 3415 3416 bin_size = params[0].content.ref.length; 3417 3418 if (MUL_OVERFLOW(bin_size, 8, &alloc_size)) { 3419 res = TEE_ERROR_OVERFLOW; 3420 goto out; 3421 } 3422 3423 pub = crypto_bignum_allocate(alloc_size); 3424 ss = crypto_bignum_allocate(alloc_size); 3425 if (pub && ss) { 3426 crypto_bignum_bin2bn(params[0].content.ref.buffer, 3427 bin_size, pub); 3428 res = crypto_acipher_dh_shared_secret(ko->attr, 3429 pub, ss); 3430 if (res == TEE_SUCCESS) { 3431 sk->key_size = crypto_bignum_num_bytes(ss); 3432 crypto_bignum_bn2bin(ss, (uint8_t *)(sk + 1)); 3433 so->info.handleFlags |= 3434 TEE_HANDLE_FLAG_INITIALIZED; 3435 set_attribute(so, type_props, 3436 TEE_ATTR_SECRET_VALUE); 3437 } 3438 } else { 3439 res = TEE_ERROR_OUT_OF_MEMORY; 3440 } 3441 crypto_bignum_free(pub); 3442 crypto_bignum_free(ss); 3443 } else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_ECDH) { 3444 struct ecc_public_key key_public; 3445 uint8_t *pt_secret; 3446 unsigned long pt_secret_len; 3447 uint32_t key_type = TEE_TYPE_ECDH_PUBLIC_KEY; 3448 3449 if (param_count != 2 || 3450 params[0].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_X || 3451 params[1].attributeID != TEE_ATTR_ECC_PUBLIC_VALUE_Y) { 3452 res = TEE_ERROR_BAD_PARAMETERS; 3453 goto out; 3454 } 3455 3456 switch (cs->algo) { 3457 case TEE_ALG_ECDH_P192: 3458 alloc_size = 192; 3459 break; 3460 case TEE_ALG_ECDH_P224: 3461 alloc_size = 224; 3462 break; 3463 case TEE_ALG_ECDH_P256: 3464 alloc_size = 256; 3465 break; 3466 case TEE_ALG_ECDH_P384: 3467 alloc_size = 384; 3468 break; 3469 case TEE_ALG_ECDH_P521: 3470 alloc_size = 521; 3471 break; 3472 default: 3473 res = TEE_ERROR_NOT_IMPLEMENTED; 3474 goto out; 3475 } 3476 3477 /* Create the public key */ 3478 res = crypto_acipher_alloc_ecc_public_key(&key_public, key_type, 3479 alloc_size); 3480 if (res != TEE_SUCCESS) 3481 goto out; 3482 key_public.curve = ((struct ecc_keypair *)ko->attr)->curve; 3483 crypto_bignum_bin2bn(params[0].content.ref.buffer, 3484 params[0].content.ref.length, 3485 key_public.x); 3486 crypto_bignum_bin2bn(params[1].content.ref.buffer, 3487 params[1].content.ref.length, 3488 key_public.y); 3489 3490 pt_secret = (uint8_t *)(sk + 1); 3491 pt_secret_len = sk->alloc_size; 3492 res = crypto_acipher_ecc_shared_secret(ko->attr, &key_public, 3493 pt_secret, 3494 &pt_secret_len); 3495 3496 if (res == TEE_SUCCESS) { 3497 sk->key_size = pt_secret_len; 3498 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3499 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3500 } 3501 3502 /* free the public key */ 3503 crypto_acipher_free_ecc_public_key(&key_public); 3504 } 3505 #if defined(CFG_CRYPTO_HKDF) 3506 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_HKDF) { 3507 void *salt, *info; 3508 size_t salt_len, info_len, okm_len; 3509 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3510 struct tee_cryp_obj_secret *ik = ko->attr; 3511 const uint8_t *ikm = (const uint8_t *)(ik + 1); 3512 3513 res = get_hkdf_params(params, param_count, &salt, &salt_len, 3514 &info, &info_len, &okm_len); 3515 if (res != TEE_SUCCESS) 3516 goto out; 3517 3518 /* Requested size must fit into the output object's buffer */ 3519 if (okm_len > ik->alloc_size) { 3520 res = TEE_ERROR_BAD_PARAMETERS; 3521 goto out; 3522 } 3523 3524 res = tee_cryp_hkdf(hash_id, ikm, ik->key_size, salt, salt_len, 3525 info, info_len, (uint8_t *)(sk + 1), 3526 okm_len); 3527 if (res == TEE_SUCCESS) { 3528 sk->key_size = okm_len; 3529 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3530 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3531 } 3532 } 3533 #endif 3534 #if defined(CFG_CRYPTO_CONCAT_KDF) 3535 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_CONCAT_KDF) { 3536 void *info; 3537 size_t info_len, derived_key_len; 3538 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3539 struct tee_cryp_obj_secret *ss = ko->attr; 3540 const uint8_t *shared_secret = (const uint8_t *)(ss + 1); 3541 3542 res = get_concat_kdf_params(params, param_count, &info, 3543 &info_len, &derived_key_len); 3544 if (res != TEE_SUCCESS) 3545 goto out; 3546 3547 /* Requested size must fit into the output object's buffer */ 3548 if (derived_key_len > ss->alloc_size) { 3549 res = TEE_ERROR_BAD_PARAMETERS; 3550 goto out; 3551 } 3552 3553 res = tee_cryp_concat_kdf(hash_id, shared_secret, ss->key_size, 3554 info, info_len, (uint8_t *)(sk + 1), 3555 derived_key_len); 3556 if (res == TEE_SUCCESS) { 3557 sk->key_size = derived_key_len; 3558 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3559 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3560 } 3561 } 3562 #endif 3563 #if defined(CFG_CRYPTO_PBKDF2) 3564 else if (TEE_ALG_GET_MAIN_ALG(cs->algo) == TEE_MAIN_ALGO_PBKDF2) { 3565 void *salt; 3566 size_t salt_len, iteration_count, derived_key_len; 3567 uint32_t hash_id = TEE_ALG_GET_DIGEST_HASH(cs->algo); 3568 struct tee_cryp_obj_secret *ss = ko->attr; 3569 const uint8_t *password = (const uint8_t *)(ss + 1); 3570 3571 res = get_pbkdf2_params(params, param_count, &salt, &salt_len, 3572 &derived_key_len, &iteration_count); 3573 if (res != TEE_SUCCESS) 3574 goto out; 3575 3576 /* Requested size must fit into the output object's buffer */ 3577 if (derived_key_len > ss->alloc_size) { 3578 res = TEE_ERROR_BAD_PARAMETERS; 3579 goto out; 3580 } 3581 3582 res = tee_cryp_pbkdf2(hash_id, password, ss->key_size, salt, 3583 salt_len, iteration_count, 3584 (uint8_t *)(sk + 1), derived_key_len); 3585 if (res == TEE_SUCCESS) { 3586 sk->key_size = derived_key_len; 3587 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3588 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3589 } 3590 } 3591 #endif 3592 #if defined(CFG_CRYPTO_SM2_KEP) 3593 else if (cs->algo == TEE_ALG_SM2_KEP) { 3594 struct ecc_public_key peer_eph_key = { }; 3595 struct ecc_public_key peer_key = { }; 3596 struct sm2_kep_parms kep_parms = { 3597 .out = (uint8_t *)(sk + 1), 3598 .out_len = so->info.maxObjectSize, 3599 }; 3600 struct tee_obj *ko2 = NULL; 3601 3602 res = tee_obj_get(utc, cs->key2, &ko2); 3603 if (res != TEE_SUCCESS) 3604 goto out; 3605 3606 res = get_sm2_kep_params(params, param_count, &peer_key, 3607 &peer_eph_key, &kep_parms); 3608 if (res != TEE_SUCCESS) 3609 goto out; 3610 3611 /* 3612 * key1 is our private keypair, key2 is our ephemeral public key 3613 */ 3614 res = crypto_acipher_sm2_kep_derive(ko->attr, /* key1 */ 3615 ko2->attr, /* key2 */ 3616 &peer_key, &peer_eph_key, 3617 &kep_parms); 3618 3619 if (res == TEE_SUCCESS) { 3620 sk->key_size = kep_parms.out_len; 3621 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3622 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3623 } 3624 crypto_acipher_free_ecc_public_key(&peer_key); 3625 crypto_acipher_free_ecc_public_key(&peer_eph_key); 3626 } 3627 #endif 3628 #if defined(CFG_CRYPTO_X25519) 3629 else if (cs->algo == TEE_ALG_X25519) { 3630 uint8_t *x25519_pub_key = NULL; 3631 uint8_t *pt_secret = NULL; 3632 unsigned long pt_secret_len = 0; 3633 3634 if (param_count != 1 || 3635 params[0].attributeID != TEE_ATTR_X25519_PUBLIC_VALUE) { 3636 res = TEE_ERROR_BAD_PARAMETERS; 3637 goto out; 3638 } 3639 3640 /* X25519 public key size is 32 bytes */ 3641 if (params[0].content.ref.length != KEY_SIZE_BYTES_25519) { 3642 res = TEE_ERROR_BAD_PARAMETERS; 3643 goto out; 3644 } 3645 3646 /* Set the public key */ 3647 x25519_pub_key = params[0].content.ref.buffer; 3648 3649 pt_secret = (uint8_t *)(sk + 1); 3650 pt_secret_len = sk->alloc_size; 3651 res = crypto_acipher_x25519_shared_secret(ko->attr, 3652 x25519_pub_key, 3653 pt_secret, 3654 &pt_secret_len); 3655 3656 if (res == TEE_SUCCESS) { 3657 sk->key_size = pt_secret_len; 3658 so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; 3659 set_attribute(so, type_props, TEE_ATTR_SECRET_VALUE); 3660 } 3661 } 3662 #endif 3663 else 3664 res = TEE_ERROR_NOT_SUPPORTED; 3665 3666 out: 3667 free_wipe(params); 3668 return res; 3669 } 3670 3671 TEE_Result syscall_cryp_random_number_generate(void *buf, size_t blen) 3672 { 3673 struct ts_session *sess = ts_get_current_session(); 3674 TEE_Result res = TEE_SUCCESS; 3675 3676 buf = memtag_strip_tag(buf); 3677 3678 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3679 TEE_MEMORY_ACCESS_WRITE, 3680 (uaddr_t)buf, blen); 3681 if (res != TEE_SUCCESS) 3682 return res; 3683 3684 res = crypto_rng_read(buf, blen); 3685 if (res != TEE_SUCCESS) 3686 return res; 3687 3688 return res; 3689 } 3690 3691 TEE_Result syscall_authenc_init(unsigned long state, const void *nonce, 3692 size_t nonce_len, size_t tag_len, 3693 size_t aad_len, size_t payload_len) 3694 { 3695 struct ts_session *sess = ts_get_current_session(); 3696 struct tee_cryp_obj_secret *key = NULL; 3697 struct tee_cryp_state *cs = NULL; 3698 TEE_Result res = TEE_SUCCESS; 3699 struct tee_obj *o = NULL; 3700 3701 nonce = memtag_strip_tag_const(nonce); 3702 3703 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3704 TEE_MEMORY_ACCESS_READ | 3705 TEE_MEMORY_ACCESS_ANY_OWNER, 3706 (uaddr_t)nonce, nonce_len); 3707 if (res != TEE_SUCCESS) 3708 return res; 3709 3710 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3711 if (res != TEE_SUCCESS) 3712 return res; 3713 3714 res = tee_obj_get(to_user_ta_ctx(sess->ctx), cs->key1, &o); 3715 if (res != TEE_SUCCESS) 3716 return res; 3717 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) 3718 return TEE_ERROR_BAD_PARAMETERS; 3719 3720 key = o->attr; 3721 res = crypto_authenc_init(cs->ctx, cs->mode, (uint8_t *)(key + 1), 3722 key->key_size, nonce, nonce_len, tag_len, 3723 aad_len, payload_len); 3724 if (res != TEE_SUCCESS) 3725 return res; 3726 3727 cs->ctx_finalize = crypto_authenc_final; 3728 cs->state = CRYP_STATE_INITIALIZED; 3729 3730 return TEE_SUCCESS; 3731 } 3732 3733 TEE_Result syscall_authenc_update_aad(unsigned long state, 3734 const void *aad_data, size_t aad_data_len) 3735 { 3736 struct ts_session *sess = ts_get_current_session(); 3737 TEE_Result res = TEE_SUCCESS; 3738 struct tee_cryp_state *cs = NULL; 3739 3740 aad_data = memtag_strip_tag_const(aad_data); 3741 3742 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3743 TEE_MEMORY_ACCESS_READ | 3744 TEE_MEMORY_ACCESS_ANY_OWNER, 3745 (uaddr_t)aad_data, aad_data_len); 3746 if (res != TEE_SUCCESS) 3747 return res; 3748 3749 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3750 if (res != TEE_SUCCESS) 3751 return res; 3752 3753 if (cs->state != CRYP_STATE_INITIALIZED) 3754 return TEE_ERROR_BAD_STATE; 3755 3756 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3757 return TEE_ERROR_BAD_STATE; 3758 3759 res = crypto_authenc_update_aad(cs->ctx, cs->mode, aad_data, 3760 aad_data_len); 3761 if (res != TEE_SUCCESS) 3762 return res; 3763 3764 return TEE_SUCCESS; 3765 } 3766 3767 TEE_Result syscall_authenc_update_payload(unsigned long state, 3768 const void *src_data, 3769 size_t src_len, void *dst_data, 3770 uint64_t *dst_len) 3771 { 3772 struct ts_session *sess = ts_get_current_session(); 3773 struct tee_cryp_state *cs = NULL; 3774 TEE_Result res = TEE_SUCCESS; 3775 size_t dlen = 0; 3776 3777 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3778 if (res != TEE_SUCCESS) 3779 return res; 3780 3781 if (cs->state != CRYP_STATE_INITIALIZED) 3782 return TEE_ERROR_BAD_STATE; 3783 3784 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3785 return TEE_ERROR_BAD_STATE; 3786 3787 src_data = memtag_strip_tag_const(src_data); 3788 dst_data = memtag_strip_tag(dst_data); 3789 3790 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3791 TEE_MEMORY_ACCESS_READ | 3792 TEE_MEMORY_ACCESS_ANY_OWNER, 3793 (uaddr_t)src_data, src_len); 3794 if (res != TEE_SUCCESS) 3795 return res; 3796 3797 res = get_user_u64_as_size_t(&dlen, dst_len); 3798 if (res != TEE_SUCCESS) 3799 return res; 3800 3801 res = vm_check_access_rights(&to_user_ta_ctx(sess->ctx)->uctx, 3802 TEE_MEMORY_ACCESS_READ | 3803 TEE_MEMORY_ACCESS_WRITE | 3804 TEE_MEMORY_ACCESS_ANY_OWNER, 3805 (uaddr_t)dst_data, dlen); 3806 if (res != TEE_SUCCESS) 3807 return res; 3808 3809 if (dlen < src_len) { 3810 res = TEE_ERROR_SHORT_BUFFER; 3811 goto out; 3812 } 3813 3814 res = crypto_authenc_update_payload(cs->ctx, cs->mode, src_data, 3815 src_len, dst_data, &dlen); 3816 out: 3817 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3818 TEE_Result res2 = put_user_u64(dst_len, dlen); 3819 3820 if (res2 != TEE_SUCCESS) 3821 res = res2; 3822 } 3823 3824 return res; 3825 } 3826 3827 TEE_Result syscall_authenc_enc_final(unsigned long state, const void *src_data, 3828 size_t src_len, void *dst_data, 3829 uint64_t *dst_len, void *tag, 3830 uint64_t *tag_len) 3831 { 3832 struct ts_session *sess = ts_get_current_session(); 3833 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3834 struct tee_cryp_state *cs = NULL; 3835 TEE_Result res = TEE_SUCCESS; 3836 size_t dlen = 0; 3837 size_t tlen = 0; 3838 3839 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3840 if (res != TEE_SUCCESS) 3841 return res; 3842 3843 if (cs->state != CRYP_STATE_INITIALIZED) 3844 return TEE_ERROR_BAD_STATE; 3845 3846 if (cs->mode != TEE_MODE_ENCRYPT) 3847 return TEE_ERROR_BAD_PARAMETERS; 3848 3849 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3850 return TEE_ERROR_BAD_STATE; 3851 3852 src_data = memtag_strip_tag_const(src_data); 3853 dst_data = memtag_strip_tag(dst_data); 3854 tag = memtag_strip_tag(tag); 3855 3856 res = vm_check_access_rights(uctx, 3857 TEE_MEMORY_ACCESS_READ | 3858 TEE_MEMORY_ACCESS_ANY_OWNER, 3859 (uaddr_t)src_data, src_len); 3860 if (res != TEE_SUCCESS) 3861 return res; 3862 3863 if (!dst_len) { 3864 dlen = 0; 3865 } else { 3866 res = get_user_u64_as_size_t(&dlen, dst_len); 3867 if (res != TEE_SUCCESS) 3868 return res; 3869 3870 res = vm_check_access_rights(uctx, 3871 TEE_MEMORY_ACCESS_READ | 3872 TEE_MEMORY_ACCESS_WRITE | 3873 TEE_MEMORY_ACCESS_ANY_OWNER, 3874 (uaddr_t)dst_data, dlen); 3875 if (res != TEE_SUCCESS) 3876 return res; 3877 } 3878 3879 if (dlen < src_len) { 3880 res = TEE_ERROR_SHORT_BUFFER; 3881 goto out; 3882 } 3883 3884 res = get_user_u64_as_size_t(&tlen, tag_len); 3885 if (res != TEE_SUCCESS) 3886 return res; 3887 3888 res = vm_check_access_rights(uctx, 3889 TEE_MEMORY_ACCESS_READ | 3890 TEE_MEMORY_ACCESS_WRITE | 3891 TEE_MEMORY_ACCESS_ANY_OWNER, 3892 (uaddr_t)tag, tlen); 3893 if (res != TEE_SUCCESS) 3894 return res; 3895 3896 res = crypto_authenc_enc_final(cs->ctx, src_data, src_len, dst_data, 3897 &dlen, tag, &tlen); 3898 3899 out: 3900 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 3901 TEE_Result res2 = TEE_SUCCESS; 3902 3903 if (dst_len != NULL) { 3904 res2 = put_user_u64(dst_len, dlen); 3905 if (res2 != TEE_SUCCESS) 3906 return res2; 3907 } 3908 3909 res2 = put_user_u64(tag_len, tlen); 3910 if (res2 != TEE_SUCCESS) 3911 return res2; 3912 } 3913 3914 return res; 3915 } 3916 3917 TEE_Result syscall_authenc_dec_final(unsigned long state, 3918 const void *src_data, size_t src_len, void *dst_data, 3919 uint64_t *dst_len, const void *tag, size_t tag_len) 3920 { 3921 struct ts_session *sess = ts_get_current_session(); 3922 struct user_mode_ctx *uctx = &to_user_ta_ctx(sess->ctx)->uctx; 3923 struct tee_cryp_state *cs = NULL; 3924 TEE_Result res = TEE_SUCCESS; 3925 size_t dlen = 0; 3926 3927 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 3928 if (res != TEE_SUCCESS) 3929 return res; 3930 3931 if (cs->state != CRYP_STATE_INITIALIZED) 3932 return TEE_ERROR_BAD_STATE; 3933 3934 if (cs->mode != TEE_MODE_DECRYPT) 3935 return TEE_ERROR_BAD_PARAMETERS; 3936 3937 if (TEE_ALG_GET_CLASS(cs->algo) != TEE_OPERATION_AE) 3938 return TEE_ERROR_BAD_STATE; 3939 3940 src_data = memtag_strip_tag_const(src_data); 3941 dst_data = memtag_strip_tag(dst_data); 3942 tag = memtag_strip_tag_const(tag); 3943 3944 res = vm_check_access_rights(uctx, 3945 TEE_MEMORY_ACCESS_READ | 3946 TEE_MEMORY_ACCESS_ANY_OWNER, 3947 (uaddr_t)src_data, src_len); 3948 if (res != TEE_SUCCESS) 3949 return res; 3950 3951 if (!dst_len) { 3952 dlen = 0; 3953 } else { 3954 res = get_user_u64_as_size_t(&dlen, dst_len); 3955 if (res != TEE_SUCCESS) 3956 return res; 3957 3958 res = vm_check_access_rights(uctx, 3959 TEE_MEMORY_ACCESS_READ | 3960 TEE_MEMORY_ACCESS_WRITE | 3961 TEE_MEMORY_ACCESS_ANY_OWNER, 3962 (uaddr_t)dst_data, dlen); 3963 if (res != TEE_SUCCESS) 3964 return res; 3965 } 3966 3967 if (dlen < src_len) { 3968 res = TEE_ERROR_SHORT_BUFFER; 3969 goto out; 3970 } 3971 3972 res = vm_check_access_rights(uctx, TEE_MEMORY_ACCESS_READ, 3973 (uaddr_t)tag, tag_len); 3974 if (res != TEE_SUCCESS) 3975 return res; 3976 3977 res = crypto_authenc_dec_final(cs->ctx, src_data, src_len, dst_data, 3978 &dlen, tag, tag_len); 3979 3980 out: 3981 if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && 3982 dst_len != NULL) { 3983 TEE_Result res2 = put_user_u64(dst_len, dlen); 3984 3985 if (res2 != TEE_SUCCESS) 3986 return res2; 3987 } 3988 3989 return res; 3990 } 3991 3992 static int pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params, 3993 size_t default_len) 3994 { 3995 size_t n; 3996 3997 assert(default_len < INT_MAX); 3998 3999 for (n = 0; n < num_params; n++) { 4000 if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) { 4001 if (params[n].content.value.a < INT_MAX) 4002 return params[n].content.value.a; 4003 break; 4004 } 4005 } 4006 /* 4007 * If salt length isn't provided use the default value which is 4008 * the length of the digest. 4009 */ 4010 return default_len; 4011 } 4012 4013 TEE_Result syscall_asymm_operate(unsigned long state, 4014 const struct utee_attribute *usr_params, 4015 size_t num_params, const void *src_data, size_t src_len, 4016 void *dst_data, uint64_t *dst_len) 4017 { 4018 struct ts_session *sess = ts_get_current_session(); 4019 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 4020 TEE_Result res = TEE_SUCCESS; 4021 struct tee_cryp_state *cs = NULL; 4022 size_t dlen = 0; 4023 struct tee_obj *o = NULL; 4024 void *label = NULL; 4025 size_t label_len = 0; 4026 size_t n = 0; 4027 int salt_len = 0; 4028 TEE_Attribute *params = NULL; 4029 size_t alloc_size = 0; 4030 4031 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 4032 if (res != TEE_SUCCESS) 4033 return res; 4034 4035 src_data = memtag_strip_tag_const(src_data); 4036 dst_data = memtag_strip_tag(dst_data); 4037 4038 res = vm_check_access_rights(&utc->uctx, 4039 TEE_MEMORY_ACCESS_READ | 4040 TEE_MEMORY_ACCESS_ANY_OWNER, 4041 (uaddr_t)src_data, src_len); 4042 if (res != TEE_SUCCESS) 4043 return res; 4044 4045 res = get_user_u64_as_size_t(&dlen, dst_len); 4046 if (res != TEE_SUCCESS) 4047 return res; 4048 4049 res = vm_check_access_rights(&utc->uctx, 4050 TEE_MEMORY_ACCESS_READ | 4051 TEE_MEMORY_ACCESS_WRITE | 4052 TEE_MEMORY_ACCESS_ANY_OWNER, 4053 (uaddr_t)dst_data, dlen); 4054 if (res != TEE_SUCCESS) 4055 return res; 4056 4057 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 4058 return TEE_ERROR_OVERFLOW; 4059 4060 params = malloc(alloc_size); 4061 if (!params) 4062 return TEE_ERROR_OUT_OF_MEMORY; 4063 res = copy_in_attrs(utc, usr_params, num_params, params); 4064 if (res != TEE_SUCCESS) 4065 goto out; 4066 4067 res = tee_obj_get(utc, cs->key1, &o); 4068 if (res != TEE_SUCCESS) 4069 goto out; 4070 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 4071 res = TEE_ERROR_GENERIC; 4072 goto out; 4073 } 4074 4075 switch (cs->algo) { 4076 case TEE_ALG_RSA_NOPAD: 4077 if (cs->mode == TEE_MODE_ENCRYPT) { 4078 res = crypto_acipher_rsanopad_encrypt(o->attr, src_data, 4079 src_len, dst_data, 4080 &dlen); 4081 } else if (cs->mode == TEE_MODE_DECRYPT) { 4082 res = crypto_acipher_rsanopad_decrypt(o->attr, src_data, 4083 src_len, dst_data, 4084 &dlen); 4085 } else { 4086 /* 4087 * We will panic because "the mode is not compatible 4088 * with the function" 4089 */ 4090 res = TEE_ERROR_GENERIC; 4091 } 4092 break; 4093 4094 case TEE_ALG_SM2_PKE: 4095 if (cs->mode == TEE_MODE_ENCRYPT) { 4096 res = crypto_acipher_sm2_pke_encrypt(o->attr, src_data, 4097 src_len, dst_data, 4098 &dlen); 4099 } else if (cs->mode == TEE_MODE_DECRYPT) { 4100 res = crypto_acipher_sm2_pke_decrypt(o->attr, src_data, 4101 src_len, dst_data, 4102 &dlen); 4103 } else { 4104 res = TEE_ERROR_GENERIC; 4105 } 4106 break; 4107 4108 case TEE_ALG_RSAES_PKCS1_V1_5: 4109 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1: 4110 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224: 4111 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256: 4112 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384: 4113 case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512: 4114 for (n = 0; n < num_params; n++) { 4115 if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) { 4116 label = params[n].content.ref.buffer; 4117 label_len = params[n].content.ref.length; 4118 break; 4119 } 4120 } 4121 4122 if (cs->mode == TEE_MODE_ENCRYPT) { 4123 res = crypto_acipher_rsaes_encrypt(cs->algo, o->attr, 4124 label, label_len, 4125 src_data, src_len, 4126 dst_data, &dlen); 4127 } else if (cs->mode == TEE_MODE_DECRYPT) { 4128 res = crypto_acipher_rsaes_decrypt( 4129 cs->algo, o->attr, label, label_len, 4130 src_data, src_len, dst_data, &dlen); 4131 } else { 4132 res = TEE_ERROR_BAD_PARAMETERS; 4133 } 4134 break; 4135 4136 #if defined(CFG_CRYPTO_RSASSA_NA1) 4137 case TEE_ALG_RSASSA_PKCS1_V1_5: 4138 #endif 4139 case TEE_ALG_RSASSA_PKCS1_V1_5_MD5: 4140 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1: 4141 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224: 4142 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256: 4143 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384: 4144 case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512: 4145 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1: 4146 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224: 4147 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256: 4148 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384: 4149 case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512: 4150 if (cs->mode != TEE_MODE_SIGN) { 4151 res = TEE_ERROR_BAD_PARAMETERS; 4152 break; 4153 } 4154 salt_len = pkcs1_get_salt_len(params, num_params, src_len); 4155 res = crypto_acipher_rsassa_sign(cs->algo, o->attr, salt_len, 4156 src_data, src_len, dst_data, 4157 &dlen); 4158 break; 4159 4160 case TEE_ALG_DSA_SHA1: 4161 case TEE_ALG_DSA_SHA224: 4162 case TEE_ALG_DSA_SHA256: 4163 res = crypto_acipher_dsa_sign(cs->algo, o->attr, src_data, 4164 src_len, dst_data, &dlen); 4165 break; 4166 4167 case TEE_ALG_ED25519: 4168 res = tee_svc_obj_ed25519_sign(o->attr, src_data, src_len, 4169 dst_data, &dlen, params, 4170 num_params); 4171 break; 4172 4173 case TEE_ALG_ECDSA_P192: 4174 case TEE_ALG_ECDSA_P224: 4175 case TEE_ALG_ECDSA_P256: 4176 case TEE_ALG_ECDSA_P384: 4177 case TEE_ALG_ECDSA_P521: 4178 case TEE_ALG_SM2_DSA_SM3: 4179 res = crypto_acipher_ecc_sign(cs->algo, o->attr, src_data, 4180 src_len, dst_data, &dlen); 4181 break; 4182 default: 4183 res = TEE_ERROR_BAD_PARAMETERS; 4184 break; 4185 } 4186 4187 out: 4188 free_wipe(params); 4189 4190 if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { 4191 TEE_Result res2 = put_user_u64(dst_len, dlen); 4192 4193 if (res2 != TEE_SUCCESS) 4194 return res2; 4195 } 4196 4197 return res; 4198 } 4199 4200 TEE_Result syscall_asymm_verify(unsigned long state, 4201 const struct utee_attribute *usr_params, 4202 size_t num_params, const void *data, size_t data_len, 4203 const void *sig, size_t sig_len) 4204 { 4205 struct ts_session *sess = ts_get_current_session(); 4206 struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); 4207 struct tee_cryp_state *cs = NULL; 4208 TEE_Result res = TEE_SUCCESS; 4209 TEE_Attribute *params = NULL; 4210 struct tee_obj *o = NULL; 4211 size_t hash_size = 0; 4212 uint32_t hash_algo = 0; 4213 int salt_len = 0; 4214 size_t alloc_size = 0; 4215 4216 res = tee_svc_cryp_get_state(sess, uref_to_vaddr(state), &cs); 4217 if (res != TEE_SUCCESS) 4218 return res; 4219 4220 if (cs->mode != TEE_MODE_VERIFY) 4221 return TEE_ERROR_BAD_PARAMETERS; 4222 4223 data = memtag_strip_tag_const(data); 4224 sig = memtag_strip_tag_const(sig); 4225 4226 res = vm_check_access_rights(&utc->uctx, 4227 TEE_MEMORY_ACCESS_READ | 4228 TEE_MEMORY_ACCESS_ANY_OWNER, 4229 (uaddr_t)data, data_len); 4230 if (res != TEE_SUCCESS) 4231 return res; 4232 4233 res = vm_check_access_rights(&utc->uctx, 4234 TEE_MEMORY_ACCESS_READ | 4235 TEE_MEMORY_ACCESS_ANY_OWNER, 4236 (uaddr_t)sig, sig_len); 4237 if (res != TEE_SUCCESS) 4238 return res; 4239 4240 if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params, &alloc_size)) 4241 return TEE_ERROR_OVERFLOW; 4242 4243 params = malloc(alloc_size); 4244 if (!params) 4245 return TEE_ERROR_OUT_OF_MEMORY; 4246 res = copy_in_attrs(utc, usr_params, num_params, params); 4247 if (res != TEE_SUCCESS) 4248 goto out; 4249 4250 res = tee_obj_get(utc, cs->key1, &o); 4251 if (res != TEE_SUCCESS) 4252 goto out; 4253 if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) { 4254 res = TEE_ERROR_BAD_PARAMETERS; 4255 goto out; 4256 } 4257 4258 switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) { 4259 case TEE_MAIN_ALGO_RSA: 4260 if (cs->algo != TEE_ALG_RSASSA_PKCS1_V1_5) { 4261 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 4262 res = tee_alg_get_digest_size(hash_algo, &hash_size); 4263 if (res != TEE_SUCCESS) 4264 break; 4265 if (data_len != hash_size) { 4266 res = TEE_ERROR_BAD_PARAMETERS; 4267 break; 4268 } 4269 salt_len = pkcs1_get_salt_len(params, num_params, 4270 hash_size); 4271 } 4272 res = crypto_acipher_rsassa_verify(cs->algo, o->attr, salt_len, 4273 data, data_len, sig, 4274 sig_len); 4275 break; 4276 4277 case TEE_MAIN_ALGO_DSA: 4278 hash_algo = TEE_DIGEST_HASH_TO_ALGO(cs->algo); 4279 res = tee_alg_get_digest_size(hash_algo, &hash_size); 4280 if (res != TEE_SUCCESS) 4281 break; 4282 4283 if (data_len != hash_size) { 4284 struct dsa_public_key *key = o->attr; 4285 4286 /* 4287 * Depending on the DSA algorithm (NIST), the 4288 * digital signature output size may be truncated 4289 * to the size of a key pair (Q prime size). Q 4290 * prime size must be less or equal than the hash 4291 * output length of the hash algorithm involved. 4292 * 4293 * We're checking here in order to be able to 4294 * return this particular error code, which will 4295 * cause TEE_AsymmetricVerifyDigest() to panic as 4296 * required by GP. crypto_acipher_dsa_verify() is 4297 * implemented in the glue layer of the crypto 4298 * library and it might be a bit harder to catch 4299 * this particular case there or lead to duplicated 4300 * code in different crypto glue layers. 4301 * 4302 * The GP spec says that we SHOULD panic if 4303 * data_len != hash_size, but that would break a 4304 * few of the DSA tests in xtest where the 4305 * hash_size is larger than possible data_len. So 4306 * the compromise is in case data_len != hash_size 4307 * check that it's not smaller than what makes 4308 * sense. 4309 */ 4310 if (data_len != crypto_bignum_num_bytes(key->q)) { 4311 res = TEE_ERROR_BAD_PARAMETERS; 4312 break; 4313 } 4314 } 4315 res = crypto_acipher_dsa_verify(cs->algo, o->attr, data, 4316 data_len, sig, sig_len); 4317 break; 4318 4319 case TEE_MAIN_ALGO_ED25519: 4320 res = tee_svc_obj_ed25519_verify(o->attr, data, 4321 data_len, sig, sig_len, 4322 params, num_params); 4323 break; 4324 4325 case TEE_MAIN_ALGO_ECDSA: 4326 case TEE_MAIN_ALGO_SM2_DSA_SM3: 4327 res = crypto_acipher_ecc_verify(cs->algo, o->attr, data, 4328 data_len, sig, sig_len); 4329 break; 4330 4331 default: 4332 res = TEE_ERROR_NOT_SUPPORTED; 4333 } 4334 4335 out: 4336 free_wipe(params); 4337 return res; 4338 } 4339