xref: /optee_os/core/tee/fs_htree.c (revision aaec75ec87470731e54ff9a1cbf5b72c0d6ee9bd)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2017, Linaro Limited
4  */
5 
6 #include <assert.h>
7 #include <crypto/crypto.h>
8 #include <initcall.h>
9 #include <kernel/tee_common_otp.h>
10 #include <optee_msg_supplicant.h>
11 #include <stdlib.h>
12 #include <string_ext.h>
13 #include <string.h>
14 #include <tee/fs_htree.h>
15 #include <tee/tee_fs_key_manager.h>
16 #include <tee/tee_fs_rpc.h>
17 #include <utee_defines.h>
18 #include <util.h>
19 
20 #define TEE_FS_HTREE_CHIP_ID_SIZE	32
21 #define TEE_FS_HTREE_HASH_ALG		TEE_ALG_SHA256
22 #define TEE_FS_HTREE_TSK_SIZE		TEE_FS_HTREE_HASH_SIZE
23 #define TEE_FS_HTREE_ENC_ALG		TEE_ALG_AES_ECB_NOPAD
24 #define TEE_FS_HTREE_ENC_SIZE		TEE_AES_BLOCK_SIZE
25 #define TEE_FS_HTREE_SSK_SIZE		TEE_FS_HTREE_HASH_SIZE
26 
27 #define TEE_FS_HTREE_AUTH_ENC_ALG	TEE_ALG_AES_GCM
28 #define TEE_FS_HTREE_HMAC_ALG		TEE_ALG_HMAC_SHA256
29 
30 #define BLOCK_NUM_TO_NODE_ID(num)	((num) + 1)
31 
32 #define NODE_ID_TO_BLOCK_NUM(id)	((id) - 1)
33 
34 /*
35  * The hash tree is implemented as a binary tree with the purpose to ensure
36  * integrity of the data in the nodes. The data in the nodes their turn
37  * provides both integrity and confidentiality of the data blocks.
38  *
39  * The hash tree is saved in a file as:
40  * +----------------------------+
41  * | htree_image.0		|
42  * | htree_image.1		|
43  * +----------------------------+
44  * | htree_node_image.1.0	|
45  * | htree_node_image.1.1	|
46  * +----------------------------+
47  * | htree_node_image.2.0	|
48  * | htree_node_image.2.1	|
49  * +----------------------------+
50  * | htree_node_image.3.0	|
51  * | htree_node_image.3.1	|
52  * +----------------------------+
53  * | htree_node_image.4.0	|
54  * | htree_node_image.4.1	|
55  * +----------------------------+
56  * ...
57  *
58  * htree_image is the header of the file, there's two instances of it. One
59  * which is committed and the other is used when updating the file. Which
60  * is committed is indicated by the "counter" field, the one with the
61  * largest value is selected.
62  *
63  * htree_node_image is a node in the hash tree, each node has two instances
64  * which is committed is decided by the parent node .flag bit
65  * HTREE_NODE_COMMITTED_CHILD. Which version is the committed version of
66  * node 1 is determined by the by the lowest bit of the counter field in
67  * the header.
68  *
69  * Note that nodes start counting at 1 while blocks at 0, this means that
70  * block 0 is represented by node 1.
71  *
72  * Where different elements are stored in the file is managed by the file
73  * system.
74  */
75 
76 #define HTREE_NODE_COMMITTED_BLOCK	BIT32(0)
77 /* n is 0 or 1 */
78 #define HTREE_NODE_COMMITTED_CHILD(n)	BIT32(1 + (n))
79 
80 struct htree_node {
81 	size_t id;
82 	bool dirty;
83 	bool block_updated;
84 	struct tee_fs_htree_node_image node;
85 	struct htree_node *parent;
86 	struct htree_node *child[2];
87 };
88 
89 struct tee_fs_htree {
90 	struct htree_node root;
91 	struct tee_fs_htree_image head;
92 	uint8_t fek[TEE_FS_HTREE_FEK_SIZE];
93 	struct tee_fs_htree_imeta imeta;
94 	bool dirty;
95 	const TEE_UUID *uuid;
96 	const struct tee_fs_htree_storage *stor;
97 	void *stor_aux;
98 };
99 
100 struct traverse_arg;
101 typedef TEE_Result (*traverse_cb_t)(struct traverse_arg *targ,
102 				    struct htree_node *node);
103 struct traverse_arg {
104 	struct tee_fs_htree *ht;
105 	traverse_cb_t cb;
106 	void *arg;
107 };
108 
109 static TEE_Result rpc_read(struct tee_fs_htree *ht, enum tee_fs_htree_type type,
110 			   size_t idx, size_t vers, void *data, size_t dlen)
111 {
112 	TEE_Result res;
113 	struct tee_fs_rpc_operation op;
114 	size_t bytes;
115 	void *p;
116 
117 	res = ht->stor->rpc_read_init(ht->stor_aux, &op, type, idx, vers, &p);
118 	if (res != TEE_SUCCESS)
119 		return res;
120 
121 	res = ht->stor->rpc_read_final(&op, &bytes);
122 	if (res != TEE_SUCCESS)
123 		return res;
124 
125 	if (bytes != dlen)
126 		return TEE_ERROR_CORRUPT_OBJECT;
127 
128 	memcpy(data, p, dlen);
129 	return TEE_SUCCESS;
130 }
131 
132 static TEE_Result rpc_read_head(struct tee_fs_htree *ht, size_t vers,
133 				struct tee_fs_htree_image *head)
134 {
135 	return rpc_read(ht, TEE_FS_HTREE_TYPE_HEAD, 0, vers,
136 			head, sizeof(*head));
137 }
138 
139 static TEE_Result rpc_read_node(struct tee_fs_htree *ht, size_t node_id,
140 				size_t vers,
141 				struct tee_fs_htree_node_image *node)
142 {
143 	return rpc_read(ht, TEE_FS_HTREE_TYPE_NODE, node_id - 1, vers,
144 			node, sizeof(*node));
145 }
146 
147 static TEE_Result rpc_write(struct tee_fs_htree *ht,
148 			    enum tee_fs_htree_type type, size_t idx,
149 			    size_t vers, const void *data, size_t dlen)
150 {
151 	TEE_Result res;
152 	struct tee_fs_rpc_operation op;
153 	void *p;
154 
155 	res = ht->stor->rpc_write_init(ht->stor_aux, &op, type, idx, vers, &p);
156 	if (res != TEE_SUCCESS)
157 		return res;
158 
159 	memcpy(p, data, dlen);
160 	return ht->stor->rpc_write_final(&op);
161 }
162 
163 static TEE_Result rpc_write_head(struct tee_fs_htree *ht, size_t vers,
164 				 const struct tee_fs_htree_image *head)
165 {
166 	return rpc_write(ht, TEE_FS_HTREE_TYPE_HEAD, 0, vers,
167 			 head, sizeof(*head));
168 }
169 
170 static TEE_Result rpc_write_node(struct tee_fs_htree *ht, size_t node_id,
171 				 size_t vers,
172 				 const struct tee_fs_htree_node_image *node)
173 {
174 	return rpc_write(ht, TEE_FS_HTREE_TYPE_NODE, node_id - 1, vers,
175 			 node, sizeof(*node));
176 }
177 
178 static TEE_Result traverse_post_order(struct traverse_arg *targ,
179 				      struct htree_node *node)
180 {
181 	TEE_Result res;
182 
183 	/*
184 	 * This function is recursing but not very deep, only with Log(N)
185 	 * maximum depth.
186 	 */
187 
188 	if (!node)
189 		return TEE_SUCCESS;
190 
191 	res = traverse_post_order(targ, node->child[0]);
192 	if (res != TEE_SUCCESS)
193 		return res;
194 
195 	res = traverse_post_order(targ, node->child[1]);
196 	if (res != TEE_SUCCESS)
197 		return res;
198 
199 	return targ->cb(targ, node);
200 }
201 
202 static TEE_Result htree_traverse_post_order(struct tee_fs_htree *ht,
203 					    traverse_cb_t cb, void *arg)
204 {
205 	struct traverse_arg targ = { ht, cb, arg };
206 
207 	return traverse_post_order(&targ, &ht->root);
208 }
209 
210 static size_t node_id_to_level(size_t node_id)
211 {
212 	assert(node_id && node_id < UINT_MAX);
213 	/* Calculate level of the node, root node (1) has level 1 */
214 	return sizeof(unsigned int) * 8 - __builtin_clz(node_id);
215 }
216 
217 static struct htree_node *find_closest_node(struct tee_fs_htree *ht,
218 					    size_t node_id)
219 {
220 	struct htree_node *node = &ht->root;
221 	size_t level = node_id_to_level(node_id);
222 	size_t n;
223 
224 	/* n = 1 because root node is level 1 */
225 	for (n = 1; n < level; n++) {
226 		struct htree_node *child;
227 		size_t bit_idx;
228 
229 		/*
230 		 * The difference between levels of the current node and
231 		 * the node we're looking for tells which bit decides
232 		 * direction in the tree.
233 		 *
234 		 * As the first bit has index 0 we'll subtract 1
235 		 */
236 		bit_idx = level - n - 1;
237 		child = node->child[((node_id >> bit_idx) & 1)];
238 		if (!child)
239 			return node;
240 		node = child;
241 	}
242 
243 	return node;
244 }
245 
246 static struct htree_node *find_node(struct tee_fs_htree *ht, size_t node_id)
247 {
248 	struct htree_node *node = find_closest_node(ht, node_id);
249 
250 	if (node && node->id == node_id)
251 		return node;
252 	return NULL;
253 }
254 
255 static TEE_Result get_node(struct tee_fs_htree *ht, bool create,
256 			   size_t node_id, struct htree_node **node_ret)
257 {
258 	struct htree_node *node;
259 	struct htree_node *nc;
260 	size_t n;
261 
262 	node = find_closest_node(ht, node_id);
263 	if (!node)
264 		return TEE_ERROR_GENERIC;
265 	if (node->id == node_id)
266 		goto ret_node;
267 
268 	/*
269 	 * Trying to read beyond end of file should be caught earlier than
270 	 * here.
271 	 */
272 	if (!create)
273 		return TEE_ERROR_GENERIC;
274 
275 	/*
276 	 * Add missing nodes, some nodes may already be there. When we've
277 	 * processed the range all nodes up to node_id will be in the tree.
278 	 */
279 	for (n = node->id + 1; n <= node_id; n++) {
280 		node = find_closest_node(ht, n);
281 		if (node->id == n)
282 			continue;
283 		/* Node id n should be a child of node */
284 		assert((n >> 1) == node->id);
285 		assert(!node->child[n & 1]);
286 
287 		nc = calloc(1, sizeof(*nc));
288 		if (!nc)
289 			return TEE_ERROR_OUT_OF_MEMORY;
290 		nc->id = n;
291 		nc->parent = node;
292 		node->child[n & 1] = nc;
293 		node = nc;
294 	}
295 
296 	if (node->id > ht->imeta.max_node_id)
297 		ht->imeta.max_node_id = node->id;
298 
299 ret_node:
300 	*node_ret = node;
301 	return TEE_SUCCESS;
302 }
303 
304 static int get_idx_from_counter(uint32_t counter0, uint32_t counter1)
305 {
306 	if (!(counter0 & 1)) {
307 		if (!(counter1 & 1))
308 			return 0;
309 		if (counter0 > counter1)
310 			return 0;
311 		else
312 			return 1;
313 	}
314 
315 	if (counter1 & 1)
316 		return 1;
317 	else
318 		return -1;
319 }
320 
321 static TEE_Result init_head_from_data(struct tee_fs_htree *ht,
322 				      const uint8_t *hash)
323 {
324 	TEE_Result res;
325 	int idx;
326 
327 	if (hash) {
328 		for (idx = 0;; idx++) {
329 			res = rpc_read_node(ht, 1, idx, &ht->root.node);
330 			if (res != TEE_SUCCESS)
331 				return res;
332 
333 			if (!memcmp(ht->root.node.hash, hash,
334 				    sizeof(ht->root.node.hash))) {
335 				res = rpc_read_head(ht, idx, &ht->head);
336 				if (res != TEE_SUCCESS)
337 					return res;
338 				break;
339 			}
340 
341 			if (idx)
342 				return TEE_ERROR_SECURITY;
343 		}
344 	} else {
345 		struct tee_fs_htree_image head[2];
346 
347 		for (idx = 0; idx < 2; idx++) {
348 			res = rpc_read_head(ht, idx, head + idx);
349 			if (res != TEE_SUCCESS)
350 				return res;
351 		}
352 
353 		idx = get_idx_from_counter(head[0].counter, head[1].counter);
354 		if (idx < 0)
355 			return TEE_ERROR_SECURITY;
356 
357 		res = rpc_read_node(ht, 1, idx, &ht->root.node);
358 		if (res != TEE_SUCCESS)
359 			return res;
360 
361 		ht->head = head[idx];
362 	}
363 
364 	ht->root.id = 1;
365 
366 	return TEE_SUCCESS;
367 }
368 
369 static TEE_Result init_tree_from_data(struct tee_fs_htree *ht)
370 {
371 	TEE_Result res;
372 	struct tee_fs_htree_node_image node_image;
373 	struct htree_node *node;
374 	struct htree_node *nc;
375 	size_t committed_version;
376 	size_t node_id = 2;
377 
378 	while (node_id <= ht->imeta.max_node_id) {
379 		node = find_node(ht, node_id >> 1);
380 		if (!node)
381 			return TEE_ERROR_GENERIC;
382 		committed_version = !!(node->node.flags &
383 				    HTREE_NODE_COMMITTED_CHILD(node_id & 1));
384 
385 		res = rpc_read_node(ht, node_id, committed_version,
386 				    &node_image);
387 		if (res != TEE_SUCCESS)
388 			return res;
389 
390 		res = get_node(ht, true, node_id, &nc);
391 		if (res != TEE_SUCCESS)
392 			return res;
393 		nc->node = node_image;
394 		node_id++;
395 	}
396 
397 	return TEE_SUCCESS;
398 }
399 
400 static TEE_Result calc_node_hash(struct htree_node *node,
401 				 struct tee_fs_htree_meta *meta, void *ctx,
402 				 uint8_t *digest)
403 {
404 	TEE_Result res;
405 	uint32_t alg = TEE_FS_HTREE_HASH_ALG;
406 	uint8_t *ndata = (uint8_t *)&node->node + sizeof(node->node.hash);
407 	size_t nsize = sizeof(node->node) - sizeof(node->node.hash);
408 
409 	res = crypto_hash_init(ctx, alg);
410 	if (res != TEE_SUCCESS)
411 		return res;
412 
413 	res = crypto_hash_update(ctx, alg, ndata, nsize);
414 	if (res != TEE_SUCCESS)
415 		return res;
416 
417 	if (meta) {
418 		res = crypto_hash_update(ctx, alg, (void *)meta, sizeof(*meta));
419 		if (res != TEE_SUCCESS)
420 			return res;
421 	}
422 
423 	if (node->child[0]) {
424 		res = crypto_hash_update(ctx, alg, node->child[0]->node.hash,
425 					 sizeof(node->child[0]->node.hash));
426 		if (res != TEE_SUCCESS)
427 			return res;
428 	}
429 
430 	if (node->child[1]) {
431 		res = crypto_hash_update(ctx, alg, node->child[1]->node.hash,
432 					 sizeof(node->child[1]->node.hash));
433 		if (res != TEE_SUCCESS)
434 			return res;
435 	}
436 
437 	return crypto_hash_final(ctx, alg, digest, TEE_FS_HTREE_HASH_SIZE);
438 }
439 
440 static TEE_Result authenc_init(void **ctx_ret, TEE_OperationMode mode,
441 			       struct tee_fs_htree *ht,
442 			       struct tee_fs_htree_node_image *ni,
443 			       size_t payload_len)
444 {
445 	TEE_Result res = TEE_SUCCESS;
446 	const uint32_t alg = TEE_FS_HTREE_AUTH_ENC_ALG;
447 	void *ctx;
448 	size_t aad_len = TEE_FS_HTREE_FEK_SIZE + TEE_FS_HTREE_IV_SIZE;
449 	uint8_t *iv;
450 
451 	if (ni) {
452 		iv = ni->iv;
453 	} else {
454 		iv = ht->head.iv;
455 		aad_len += TEE_FS_HTREE_HASH_SIZE + sizeof(ht->head.counter);
456 	}
457 
458 	if (mode == TEE_MODE_ENCRYPT) {
459 		res = crypto_rng_read(iv, TEE_FS_HTREE_IV_SIZE);
460 		if (res != TEE_SUCCESS)
461 			return res;
462 	}
463 
464 	res = crypto_authenc_alloc_ctx(&ctx, alg);
465 	if (res != TEE_SUCCESS)
466 		return res;
467 
468 	res = crypto_authenc_init(ctx, alg, mode, ht->fek,
469 				  TEE_FS_HTREE_FEK_SIZE, iv,
470 				  TEE_FS_HTREE_IV_SIZE, TEE_FS_HTREE_TAG_SIZE,
471 				  aad_len, payload_len);
472 	if (res != TEE_SUCCESS)
473 		goto err_free;
474 
475 	if (!ni) {
476 		res = crypto_authenc_update_aad(ctx, alg, mode,
477 						ht->root.node.hash,
478 						TEE_FS_HTREE_FEK_SIZE);
479 		if (res != TEE_SUCCESS)
480 			goto err;
481 
482 		res = crypto_authenc_update_aad(ctx, alg, mode,
483 						(void *)&ht->head.counter,
484 						sizeof(ht->head.counter));
485 		if (res != TEE_SUCCESS)
486 			goto err;
487 	}
488 
489 	res = crypto_authenc_update_aad(ctx, alg, mode, ht->head.enc_fek,
490 					TEE_FS_HTREE_FEK_SIZE);
491 	if (res != TEE_SUCCESS)
492 		goto err;
493 
494 	res = crypto_authenc_update_aad(ctx, alg, mode, iv,
495 					TEE_FS_HTREE_IV_SIZE);
496 	if (res != TEE_SUCCESS)
497 		goto err;
498 
499 	*ctx_ret = ctx;
500 
501 	return TEE_SUCCESS;
502 err:
503 	crypto_authenc_final(ctx, alg);
504 err_free:
505 	crypto_authenc_free_ctx(ctx, alg);
506 	return res;
507 }
508 
509 static TEE_Result authenc_decrypt_final(void *ctx, const uint8_t *tag,
510 					const void *crypt, size_t len,
511 					void *plain)
512 {
513 	TEE_Result res;
514 	size_t out_size = len;
515 
516 	res = crypto_authenc_dec_final(ctx, TEE_FS_HTREE_AUTH_ENC_ALG, crypt,
517 				       len, plain, &out_size, tag,
518 				       TEE_FS_HTREE_TAG_SIZE);
519 	crypto_authenc_final(ctx, TEE_FS_HTREE_AUTH_ENC_ALG);
520 	crypto_authenc_free_ctx(ctx, TEE_FS_HTREE_AUTH_ENC_ALG);
521 
522 	if (res == TEE_SUCCESS && out_size != len)
523 		return TEE_ERROR_GENERIC;
524 	if (res == TEE_ERROR_MAC_INVALID)
525 		return TEE_ERROR_CORRUPT_OBJECT;
526 
527 	return res;
528 }
529 
530 static TEE_Result authenc_encrypt_final(void *ctx, uint8_t *tag,
531 					const void *plain, size_t len,
532 					void *crypt)
533 {
534 	TEE_Result res;
535 	size_t out_size = len;
536 	size_t out_tag_size = TEE_FS_HTREE_TAG_SIZE;
537 
538 	res = crypto_authenc_enc_final(ctx, TEE_FS_HTREE_AUTH_ENC_ALG, plain,
539 				       len, crypt, &out_size, tag,
540 				       &out_tag_size);
541 	crypto_authenc_final(ctx, TEE_FS_HTREE_AUTH_ENC_ALG);
542 	crypto_authenc_free_ctx(ctx, TEE_FS_HTREE_AUTH_ENC_ALG);
543 
544 	if (res == TEE_SUCCESS &&
545 	    (out_size != len || out_tag_size != TEE_FS_HTREE_TAG_SIZE))
546 		return TEE_ERROR_GENERIC;
547 
548 	return res;
549 }
550 
551 static TEE_Result verify_root(struct tee_fs_htree *ht)
552 {
553 	TEE_Result res;
554 	void *ctx;
555 
556 	res = tee_fs_fek_crypt(ht->uuid, TEE_MODE_DECRYPT, ht->head.enc_fek,
557 			       sizeof(ht->fek), ht->fek);
558 	if (res != TEE_SUCCESS)
559 		return res;
560 
561 	res = authenc_init(&ctx, TEE_MODE_DECRYPT, ht, NULL, sizeof(ht->imeta));
562 	if (res != TEE_SUCCESS)
563 		return res;
564 
565 	return authenc_decrypt_final(ctx, ht->head.tag, ht->head.imeta,
566 				     sizeof(ht->imeta), &ht->imeta);
567 }
568 
569 static TEE_Result verify_node(struct traverse_arg *targ,
570 			      struct htree_node *node)
571 {
572 	void *ctx = targ->arg;
573 	TEE_Result res;
574 	uint8_t digest[TEE_FS_HTREE_HASH_SIZE];
575 
576 	if (node->parent)
577 		res = calc_node_hash(node, NULL, ctx, digest);
578 	else
579 		res = calc_node_hash(node, &targ->ht->imeta.meta, ctx, digest);
580 	if (res == TEE_SUCCESS &&
581 	    buf_compare_ct(digest, node->node.hash, sizeof(digest)))
582 		return TEE_ERROR_CORRUPT_OBJECT;
583 
584 	return res;
585 }
586 
587 static TEE_Result verify_tree(struct tee_fs_htree *ht)
588 {
589 	TEE_Result res;
590 	void *ctx;
591 
592 	res = crypto_hash_alloc_ctx(&ctx, TEE_FS_HTREE_HASH_ALG);
593 	if (res != TEE_SUCCESS)
594 		return res;
595 
596 	res = htree_traverse_post_order(ht, verify_node, ctx);
597 	crypto_hash_free_ctx(ctx, TEE_FS_HTREE_HASH_ALG);
598 
599 	return res;
600 }
601 
602 static TEE_Result init_root_node(struct tee_fs_htree *ht)
603 {
604 	TEE_Result res;
605 	void *ctx;
606 
607 	res = crypto_hash_alloc_ctx(&ctx, TEE_FS_HTREE_HASH_ALG);
608 	if (res != TEE_SUCCESS)
609 		return res;
610 
611 	ht->root.id = 1;
612 	ht->root.dirty = true;
613 
614 	res = calc_node_hash(&ht->root, &ht->imeta.meta, ctx,
615 			     ht->root.node.hash);
616 	crypto_hash_free_ctx(ctx, TEE_FS_HTREE_HASH_ALG);
617 
618 	return res;
619 }
620 
621 TEE_Result tee_fs_htree_open(bool create, uint8_t *hash, const TEE_UUID *uuid,
622 			     const struct tee_fs_htree_storage *stor,
623 			     void *stor_aux, struct tee_fs_htree **ht_ret)
624 {
625 	TEE_Result res;
626 	struct tee_fs_htree *ht = calloc(1, sizeof(*ht));
627 
628 	if (!ht)
629 		return TEE_ERROR_OUT_OF_MEMORY;
630 
631 	ht->uuid = uuid;
632 	ht->stor = stor;
633 	ht->stor_aux = stor_aux;
634 
635 	if (create) {
636 		const struct tee_fs_htree_image dummy_head = { .counter = 0 };
637 
638 		res = crypto_rng_read(ht->fek, sizeof(ht->fek));
639 		if (res != TEE_SUCCESS)
640 			goto out;
641 
642 		res = tee_fs_fek_crypt(ht->uuid, TEE_MODE_ENCRYPT, ht->fek,
643 				       sizeof(ht->fek), ht->head.enc_fek);
644 		if (res != TEE_SUCCESS)
645 			goto out;
646 
647 		res = init_root_node(ht);
648 		if (res != TEE_SUCCESS)
649 			goto out;
650 
651 		ht->dirty = true;
652 		res = tee_fs_htree_sync_to_storage(&ht, hash);
653 		if (res != TEE_SUCCESS)
654 			goto out;
655 		res = rpc_write_head(ht, 0, &dummy_head);
656 	} else {
657 		res = init_head_from_data(ht, hash);
658 		if (res != TEE_SUCCESS)
659 			goto out;
660 
661 		res = verify_root(ht);
662 		if (res != TEE_SUCCESS)
663 			goto out;
664 
665 		res = init_tree_from_data(ht);
666 		if (res != TEE_SUCCESS)
667 			goto out;
668 
669 		res = verify_tree(ht);
670 	}
671 out:
672 	if (res == TEE_SUCCESS)
673 		*ht_ret = ht;
674 	else
675 		tee_fs_htree_close(&ht);
676 	return res;
677 }
678 
679 struct tee_fs_htree_meta *tee_fs_htree_get_meta(struct tee_fs_htree *ht)
680 {
681 	return &ht->imeta.meta;
682 }
683 
684 void tee_fs_htree_meta_set_dirty(struct tee_fs_htree *ht)
685 {
686 	ht->dirty = true;
687 	ht->root.dirty = true;
688 }
689 
690 static TEE_Result free_node(struct traverse_arg *targ __unused,
691 			    struct htree_node *node)
692 {
693 	if (node->parent)
694 		free(node);
695 	return TEE_SUCCESS;
696 }
697 
698 void tee_fs_htree_close(struct tee_fs_htree **ht)
699 {
700 	if (!*ht)
701 		return;
702 	htree_traverse_post_order(*ht, free_node, NULL);
703 	free(*ht);
704 	*ht = NULL;
705 }
706 
707 static TEE_Result htree_sync_node_to_storage(struct traverse_arg *targ,
708 					     struct htree_node *node)
709 {
710 	TEE_Result res;
711 	uint8_t vers;
712 	struct tee_fs_htree_meta *meta = NULL;
713 
714 	/*
715 	 * The node can be dirty while the block isn't updated due to
716 	 * updated children, but if block is updated the node has to be
717 	 * dirty.
718 	 */
719 	assert(node->dirty >= node->block_updated);
720 
721 	if (!node->dirty)
722 		return TEE_SUCCESS;
723 
724 	if (node->parent) {
725 		uint32_t f = HTREE_NODE_COMMITTED_CHILD(node->id & 1);
726 
727 		node->parent->dirty = true;
728 		node->parent->node.flags ^= f;
729 		vers = !!(node->parent->node.flags & f);
730 	} else {
731 		/*
732 		 * Counter isn't updated yet, it's increased just before
733 		 * writing the header.
734 		 */
735 		vers = !(targ->ht->head.counter & 1);
736 		meta = &targ->ht->imeta.meta;
737 	}
738 
739 	res = calc_node_hash(node, meta, targ->arg, node->node.hash);
740 	if (res != TEE_SUCCESS)
741 		return res;
742 
743 	node->dirty = false;
744 	node->block_updated = false;
745 
746 	return rpc_write_node(targ->ht, node->id, vers, &node->node);
747 }
748 
749 static TEE_Result update_root(struct tee_fs_htree *ht)
750 {
751 	TEE_Result res;
752 	void *ctx;
753 
754 	ht->head.counter++;
755 
756 	res = authenc_init(&ctx, TEE_MODE_ENCRYPT, ht, NULL, sizeof(ht->imeta));
757 	if (res != TEE_SUCCESS)
758 		return res;
759 
760 	return authenc_encrypt_final(ctx, ht->head.tag, &ht->imeta,
761 				     sizeof(ht->imeta), &ht->head.imeta);
762 }
763 
764 TEE_Result tee_fs_htree_sync_to_storage(struct tee_fs_htree **ht_arg,
765 					uint8_t *hash)
766 {
767 	TEE_Result res;
768 	struct tee_fs_htree *ht = *ht_arg;
769 	void *ctx;
770 
771 	if (!ht)
772 		return TEE_ERROR_CORRUPT_OBJECT;
773 
774 	if (!ht->dirty)
775 		return TEE_SUCCESS;
776 
777 	res = crypto_hash_alloc_ctx(&ctx, TEE_FS_HTREE_HASH_ALG);
778 	if (res != TEE_SUCCESS)
779 		return res;
780 
781 	res = htree_traverse_post_order(ht, htree_sync_node_to_storage, ctx);
782 	if (res != TEE_SUCCESS)
783 		goto out;
784 
785 	/* All the nodes are written to storage now. Time to update root. */
786 	res = update_root(ht);
787 	if (res != TEE_SUCCESS)
788 		goto out;
789 
790 	res = rpc_write_head(ht, ht->head.counter & 1, &ht->head);
791 	if (res != TEE_SUCCESS)
792 		goto out;
793 
794 	ht->dirty = false;
795 	if (hash)
796 		memcpy(hash, ht->root.node.hash, sizeof(ht->root.node.hash));
797 out:
798 	crypto_hash_free_ctx(ctx, TEE_FS_HTREE_HASH_ALG);
799 	if (res != TEE_SUCCESS)
800 		tee_fs_htree_close(ht_arg);
801 	return res;
802 }
803 
804 static TEE_Result get_block_node(struct tee_fs_htree *ht, bool create,
805 				 size_t block_num, struct htree_node **node)
806 {
807 	TEE_Result res;
808 	struct htree_node *nd;
809 
810 	res = get_node(ht, create, BLOCK_NUM_TO_NODE_ID(block_num), &nd);
811 	if (res == TEE_SUCCESS)
812 		*node = nd;
813 
814 	return res;
815 }
816 
817 TEE_Result tee_fs_htree_write_block(struct tee_fs_htree **ht_arg,
818 				    size_t block_num, const void *block)
819 {
820 	struct tee_fs_htree *ht = *ht_arg;
821 	TEE_Result res;
822 	struct tee_fs_rpc_operation op;
823 	struct htree_node *node = NULL;
824 	uint8_t block_vers;
825 	void *ctx;
826 	void *enc_block;
827 
828 	if (!ht)
829 		return TEE_ERROR_CORRUPT_OBJECT;
830 
831 	res = get_block_node(ht, true, block_num, &node);
832 	if (res != TEE_SUCCESS)
833 		goto out;
834 
835 	if (!node->block_updated)
836 		node->node.flags ^= HTREE_NODE_COMMITTED_BLOCK;
837 
838 	block_vers = !!(node->node.flags & HTREE_NODE_COMMITTED_BLOCK);
839 	res = ht->stor->rpc_write_init(ht->stor_aux, &op,
840 				       TEE_FS_HTREE_TYPE_BLOCK, block_num,
841 				       block_vers, &enc_block);
842 	if (res != TEE_SUCCESS)
843 		goto out;
844 
845 	res = authenc_init(&ctx, TEE_MODE_ENCRYPT, ht, &node->node,
846 			   ht->stor->block_size);
847 	if (res != TEE_SUCCESS)
848 		goto out;
849 	res = authenc_encrypt_final(ctx, node->node.tag, block,
850 				    ht->stor->block_size, enc_block);
851 	if (res != TEE_SUCCESS)
852 		goto out;
853 
854 	res = ht->stor->rpc_write_final(&op);
855 	if (res != TEE_SUCCESS)
856 		goto out;
857 
858 	node->block_updated = true;
859 	node->dirty = true;
860 	ht->dirty = true;
861 out:
862 	if (res != TEE_SUCCESS)
863 		tee_fs_htree_close(ht_arg);
864 	return res;
865 }
866 
867 TEE_Result tee_fs_htree_read_block(struct tee_fs_htree **ht_arg,
868 				   size_t block_num, void *block)
869 {
870 	struct tee_fs_htree *ht = *ht_arg;
871 	TEE_Result res;
872 	struct tee_fs_rpc_operation op;
873 	struct htree_node *node;
874 	uint8_t block_vers;
875 	size_t len;
876 	void *ctx;
877 	void *enc_block;
878 
879 	if (!ht)
880 		return TEE_ERROR_CORRUPT_OBJECT;
881 
882 	res = get_block_node(ht, false, block_num, &node);
883 	if (res != TEE_SUCCESS)
884 		goto out;
885 
886 	block_vers = !!(node->node.flags & HTREE_NODE_COMMITTED_BLOCK);
887 	res = ht->stor->rpc_read_init(ht->stor_aux, &op,
888 				      TEE_FS_HTREE_TYPE_BLOCK, block_num,
889 				      block_vers, &enc_block);
890 	if (res != TEE_SUCCESS)
891 		goto out;
892 
893 	res = ht->stor->rpc_read_final(&op, &len);
894 	if (res != TEE_SUCCESS)
895 		goto out;
896 	if (len != ht->stor->block_size) {
897 		res = TEE_ERROR_CORRUPT_OBJECT;
898 		goto out;
899 	}
900 
901 	res = authenc_init(&ctx, TEE_MODE_DECRYPT, ht, &node->node,
902 			   ht->stor->block_size);
903 	if (res != TEE_SUCCESS)
904 		goto out;
905 
906 	res = authenc_decrypt_final(ctx, node->node.tag, enc_block,
907 				    ht->stor->block_size, block);
908 out:
909 	if (res != TEE_SUCCESS)
910 		tee_fs_htree_close(ht_arg);
911 	return res;
912 }
913 
914 TEE_Result tee_fs_htree_truncate(struct tee_fs_htree **ht_arg, size_t block_num)
915 {
916 	struct tee_fs_htree *ht = *ht_arg;
917 	size_t node_id = BLOCK_NUM_TO_NODE_ID(block_num);
918 	struct htree_node *node;
919 
920 	if (!ht)
921 		return TEE_ERROR_CORRUPT_OBJECT;
922 
923 	while (node_id < ht->imeta.max_node_id) {
924 		node = find_closest_node(ht, ht->imeta.max_node_id);
925 		assert(node && node->id == ht->imeta.max_node_id);
926 		assert(!node->child[0] && !node->child[1]);
927 		assert(node->parent);
928 		assert(node->parent->child[node->id & 1] == node);
929 		node->parent->child[node->id & 1] = NULL;
930 		free(node);
931 		ht->imeta.max_node_id--;
932 		ht->dirty = true;
933 	}
934 
935 	return TEE_SUCCESS;
936 }
937